
Acta Informatica (2017) 54:3–39

DOI 10.1007/s00236-016-0268-z

ORIGINAL ARTICLE

Reactive synthesis without regret

Paul Hunter1
· Guillermo A. Pérez1

·

Jean-François Raskin1

Received: 29 November 2015 / Accepted: 13 April 2016 / Published online: 27 April 2016

© Springer-Verlag Berlin Heidelberg 2016

Abstract Two-player zero-sum games of infinite duration and their quantitative versions are

used in verification to model the interaction between a controller (Eve) and its environment

(Adam). The question usually addressed is that of the existence (and computability) of a

strategy for Eve that can maximize her payoff against any strategy of Adam. In this work,

we are interested in strategies of Eve that minimize her regret, i.e. strategies that minimize

the difference between her actual payoff and the payoff she could have achieved if she had

known the strategy of Adam in advance. We give algorithms to compute the strategies of Eve

that ensure minimal regret against an adversary whose choice of strategy is (1) unrestricted,

(2) limited to positional strategies, or (3) limited to word strategies, and show that the two

last cases have natural modelling applications. These results apply for quantitative games

defined with the classical payoff functions Inf, Sup, LimInf, LimSup, and mean-payoff. We

also show that our notion of regret minimization in which Adam is limited to word strategies

generalizes the notion of good for games introduced by Henzinger and Piterman, and is

related to the notion of determinization by pruning due to Aminof, Kupferman and Lampert.

1 Introduction

The model of two player games played on graphs is an adequate mathematical tool to solve

important problems in computer science, and in particular the reactive-system synthesis

problem [26]. In that context, the game models the non-terminating interaction between the

system to synthesize and its environment. Games with quantitative objectives are useful to

formalize important quantitative aspects such as mean-response time or energy consumption.

They have attracted large attention recently, see e.g. [6,10]. Most of the contributions in

Work partially supported by the ERC inVEST (279499) project.

G. A. Pérez supported by F.R.S.-FNRS fellowship.

B Guillermo A. Pérez

gperezme@ulb.ac.be

1 Département d’Informatique, Université Libre de Bruxelles (ULB), Brussels, Belgium

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-016-0268-z&domain=pdf
http://orcid.org/0000-0002-1200-4952

4 P. Hunter et al.

this context are for zero-sum games: the objective of Eve (that models the system) is to

maximize the value of the game while the objective of Adam (that models the environment)

is to minimize this value. This is a worst-case assumption: because the cooperation of the

environment cannot be assumed, we postulate that it is antagonistic.

In this antagonistic approach, the main solution concept is that of a winning strategy.

Given a threshold value, a winning strategy for Eve ensures a minimal value greater than the

threshold against any strategy of Adam. However, sometimes there are no winning strategies.

What should the behaviour of the system be in such cases? There are several possible answers

to this question. One is to consider non-zero sum extensions of those games: the environment

(Adam) is not completely antagonistic, rather it has its own specification. In such games, a

strategy for Eve must be winning only when the outcome satisfies the objectives of Adam,

see e.g. [8]. Another option for Eve is to play a strategy which minimizes her regret. The

regret is informally defined as the difference between what a player actually wins and what

she could have won if she had known the strategy chosen by the other player. Minimization of

regret is a central concept in decision theory [3]. This notion is important because it usually

leads to solutions that agree with common sense.

Let us illustrate the notion of regret minimization on the example of Fig. 1. In this example,

Eve owns the squares and Adam owns the circles (we do not use the letters labelling edges

for the moment). The game is played for infinitely many rounds and the value of a play for

Eve is the long-run average of the values of edges traversed during the play (the so-called

mean-payoff). In this game, Eve is only able to secure a mean-payoff of 1
2

when Adam is fully

antagonistic. Indeed, if Eve (from v1) plays to v2 then Adam can force a mean-payoff value

of 0, and if she plays to v3 then the mean-payoff value is at least 1
2

. Note also that if Adam

is not fully antagonistic, then the mean-payoff could be as high as 2. Now, assume that Eve

does not try to force the highest value in the worst-case but tries to minimize her regret. If

she plays v1 �→ v2 then the regret is equal to 1. This is because Adam can play the following

strategy: if Eve plays to v2 (from v1) then he plays v2 �→ v1 (giving a mean-payoff of 0),

and if Eve plays to v3 then he plays to v5 (giving a mean-payoff of 1). If she plays v1 �→ v3

then her regret is 3
2

since Adam can play the symmetric strategy. It should thus be clear that

the strategy of Eve which always chooses v1 �→ v2 is indeed minimizing her regret.

