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Abstract. Petri nets are widely used for modeling and analyzing work-
flows. Using the token-game semantics, Petri net-based workflow mod-
els can be analyzed before the model is actually used at run time. At
run time, a workflow model prescribes behavior of a reactive system
(the workflow engine). But the token-game semantics models behavior
of closed, active systems. Thus, the token-game semantics behavior of a
Petri net-based workflow model will differ considerably from its behav-
ior at run time. In this paper we define a reactive semantics for Petri
nets. This semantics can model behavior of a reactive system and its
environment. We compare this semantics with the token-game semantics
and prove that under some conditions the reactive semantics and the
token-game semantics induce similar behavior. Next, we apply the reac-
tive semantics to workflow modeling and show how a workflow net can
be transformed into a reactive workflow net. We prove that under some
conditions the soundness property of a workflow net is preserved when
the workflow net is transformed into a reactive workflow net. This result
shows that to analyze soundness, the token-game semantics can safely
be used, even though that semantics is not reactive.

1 Introduction

Petri nets are a popular technique to formally model workflows [1, 9, 11, 18]. They
offer a formal counterpart for the bubbles and arrows that people draw when
modeling workflows. Their formal token-game semantics enables analysis of Petri
net based workflow models. Under the token-game semantics, the workflow model
describes what behaviors are allowed. By computing behavior of a workflow
model using the token-game semantics, errors in a workflow model can be spotted
before the workflow model is actually put to use (cf. [1]).

A workflow model is put to use by feeding it to a workflow management
system (WFMS). Heart of a WFMS is the workflow engine (WF engine), that
does the actual management. WF engines are reactive systems. A reactive system
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runs in parallel with its environment and tries to enforce certain desirable effects
in the environment [17]. It does so by reacting to changes, called events, in its
environment. The response of the reactive system depends upon its current state.
Giving a response may change the state of the reactive system.

The WF engine sees a workflow model as a prescription of what it has to do.
The behavior of reactive systems is usually modeled using event-condition-action
(ECA) rules [19], also known as production rules. The meaning of an ECA rule
is that if the event in the environment occurs, and the condition is true, the
reactive system does the action. Part of the condition can be a test of the state
of the system. Part of the action can be a change of state. ECA rules can be
easily incorporated in Petri nets by associating with every transition in the Petri
net an ECA rule, that tells how the transition changes the state of the reactive
system, in this case the state of the WF engine. This insight is already present
in the pioneering work on workflow modeling done in the seventies [21]. Thus,
in this case a Petri net workflow model models the behavior of the WF engine.

Unfortunately, the token-game semantics of Petri nets does not model be-
havior of reactive systems, and therefore does not model behavior of a WF
engine [12, 13]. The non-reactivity of the token-game semantics can be seen im-
mediately from the definition of the firing rule. A transition in a Petri net is
enabled once its input places are filled. The environment of the Petri net does
not influence the firing of transitions. In contrast, in a reactive system a tran-
sition which is relevant, needs some additional input event to become enabled.
So, the token-game semantics models closed systems, whereas a reactive system
is open, otherwise it cannot interact with its environment.

Furthermore, in a reactive system an enabled transition must fire imme-
diately, otherwise the system would fail to respond to a certain event. In the
token-game semantics, an enabled transition may fire, but does not have to. In
the worst case firing is postponed forever, or some transition that becomes en-
abled later fires before the enabled transition. Clearly, this contradicts reactivity.

To illustrate this point on a real-life example, consider the Petri net in Fig. 3.
For an explanation of this example, we refer to Sect. 4. Now, suppose task check

credit has just finished and that the new marking is [p1,p5]. Since task check

credit has finished, presumably the WF engine now has to decide whether or not
the credit was ok. (But the actual outcome of the decision depends upon the
environment of the WF engine, which is modeled by the nondeterministic choice
in place p5; see Sect. 4.) Then, under the token-game semantics, it is possible to
fire transition check order before firing transition ok or transition not ok. Suppose
that the order is checked only after several days; then this firing sequence implies
that the WF engine also takes days before it actually makes a decision. Clearly,
this is inappropriate behavior: the decision should be made immediately when
check credit has finished.

Since the token-game semantics is not reactive, a Petri net does not model
the behavior of the WF engine. Thus, it is unclear how the behavior of the
Petri net under the token-game semantics relates to the behavior of the WF
engine when the workflow model is actually put to use. Consequently, it is also



unclear whether the outcome of analysis of a workflow model using the token-
game semantics carries over to the reactive setting. In other words, are analysis
results in which the token-game semantics has been used still valid in a reactive
setting?

The purpose of this paper is to define a reactive semantics for Petri nets and
to relate this new semantics to the standard Petri net token-game semantics.
In particular, we will study in what respect and under what conditions these
two semantics induce similar behavior. As an application of this result, we will
show that the soundness property [1] is preserved when transforming a workflow
net into a reactive workflow net, i.e., a workflow net with a reactive semantics.
Thus, we give a justification why the token-game semantics can safely be used
to analyse workflow models for absence of deadlocks in a reactive setting, even
though the token-game semantics is not reactive.

There are some commercially Petri net based workflow management systems
available. We do not claim that our reactive semantics precisely describes the
behavior of a WF engine in such a WFMS, but we do think that our semantics
is closer to the behavior of such a WF engine than the token-game semantics.

