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Abstract—This paper presents a distributed and reactive 

power optimization system based on Muti-Agent System 

framework. The various component and functions of 

monomer Agent are displayed in the optimization system. 

The collaboration and coordination between the Agent are 

achieved by information sharing through the communication. 

The dynamic contract net protocol which doped by three 
mental state performance parameters contains Agent, trust 

nodes, familiarity and integration introduced into the 

collaborative approach of Muti-Agent. The optimization 

process of lower voltage and reactive power are described 

based on the Dynamic contract net protocol under the smart 

grid environment. The Muti-Agent learning algorithm is 

proposed according to the influence of the chosen Q value 

based on Markov game framework. The Reactive Agent-
based design optimization process, management system 

architecture design, simulation protocol design are 

illustrated combined with Agent combines technical features 

and smart distribution network reactive power 

compensation behavioral characteristics.  
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I. INTRODUCTION 

Reactive power optimization is the premise of meeting 
the safe operation of the power grid through transformers 
to adjust joints, the generator terminal voltage regulation 
and reactive power compensation device, such as 
switching to adjust the reactive power flow of scientific 
and rational distribution, to seek reasonable reactive power 
compensation point and the best compensation to achieve 
the balance of reactive power, improve voltage quality and 
reduce network losses and ensure the safe operation of the 
system to stabilize the economy. Traditional reactive 
power optimization is usually for a typical cross-section of 
the static load reactive power optimization, considering no 
load changes over time, but in reality, power load is 
constantly changing, static reactive power optimization 
does not meet the needs of grid operation, only as a 
reference, with some limitations. Dynamic Reactive Power 
Optimization is considered each time the load changes by 
adjusting the control equipment to optimize the operation 
of the program, making the system voltage of the highest 
quality over a period of time, the minimum power loss, 
and meet the operating constraints and control equipment 
conditioning system the number of restrictions. Traditional 
reactive power optimization methods include: linear 
programming method, Newton's method [1], interior point 
method [2]. In recent years, multi-agent systems, genetic 

algorithms [3], particle swarm optimization, ant colony 
algorithm, such as artificial intelligence algorithms from 
different ways to achieve the goal of optimizing reactive 
power, they have their own strengths, but also have their 
own flaws. 

Multi Agent System (MAS) research is computer 
technology, control theory, artificial intelligence 
applications and other multi-disciplinary integration of 
technology research [4-9] .MAS research focus is to make 
the function independent agent (Agent) through 
consultation, coordination and collaboration, complex 
control tasks or solve complex problems. Strategies and 
learning is the internal mechanism Agent collaboration. 
Currently studying learning in Multi-Agent lack mature 
theory. Littman [10,11] uses countermeasures as a Multi-
Agent Learning Framework, the Multi-Agent learning 
model into Markov measures proposed min-max-Q 
learning algorithm to solve the zero-sum Markov games, it 
is only suitable for handling competitive relationship 
between Agent according to need more Agent environment, 
MAS measures in the framework necessary to be able to 
make multiple Agent through collaboration and 
cooperation to accomplish a specific task, it must 
effectively address the competition with rivals Agent.  

The study asked Muti-Agent based incentive learning 
theory principles to achieve optimal control of voltage and 
reactive power, structure and implementation of the 
framework established distribution network model of 
voltage and reactive power control systems, and global 
optimization model and the target voltage and reactive 
power control function analysis and improvement, solving 
distribution network in various situations and reactive 
power regulation mode, and in the case meet the system 
constraints, effectively improve network voltage quality 
and reduce power loss and achieve security, stability and 
economic operation of the system. 

II. SYSTEM FRAMEWORK 

This paper uses a distribution network reactive power 
and voltage Muti-Agent system based on centralized 
control method for distributed control strategy. The overall 
task for complete optimization and decomposition of 
mathematical methods Muti-Agent optimization 
techniques applied to optimize coordination with reactive 
power control, to achieve system voltage and reactive 
power optimal control and scheduling, to ensure the 
system global optimum. Muti-Agent system with internal 
autonomy, interaction, encapsulation and initiative and 
other characteristics, centralized distribution control 
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system consists of a set of logically or physically Agent 
integral step of many reactive voltage Muti-Agent system 
based on their through collaboration to accomplish 
common tasks and by dividing a large complex system into 
smaller, communicate and coordinate with each other, and 
easy to manage system, implement complex power system 
reactive coordinated control, the structure is shown in 
Fig .1. 

