
Reactive Routing Overhead in Networks with Unreliable
Nodes

Nianjun Zhou
zhoun@rpi.edu

Huaming Wu
wuhm@rpi.edu

Alhussein A. Abouzeid
abouzeid@ecse.rpi.edu

Department of Electrical, Computer and Systems Engineering
Rensselaer Polytechnic Institute

110 Eighth Street
Troy, New York 12180, USA

ABSTRACT
This paper presents a new mathematical and simulative
framework for quantifying the overhead of a broad class of
reactive routing protocols, such as DSR and AODV, in wire-
less variable topology (ad-hoc) networks. We focus on sit-
uations where the nodes are stationary but unreliable, as
is common in the case of sensor networks. We explicitly
model the application-level traffic in terms of the statistical
description of the number of hops between a source and a
destination. The sensor network is modelled by an unreli-
able regular Manhattan (i.e. degree four) grid, and expres-
sions for various components of the routing overhead are
derived. Results are compared against ns-2 simulations for
regular and random topologies, which corroborate the essen-
tial characteristics of the analytical results. One of the key
insights that can be drawn from the mathematical results of
this paper is that it is possible to design infinitely scalable
reactive routing protocols for variable topology networks by
judicious engineering of the traffic patterns to satisfy the
conditions presented in this paper.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Routing protocols; I.6.5 [Simulation and Mod-
eling]: Model Development—Modeling methodologies

General Terms
Performance, Theory, Algorithms, Design

Keywords
Sensor networks, ad hoc networks, reactive routing, routing
overhead, AODV, DSR, reliability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’03,September 14–19, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-753-2/03/0009 ...$5.00.

1. INTRODUCTION
Several classes of routing protocols for variable topology

wireless (ad-hoc) networks have been proposed in the litera-
ture. In this paper, we focus on the class of reactive routing
protocols such as AODV [1] and DSR [2], where paths are
maintained only when needed. We focus on situations where
topology changes because of node failure rather than node
movement. Our objective is to mathematically characterize
the scalability properties of these protocols under different
traffic patterns. We primarily focus on routing overhead
as a measure of scalability. To our knowledge, there exist
no evaluations (whether analytical or simulative) of reactive
routing overhead for unreliable networks, and hence this is
a new contribution.

In this paper, we focus on the inter-dependence between
the traffic pattern and the routing overhead, by deriving
quantitative measures of the impact of the communication
traffic patterns on the performance of routing protocols.
One important application of this result is in the problem
of sink-placement i.e. the problem of placing special nodes
in the sensor grid for collecting information from “near-by”
sensors, such that the average routing overhead is bounded
below a desired value.

As a first analytic treatment of this problem, this paper
uses a Manhattan grid model of a sensor network due to the
simplicity of the topology. A Manhattan grid has a discrete
and regular topology with fixed degree per node. We show,
with the aid of simulations that the analytic results regard-
ing the scalability of the network holds even for the case of
random network topologies.

We view the two different models (regular vs. random)
as abstractions of two different practical scenarios. Regu-
lar (Manhattan) grid is an abstraction of regular networks,
where we can control or assign the location and wireless
coverage of nodes. Random topology is an abstraction of ir-
regular and random networks, where we cannot control and
assign the locations of the nodes.

It is important to note that this work does not attempt to
model or compare between specific reactive routing proto-
cols - rather, to capture the essential behavior and scalabil-
ity limits of this class of protocols by deriving lower bounds
on the overhead. Extensive simulation-based comparisons
between various reactive routing protocols can be found in
the literature (e.g. [3]). The simulation results in this pa-
per are not intended to provide an exact match with our

analysis - rather, they are provided as a support of the con-
clusions regarding overhead scalability. The ns-2 [4] simu-
lations naturally deviate from the assumptions made in the
analysis, and are intended to reflect that the results are in-
deed reasonable, even though we do not model the complex
behaviors of MAC layer or route caching. Route caching
helps reduce overheads but may introduce other side effects
(e.g. [5])and MAC layer collisions may inadvertently reduce
flooding overheads.

This paper is organized as follows. Section 2 presents
the simplified models of the routing algorithms, traffic and
topology. These are used in Section 3 for the mathematical
analysis of routing overhead. Section 4 provides ns-2 sim-
ulations of the Manhattan model. Section 5 introduces a
model for generating random topologies and checks the va-
lidity of our analytically-derived conclusions by conducting
ns-2 simulations of random topologies. Section 6 concludes
the paper highlighting the practical implications of this work
and several possible venues for future extensions.

2. NETWORK MODEL
This section presents the description of a generic reactive

routing protocol, and introduces the notation used through-
out the rest of the paper.

Since we are interested in modeling a variable topology
with node failures, we assume that nodes fail, or equiva-
lently, turn to an “OFF” state, randomly. However, we as-
sume that most nodes are “ON” most of the time. In other
words, we are interested in modeling the overheads in path
maintenance due to node failure, but we assume during our
analysis that given a node failure, all other nodes have not
failed. This necessitates this assumption. This is true if
the probability that a node is OFF is much less than the
probability that a node is ON. Examples of a practical sce-
nario where this may arise is in the case where the nodes are
powered using renewable sources of energy (e.g. the wind or
the sun). Another example is when nodes are replaced soon
after they fail, either manually or through the activation of
stand-by nodes.

2.1 Traffic Model
We define a new path request or simply a new session as

one that is associated by the arrival of a new application-
level session request at a node i with some destination j 6= i
for which node i doesn’t already have a path. If the des-
tination is the same as an existing session, a “new path
request” will not be generated, and hence we do not count
this as a new session. New path requests are independent.
Throughout the paper, we refer to a routing-layer sessions
simply by sessions or active paths interchangeably. Also, we
interchangeably use a routing packet and routing message.

Let ri,j denote the distance, in number of hops, between
two nodes i and j. We assume that a node i will need to
communicate and hence maintain a (routing-layer) session
with node j with probability pi,j given by

pi,j =
c

rk
i,j

(1)

where 0 < c < 1. Because of the symmetry, it will be more
convenient to drop the subscripts from the above equation
when it is understood. We thus let p(r) denote the proba-

bility that two nodes (i and j) will communicate i.e.

p(r) =
c

rk
(2)

where r is the distance between the node initiating the new
path request and the destination node.

A discussion of the choice of the shape of the above dis-
tribution is necessary. Up to our knowledge, there are no
similar empirically derived traffic statistics for wireless ad-
hoc or sensor networks, and, in the lack of such statistics,
the assumption is necessary. In the case of sensor networks,
and because sensor networks are generally designed with a
specific overall objective rather than providing connectiv-
ity between end-points [6], we argue that the traffic pattern
is under the control of the designer. In either cases, we
would like to understand the effect of the traffic pattern on
the routing overheads, and hence the scalability, of reactive
routing protocols.

There are several intuitive reasons for choosing such a
traffic pattern. It seems quite intuitive that it is impossible
to design very large scalable sensor networks if all nodes need
to communicate with each other with equal probability, since
the overheads will be huge (as our analysis shows below). In
any case, our approach applies to any traffic pattern that is
identical and independent for all nodes.