The remainder of this paper is structured as follows. In Sect. 2 we will reca-
pitulate some standard terminology and notions from Petri net theory. In Sect. 3
we define a reactive semantics for Petri nets and relate this semantics to the stan-
dard token-game semantics. In particular, we prove that under some conditions
both semantics induce similar behavior. In Sect. 4 we recall the definition of a
workflow net [1] and the soundness property. We present different interpretations
for transitions in a workflow net. Using these different interpretations, in Sect. 5
we show how a workflow net can be transformed in a reactive workflow net. In
Sect. 6 we prove that the soundness property is preserved when a workflow net
is mapped into a reactive workflow net. In the proof we build upon the results
obtained in Sect. 3. Related work is discussed in Sect. 7. We end with conclusions
and further work.

2 Preliminaries

We recall the definition of a Petri net (P/T net).
A Petri net is a triple (P ,T ,F ), where

– P is a finite set of places,
– T is a finite set of transitions, (P ∩ T = ∅)
– F ⊆ (P × T ) ∪ (T × P) is a finite set of arcs, the flow relation.

A transition t has input and output places. A place p is input (output) for
transition t if there is a directed arc from p to t (from t to p). The input places
of a transition t are denoted •t . The output places of t are denoted t•. A place
can contain zero or more tokens. A token is represented by a black dot. The
global state of a Petri net, also called a marking, is the distribution of tokens
over places. Formally, a state or marking M is a function M : P → N that
assigns to every place p the number of tokens M (p) that reside in p.

We now introduce some terminology.



– A transition t is enabled in marking M , written M t−→ , iff every input place
of t contains at least one token.

– If a transition t is enabled in marking M , it may fire: from every input
place one token is removed and to every output place one token is added.
We write M t−→M ′ to denote that firing enabled transition t in marking M
results in marking M ′.

We write M −→M ′ to indicate that by firing some transition t in M marking
M ′ can be reached. We write M σ−−→M ′ to denote that by firing sequence σ =
t1t2 . . . tn from M marking M ′ can be reached, so

M0
t0−−→M1

t1−−→M2 . . .Mn−1

tn−1−−−−→Mn , where M0 = M and Mn = M ′. We write
M ∗−→M ′ to denote that there is a sequence σ such that M σ−−→M ′.

3 Reactive Nets

In this section we will adapt the definition of a Petri net to make it reactive. We
call the new Petri net variant that we thus obtain a reactive net.

As explained in the introduction, the token-game semantics models closed
systems, whereas a reactive system is open, otherwise it wouldn’t be able to
interact with its environment. This limitation of Petri nets can be circumvented
by modeling the environment in the Petri net as well. We therefore distinguish
external transitions of the environment from internal transitions of the reactive
system. Thus, instead of a set T of transitions, we now have a set Tinternal of
internal transitions and a set Texternal of external transitions.

We also explained in the introduction that the may firing rule used in Petri
nets does not model reactivity. In a reactive system an enabled transition must
fire immediately, otherwise the system would fail to respond to a certain event.
In the token-game semantics, an enabled transition t may fire, but does not have
to. In the worst case firing t is postponed forever, or some conflicting transition
that becomes enabled later fires before t and disables t .

The most straightforward way to make the token-game semantics reactive is
to change the firing rule from may firing into must firing, i.e., as many enabled
transitions as possible should fire. This, however, is undesirable: since Petri nets
model closed systems, the environment of the system is also included in the Petri
net. The environment is active rather than reactive. For the environment, the
may firing rule is more appropriate. Therefore, for internal transitions, done by
the reactive system itself, we use a must firing rule, and for external transitions,
done by the environment, we use a may firing rule.

However, if in a certain marking both an internal transition and an external
transition are enabled, a conflict can arise. To avoid such a conflict, we require
all internal transitions to fire with higher priority than external transitions. So,
if both the environment and the reactive system can do a transition, the reactive
system will fire first. This corresponds to the perfect synchrony hypothesis [5],
an assumption frequently made in the design of reactive systems: The reactive
system is faster than the environment it controls. Note that the perfect synchrony
hypothesis is an assumption, not a guarantee.



We can informally describe the behavior of reactive Petri nets in the following
way, borrowing some terminology from Statemate [16]. A state (marking) is
stable if no internal transition is enabled, it is unstable otherwise. A stable
state can become unstable if some external transition fires. In an unstable state,
the reactive system must fire some enabled internal transitions. By firing these
transitions, a new state is reached. If the new state is stable, the system has
finished its reaction. Otherwise, the system again reacts by taking a transition
and entering another new state. This sequence of taking a transition and entering
a new state is repeated until finally a stable state is reached. It is possible that
the system never reaches such a stable state: in that case the system diverges.

Definition. We now describe reactive nets and their behavior more formally. A
reactive net RN is a tuple (P ,Tinternal ,Texternal ,F ). Sets Texternal and Tinternal

are transitions. A reactive semantics for a net (P ,Tinternal ,Texternal ,F ) is de-
fined as follows.

– An internal transition t is enabled in marking M iff all of t ’s input places
are filled with a token, i.e. M is unstable.