In this paper, we will study three variants of regret minimization, each corresponding to

a different set of strategies we allow Adam to choose from. The first variant is when Adam

can play any possible strategy (as in the example above), the second variant is when Adam is

restricted to playing memoryless strategies, and the third variant is when Adam is restricted to

playing word strategies. To illustrate the last two variants, let us consider again the example

of Fig. 1. Assume now that Adam is playing memoryless strategies only. Then in this case, we

Fig. 1 Example weighted arena G0

123

Reactive synthesis without regret 5

claim that there is a strategy of Eve that ensures regret 0. The strategy is as follows: first play

to v2, if Adam chooses to go back to v1, then Eve should henceforth play v1 �→ v3. We claim

that this strategy has regret 0. Indeed, when v2 is visited, either Adam chooses v2 �→ v4, and

then Eve secures a mean-payoff of 2 (which is the maximal possible value), or Adam chooses

v2 �→ v1 and then we know that v1 �→ v2 is not a good option for Eve as cycling between

v1 and v2 yields a payoff of only 0. In this case, the mean-payoff is either 1, if Adam plays

v3 �→ v5, or 1
2

, if he plays v3 �→ v1. In all the cases, the regret is 0. Let us now turn to the

restriction to word strategies for Adam. When considering this restriction, we use the letters

that label the edges of the graph. A word strategy for Adam is a function w : N → {a, b}. In

this setting Adam plays a sequence of letters and this sequence is independent of the current

state of the game. It is more convenient to view the latter as a game played on a weighted

automata—assumed to be total and with at least one transition for every action from every

state—in which Adam plays letters and Eve responds by resolving non-determinism. When

Adam plays word strategies, the strategy that minimizes regret for Eve is to always play

v1 �→ v2. Indeed, for any word in which the letter a appears, the mean-payoff is equal to 2,

and the regret is 0, and for any word in which the letter a does not appear, the mean-payoff is

0 while it would have been equal to 1
2

when playing v1 �→ v3. So the regret of this strategy

is 1
2

and it is the minimal regret that Eve can secure. Note that the three different strategies

give three different values in our example. This is in contrast with the worst-case analysis of

the same problem (memoryless strategies suffice for both players).

We claim that at least the two last variants are useful for modelling purposes. For example,

the memoryless restriction is useful when designing a system that needs to perform well

in an environment which is only partially known. In practical situations, a controller may

discover the environment with which it is interacting at run time. Such a situation can be

modelled by an arena in which choices in nodes of the environment model an entire family

of environments and each memoryless strategy models a specific environment of the family.

In such cases, if we want to design a controller that performs reasonably well against all

the possible environments, we can consider a controller that minimizes regret: the strategy

of the controller will be as close as possible to an optimal strategy if we had known the

environment beforehand. This is, for example, the modelling choice done in the famous

Canadian traveller’s problem [23]: a driver is attempting to reach a specific location while

ensuring the traversed distance is not too far from the shortest feasible path. The partial

knowledge is due to some roads being closed because of snow. The Canadian traveller,

when planning his itinerary, is in fact searching for a strategy to minimize his regret for

the shortest path measure against a memoryless adversary who determines the roads that

are closed. Similar situations naturally arise when synthesizing controllers for robot motion

planning [27]. We now illustrate the usefulness of the variant in which Adam is restricted to

play word strategies. Assume that we need to design a system embedded into an environment

that produces disturbances: if the sequence of disturbances produced by the environment is

independent of the behavior of the system, then it is natural to model this sequence not as a

function of the state of the system but as a temporal sequence of events, i.e. a word on the

alphabet of the disturbances. Clearly, if the sequences are not the result of an antagonistic

process, then minimizing the regret against all disturbance sequences is an adequate solution

concept to obtain a reasonable system and may be preferable to a system obtained from a

strategy that is optimal under the antagonistic hypothesis.