As a final note, we deliberately did not choose the form c
kr

although this latter from may have proved easier to handle
mathematically. The reason is that c

rk allows us to analyze
the effects of r and k more closely than c

kr since the former
decays polynomially in r while the latter decays exponen-
tially in r.

2.2 Routing Protocols Model
We describe below a generic reactive routing protocol,

which we believe captures the essential behavior of many
designs and implementations of routing protocols including
DSR and AODV relevant to our analysis. This analysis, and
hence the generic protocol below, does not consider caching
mechanisms. The effects of caching mechanisms will be ob-
served later in the paper through simulations.

The overhead of reactive routing protocols can be associ-
ated with two operations: route discovery and route main-
tenance, both of which are described below.

2.2.1 Route Discovery
Route discovery is the mechanism initiated by a node i

upon the arrival of a “new path request” (defined earlier)
in order to discover a new path to a node j. Similar to
other reactive routing protocols, our generic protocol uses a
“flooding” technique for control packets. Node i floods the
network with Route Request (RREQ) packets. The RREQ
packet is initiated by some value called Time to Live (TTL)
in the header of the packet. Each node forwards an RREQ
packet only once, and decrements the TTL upon each trans-
mission. If the initial TTL value is large enough, an RREQ
packet arrives to j (we assume the network is connected).
Since we don’t use route cache, we assume that only the
ultimate destination j can reply to a route request. Node j
sends out a Route Reply packet (RREP) to i along the re-
verse path. Finally node i gets a shortest path source route
to node j (in the case of source routing protocols like DSR)
or entries in the routing tables are established at the nodes
along a path between i and j (in the case of distance vector
protocols like AODV).

A B C D E

Figure 1: Node failure example. Two sessions
(paths) exist, one from D to A and another from
E to A. Node C detects that node B has failed and
hence notifies D and E by sending RERR packets.

2.2.2 Route Maintenance
Route maintenance is the mechanism by which a node i

is notified that a link along an active path has broke such
that it can no longer reach the destination node j through
that route. Upon reception of a notification of route failure,
node i can initiate route discovery again to find a new route
for the remaining packets destined to j.

If an intermediate node C finds the link to its next-hop
destination B broken (by some MAC layer method), C initi-
ates a Route Error (RERR) message. We describe two route
notification mechanisms, one mimics source-route routing
while the other mimics distance vector routing:

(a) In source-route notification, C sends an RERR mes-
sage to each source node that has sent a packet routed
through the failed link. Each RERR message will travel
along the reverse route from the node reporting link break-
age to the source node. Thus, if any link on a source route
is broken, the original source node is notified by an RERR
packet. For example, as in Figure 1, there are two source
routes. One from node E to node A, another from node
D to node A. Suppose now node B fails, node C discov-
ers a broken link and sends two source RERR packets since
two routes pass through the link C-B. One RERR packet is
from node C to node D, another RERR packet is from node
C through D then to node E. In this scenario, node D re-
ceives an RERR packet twice, although each RERR reports
the same broken link. After receiving the RERR, a new
route discovery process must be initiated by the source, if
this route is still needed.

(b) In distance-vector notification, “C” also sends an RERR
message. However, in distance-vector routing, node C doesn’t
know the source of the packets. Thus the RERR will be for-
ward to the active “next hop” entries in the distance vector
routing table. The difference between this and DSR can be
indicated in reference to Figure 1, where in this case, node
D receives RERR packet only once. In essence, RERR pack-
ets follow a spanning tree rooted at the node detecting the
failure.

2.3 Notations and Definitions
For the convenience of discussion, we first present the dif-

ferent quantities of interest and their notations. As men-
tioned earlier, we will omit the subscript identifying nodes
due to the symmetry of the network model.

• N(r) denotes the number of nodes located within a
distance r from a given node.

• pR(r) denotes the probability that a pair of communi-
cating nodes is a distance r apart (i.e. this is a condi-
tional probability).

• For a given small positive value 0 < α < 1, T (α) de-
notes the time-to-live value necessary for guaranteeing
that the packet will reach the destination with a prob-
ability at least 1− α.

• Z is a random variable that denotes the number of
hops that an active session travels. E[Z] denotes the
expected value of Z.

• E[Si] denotes the average number of (routing-layer)
sessions (i.e. paths) initiated from a given node.

• E[St] denotes the average number of active paths ter-
minating at a given node.

• E[Sr] denotes the average number of sessions passing
through a node. Here a pass-through session (relay
session) is one that neither terminates nor starts at
the given node.

• E[S] denotes the average number of active paths at a
given node (i.e. sum of the above three quantities).

• q denotes the probability that a routing packet at a
given node is not terminating at the node. In other
words, the probability that the session does not termi-
nate at the given node.

• Nfind denotes the total number of RREQ packets per
new route discovery. Every transmission of the same
packet is counted as a separate transmission. E[Nfind]
denotes the expected number.

• Noff denotes the total number of packets (cost) needed
to notify others about a node failure. E[Noff] denotes
the expected number.

• For a given node, the probability distribution of the
number of different active paths terminated at (or ini-
tiated from) the node is pS(s).

3. ANALYSIS FOR MANHATTAN GRID
As we pointed above, we start our research by selecting

Manhattan grid topology because of its simplicity and its
being as an abstraction of regular networks. Besides, re-
sults obtained from approximating the topology of sensor
networks by a regular grid will be shown to hold for random
network topologies later in this paper.

3.1 Topology Model
Our analysis models the network by a grid (Figure 2).

Nodes are located at the intersections of a Manhattan grid.
We assume that nodes use an ideal (i.e. no collisions) wire-
less channel for communication. Each node has a fixed
transmission range. Two nodes within the range of each
other can communicate directly and are said to be neigh-
bors. Communication links are assumed to be bidirectional.
Also, we limit the transmission range such that a node can
communicate directly to its immediate neighbors only.

Let (xi, yi) denote the coordinates of a node i. We define
the distance ri,j between two nodes i and j

ri,j = |xi − xj |+ |yi − yj | (3)

As we control transmission range to limit the direct com-
munication to the immediate nodes, the distance between

r=
2

r=
1

Figure 2: A sketch of a Manhattan grid. The darkest
node is the node located at origin point (0,0). Nodes
linked together have the same distance to the node
at the origin.

two nodes is exactly the number of “hops” along the short-
est path between them.

Finally, we will refer frequently to the following summa-
tion:1

f(k) =

∞∑
r=1

1

rk
(4)

3.2 Some Quantities of Interest

Claim 3.1. The number of nodes located at a distance r
away from a node is

D(r) = 4r (5)

Proof. Let O denote the interesting node. Without loss
of generality, we assume node O is located at (0, 0). For any
given positive integer r, there are a total of (r+1) nodes at a
distance r from node O located in each of the four quadrants
(Figure 2). Summing over the four quadrants yields 4(r+1).
Removing the four double counted nodes located at x and
y axis, the total number of nodes is 4r.