 
Figure 1.  Muti-Agent Architecture 

Full use of the autonomy, interaction, encapsulation 
and initiative Muti-Agent system to solve distribution 
network reactive power optimization problem of 
coordination and control, to ensure convergence speed, 
high accuracy, can be faster, more accurately converge to 
the global the optimal solution. This will be a complex 
distribution network reactive power optimization 
centralized coordination and control is divided into sub-
step, the mutual coordination and control of Muti-Agent 
technology to communicate with each other, can be 
optimized in coordination with reactive power control to 
get better applications.  

In this paper, based on voltage and reactive power 
distribution network coordinated control system Muti-
Agent theory hybrid structure, shown in Fig .2, where each 
individual Agent uses a hybrid model, with strong 
flexibility and quick response. The Muti-Agent system is 
divided into centralized control Agent, Distribution Agent 
and control node controls Agent, Agent centralized control 
reactive power in order to achieve optimal control of the 
whole system of centralized targets, distributed control 
Agent to achieve within the jurisdiction of the regional 
distribution of voltage and reactive power control target 
node Agent to complete the upper distribution optimization 
issued under the control of voltage and reactive power 
optimization Agent control commands. 

 

Figure 2.  Control Systems 

The system contains one or more centralized control 
Agent, Agent centralized control system for real-time 
monitoring under the jurisdiction of the members, 
combined with improved reactive nine field map and 
through various distribution control of Agent communicate 
with each other, to develop its own distribution network 
without task Scheduler power regulation and reactive 
power management, as well as step-type wind power and 
reactive power compensation in the process of adjusting 
the distribution of power. Centralized Control Agent in 
receiving feedback after the members of its jurisdiction, all 
information processing. In process control, and if a large 
load changes occur within a longer period of time, reactive 
power balance issues within the larger area, then put MCR 
under centralized control, in order to achieve decentralized 
wind power reactive control problems fast processing; If a 
smaller load changes in a short period of time, in a small 
area of reactive power control problem, the direct control 
of its distribution area where Agent themselves. 
Distributed Control Agent after receiving the program, 
through the Agent on each node within the jurisdiction of 
the operation and the surrounding Agent comprehensive 
analysis of distributed control operation, the development 
of specific programs Node Agent reactive power 
regulation and reactive power required size adjustment 
notify the appropriate amount distributed control Agent. 
Distributed control at the receiving node Agent Agent after 
adjustment notice, according to their specific MCR 
operating within its jurisdiction, while running a real-time 
feedback to adjust the distribution of control Agent, then 
followed up the level of centralized control is passed 
Feedback Agent information, and wait for the next 
coordinate.  

Such a model to achieve the coordination and 
management of centralized control and distributed control, 
make full use Muti-Agent system autonomy, interaction 
and initiative features optimized by direct action on the 
node reactive power devices implement the entire reactive 
power distribution grid , this reactive power control to 
balance the advantages and disadvantages of the structure 
of centralized and distributed two structures, while 
maintaining their independence under premise Agent, 
through the same layer or between adjacent levels of a 
certain amount of data to ensure mutual contact each 
Agent decision is reasonable, adapted to large-scale 
distribution of complex reactive power control. 

III. MARKOV GAMES OF MAS 

The Π-type equivalent circuit of power line is shown 

in Fig .3, where jXRZ  , jBGY   is the each 

phase of the power line impedance and admittance, U  is 

phase voltage, S
~

 is a single phase power.  
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Figure 3.  Equivalent Circuit of Power Line  
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Set terminal voltage of 
2U , the end of the power 

222

~
jQPS  , the end of the line power loss admittance 

slip 
2yS  as follows: 

  22

2
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2

1
yyy QJPUjBGS   

2

~
S   is the impedance of the end of the power: 

22222

~~
QjPSSS y
  

When a power line transmission, the current will 
produce a voltage loss in the line impedance. The voltage 
vector of power line is shown in Fig .4. 
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Figure 4.  Voltage Vector of Power Line  
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(3) can be written as  

  UjUUU  21
 

Fig .2 shows the voltage loss is  
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Where dU  is vector difference of The first terminal 

voltage 
1U  and the terminal voltage 

2U  , That is current 

in the line impedance voltage drop, voltage loss for the 

first and last line voltage across the value difference. U  

is projected of Ud   in the direction 2U , called the vertical 

component of the voltage drop. U  is projected of Ud   

in the vertical direction 2U , called transverse component 

of the voltage drop. 