– An external transition t is enabled in marking M iff all of t ’s input places
are filled with a token, and there is no enabled internal transition in M , i.e.
M is stable.

The firing of an enabled transition is as before: from every input place one token
is removed and to every output place one token is added.

The must firing is encoded in the priority rule: enabled internal transitions
have priority over external transitions. That unstable markings are instantaneous
is an interpretation we attach to them. To model this explicitly in the semantics,
we would have to switch to timed Petri nets.

Token-game semantics for reactive nets. It also possible to use a token-game
semantics for a reactive net, by first transforming the reactive net into a Petri
net using function toPetri , which takes the union of sets Tinternal and Texternal .
Function toPetri is defined as follows:

toPetri((P ,Tinternal ,Texternal ,F )) = (P ,Tinternal ∪ Texternal ,F )

To show the relation between the transition relation of RN under the token-
game semantics, −→ tg , and the transition relation of RN under the reactive
semantics, −→ r , we now define −→ r in terms of −→ tg :

M −→ rM ′ ⇔ ∃ti ∈ Tinternal : M ti−−→ tgM ′

∨ ( (∃te ∈ Texternal : M te−−→ tgM ′) ∧ (∄ti ∈ Tinternal : M ti−−→ tg) )

Relation between reactive and token-game semantics. Indirectly, we have pro-
vided two different semantics for reactive nets: a reactive one and the tradi-
tional token-game semantics. In what respect do these semantics induce similar
behavior?



Before we answer this question, let us look at the behavior of the reactive
system in the reactive setting. In the reactive setting, the system moves typically
from a stable state to another stable state. It is also possible that the system
diverges: then there is a loop of internal transitions in the reactive net.

Of course, this reactive behavior can be simulated with the token-game se-
mantics, since every transition enabled in marking M under the reactive se-
mantics will also be enabled in M under the token-game semantics. The next
theorem and corollary now follow immediately.

Theorem 1 Given a reactive net RN that is in some state M . If under the
reactive semantics t can fire in M and M ′ is reached, M t−→ rM ′, then t can
also fire under the token-game semantics and M ′ is also reached, so M t−→ tgM ′.

Corollary 2 Given a reactive net RN . If M is a reachable state of RN under
the reactive semantics, then M is a reachable state of RN under the token-game
semantics.

Clearly, the token-game semantics can be used to simulate any reaction, start-
ing in some stable state, in the reactive semantics. The reverse, however, does
not hold: not every behavior under the token-game semantics can be simulated
using the reactive semantics. The reason for this is that in the reactive semantics
external transitions are only enabled once all enabled internal transitions have
fired. So, not every marking reachable under the token-game semantics will be
reachable under the reactive semantics.

However, sometimes the outcome of the reaction of the system in the two
semantics, i.e., the stable marking that is eventually reached, can be the same
in both semantics. That is, under some constraints, if under the token-game
semantics a particular stable marking is reached (where stable under the token-
game semantics means that no internal transition is enabled), then this same
marking can be reached under the reactive semantics. The constraints needed to
enforces this, C1 and C2, are listed in Table 1.

Constraint C1 is necessary because under the reactive semantics internal
transitions have priority over external transitions, whereas under the token-game
semantics this is not the case. To see why constraint C2 is needed, consider the
example reactive Petri net in Fig. 1. This reactive net does not satisfy C2, since
t6 conflicts with both t2 and t4. Under the token-game semantics, in stable
marking [p2, p3], there is a sequence t3, t5, t6 to stable marking [o]. All the in-
termediary markings in the sequence are unstable. Yet, it is impossible in the

Table 1. Constraints on reactive nets

C1 An external transition te does not conflict with an internal transition ti :
•ti ∩ •te �= ∅.

C2 For two internal transitions t and t ′, if •t ∩•t ′ �= ∅, then either •t = •t ′ (t and
t ′ are free choice), or there is no reachable marking M , under the token-game

semantics, such that M t−→ tg and M t′−−→ tg .



p1

p3

i

p2

t2t3

t1

t5

t4

t6

p4

o

Fig. 1. Example reactive net to motivate constraint C2. Black transitions are internal,
white transitions are external

reactive semantics to do such a sequence. Transition t6 is never taken; instead,
t2 or t4 is taken. So marking [o] is unreachable under the reactive semantics.

Constraint C2 has been deliberately formulated on both the syntax and se-
mantics of Petri nets, rather than only on the syntax. A syntactic constraint,
e.g. “internal transitions are free choice”, would have ruled out certain reactive
Petri nets that constraint C2 allows. Figure 3 shows a Petri net, in which the
two internal transitions cancel and pick satisfy constraint C2, but are not free
choice.

We now proceed to prove one of the main theorems of this paper. The the-
orem states that under constraints C1 and C2, the token-game semantics and
the reactive semantics have similar behavior. In the theorem, we use the terms
‘stable’ and ‘unstable’ states, introduced before.

Theorem 3 Given a reactive net RN that satisfies constraints C1 and C2.
Suppose, under the token-game semantics, there is a sequence σ of transitions

from one stable state to another, such that all intermediary states are unstable,

M0
t0−−→ tgM1

t1−−→ tgM2
t2−−→ tgM3

t3−−→ tg
. . .

tn−1−−−−→ tgMn

where M0 and Mn are stable, and Mi , for 0 < i < n, is unstable.
Then a permutation of σ (possibly σ itself) can be taken under the reactive

semantics, and stable state Mn is reached.