From the above result, we can easily deduce the following
result.

Claim 3.2. The total number of nodes which are with in
a distance r from a given node is

N(r) = 2(r2 + r) (6)

Theorem 3.1. The probability pR(r) that a pair of com-
municating nodes is a distance r apart is equal to

pR(r) =
1

rk−1

∞∑
r=1

1
rk−1

=
1

rk−1

f(k − 1)
; k > 2 (7)

1This infinite sum is a famous series known as R-series. The
sum of the infinite series has general closed form result when
k is an even integer.

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
1

1.5

2

2.5

3

3.5

4

4.5

A
ve

ra
ge

 N
um

be
r o

f H
op

s
fo

r a
 S

es
si

on

k

Figure 3: Average number of hops that an active
session travels.

Proof. Let O denote the source node. Let r denote a
distance from the source node to destination node. There
are D(r) nodes at a distance r away from node O. Each node
is communicating with node O with a probability pR(r).
Hence,

pR(r) ∝ (4r)p(r) =
4c

r(k−1)
(8)

By normalizing the above equation, we prove the theorem.
The probability distribution is meaningful only if we have
k > 2, otherwise it becomes zero.

It is interesting to know the average number of hops that
an active session travels.

Corollary 3.2. The average number of hops that an ac-
tive session travels is equal to

E[Z] =
f(k − 2)

f(k − 1)
; k > 3 (9)

We notice that E[Z] is a function of k (Figure 3).

3.3 Time To Live T (α)

Claim 3.3. For a given small positive value 0 < α < 1,

T (α) = min{i|
∞∑

r=i+1

1

rk−1
≤ αf(k − 1)} (10)

Proof. From Theorem 3.1, the probability that the des-
tination node is located at a distance larger than a positive
integer i can be calculated from (7) as

∞∑
r=i+1

1
rk−1

∞∑
r=1

1
rk−1

=

∞∑
r=i+1

1
rk−1

f(k − 1)
(11)

which proves the claim.

3.4 Average Number of Sessions

Theorem 3.3. The average number of active paths ter-
minating at a node is

E[St] = 4c

∞∑
r=1

1

r(k−1)
= 4c ∗ f(k − 1); k > 2 (12)

Proof. Let o denote the node located at (0, 0). Let M
denote the set of all the nodes in the network, and M/o
denote all the nodes except the node o. Without loss of
generality, choose node o as the destination node. Let S
denote the number of active paths terminating at node o.
Let Xi,o be an indicator function which is 1 if there exists
an active paths starting at node i and terminating at node o,
and is 0 otherwise. Let pi,o denote the probability that node
o and i have an active session. Clearly, Pr[Xi,o = 1] = pi,o.
Hence,

St =
∑

i∈M/o

Xi,o (13)

Taking the expectation of both sides yields

E[St] =
∑

i∈M/o

E[Xi,o] (14)

Using the result of Claim 3.1,

E[St] =
∞∑

r=1

4r c
rk

= 4c
∞∑

r=1

1

r(k−1) = 4c ∗ f(k − 1); k > 2
(15)

k > 2 is necessary for the convergence of the above equa-
tion.

Corollary 3.4.

E[Si] = E[St] = 4c ∗ f(k − 1); k > 2 (16)

Proof. It is obvious that each session has to have a
source node as well as a destination node.

Lemma 3.5.

E[Sr] = 4c ∗ (f(k − 2)− f(k − 1)); k > 3 (17)

E[S] = 4c ∗ (f(k − 2) + f(k − 1)); k > 3 (18)

Proof. Let i denote any node in the network, and let
r denote the distance from the source node to destination
node of a session initiated by node i. This session will pass
through (r−1) intermediate nodes. There are total 4r nodes
having distance r away from node i. The average number of
active pass-through sessions observed by other nodes is

∞∑
r=1

(r − 1) ∗ 4r ∗ p(r) =
∞∑

r=1

(r − 1) ∗ 4r ∗ c
rk

= 4c ∗
∞∑

r=1

(
1

rk−2 − 1
rk−1

)
= 4c ∗ (f(k − 2)− f(k − 1))

(19)

From symmetry, the average number of active relay ses-
sions for a given node i has to be equal to the average number
of active pass-through sessions observed by other nodes but
initiated by node i. The right side of the above equation
gives the average number of relay sessions for a node.

The average of the total number of sessions at a node is
the sum of the averages of pass-through sessions, initiated
sessions and terminated sessions at the node.

The above results indicate that, indeed, the number of
sessions passing through a node is larger than the number of
sessions generated, on the average. The reason is that some
sessions are observed by many intermediate nodes along its
communication path.

Theorem 3.6.

q = 1− 2f(k − 1)

f(k − 2) + f(k − 1)
; k > 3 (20)

Proof. The above result follows directly from Lemma 3.5.
We have

q = E[Sr]
E[S]

= f(k−2)−f(k−1)
f(k−2)+f(k−1)

= 1− 2f(k−1)
f(k−2)+f(k−1)

(21)

For the case of k ≤ 3, we have q = 1. On the average,
there are much more pass-through (relay) sessions for a node
than the number of sessions terminated at or started from
the node.

Theorem 3.7. The probability distribution of the com-
munication session pS(s) for a node can be found recursively.

If we denote gs(n) = ps(n)
ps(0)

for n > 0 and assign gs(0) = 1,

we have

gs(n) = gs(n− 1)g1(1) +

n∑
i=2

(−1)i−1Gigs(n− i) (22)

for n ≥ 2, and

ps(0) =
∏

a∈M/o

(1− pa,o) (23)

Gi =
∑

a∈M/o

[
pa,o

1− pa,o

]i

(24)

and

ps(1) = ps(0)G1 (25)

Proof. See the Appendix.

3.5 Route Discovery Overhead

3.5.1 Route discovery overhead as a function ofT (α)

Corollary 3.8. The total number of route request (RREQ)
packets associated with a flooding event with TTL value T (α)
is

Nfind = 1 + 2 ∗ T (α) ∗ (T (α)− 1) (26)

Proof. Assume that the route discovery is initiated by a
node i. The longest distance each packet travels is bounded
by T(α). Let ri,j denote the distance between a node j and
node i. Node j with distance ri,j < T (α) will transmit the
packet once. Therefore, the total packet retransmissions is
the same as the number of the nodes within a circle of radius
T (α) from node i. From Claim (3.1),

Nfind = 1 +
T (α)−1∑

l=1

4 ∗ l

= 1 + 4 ∗ T (α)(T (α)−1)
2

= 1 + 2 ∗ T (α) ∗ (T (α)− 1)

(27)

3.5.2 Lower bound on route discovery overhead
Next we will analyze the average number of routing pack-

ets to find a destination node if the source node does not
know the location of the destination. We assume that the
optimal routing (lower bound) is to inform a node only once,
which is implemented by using routing path as clock-wise
cyclic route from the lower value distance r to (r + 1) after
routing through all the nodes with distance r.