123

6 P. Hunter et al.

Table 1 Complexity of deciding the regret threshold problem

Payoff type Any strategy Memoryless strategies Word strategies

Sup, Inf, PTIME-c PSPACE (Lemma 4), EXPTIME-c

LimSup (Theorem 1) coNP-h (Lemma 11) (Theorem 3)

LimInf PTIME-c (Theorem 1) PSPACE-c (Theorem 2) EXPTIME-c (Theorem 3)

MP, MP MP equiv. (Theorem 1) PSPACE-c (Theorem 2) Undecidable (Lemma 14)

1.1 Contributions

In this paper, we provide algorithms to solve the regret threshold problem (strict and non-

strict) in the three variants explained above, i.e. given a game and a threshold, does there

exist a strategy for Eve with a regret that is (strictly) less than the threshold against all

(resp. all memoryless, resp. all word) strategies for Adam. It is worth mentioning that, in

the first two cases we consider, we actually provide algorithms to solve the following search

problem: find the controller which ensures the minimal possible regret. Indeed, our algorithms

are reductions to well-known games and are such that a winning strategy for Eve in the

resulting game corresponds to a regret-minimizing strategy in the original one. Conversely,

in games played against word strategies for Adam, we only explicitly solve the regret threshold

problem. However, since the set of possible regret values of the considered games is finite

and easy to describe, it will be obvious that one can implement a binary search to find the

regret value and a corresponding optimal regret-minimizing strategy for Eve.

We study this problem for six common quantitative measures: Inf, Sup, LimInf, LimSup,

MP, MP. For all measures, but MP, the strict and non-strict threshold problems are equivalent.

We state our results for both cases for consistency. In almost all the cases, we provide

matching lower bounds showing the worst-case optimality of our algorithms. Our results are

summarized in the table of Fig. 1. For the variant in which Adam plays word strategies only,

we show that we can recover decidability of mean-payoff objectives when the memory of

Eve is fixed in advance: in this case, the problem is NP-complete (Theorems 4 and 5). Table 1

summarizes our results.

1.2 Related works

The notion of regret minimization is a central one in game theory, see e.g. [28] and references

therein. Also, iterated regret minimization has been recently proposed by Halpern et al. as

a concept for non-zero sum games [18]. There, it is applied to matrix games and not to

game graphs. In a previous contribution, we have applied the iterated regret minimization

concept to non-zero sum games played on weighted graphs for the shortest path problem [16].

Restrictions on how Adam is allowed to play were not considered there. As we do not consider

an explicit objective for Adam, we do not consider iteration of the regret minimization here.

The disturbance-handling embedded system example was first given in [11]. In that work,

the authors introduce remorsefree strategies, which correspond to strategies which minimize

regret in games with ω-regular objectives. They do not establish lower bounds on the com-

plexity of realizability or synthesis of remorsefree strategies and they focus on word strategies

of Adam only.

In [19], Henzinger and Piterman introduce the notion of good for games automata. A

non-deterministic automaton is good for solving games if it fairly simulates the equivalent

123

Reactive synthesis without regret 7

deterministic automaton. We show that our notion of regret minimization for word strategies

extends this notion to the quantitative setting (Proposition 3). Our definitions give rise to a

natural notion of approximate determinization for weighted automata on infinite words.

In [1], Aminof et al. introduce the notion of approximate determinization by pruning for

weighted sum automata over finite words. For α ∈ (0, 1], a weighted sum automaton is

α-determinizable by pruning if there exists a finite state strategy to resolve non-determinism

and that constructs a run whose value is at least α times the value of the maximal run of

the given word. So, they consider a notion of approximation which is a ratio. We will show

that our concept of regret, when Adam plays word strategies only, defines instead a notion of

approximation with respect to the difference metric for weighted automata (Proposition 2).