In general the power system, UUU 2 , so it 

can be Negligible, which can be obtained (6). 
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In general HV and EHV power grid, due to a larger 
cross-section of transmission line conductors, line 
reactance is much greater than the resistance, (6) is 
expressed as (7). 
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In the case of the grid structure and the voltage 
determined by the reactive power of the system plays a 
decisive influence on the voltage level, the voltage loss  of 
main line and Reactive power of line transmission 
delivered is proportional, the voltage amplitude of the 
reactive power flow of the high voltage node low 
amplitude nodes [12]. Because in general the grid 
transformer branch, the resistance value is far less than the 
series reactance, so reactive power is the main factor 
causing the loss of branch voltage transformer. Therefore, 
reactive power grid optimization, changing the distribution 
of reactive power, a reasonable choice of local reactive 
balance in order to reduce the flow of reactive power on 
the line, can effectively reduce the network voltage loss, 
ensure stability of the system. 

Reactive power optimization mathematical models 
generally include the objective function, power constraint 
equations and variables constrained conditions. Generic 
model can be expressed as the following: 

 
 

 









0,

0,..

,min

xuh

xugts

xuf



Where u is the control variables, including the 

generator terminal voltage, load tap variable gear ratio and 
shunt capacitors; x is the state variables, including the 

voltage amplitude of node PQ and reactive power of node 

PV  , ),( xuf  is no power optimization objective 

function; ),( xug  is the power constraint equation, 

),( xuh  is variable constraints. 

Reactive power optimization objective function, 
depending on the focus of specific optimization can be 
divided into multiple, often choose system minimum loss 
of active network as objective function: 
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Wherein n  is the aggregate expenditure of large ones 

network;  jikG ,  is the  conductance of branch ji  ; iU  
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and 
jU  are the voltages of node i  and j ; 

i  and 
j  

are the voltage phase angle of node i  and j . 

Reactive power optimization problem in variables 
divided in control variables and state variables. Select the 

generator terminal voltage is usually 
GU , OLTC 

transformer ratio 
tT  and shunt capacitance of the capacitor 

CQ  as the control variable, load node voltage DU  and 

generator reactive power 
GQ  as the state variables. 

Control variable inequality constraints as  the following: 
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Where 
GiU is the voltage of generator node i , 

min,GiU  and max,GiU  are the lower limit and upper limit 

of the node voltage, 
GN  is a generator set of nodes; tjT  is 

ratio of load tap transformer j , min,tjT  and max,tjT  are 

ratio of the transformer lower limit and upper limit, TN  is 

the set of load tap; CkQ  is reactive power compensation 

capacity of capacitor k ; min,CkQ  and max,CkQ  are lower 

limit and upper limit of reactive power compensation 

capacitor, CN  is the reactive power compensation 

capacitor node collection. 
Inequality constraints state variables as  the following: 
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Where GiQ  is the generator reactive power output of 

node i , min,GiQ  and max,GiQ are the lower limit and upper 

limit of generator reactive power , GN  is a generator set 

of nodes; DjU  is voltage of load node  j , min，DjU  and 

max,DjU are lower limit and upper limit of load node 

voltage, DN  is the load node collection. 

IV. CONCLUSION 

Muti-Agent technology is mainly a group of  
autonomous Agent research in distributed an open and 
dynamic  environment,  through  interactive  cooperation ,  

 
 
 
 
 
 

competition, negotiation and other complex control 
intelligent behavior or task to solve, because it better              
reflects human social intelligence, more suitable open, 
dynamic social environment, Muti-Agent system can solve 
some of the traditional methods can not solve the problem, 
such as an open, dynamic and complex nature, etc., 
especially suitable for highly open, loosely coupled 
network environment. Meanwhile, in a complex control 
system, in accordance with the system features and 
physical characteristics, the system control structure is 
divided into functionally independent, with autonomy, 
flexibility, reactivity and sociality Agent, through the 
communication between the individual and the Agent 
interaction between the individual controllers to achieve 
coordinated action in order to ensure the best overall 
system control. 
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