Claim 3.4. The minimum number of routing packets to
find the communicating destination located at distance r is

Nfind(r) = 2r2 + 0.5 (28)

Proof. The overhead of discovery can be separated into
two parts: (1) the overhead of looping through the nodes
with distance less than r, denoted as N1

find(r) , and (2) the
overhead for looping through all the nodes with distance r
until finding the destination node as N2

find(r).

For N1
find(r) we have,

N1
find =

[
(r−1)∑
i=1

4i

]
= 4

[
r∗(r−1)

2

]
= 2r(r − 1) = 2r2 − 2r

(29)

For N2
find(r), we have

N2
find =

[
1
4r

4r∑
i=1

i

]
= 1

4r

[
4r∗(4r+1)

2

]
= 4r+1

2
= 2r + 0.5

(30)

By adding N1
find(r) and N2

find(r), we prove the claim.

Theorem 3.9. The average minimum overhead of find-
ing a new route is

E[Nfind] =
2f(k − 3)

f(k − 1)
+ 0.5; k > 4 (31)

Proof. For an active session, the distance of source node
to destination node is a random variable. The probability
distribution of the random variable is given by (7). Using
this distribution, the average of Nfind is

E[Nfind] =
∞∑

r=1

(2r2 + 0.5)
1

r(k−1)

f(k−1)

= 2
∞∑

r=1

1
r(k−3)

f(k−1)
+ 0.5

∞∑
r=1

1
r(k−1)

f(k−1)

= 2f(k−3)
f(k−1)

+ 0.5

(32)

3.6 Shortest Path Analysis
As we mentioned earlier, any node can be turned “ON”

and “OFF” randomly. Our routing protocols assume that
once a given node turns “OFF”, all nodes communicating
to/through that node needs to be notified through a route
notification procedure. We will compute the minimum over-
head required to complete a route notification procedure,
on the average. The best reactive routing protocol can do
no better than a hypothetical routing protocol that some-
how notifies the intended nodes by communicating over the
shortest possible paths between the failed node and the in-
tended nodes. Further, it needs only to notify those affected
nodes, not all the nodes in the network.

We will therefore need to derive the following two lemmas
which provide expressions for some interesting quantities re-
garding the properties of the shortest paths. Those will be
used in the following section to derive the minimum average
route failure notification overhead.

Let (xi, yi) denote the coordinates of a node i. Define

4xi,j , |xi − xj | (33)

4yi,j , |yi − yj | (34)

then

ri,j = 4xi,j +4yi,j (35)

Lemma 3.10. Let Li,j denote the total number of shortest
paths between two nodes i and j. Consider the case where
xi < xj and yi < yj (Figure 4). The shortest path between
the two nodes will consist of exactly 4xi,j horizontal hops
to the right and 4yi,j upward vertical hops on the grid, in
any order. Thus, Li,j is the total number of permutations
of hops of the two types. It follows from standard counting
methods that

Li,j =

(
ri,j

4xi,j

)
=

(ri,j)!

(4xi,j)!(4yi,j)!
(36)

Lemma 3.11. Let Li,j,l denote the number of shortest paths
between nodes i and j that pass through node l. For any
two arbitrary nodes i and j with xi < xj and yi < yj, we
need only to consider the nodes that satisfy xi ≤ xl ≤ xj

and yi ≤ yl ≤ yj since any other node l that does not sat-
isfy this condition cannot possibly lie on any of the shortest
paths between nodes i and j. Using the same counting argu-
ment as before, the first portion of the paths going through
node l must be exactly 4xi,l horizontal-right hops and 4yi,l

vertical-up hops, in any order. For each such choice, there
are a number of ways to continue the path to the destina-
tion node j, but any of those alternatives must be formed
of 4xl,j horizontal-right and 4yl,j vertical-up hops, in any
order. Thus,

Li,j,l =

(
ri,l

4xi,l

)
×
(

rl,j

4xl,j

)
(37)

Let ai,j,l denote the probability that node l lies along the
shortest route between nodes i and j, as shown in Figure 4.
Assume that when nodes i and j need to communicate, any
of the shortest paths between these two nodes is discovered
(through a RREQ/RREP procedure) with equal 2 probabil-
ity. Then

ai,j,l =
Li,j,l

Li,j
(38)

An example is shown in Figure 4.
Let pi,j denote the probability that there is an active ses-

sion started from node i and terminated at j. Let bi,j,l

denote the probability that node l is routing the communi-
cation session from node i to node j. Then

bi,j,l = ai,j,lpi,j = pi,j
Li,j,l

Li,j
(39)

2This is a reasonable assumption for flooding-based routing
protocols.

l

j

i

∆xi,j

∆yi,j

Figure 4: A portion of the Manhattan grid. Two
possible shortest paths between nodes i and j are
shown, where the dashed path does not go through
node l. For this example, ri,j = 7, 4xi,j = 4, 4xi,l = 2,
4xl,j = 2. By substituting in (36) and (37), Li,j = 35
and Li,j,l = 18, which can be verified by enumeration.
Hence from (38), ai,j,l = 0.51.

3.7 Route Notification Overhead
We presented in Section 2.2 two methods for route notifi-

cation; source route-based and distance vector-based. In the
former, separate messages are sent for each intended node,
while in the latter, the same message may be sent along
the shared portion of overlapping routes to more than one
destination.

Another important feature of distance vector route main-
tenance is the local-repair feature (e.g. see [1]). If an in-
termediate node fails, neighboring nodes may attempt to
repair (or patch) the path instead of notifying the trans-
mitting. Clearly, this works only for the paths that are not
terminating at the intended node.

Thus, we split our analysis to three cases; two extreme
cases, and an intermediate case, as follows. The first case
uses local repair together with distance vector-based notifi-
cation. We make the optimistic assumption that local repair
will succeed for all active paths except for those terminating
at the failed node. The third case is for source route based
notification where there is no local repair and all affected
nodes (whether having active pass-through paths through
the failed node or active paths terminating at the failed
node) must be notified, each with an independent RERR
packet. The second, intermediate, case uses local repair but
with source route notification (i.e. separate messages). We
will show that in some cases, the first and second cases are
equivalent.

3.7.1 Case 1: Local Repair with Distance-vector
based notifications

Let o denote the node located at (0, 0). Let M denote the
set of all nodes in the network, and M/o denote all nodes
except node o. Without loss of generality, choose node o as
the destination node. Node j is another node in M/o. Let
cj,o denote the probability that there is an active session
with node o started from j and at the same time node j is
not a routing node for other active sessions having node o as
destination node. Let Mj denote the set of nodes that can
have node j as its routing node. From any node k ∈ Mj ,
there is a path passing through node j that is one of the

possible shortest paths from node k to node o. For example,
for a node j located at (2,3), Mj will be all the nodes located
at {(x, y)|x ≥ 2, y ≥ 3} except (2, 3). Note that the event
“there is an active session with node o started from j” is
independent from the event “node j is not a routing node
for other active sessions having node o as destination node.”

cj,o = pj,o

 ∏
l∈Mj

(1− bl,o,j)


= pj,o

 ∏
l∈Mj

(1− pl,oal,o,j)


= pj,o

 ∏
l∈Mj

(
1− pl,o

Ll,o,j

Ll,o

) (40)

Theorem 3.12.