Proof. If sequence σ is possible under the reactive semantics, we are done. So
assume that σ is not possible under the reactive semantics. Then in some unsta-
ble state Mi an external transition texternal is taken (so ti = texternal). Under the
reactive semantics, texternal is disabled in Mi . Since Mi is unstable, there must
be some enabled internal transitions in Mi . By C2 and since Mn is stable, one
of these internal transitions, say t , is taken somewhere later in the sequence in
some state Mj , where j > i . By C1, t and texternal do not disable each other: the
tokens in t ’s input places are not removed if texternal is taken and vice versa. We
modify σ by removing tj from σ and inserting t just before texternal . Denote this
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Fig. 2. Example reactive net to illustrate Theorem 3. Black transitions are internal,
white transitions are external

modified sequence by σ′. Clearly, σ′ can be taken under the token-game seman-
tics; state Mn is then reached. Of course, sequence σ′ may not be possible under
the reactive semantics, because in some unstable state an external transition is
taken. Then again the procedure sketched above has to be applied.

Thus, by repeatedly applying the procedure sketched above, finally a se-
quence σfinal is obtained. (The procedure terminates because the sequence is
finite, and internal transitions are given a place earlier in the sequence.) In
σfinal , in every unstable state an internal transition is taken. So σfinal can be
taken in the reactive semantics. ⊓⊔

Example. Consider the example reactive net in Fig. 2. It satisfies constraints
C1 and C2. Under the token-game semantics, a possible sequence from stable
state [p1,p5] to stable state [p3,p7] is t2,t5,t6,t3. All intermediate states in this
sequence are unstable. This sequence cannot be taken under the reactive seman-
tics, because in unstable state [p2,p5] external transition t5 is fired. By applying
the procedure sketched in the proof, we obtain sequence t2,t3,t5,t6. This se-
quence can be taken under the reactive semantics. Note that this sequence has
an intermediate stable state [p3,p5] not present in the original sequence.

4 Workflow Nets

In this section we recall the definition of Workflow nets [1] and give different
interpretations for transitions in Workflow nets.

Definition. A Workflow net (WF net) is a Petri net with one input place i and
one output place o such that:

– Place i does not have incoming arcs.
– Place o does not have outgoing arcs.
– Every node n ∈ P ∪ T is on a path from i to o.

WF nets use the standard Petri net token-game semantics.
Figure 3 shows a WF net for handling an incoming order for a mobile tele-

phone. It is a reduced version of a real-life business process of a telephone com-
pany. The process involves two departments: the accountancy department, which
handles the payment, and the sales department, which handles the distribution.
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Fig. 3. WF net modeling the process “Handling of incoming order”

The process starts with an incoming order that is processed to the different
departments. This is modeled by transition process order which splits the exe-
cution into two parallel threads. The bottom part models the tasks on the sales
side. Here the order is handled (executing tasks check order, pick, wrap, and de-

liver). The top part models the tasks on the accounting side. Here the customer
standing is checked first (check credit). The result of this task is either ok or
not ok. In case the result is positive the payment is arranged (arrange payment),
in the latter case the order is refused (notify cancel).

The cooperation of the two departments follows a pessimistic strategy. The
sales department always waits for the outcome of the credit check performed by
the accountancy. Depending on the outcome it either picks, wraps, and delivers

the item or cancels it further processing.

Transitions in WF nets. In a WF net states are modeled via places, whereas
transitions model active behavior. Transitions are used for different purpose.
In the most common case they are used to model activities (or tasks). Exam-
ples of tasks in the process of Fig. 3 are check order, pick, wrap, deliver, cancel,
check credit, arrange payment, notify cancel and archive.

Sometimes, transitions represent the making of decisions. Examples are the
two transitions ok, not ok representing the outcome of the task check credit. Note
that the outcome of the decision is determined by the environment of the WF
engine; we come back to this issue below.

Transitions may also be employed to depict the occurrence of external events.
Figure 4 gives an example. The WF net models part of the library process for
returning books. Upon borrowing books, the system waits for an external event:
This may either be the reader bringing the books back, or the reader asking for
extension, or a timeout. Depending on the particular event occurring, a following
task is executed.
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Fig. 4. Part of the library process “Return Books”

Finally, transitions can be there for the sole purpose of routing a case. This
usually occurs when a case needs to be split into parallel parts (fork) or parallel
parts of a case need to be merged (join). Examples for this case are process order,
AND cancel, and AND accept from Fig. 3.

Function type assigns to each transition the purpose of the transition.

type : T → {task , event , decision, routing}

Van der Aalst [1] distinguishes task and decision transitions, but does not treat
them differently. In WF nets, all transitions use the same firing rule. So there
is no distinction between the different types of transitions. In Sect. 5, we will
attach different semantics to these different types of transitions.

There exist some interesting dependencies between transitions of different
type. Transition of type decision always follow a task transition. This task tran-
sition models the processing of some kind of test. For the evaluation it refers to
external data. Transitions of type decision always occur within a choice. They
are in conflict. Furthermore, it can be assumed that the corresponding choice
is free choice. This means that only the evaluation of the external information
(and nothing else) decides about the outcome of the choice.