There are other differences with their work. First, we consider infinite words while they

consider finite words. Second, we study a general notion of regret minimization problem in

which Eve can use any strategy while they restrict their study to fixed memory strategies only

and leave the problem open when the memory is not fixed a priori.

Finally, the main difference between these related works and this paper is that we study

the Inf, Sup, LimInf, LimSup, MP, MP measures while they consider the total sum measure

or qualitative objectives.

2 Preliminaries

A weighted arena is a tuple G = (V, V∃, E, w, vI) where (V, E, w) is a finite edge-weighted

graph1 with integer weights, V∃ ⊆ V , and vI ∈ V is the initial vertex. In the sequel we depict

vertices owned by Eve (i.e. V∃) with squares and vertices owned by Adam (i.e. V \V∃) with

circles. We denote the maximum absolute value of a weight in a weighted arena by W .

A play in a weighted arena is an infinite sequence of vertices π = v0v1 . . . where v0 = vI

and (vi , vi+1) ∈ E for all i . We extend the weight function to partial plays by setting

w(〈vi 〉
l
i=k) =

∑l−1
i=k w(vi , vi+1).

A strategy for Eve (Adam) is a function σ that maps partial plays ending with a vertex v

in V∃ (V \V∃) to a successor of v. A strategy has memory m if it can be realized as the output

of a finite state machine with m states (see e.g. [20] for a formal definition). A memoryless

(or positional) strategy is a strategy with memory 1, that is, a function that only depends on

the last element of the given partial play. A play π = v0v1 . . . is consistent with a strategy

σ for Eve (Adam) if whenever vi ∈ V∃ (vi ∈ V \V∃), σ(〈v j 〉 j≤i) = vi+1. We denote by

S∃(G) (S∀(G)) the set of all strategies for Eve (Adam) and by Σm
∃ (G) (Σm

∀ (G)) the set

of all strategies for Eve (Adam) in G that require memory of size at most m, in particular

Σ1
∃ (G) (Σ1

∀(G)) is the set of all memoryless strategies of Eve (Adam) in G. We omit G if

the context is clear.

2.1 Payoff functions

A play in a weighted arena defines an infinite sequence of weights. We define below several

classical payoff functions that map such sequences to real numbers.2 Formally, for a play

π = v0v1 . . . we define:

– the Inf (Sup) payoff, is the minimum (maximum) weight seen along a play: Inf(π) =

inf{w(vi , vi+1) | i ≥ 0} and Sup(π) = sup{w(vi , vi+1) | i ≥ 0};

1 W.l.o.g. G is assumed to be total: for each v ∈ V , there exists v′ ∈ V such that (v, v′) ∈ E .

2 The values of all functions are not infinite, and therefore in R since we deal with finite graphs only.

123

8 P. Hunter et al.

– the LimInf (LimSup) payoff, is the minimum (maximum) weight seen infinitely often:

LimInf(π) = lim inf i→∞ w(vi , vi+1) and, respectively, we have that LimSup(π) =

lim supi→∞ w(vi , vi+1);

– the mean-payoff value of a play, i.e. the limiting average weight, defined using lim inf

or lim sup since the running averages might not converge: MP(π) = lim infk→∞
1
k

w(〈vi 〉i<k) and MP(π) = lim supk→∞
1
k
w(〈vi 〉i<k). In words, MP corresponds to the

limit inferior of the average weight of increasingly longer prefixes of the play while MP

is defined as the limit superior of that same sequence.

A payoff function Val is prefix-independent if for all plays π = v0v1 . . ., for all i ≥ 0,

Val(π) = Val(〈v j 〉 j≥i). It is well-known that LimInf, LimSup, MP, and MP are prefix-

independent. Often, the arguments that we develop work uniformly for these four measures

because of their prefix-independent property. Inf and Sup are not prefix-independent but

often in the sequel we apply a simple transformation to the game and encode Inf into a

LimInf objective, and Sup into a LimSup objective. The transformation consists of encoding

in the vertices of the arena the minimal (maximal) weight that has been witnessed by a play,

and label the edges of the new graph with this same recorded weight. When this simple

transformation does not suffice, we mention it explicitly.