E(Noff) =

 ∑
j∈M/o

(rj,o − 1) pj,o

 ∏
l∈Mj

(1− pl,o
Ll,o,j

Ll,o


(41)

Proof. Define a random variable Xj,o for a give node j
as

Xj,o =

{
rj,o − 1, ; if A

0, ; otherwise
(42)

where A is the event “session starts at j and ends at o, and
also j is not a routing node for other active sessions that
end at o.” Hence,

Noff =
∑

j∈M/o

Xj,o (43)

and taking the expectation of both sides,

E[Noff] =
∑

j∈M/o

E[Xj,o] (44)

and substituting by

E[Xj,o] = (rj,o − 1)cj,o (45)

completes the proof.

3.7.2 Case 2: Local Repair with Source Route Based
Notification

In this case, a RERR packet will be sent to the source
of each active session that ends at the failed node, inde-
pendently (i.e. even if some of the sessions might have some
portion of the routes are common). Using the same method-
ology presented in Theorem 3.3, we have

Theorem 3.13.

E[Noff] = 4c(f(k − 2)− f(k − 1)) (46)

3.7.3 Relation between route notification in Cases 1
and 2

Consider a special case where a network in which the needs
of communication are “weak” i.e the coefficient c in (2) is
very small. If we only preserve the first-order involving c,
then

ci,j = pi,j =
c

rk
i,j

; k > 3 (47)

and hence

Corollary 3.14. For a network which is low traffic, i.e
c << 1, route failure notification overhead for both cases 1
and 2 above are identical. Specifically, (41) reduces to (46)

Proof. Without loss of generality, we assume a node O
is turned off (or failed) at location at (0, 0). Because the
communication needs are weak, we can ignore the terms of
cn in (41) with n > 1. Hence,

E[Noff] =

∞∑
r=1

(r − 1) ∗ 4r ∗ c

rk
= 4c(f(k − 2)− f(k − 1))

3.7.4 Case 3: No local repair and source route based
notification

In this case, a RREP packet will be sent to each source
that has an active session passing through or terminating at
the failed node.

Theorem 3.15.

E[Noff] = 2c(f(k − 3)− f(k − 2)); k > 4 (48)

Proof. Observed from any given node m, whether a ses-
sion passes through or terminates at the node m can be
uniquely presented as a tuple (j, m, i). Here, j is the session
source node, i is the session destination node. If a node m
is turned off, the total number of RERR packets that will
be transmitted to node j to notify it about the failure of the
node m is (rm,j − 1).

For any given node i and a given session that ends at node
i with session length (distance from source node to destina-
tion node) r will generate (r − 1) tuples described above.
Each tuple specifies a pass-through or terminate node m for
this session. From the symmetric construction of the net-
work, for a given node m and a given distance r and a given
positive integer l < r, the average number of sessions with
session length r and distance l from pass-through node m to
source node is 4∗r∗c

rk . If node m fails, the number of packets
to notify node j is (l − 1). Finally, we have the following
result.

E[Noff] =

∞∑
r=1

(
4c

rk−1

)(r∑
l=1

(l − 1)

)

=

∞∑
r=1

(
4c

rk−1

)(
r(r − 1)

2

)
= 2c

∞∑
r=1

(r2 − r)
1

rk−1

= 2c(f(k − 3)− f(k − 2)) (49)

3.8 Scalability of the Manhattan grid
From the previous results, the average total number of

active sessions for a node and the average number of packets
to notify about the failure of a node are bounded for an
infinite Manhattan grid if the coefficient k is larger than 3,
and 4. We have the following result.

Corollary 3.16. The Manhattan grid becomes infinitely
scalable only if the coefficient k is larger than 4.

This result, among others, is validated in the following sec-
tion.

4. NUMERICAL RESULTS AND SIMULA-
TIONS FOR MANHATTAN GRID

To verify our analysis, we use the ns-2 [4] simulation tool
to run a number of simulations described in this section.
Since it is impossible to simulate an infinite grid, an issue
arises in how to compare the analytical results with simu-
lations. As mentioned in Section 2, our analysis applies to
a finite but symmetric grid (i.e. a torus) by replacing the
upper limit in each summation in the results by the proper
value that depends on the size of the finite grid used. A
square grid of size N was used in generating the simulation
results. Hence, for generating the numerical results from the
analysis, the upper limit used is

√
N instead of ∞. However,

this doesn’t take care of the edge effects that will arise in
the simulations, which causes deviations from the analytical
results, especially for small k.

4.1 Simulation Set-up
We consider five networks of size 49, 121, 225, 361 and

5293. Every node is placed at the intersection of a square
Manhattan grid. Here, nodes have fixed positions without
any movement for the entire simulation. Field sizes are dif-
ferent for different network sizes; 1400m × 1400m field has
49 nodes; 2200m × 2200m for 121 nodes; 3000m × 3000m
for 225 nodes; 3800m × 3800m for 361 nodes; 4600m ×
4600m for 529 nodes. We use all the simulation components
that ns-2 provides to set up network communication, such
as Channel model, Propagation model, Network Interfaces,
MAC 802.11, Priority Queue, and Omni Antenna [4].

As the goal of our simulation is to verify our analytical
results, the transport protocol is irrelevant, so we use the
most simple one to speed up the simulation run time. We
choose our traffic sources to be Constant Bit Rate (CBR)
sources. A 512 byte data packet is used for all CBR sources.
The inter-arrival time of CBR sources is fixed at 4.5 seconds.
The CBR agent will be attached to a UDP agent, which is
in turn attached to the source node. The source-destination
pairs are generated according to (2). Each data point repre-
sents an average of at least five runs with identical topology,
but different traffic patterns (source-destination pairs).

4.2 Numerical and Simulation Results
Figure 5 shows the results of Theorem 3.3 and generated

traffic pattern. The average number of the communicat-
ing sessions terminated/initiated at a node is counted. The
analysis results are calculated as (12)4. It seems the session
number per node in simulation increases not as rapidly as
theoretical results. This is due to edge effects.

The second experiment verifies the results of Theorem 3.6
in Figure 6. The theory results are according to (20). We
use AODV as the routing protocol in the simulation for Fig-
ure 6. We counted the total number of sessions initiated or
passing through a node. Then the average percentage of for-
warding sessions at a node is counted. Figure 7 shows the
average total number of sessions from AODV simulations

3Slow simulation speed and large memory requirement for
the ns-2 models prevented us from using larger network at
this stage.
4As pointed out earlier, in all the following numerical anal-
ysis results, we summed r from 1 to the network diameter√

N instead of to infinity in calculating f(k) since our sim-
ulations are for finite networks.