If transitions of type event occur within a choice, we assume that choice to
be free choice as well. This is a reasonable assumption as the occuring events
should preclude each other. This means that the particular external event that
occurs (and nothing else) decides the outcome of the choice. For instance, in the
library example from Fig. 4 the timeout event occurs only if the reader neither
returns the book (in person) nor asks for extension (e.g. via email or telephone).
Depending on the kind of external event the books are either returned to the
shelf, the term is renewed, or a reminder is send.

The outcome of the above mentioned choices depends either on the evaluation
of external data or the event occurring. In [7] these choices have been clustered
using the notation of a non-controllable choice. This notation suggests that the
outcome of these choice depends on the environment. Choices whose outcome do
not depend on the environment are called controllable; they can be controlled
by the WF engine.



Table 2. Choice classification

initiative outcome

choice of event transitions (free choice) environment environment
choice of decision transitions (free choice) WF engine environment
choice of task and/or routing transitions WF engine WF engine

An orthogonal criterion to distinguish choices, is the moment of choice, i.e.,
the moment one of the alternative transitions is executed. This distinction was
made by Van der Aalst and his coworkers [1, 3]. They distinguish between im-
plicit and explicit choices. An implicit choice (also deferred choice) is made the
moment an external event occurs, hence it corresponds to a choice that consists
of event transitions. An explicit choice is made the moment the previous task is
completed. In our framework, explicit choices correspond to choices consisting
of decision transitions.

In our framework, the moment of choice is determined by the one having the
initiative to execute a transition. Events depict behavior of the environment,
hence the initiative to execute an event transition is at the environment. In
contrast, the initiative for transitions of type decision is at the side of the WF
engine. The WF engine executes these transitions. In Sect. 5, we will map WF
nets to reactive nets. Event transitions will be external, whereas decision tran-
sitions will be internal. Thus, in the reactive setting, an implicit choice behaves
differently from an explicit choice.

Remaining choices are choices that consist of transitions of type task and of
type routing. These are always controllable and explicit choices. These choices
are furthermore not necessarily free choice. An example is the choice between
the task transitions pick and cancel in Fig. 3.

Table 2 summarizes the possible influences of WF engine and environment
on different choices.

Correctness criteria for WF nets. We only consider soundness as introduced by
Van der Aalst [1]. Soundness requires that a WF net can always terminate with a
single token in place o and that all the other places are then empty. In addition,
it requires that there is no dead transition, i.e. each transition can be executed.
We recall the definition of soundness as defined in [1]. To stress that soundness
is defined on the token-game semantics, we label the transition relation with tg .

Definition 4. (Soundness) A WF net is sound iff:
(i) For every marking M reachable from marking i, there exists a firing sequence
leading from marking M to marking o.

∀M ([i ] ∗−→ tgM ) ⇒ (M ∗−→ tg [o]).

(ii) Marking [o] is the only marking reachable from marking [i ] with at least one
token in place o (proper termination).

∀M ([i ] ∗−→ tgM ∧ M ≥ [o]) ⇒ (M = [o])



(iii) The WF net does not have dead transitions.

∀t∈T∃M ,M ′([i ] ∗−→ tgM t−→ tgM ′)

If a WF net is going to be used as input for a WF engine, soundness is essen-
tial. In a sound WF net every firing sequences terminates properly. Deadlocking
executions, as well as executions where spare tokens remain in the net, are im-
possible. If the process description is used as base for operation at run time,
soundness is a necessary requirement in order to guarantee a reliable execution.

However, the soundness criterion is defined using the token-game semantics.
As we saw in the introduction, that semantics is not reactive. Therefore, in the
next section we show how to transform a WF net into a reactive WF net. In
Sect. 6 we show that the transformation preserves soundness. For reactive WF
nets, soundness is defined by replacing in the definition above −→ tg with −→ r .

5 From Workflow Nets to Reactive Workflow Nets

Workflow management is a current issue in many business (re-)engineering projects.
It comprises support for the modeling, the analysis and the run-time execution of
business processes. Many approaches aiming at providing support for workflow
management are based on the use of Petri nets (e.g. [1, 8, 9]) or were mapped
onto Petri nets (e.g. [2, 8]). Even though these approaches cover the modeling
and the analysis of business processes, they provide only limited support for the
execution at run time. Reasons for that gap have been discussed in the introduc-
tion and concern the mismatch between the reactive behavior of the workflow
(WF) engine and the active behavior of Petri nets (and thus WF nets) using the
token-game semantics.

In this section we discuss how a WF net can be transformed into a reactive
WF net. A reactive WF net is a Petri net with a reactive semantics. It can serve
as input for a WF engine specifying what the WF engine should do.

The following three properties of WF nets makes that they are not entirely
suitable as input for a WF engine.

1. Transitions fire instantaneously. This does not match with the requirement
to model tasks as time consuming entities.

2. Usually, transitions in a WF net model tasks. The WF engine monitors tasks,
but does not do them. Thus, it is hard to detect from the WF net the actual
behavior of the WF engine.

3. Under the token-game semantics, a Petri net models an active system. But
a WF engine is a reactive system. For such a system, the may-firing rule of
the token-game semantics introduces unintended non-determinism, allowing
either to execute an enabled task or to defer its execution.