2.2 Regret

Consider a fixed weighted arena G, and payoff function Val. Given strategies σ, τ , for Eve

and Adam respectively, and v ∈ V , we denote by πv
στ the unique play starting from v that is

consistent with σ and τ and denote its value by: ValvG(σ, τ) := Val(πv
στ). We omit G if it is

clear from the context. If v is omitted, it is assumed to be vI .

Let Σ∃ ⊆ S∃ and Σ∀ ⊆ S∀ be sets of strategies for Eve and Adam respectively. Given

σ ∈ Σ∃ we define the regret of σ in G w.r.t. Σ∃ and Σ∀ as:

regσ
Σ∃,Σ∀

(G) := supτ∈Σ∀
(supσ ′∈Σ∃

Val(σ ′, τ) − Val(σ, τ)).

We define the regret of G w.r.t. Σ∃ and Σ∀ as:

RegΣ∃,Σ∀
(G) := infσ∈Σ∃ regσ

Σ∃,Σ∀
(G).

When Σ∃ or Σ∀ are omitted from reg(·) and Reg(·) they are assumed to be the set of all

strategies for Eve and Adam.

Remark 1 (Ratio vs. difference) Let G be a weighted arena and Σ∃ ⊆ S∃ and Σ∀ ⊆ S∀.

Consider the regret of G defined using the ratio measure, instead of difference. For Inf, Sup,

LimInf, and LimSup, deciding if the regret of G is (strictly) less than a given threshold r

reduces (in polynomial time) to deciding the same problem in G log – which is obtained by

replacing every weight x in G with log2 x – for threshold log2 r with the difference measure.

We will make use of two other values associated with the vertices of an arena: the antag-

onistic and cooperative values, defined for plays from a vertex v ∈ V as

aValv(G) := sup
σ∈S∃

inf
τ∈S∀

Valv(σ, τ) cValv(G) := sup
σ∈S∃

sup
τ∈S∀

Valv(σ, τ).

When clear from context G will be omitted, and if v is omitted it is assumed to be vI .

Remark 2 It is well-known that cVal and aVal can be computed in polynomial time, w.r.t.

the underlying graph of the given arena, for all payoff functions but MP [7,9]. For MP, cVal

is known to be computable in polynomial time, for aVal it can be done in UP ∩ coUP [21]

and in pseudo-polynomial time [6,29].

123

Reactive synthesis without regret 9

3 Variant I: Adam plays any strategy

For this variant, we establish that for all the payoff functions that we consider, the problem

of computing the antagonistic value and the problem of computing the regret value are inter-

reducible in polynomial time. As a direct consequence, we obtain the following theorem:

Theorem 1 Deciding if the regret value is less than a given threshold (strictly or non-strictly)

is PTIME-complete (under log-space reductions) for Inf, Sup, LimInf, and LimSup, and

equivalent to mean-payoff games (under polynomial-time reductions) for MP and MP.

3.1 Upper bounds

We now describe an algorithm to compute regret for all payoff functions. To do so, we will

use the fact that all payoff functions we consider, can be assumed to be prefix-independent.

Thus, let us first convince the reader that one can, in polynomial time, modify Inf and Sup

games so that they become prefix-independent.

Lemma 1 For a given weighted arena G, and payoff function Sup: Reg(G) = Reg(Gmax);

for payoff function Inf: Reg(G) = Reg(Gmin).

Consider a weighted arena G = (V, V∃, vI , E, w). We describe how to construct Gmin

from G so that there is a clear bijection between plays in both games defined with the Inf

payoff function. The arena Gmin consists of the following components:

– V ′ = V × {w(e) | e ∈ E};

– V ′
∃ = {(v, n) ∈ V ′ | v ∈ V∃};

– v′
I = (vI , W);

– E ′ ∋
(

(u, n), (v, m)
)

if and only if (u, v) ∈ E and m = min{n, w(u, v)};

– w′
(

(u, n), (v, m)
)

= m.