0 100 200 300 400 500 600
1

2

3

4

5

6

7

8

A
ve

ra
ge

 c
on

ne
ct

io
n

nu
m

be
r p

er
 n

od
e

Number of nodes

k=2
k=3
k=4
Theory k=2
Theory k=3
Theory k=4

Figure 5: Average number of source-destination ses-
sions per node E[St] (12), c = 0.5. k > 2 for conver-
gence.

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 fo
rw

ar
di

ng
 p

er
ce

nt
ag

e
pe

r n
od

e

Number of nodes

k=2
k=3
k=4
Theory k=2
Theory k=3
Theory k=4

Figure 6: Average forwarding percentage per node
q (20), AODV simulations, c = 0.8.

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

35

A
ve

ra
ge

 s
es

si
on

s
pe

r n
od

e

Number of nodes

k=2Total
k=2Forward
k=2Originate
k=4Total
k=4Forward
k=4Originate

Figure 7: Average number of total (source-
destination and relaying) sessions per node E[S]
(18), c = 0.8, AODV simulations. k > 3 for con-
vergence.

1 2 3 4 5 6 7 8 9 10 11
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

fu
l p

er
ce

nt
ag

e
of

 fi
nd

in
g

pa
th

s

TTL (hop)

N=49
N=225
N=529
Theory

Figure 8: Successful percentage of finding paths as
a function of TTL (10), k = 2, c = 0.8, AODV simu-
lations.

1 2 3 4 5 6 7 8 9 10 11
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

S
uc

ce
ss

fu
l p

er
ce

nt
ag

e
of

 fi
nd

in
g

pa
th

s

TTL (hop)

N=49
N=225
N=529
Theory

Figure 9: Successful percentage of finding paths as
a function of TTL (10), k = 3, c = 0.8, AODV simu-
lations.

and analysis. The numerical results are calculated accord-
ing to (18).

Figures 8, 9 and 10 verify Claim 3.3. The numerical re-
sults are calculated as (1− α) with different TTL values in
(10). In the simulated scenarios, we set up communicating
sessions initiated from the center node. AODV is used as the
routing protocol in the simulation about TTL. Parameters of
AODV source code (NET DIAMETER, TTL INCREMENT
and TTL THRESHOLD) are modified then re-compiled for
each simulated scenario. For every session, if the source
node can not find a route to destination due to TTL limit,
the route request is counted as unsuccessful. We count the
total number of unsuccessful route requests. From Figure 8,
9 and 10, we observe that as the network size N increases,
simulation results and theoretical results provide an increas-
ingly better match.

As mentioned earlier, when a node is turned off, route er-
ror packets need to be sent to the nodes which have active
sessions terminating at the failed node. Both AODV and
DSR are considered. Since default options of DSR in ns-2

1 2 3 4 5 6 7 8 9 10 11
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

S
uc

ce
ss

fu
l p

er
ce

nt
ag

e
of

 fi
nd

in
g

pa
th

s

TTL (hop)

N=49
N=225
N=529
Theory

Figure 10: Successful percentage of finding paths
as a function of TTL (10), k = 4, c = 0.8, AODV
simulations.

0 100 200 300 400 500 600
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

A
ve

ra
ge

 n
ot

ifi
ca

tio
n

pa
ck

et
s

pe
r n

od
e

fa
ilu

re

Number of nodes

DSR k=5, no RREP from cache
DSR k=5, RREP from cache

Figure 11: Effect of route cache on RERR for a
failed destination, DSR, k = 5, c = 0.5.

turn on route cache which is not considered in our theoret-
ical analysis, it is interesting to know what is the effect of
route caching on scalability of routing protocols. Simulation
results show that route caching doesn’t have significant ef-
fect on the scalability results as we can see from an example
simulation result of DSR with and without route caching in
Figure 11. But to be consistent with our theoretical analy-
sis which doesn’t consider route cache, “Replying to Route
Requests using Cached Routes” and “Packet Salvaging” in
DSR [2] are turned off in all other simulations.

Figure 12 verifies Theorem 3.12. In the simulated scenar-
ios, we set up communicating sessions whose destination is
the center node. After every session has run for a long time
(enough for every source node to find a route to destination)
to avoid transient effects, the destination node is turned off.
Then we count every route error packet sent from neighbor-
ing nodes. The theoretical result is given by (46).

Theorem 3.15 derives the average number of packets to
notify about the failure of a node to the nodes which have
active sessions ending at or passing through the failed node.
This time, only DSR is selected as routing protocol for Fig-

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

A
ve

ra
ge

 n
ot

ifi
ca

tio
n

pa
ck

et
s

pe
r n

od
e

fa
ilu

re

Number of nodes

AODV k=4
AODV k=5
DSR k=4
DSR k=5
Theory k=4
Theory k=5

Figure 12: Average route error packets for a failed
node as destination (46), c = 0.5.

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

A
ve

ra
ge

 n
ot

ifi
ca

tio
n

pa
ck

et
s

pe
r n

od
e

fa
ilu

re

Number of nodes

DSR k=4
DSR k=5
Theory k=4
Theory k=5

Figure 13: Average route error packets for a failed
node as destination or relay (48), c = 0.5.

ure 13 as we mentioned in Section 2.2.2. Theoretical results
are obtained from (48), which states that the route failure
notification overhead infinitely scale only if k > 4.

5. SIMULATIONS OF RANDOM NETWORK
TOPOLOGIES

Though our analysis is based on the Manhattan grid, we
run simulations for random network topologies in order to
check the validity of the analysis regarding the scalability as
a function of k. We repeat all the simulations for Manhat-
tan grid. Only the different aspects of the simulations are
described here.

We still consider five networks of size N = 49, 121, 225,
361 and 529 nodes. Unlike the case of Manhattan grid sim-
ulations, nodes here are randomly placed in a square area
of size A. A random network topology example is shown
in Figure 14. Let L denote the side length of the square,
then L =

√
A. Let r0 denote the communication radius of

a node, which is the same for all the nodes in the network.
Let g denote the average number of nodes within a direct
communicate area of a given node (i.e. average degree of a

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

X (m)

Y
 (m

)

Figure 14: A snapshot of a random network topol-
ogy with N = 49 and g = 10. The dark spots repre-
sent the nodes.

node). If we use λ to denote the node density for a network
size, then we have

g = λπr2
0 (50)

From [7, 8], we know that this average node degree should
be Θ(log N) to keep the network asymptotically connected.
Considering the largest network size in our simulation, we
choose g = 10 or g = 20. The default value for r0 in ns-2
is 250 meters. The side length L of every network size is
calculated from

L = br0

√
Nπ/gc (51)

For every network size, a fully connected topology is gener-
ated (we generate a number of topologies, check the connec-
tivity of each using standard methods, and select only those
that are connected). Then for every topology, we run Floyd-
Warshall [9] algorithm to get the connectivity matrix whose
elements indicate the number of hops between each node.
Similar to the simulations for Manhattan grid, we choose
our traffic sources to be Constant Bit Rate (CBR) sources.
The source-destination pairs are also chosen according to
(2) where the hop numbers between each node are looked
up from the connectivity matrix.