We now show how we can overcome these three obstacles. We will change the
perspective of a WF net from modeling a process to monitoring it. This way, we
obtain a description of the desired behavior of a WF engine.



Task refinement. Recall from Sect. 4 that transitions in a WF net either model
the occurrence of an event (type: event), the making of a decision (type: deci-
sion), the routing of tasks (type: routing) or the actual task that is executed
by some external actor (type: task). The firing of transitions is considered to be
instantaneous. This abstraction is adequate for transitions that model events,
decisions or routing, but this generalization does not fit for tasks.

Changing the perspective from active task execution to only monitoring it,
tasks performed by external actors should be modeled as time consuming. We
therefore refine the modeling and depict a task as a sequence of transitions an-

nounce task, begin task, end task, and record task completion. Figure 5 illustrates
the described task refinement. The transition announce task models the placing
of the task to a possible actor. This may either mean that it is “pushed” into
someones in-basket or that the task is put to a common list, from where it can
be “pulled” by any actor. The precise implementation depends on the mode of
the WFMS.

The actual processing of the task starts with transition begin task and ends
with end task. This way the instantaneous firing of transitions can be retained
now matching an acceptable abstraction. Note that the duration implicitly as-
signed to the execution of a task in a WF net is now assigned to a place in the
refined WF net.

Division of powers between the WF engine and the environment. Changing the
perspective of a WF net towards monitoring we have to distinguish precisely
between the behavior of the WF engine and the environment. In WF nets, such
a dinstinction is not made.

From a monitoring perspective, a transition is either executed by the WF
engine, or executed by the environment of the WF engine. Taking the perspec-
tive of the WF engine, we call transitions executed by the WF engine internal,
whereas transitions by the environment are external. We will therefore split the
set of transitions T of a WF net PN = (P ,T ,F ) into disjoint sets of internal and
external transitions: T = Tinternal ∪ Texternal . Internal transitions are denoted
by black whereas external transitions are represented by white boxes.

begin_task

announce
_task

execution
_of_task

task

end_task

task_ 
announced

waiting_for_task_ 
completion

record_ 
task_ 
completion

task_ 
ended

Fig. 5. Task refinement



Table 3. Mapping WF net to reactive WF net

transition type internal external

announce task x
begin task x
end task x
record task completion x
event x
decision x
routing x

Reviewing the four different transition types: task, event, decision, routing,
we can classify transitions as internal or external as follows (see Table 3):

Tasks The announce task and record task completion transitions are internal and
the begin task and end task transition are external. This denotes that the WF
engine initiates the task but that an actor outside the WF engine does the
actual task. The WF engine waits for completion of the task.

Events These transitions are external. This is natural as such transitions model
the occurrence of events coming from the environment.

Decisions These transitions are internal. They are done by the WF engine, even
though the outcome of the decision presumably depends upon the task that
has been executed immediately before (cf. Sect. 4, in particular Table 2).

Routing These transitions are internal, as routing is done by the WF engine.

Reconsidering Table 2, we can see that the party (WF engine or environment)
having the initiative in taking a transition, also executes the transition.

Reactive semantics: Changing the firing rule. The last obstacle concerns the may
firing rule of the token-game semantics. This rule states that if a transition t
is enabled it may fire but does not have to. In the worst case, some conflicting
transition that become enabled later fires before t , disabling t . This firing rule
is not adequate to model behavior of the WF engine, which is modeled through
internal transitions.

We therefore transform a refined WF net (P ,T ,F ) into a reactive WF net
(P ,Tinternal ,Texternal ,F ), using the previously introduced distinction between
internal and external transitions (Table 3). This reactive WF net can be mapped
to the original refined WF net using function toPetri . Thus, we replace the token-
game semantic of the refined WF net by a reactive semantics, i.e. replace relation
−→ tg by −→ r (see Sect. 3).

To illustrate this mapping, Fig. 6 shows the reactive WF net corresponding
to the example WF net of Fig. 3. Due to space limitations, we do not show how
task transitions are refined, but just depict them with a shortcut: a transition
subdivided into three sections: start and end black, middle white.

Note. We stated that reactive WF nets can be used by a WF engine to con-
trol and monitor processes. But not every transition of the reactive WF net
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Fig. 6. A reactive WF net. Black transitions are internal, white transitions are external.
Task transitions are decomposed as in Fig. 5

is executed by the WF engine; only internal transitions are. Thus, for a WF
engine, a reactive WF net still contains too much information. By removing ex-
ternal transitions and external places (i.e. places filled by external transitions)
from the WF net, a prescription for the WF engine is obtained. Note that by
filling some places (e.g. place task ended) in Fig. 5) with a token, the environ-
ment can trigger the WF engine to start doing something (e.g. do transition
record task completion). Finally, we observe that reactive WF nets presupposes
that the WF engine is faster than its environment, i.e., the WF engine must
satisfy the perfect synchrony hypothesis (see Sect. 3).