Intuitively, the construction keeps track of the minimal weight witnessed by a play by encod-

ing it into the vertices themselves. It is not hard to see that plays in Gmin indeed have a

one-to-one correspondence with plays in G. Furthermore, the LimInf and LimSup values of

a play in Gmin are easily seen to be equivalent to the Inf value of the play in Gmin and the

corresponding play in G.

A similar idea can be used to construct weighted arena Gmax from a Sup game such that

the maximal weight is recorded (instead of the minimal).

Lemma 2 For payoff functions Inf, Sup, LimInf, LimSup, MP, and MP computing the regret

of a game is at most as hard as computing the antagonistic value of a (polynomial-size) game

with the same payoff function.

Consider a weighted arena G = (V, V∃, vI , E, w). We describe how to construct Gmin

from G so that there is a clear bijection between plays in both games defined with the Inf

payoff function. The arena Gmin consists of the following components:

– V ′ = V × {w(e) | e ∈ E};

– V ′
∃ = {(v, n) ∈ V ′ | v ∈ V∃};

– v′
I = (vI , W);

– E ′ ∋
(

(u, n), (v, m)
)

if and only if (u, v) ∈ E and m = min{n, w(u, v)};

– w′
(

(u, n), (v, m)
)

= m.

123

10 P. Hunter et al.

Intuitively, the construction keeps track of the minimal weight witnessed by a play by encod-

ing it into the vertices themselves. It is not hard to see that plays in Gmin indeed have a

one-to-one correspondence with plays in G. Furthermore, the LimInf and LimSup values of

a play in Gmin are easily seen to be equivalent to the Inf value of the play in Gmin and the

corresponding play in G.

A similar idea can be used to construct weighted arena Gmax from a Sup game such that

the maximal weight is recorded (instead of the minimal).

We now describe the construction used to prove Lemma 2.

Let us fix a weighted arena G. We define a new weight function w′ as follows. For any edge

e = (u, v) let w′(e) = −∞ if u ∈ V \V∃, and if u ∈ V∃ then w′(e) = max{cValv
′
| (u, v′) ∈

E\{e}}. Intuitively, w′ represents the best value obtainable for a strategy of Eve that differs

at the given edge. It is not difficult to see that in order to minimize regret, Eve is trying to

minimize the difference between the value given by the original weight function w and the

value given by w′. Let Range(w′) be the set of values {w′(e) | e ∈ E}. For b ∈ Range(w′)

we define Gb to be the graph obtained by restricting G—the original weighted arena with

weight function w—to edges e with w′(e) ≤ b.

Next, we will construct a new weighted arena Ĝ such that the regret of G is a function

of the antagonistic value of Ĝ. Figure 2 depicts the general form of the arena we construct.

We have three vertices v0 ∈ V̂ \V̂∃ and v1, vn ∈ V̂∃ and a “copy” of G as Gb for each

b ∈ Range(w′)\{−∞}. We have a self-loop of weight 0 on v0 which is the initial vertex of

Ĝ, a self-loop of weight −2W − 1 on v⊥, and weight-0 edges from v0 to v1 and from v1 to

the initial vertices of Gb for all b. Recall that Gb might not be total. To fix this we add, for

all vertices without a successor, a weight-0 edge to v⊥. The remainder of the weight function

ŵ, is defined for each edge eb in Gb as ŵ(eb) = w(e) − b.

Intuitively, in Ĝ Adam first decides whether he can ensure a non-zero regret. If this is the

case, then he moves to v1. Next, Eve chooses a maximal value she will allow for strategies

which differ from the one she will play (this is the choice of b). The play then moves to the

corresponding copy of G, i.e. Gb. She can now play to maximize her mean-payoff value.

However, if her choice of b was not correct then the play will end in v⊥.