Figure 15 shows the generated traffic patterns for k = 2, 3
and 4. We draw the curves of the average number of es-
tablished source/destination sessions over different network
sizes. We notice that the curves become flat for k = 3 or
4. For k = 2, the curve continue increasing as the network
size increases. The scalability behavior for different k are
consistent with the theoretical result. From, Corollary 3.4,
the average number of source/destination sessions becomes
infinitely scalable only if k > 2.

The second experiment shows the results of q in Figure 16.
We use AODV as the routing protocol. We counted the to-
tal number of sessions initiated or passing through a node.
Then the average percentage of forwarding sessions at a node
is counted. From the experiment, we notice that the prob-
ability becomes constant for k = 4 when the network size is
larger than 200 nodes. But for k = 2 and 3, the probability
continue increasing as the network size increases. Besides,
by fixing all other parameters, the change of the probability
is not very sensitive to the change of g. For k = 4, the prob-
ability values are almost the same for g = 10 and g = 20.

0 100 200 300 400 500 600
0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
ve

ra
ge

 c
on

ne
ct

io
n

nu
m

be
r p

er
 n

od
e

Number of nodes

k=2,g=10
k=2,g=20
k=3,g=10
k=3,g=20
k=4,g=10
k=4,g=20

Figure 15: Average number of source-destination
sessions per node E[St] (12), c = 0.1. k > 2 for con-
vergence.

0 100 200 300 400 500 600
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

 fo
rw

ar
di

ng
 p

er
ce

nt
ag

e
pe

r n
od

e

Number of nodes

k=2,g=10
k=2,g=20
k=3,g=10
k=3,g=20
k=4,g=10
k=4,g=20

Figure 16: Average forwarding percentage per node
q (20), c = 0.1.

1 2 3 4 5 6 7 8 9 10 11
0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

fu
l p

er
ce

nt
ag

e
of

 fi
nd

in
g

pa
th

s

TTL (hop)

N= 49,g=10
N= 49,g=20
N=225,g=10
N=225,g=20
N=529,g=10
N=529,g=20

Figure 17: Successful percentage of finding paths
as a function of TTL (10), k = 2, c = 0.1, AODV
simulations.

1 2 3 4 5 6 7 8 9 10 11
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

S
uc

ce
ss

fu
l p

er
ce

nt
ag

e
of

 fi
nd

in
g

pa
th

s

TTL (hop)

N= 49,g=10
N= 49,g=20
N=225,g=10
N=225,g=20
N=529,g=10
N=529,g=20

Figure 18: Successful percentage of finding paths
as a function of TTL (10), k = 3, c = 0.1, AODV
simulations.

1 2 3 4 5 6 7 8 9 10 11
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

S
uc

ce
ss

fu
l p

er
ce

nt
ag

e
of

 fi
nd

in
g

pa
th

s

TTL (hop)

N= 49,g=10
N= 49,g=20
N=225,g=10
N=225,g=20
N=529,g=10
N=529,g=20

Figure 19: Successful percentage of finding paths
as a function of TTL (10), k = 4, c = 0.1, AODV
simulations.

0 100 200 300 400 500 600
5

10

15

20

25

30

35

40

45

50

A
ve

ra
ge

 n
ot

ifi
ca

tio
n

pa
ck

et
s

pe
r n

od
e

fa
ilu

re

Number of nodes

g=10 k=4
g=10 k=5
g=20 k=4
g=20 k=5

Figure 20: Average number of route error packets
for a failed node as destination (46), AODV, c = 0.5.

0 100 200 300 400 500 600
10

15

20

25

30

35

40

A
ve

ra
ge

 n
ot

ifi
ca

tio
n

pa
ck

et
s

pe
r n

od
e

fa
ilu

re

Number of nodes

g=10 k=4
g=10 k=5
g=20 k=4
g=20 k=5

Figure 21: Average number of route error packets
for a failed node as destination (46), DSR, c = 0.5.
k > 5 for convergence.

We can use Theorem 3.6 to validate this experiment. For
k > 3, the probability is given by (20). This is consistent
with the experiment results (that the changes of probability
is not sensitive to the changes of values of g). From theo-
retical analysis, q is the probability that a session is a relay
session, and is 1 if k ≤ 3. From our experiment, the proba-
bility values of q for k = 2 and k = 3 continue increasing as
the network size increasing, but not increasing fast enough
as we expect. One explanation for the slow increase of q
could be the edge-effects.

To study the effect of TTL value T (α) on the probability
of finding destination node (1 − α), we set up the follow-
ing simulation scenarios. For each scenario, we initiate our
communicating sessions from the node which is nearest to
the center of the field. For every session, if the source node
can not find a route to destination due to TTL limit, the
route request is counted as unsuccessful. We measure all
the number of unsuccessful route requests. The y-axis in
Figure 17, 18 and 19 is the values of (1 − α). From these
figures, we see that the smaller the value of k is, the faster
(1 − α) approaches to one. This phenomena is consistent
with our theoretical result.

For the simulations of route error notification, we set up
communicating sessions whose destination is the node that
is the nearest to the center of field. After every session
has run for a long time (enough for every source node to
find a route to destination) to avoid transient effects, the
destination node is turned off. Then we count every route
error packet sent from neighboring nodes of that failed node.
The simulated results using AODV and DSR are plotted in
Figure 20 and Figure 21 respectively.

We also count the average number of packets to notify
the failure of a node to the nodes which have active sessions
that end at or pass through the failed node. The simulated
results of DSR with different traffic parameters are drawn
in Figure 22. When a node fails, the failure notification
message is not shared for the DSR protocol. The simulation
results setup using DSR protocol can be used to compare
our theoretical result given by Theorem 3.15. According
to the theorem, the average number of root failure packets
scale only if k > 4. In our simulation scenario, we do see

0 100 200 300 400 500 600
0

5

10

15

20

25

30

A
ve

ra
ge

 n
ot

ifi
ca

tio
n

pa
ck

et
s

pe
r n

od
e

fa
ilu

re

Number of nodes

g=10 k=4
g=10 k=5
g=20 k=4
g=20 k=5

Figure 22: Average number of route error packets
for a failed node as destination or relay (48), DSR,
c = 0.5. k > 5 for convergence.

that the average number of packets continues increasing as
the size of the network increases for k = 4. But for k = 5,
the average number of packets increases for small network
size, and becomes a constant for large network sizes.

6. CONCLUSION
In this paper, we developed a mathematical analysis of

the overhead of a broad class of reactive routing protocols.
Specifically, we focused on routing overhead associated with
(i) route discovery and (ii) route failure notification. The
analysis was developed in the context of an unreliable sensor
network, modelled by an unreliable Manhattan (i.e. degree
4) grid. Sensitivity of the results was analyzed by comparing
them against simulations of regular and random topologies.

Several issues were considered, such as the key differences
between distance-vector and source-route based routing pro-
tocols regarding the mechanism of route failure notification,
and the use of route repair.