6 Soundness of Reactive Workflow Nets

In the previous section we have defined a mapping from WF nets to reactive WF
nets in two steps. First, we have refined task transitions to multiple transitions.
Second, we have mapped a refined WF net to a reactive WF net. In this section,
we show that the soundness property of a WF net is preserved when the WF net
is mapped into a reactive WF net, provided the WF net meets the constraints
defined in Table 1. (Although the constraints in Table 1 are not defined on WF
nets, they can be lifted to WF nets by using the mapping defined in Table 3,
provided function type is defined. Note that the task refinement (Fig. 5) satisfies
the constraints C1 and C2.)

Given a WF net PN , we denote its refined variant by PNref . We denote
the reactive variant of PNref by PNreactive . For PNref we use the token-game
semantics; for PNreactive the reactive semantics.

Theorem 5 Sound PN ⇔ sound PNref .



Proof. Straightforward. ⊓⊔

The following theorem shows that if a reactive WF net is sound, the WF net
is sound as well. Note that the soundness property (see Sect. 4) is defined on the
token-game semantics, not on the reactive semantics. To obtain the soundness
property for reactive WF nets, replace in the definition −→ tg by −→ r .

Theorem 6 PNreactive is sound ⇒ PNref is sound.

Proof. Follows immediately from Theorem 1 and Corollary 2. ⊓⊔

We now prove one of the main theorems of this paper. In the proof, we make
use of the terminology of stable and unstable states, introduced in Sect. 3. State
[o] is stable by definition. We also assume state [i ] is stable. (It is possible to
relax this constraint, but it will make the proofs more difficult.) To prove this
theorem, we build on Theorem 3, so we need the constraints defined in Table 1.

Theorem 7 Assume PNref (and thus PNreactive) satisfies constraints C1 and C2.
Then PNref is sound ⇒ PNreactive is sound.

Proof. We consider the three cases of the definition of soundness.

(i) Let M be an arbitrary state in PNreactive . By Corollary 2, M is also reachable
in PNref . Since PNref is sound, there is at least one firing sequence from M
to o under the token-game semantics. Denote this sequence by σ. There are
two cases.
• If M is stable, then σ can be split in subsequences σ0, σ1, . . ., σn ,

such that M σ0−−→ tgM1
σ1−−→ tgM2

σ2−−→ tg . . .
σn−−→ tg [o], where M1, M2, . . .,

Mn = [o] are all stable, and all other states visited in the sequence σ

are unstable. By applying Theorem 3 on the sequences σ0, σ1, . . . , σn ,
we have that there are permutations of these sequences σ′

0
, . . . , σ′

n such

that M
σ
′

0−−→ rM1

σ
′

1−−→ rM2

σ
′

2−−→ r . . .
σ
′

n−−→ r [o].
• If M is unstable, then there is at least a sequence of transitions from

some stable state M0 to stable state Mn that leads through M . (There
is at least one sequence from [i ] to [o].) For Mn

∗−→ r [o], we can argue as
in the previous case. The remainder then follows easily.

(ii) Every reachable state in PNreactive is also a reachable state in PNref (Corol-
lary 2). So if a state M with M > [o] would be reachable in PNreactive it
would also be reachable in PNref . But PNref is sound. So we have a contra-
diction.

(iii) For every transition t , there is a state M in PNref , such that M t−→ . In
PNref , there is at least one sequence σ of transitions, one of which is t , from
some stable state M0 to a stable state Mn , which passes M . (There is at
least one sequence from [i ] to [o].) By Theorem 3, a permutation of σ can
be taken in PNreactive . So t can be taken in PNreactive . Therefore, there are
no dead transitions in PNreactive .

⊓⊔
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Fig. 7. Sound reactive WF net that can diverge. The net satisfies constraints C1
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The desired result, that soundness is preserved when transforming a WF net
into a reactive net, now follows immediately.

Corollary 8 Assume PNref (and thus PNreactive) satisfies constraints C1 and C2.
Then PN is sound ⇔ PNreactive is sound.

Proof. By Theorem 5, we have: PN is sound ⇔ PNref is sound. By Theorems 6
and 7, we have: PNref is sound ⇔ PNreactive is sound. ⊓⊔

Finally, we note that soundness of a reactive net does not guarantee that the
net is divergence free. A reactive net diverges if there is a loop of internal transi-
tions. It is easy to prove that in a sound reactive net satisfying constraints C1 and
C2, a loop of internal transitions can always be exited by taking some internal
transition t that leaves the loop. However, soundness only states that t can be
taken, but does not guarantee that t will be taken if the system is in a loop. For
example, in Fig. 7, the system can do t1,t2,t3,t2,t3,. . ., staying forever in loop t2,

t3 without ever taking t4. So, to guarantee absence of divergence, an additional
constraint is needed. A sufficient, but not necessary, constraint is to require that
the input places of internal free choice transitions are only filled by external
transitions. That constraint would rule out the reactive WF net in Fig. 7.

7 Related Work

Like the present work, Wikarski [20] argues that the may firing rule is not suited
to prescribe behavior of a system. He therefore proposes to use the may firing
rule when the Petri net describes behavior, and the must firing rule when the net
prescribes behavior. Thus, a net either uses may or must firing but not both. In
contrast, reactive nets are both descriptive (external) and prescriptive (internal
transitions); reactive nets use a mixture of may and must firing.

Next, we look at other work that uses Petri nets for modeling reactive sys-
tems. Then we look at some related work done on priority nets. We also discuss
the reactive semantics one of the authors has defined for UML activity diagrams.