Our analytical results point to the key role that the traffic
pattern plays in defining the scalability of these protocols.
Expressions for various quantities of interest, as well as con-
ditions for scalability were derived and validated via ns-2
simulations. Although we do not model many aspects of
the network, including MAC layer details and route caching
details, there is a reasonable match between the analyti-
cal results and simulations that do take into account those
detailed aspects. Specifically, the simulations validate the
infinite scalability results.

In this paper, we analyzed two difference cases of net-
work topologies. Our infinite scalability results should hold
for many other topologies and traffic models. Let r0 and r
denote the communication radius of a node, and the physi-
cal distance between two nodes, respectively. Let l = d r

r0
e

denote the characteristic distance between two nodes. Let
pL(l) denote the probability that an active session exists be-
tween two nodes having a characteristic distance l. We con-
jecture that our infinite scalability results still hold if N(l)
scales as Θ(l2) and pL(l) scales as Θ(l−k). Here, N(l) is the
average number of nodes within a characteristic distance l
from a node.

Several avenues of future work remains, including the anal-
ysis of the overhead of other types of routing protocols such
as hierarchical routing. Further, the results from this work
could be applied to aid the design of routing protocols in the
future. For example, the results can be applied to limit the
size of a cluster-head such that the average routing overhead
is bounded by some given constant.

Appendix: Proof of Theorem 3.7
Let o denote the node located at (0, 0). Let M denote the
set of all the nodes in the network, and M/o denote all the
nodes except the node o. Without loss of generality, choose
node o as the destination node. We start with the calcu-
lation of ps(0), the probability that no node has an active
session terminated at node o. From our model assumption,
the events that different nodes communicate with node o
are independent. Therefore, the value of the ps(0) is the
product of the probability that any given node is not com-
municating with node o. Hence we have (23).

Now, for ps(1), the probability of having only one node is
communicating with the node o. Let pa,o denote the prob-
ability that there is an active session started from node a
and terminated at node o. For a given node a ∈ M/o, the
probability that this node is communicating with node o and
no other node is communicating with o can be expressed as
pa,o

∏
b∈M/{o,a}

(1− pb,o), where a ∈ M/o.

ps(1) is the sum of the probabilities of all nodes in the set
of M/o. We have

ps(1) =
∑

a∈M/o

[
pa,o

∏
b∈M/{o,a}

(1− pb,o)

]

=
∑

a∈M/o

[
pa,o

1−pa,o

∏
b∈M/o

(1− pb,o)

]
= ps(0)

∑
a∈M/o

[
pa,o

1−pa,o

]
= ps(0)G1

(52)

First, we denote q(a) =
pa,o

1−pa,o
. Assume that, we have

found the values of ps(i) and Gi, where i ∈ [0, 1, . . . , n− 1].
From the definition of ps(n), we have,

ps(n)

=

(∑
a1,...,an∈M/o,ai 6=aj

[
n∏

i=1

q(ai)

])
(ps(0))

(53)

From there, we have the following equation

gs(n) = ps(n)
ps(0)

=

(∑
a1,...,an∈M/o,ai 6=aj

[
n∏

i=1

q(ai)

])
(54)

Hence, we can deduce a recursive equation to find ps(n),

gs(n− 1)g1(1)

=
∑

a1,...,an−1∈M/o,ai 6=aj

[
n−1∏
i=1

q(ai)

] ∑
a∈M/o

q(a)

=
∑

a1,...,an−1∈M/o,ai 6=aj ,b∈M/o

[
q(b)

n−1∏
i=1

q(ai)

]
=

∑
a1,...,an∈M/o,ai 6=aj

[
n∏

i=1

q(ai)

]
+

∑
b∈M/o,a1,...,an−2∈M/{o,b},ai 6=aj

[
[q(b)]2

n−2∏
i=1

q(ai)

]
= gs(n)+ ∑
b∈M/o,a1,...,an−2∈M/{o,b},ai 6=aj

[
[q(b)]2

n−2∏
i=1

q(ai)

]
= gs(n)+ ∑
b∈M/o,a1,...,an−2∈M/{o,b},ai 6=aj

[
[q(b)]2

n−2∏
i=1

q(ai)

]

(55)

For the second term,∑
b∈M/o,a1,...,an−2∈M/{o,b},ai 6=aj

[
[q(b)]2

n−2∏
i=1

q(ai)

]
=

∑
b∈M/o,a1,...,an−2∈M/o,ai 6=aj

[
[q(b)]2

n−2∏
i=1

q(ai)

]
−

∑
b∈M/o,a1,...,an−3∈M/{o,b},ai 6=aj

[
[q(b)]3

n−2∏
i=1

q(ai)

]
=

(∑
b∈M/o,

[
[q(b)]2

])(∑
a1,...,an−2∈M/o,ai 6=aj

[
n−2∏
i=1

q(ai)

])
−

∑
b∈M/o,a1,...,an−3∈M/{o,b},ai 6=aj

[
[q(b)]3

n−3∏
i=1

q(ai)

]
= gs(n− 2)G2

−
∑

b∈M/o,a1,...,an−3∈M/{o,b},ai 6=aj

[
[q(b)]3

n−3∏
i=1

q(ai)

]
(56)

By Recursively applying the same deduction to the second
term, we prove the theorem.

7. REFERENCES
[1] C. E. Perkins, E. M. Belding-Royer, and S. R. Das. Ad

hoc on-demand distance vector (AODV) routing.
Internet Draft draft-ietf-manet-aodv-12.txt, Mobile Ad
Hoc Networking Working Group, November 4 2002.

[2] D. B. Johnson, D. A. Maltz, Y.-C. Hu, and J. G.
Jetcheva. The dynamic source routing protocol for
mobile ad hoc networks (DSR). Internet Draft
draft-ietf-manet-dsr-07.txt, IETF MANET Working
Group, February 21 2002.

[3] J. Broch, D. A. Maltz, D. B. Johnson, Y. C. Hu, and
J. Jetcheva. A performance comparison of multi-hop
wireless ad-hoc network routing protocols. In
Proceedings of ACM/IEEE International Conference on
Mobile Computing and Networking (MOBICOM’98),
pages 85–97, Dallas, Texas, USA, October 1998.

[4] ns-Network Simulator. 1995.
http://www.isi.edu/nsnam/ns/.

[5] Y.-C. Hu and D. B. Johnson. Caching strategies in
on-demand routing protocols for wireless ad hoc
networks. In Proceedings of the sixth annual
international conference on Mobile computing and
networking, pages 231–242, Boston, Massachusetts,
United States, 2000.

[6] D. Estrin et al. Embedded Everywhere: A research
agenda for networked systems of embedded computers.
National Research Council, 2001.

[7] P. Gupta and P. R. Kumar. Critical power for
asymptotic connectivity in wireless networks. In W. M.
McEneaney, G. Yin, Q. Zhang, and Birkhäuser, editors,
Stochastic Analysis, Control, Optimization and
Applications: A Volume in Honor of W.H. Fleming,
Boston, 1998.

[8] F. Xue and P. R. Kumar. The number of neighbors
needed for connectivity of wireless networks. To appear
in Wireless Networks.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. MIT Press,
second edition, 2001.