Petri nets for modeling reactive systems. In the past, several other extensions for
Petri nets have been proposed, that, like the present work, have been motivated



by the desire to use Petri nets to control a process. We discuss two of those,
Signal Event nets [15, 14] and Grafcet [6].

Signal event nets [15, 14] were introduced to model the combined behavior of
some process and the controller that controls and monitors that process. Like in
reactive nets, in Signal Event nets some transitions are by the environment (these
are called spontaneous) whereas others are by the controller (these are called
forced). Spontaneous transitions trigger forced transitions through transition
synchronization. This way, it can be specified that a controller reacts to events
in the environment. In reactive nets, an external transition triggers an internal
transition ti indirectly by filling all of ti ’s input places.

Grafcet [6] is a standardized graphical language for specifying logic con-
trollers. In Grafcet, Petri nets are extended with boolean variables, that are
set by the environment of the system. These boolean variables represent the
state of the environment. Every transition of a Grafcet model is a transition by
the reactive system (i.e., the logic controller). Each transition has a correspond-
ing event-condition-action (ECA) rule. If the event occurs and the condition is
true and its input places are filled, the transition must fire immediately. Multiple
transitions can fire simultaneously at the same time. In contrast, reactive nets
use an interleaving firing rule.

There are some general differences between these approaches and reactive
nets. First, reactive nets stay closer to the token-game semantics than these
related approaches. Moreover, the definition of reactive nets is considerably sim-
pler than the definition of signal-event nets and Grafcet models. Finally, none of
these approaches attach a token-game semantics to a reactive model to relate it
to the reactive semantics.

Priority nets. Reactive nets resemble Petri nets with priorities. The work on
priority nets most close to ours is Bause [4]. Like the present work, Bause extends
a net by defining a static priority ordering on its transitions. He shows that
under a certain condition, properties like liveness of a net are preserved when
the net is extended with static priorities. Bause’s condition is similar to C1 and
the constraint that internal transitions are free choice. However, our constraint
C2 is more general, allowing internal transitions that are not free choice. For
example, the Petri net in Fig. 3, does not satisfy Bause’s condition, whereas it
does satisfy our constraints C1 and C2. Motivated by the domain of stochastic
Petri nets, Bause considers weighted Petri nets whose transitions are partitioned
into multiple priority classes, whereas we, motivated by the domain of reactive
systems, only consider unweighted Petri nets whose transitions are partitioned
into two priority classes (internal and external transitions).

UML activity diagrams. Recently, one of the authors has defined two formal, re-
active execution semantics for activity diagrams [12]. The design choices in both
semantics are based on existing statechart semantics. The token-game seman-
tics was not used, because that semantics is not reactive [12, 13]. Even though
reactive nets are more reactive than Petri nets having a token-game semantics,



there still exist a lot of subtle differences between activity diagrams and reac-
tive nets. For example, activity diagrams can refer to temporal events. These
cannot be modeled in reactive nets; we would have to switch to timed Petri
nets to model this. Moreover, activity diagrams can have data, whereas reactive
nets can not. (Data can be modeled by switching to colored nets, but activity
diagrams also differ from colored Petri nets [12, 13].) Consequently, in reactive
WF nets, conflicting decision transitions (for example ok and not ok in Fig. 3)
are enabled at the same time: the net behaves non-deterministically, whereas in
activity diagrams such decisions are deterministic.

8 Conclusion and Further Work

We have defined a reactive variant of Petri nets, called reactive nets. Reactive
nets assume that the systems they model are perfectly synchronous. Reactive
nets have a reactive semantics, which differs from the token-game semantics,
but they also can use the traditional token-game semantics. We have shown that
under some conditions, the reactive and token-game semantics induce similar
behavior, i.e., the same stable states are eventually reached.

Reactive nets are motivated by the domain of workflow management. We
have shown how a WF net can be transformed into a reactive WF net, and
that under some conditions the soundness property is preserved. Thus, we have
offered a justification why soundness can be analyzed on WF nets using the
token-game semantics, even though that semantics does not model behavior of
reactive systems, whereas a WF engine is reactive. However, our work shows that
in addition to soundness some extra constraints are needed. Moreover, soundness
does not rule out divergence. An interesting topic of future work is to investigate
whether the extra constraints are not too restrictive, i.e., whether they cover a
large class of workflow models.

Another topic of future work is extending the semantics of reactive nets with
simple real-time constructs, or addition of data. Next, it might be interesting to
see whether the definition of reactive nets can be changed such that the perfect
synchrony hypothesis is no longer needed.
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15. H.-M. Hanisch and A. Lüder. A signal extension for Petri nets and its use in
controller design. Fundamenta Informaticae, 41(4):415–431, 2000.

16. D. Harel and A. Naamad. The STATEMATE Semantics of Statecharts. ACM
Transactions on Software Engineering and Methodology, 5(4):293–333, 1996.

17. D. Harel and A. Pnueli. On the development of reactive systems. In K.R. Apt,
editor, Logics and Models of Concurrent Systems, volume 13 of NATO/ASI, pages
447–498. Springer, 1985.

18. A. Oberweis. Modellierung und Ausführung von Workflows mit Petri-Netzen
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