Fig. 2 Weighted arena Ĝ, constructed from G. Dotted lines represent several edges added when the condition

labelling it is met

123

Reactive synthesis without regret 11

We show that, for all prefix-independent payoff functions we consider, the following holds:

Claim For all prefix-independent payoff functions considered in this work Reg(G) =

−aVal(Ĝ).

This implies Lemma 2 for all prefix-independent payoff functions. Together with Lemma 1,

we get the same result for Inf and Sup.

Proof (of the Claim) Let us start by arguing that the following equality holds.

Reg(G) = inf
σ∈S∃

sup
τ∈S∀

sup
σ ′∈S∃\{σ }

{0, Val(σ ′, τ) − Val(σ, τ)}. (1)

Indeed, it follows from the definition of regret that if σ ′ = σ then the regret of the game is

0. Thus, Adam can always ensure the regret of a game is at least 0. Now, for b ∈ Range(w′),

define Σ∃(b) ⊆ S∃(G) as:

Σ∃(b) := {σ | sup
τ∈S∀

sup
σ ′∈S∃\{σ }

Val(σ ′, τ) ≤ b}.

It is clear from the definitions that σ ∈ Σ∃(b) if and only if σ is a strategy for Eve in Gb

which avoids ever reaching v⊥. Now, if we let

bσ = sup
τ∈S∀

sup
σ ′∈S∃\{σ }

Val(σ ′, τ),

then σ ∈ Σ∃(b) if and only bσ ≤ b. It follows that for all σ :

sup
τ∈S∀

sup
σ ′∈S∃\{σ }

Val(σ ′, τ) = inf{b | σ ∈ Σ∃(b)}. (2)

We now turn to the mean-payoff game played on Ĝ, and make some observations about the

strategies we need to consider. It is well known that memoryless strategies suffice for either

player to ensure an antagonistic value of at least (resp. at most) aVal(Ĝ), for all quantitative

games considered in this work, so we can assume that Adam and Eve play positionally. It

follows that all plays either remain in v0, or move to Gb for some b, and Adam can ensure a

non-positive payoff. Note that for bmax = max(Range(w′)\{−∞}) we have Gbmax = G. So

the copy of Gbmax in Ĝ has no edge to v⊥, and by playing to this sub-graph Eve can ensure

a payoff of at least −|bmax − W | ≥ −2W . As any play that reaches v⊥ will have a payoff of

−2W −1, we can restrict Eve to strategies which avoid v⊥, and hence all plays either remain

in v0 or (eventually) in the copy of Gb for some b. Now Gb contains no restrictions for Adam,

so we can assume that he plays the same strategy in all the copies of Gb (where he cannot

force the play to v⊥), and these strategies have a one-to-one correspondence with strategies

in G. Likewise, as Eve chooses a unique Gb to play in, we have a one-to-one correspondence

with strategies of Eve in Ĝ and strategies in G. More precisely, if σ̂ ∈ S∃(Ĝ) is such that

σ̂ (v1) = vb
I and σ̂ avoids v⊥, then the corresponding strategy σ ∈ S∃(G) is a valid strategy

in Gb, and hence:

σ̂ (v1) = vb
I �⇒ σ ∈ Σ(b). (3)

Now suppose σ̂ ∈ S∃(Ĝ) is a strategy such that σ̂ (v1) = vb
I and σ̂ avoids v⊥, and τ̂ ∈ S∀(Ĝ)

is a strategy such that τ̂ (v0) = v1. Let σ ∈ Σ(b) and τ ∈ S∀(G) be the strategies in G

corresponding to σ̂ and τ̂ respectively. It is easy to show that:

− Val
Ĝ
(σ̂ , τ̂) = b − ValG(σ, τ). (4)

123

12 P. Hunter et al.

Putting together Eqs. (1)–(4) gives:

−aVal(Ĝ) = − supσ̂ inf τ̂ Val
Ĝ
(σ̂ , τ̂)

= inf σ̂ sup({−Val
Ĝ
(σ̂ , τ̂) | τ̂ (v0) = v1} ∪ {0})

= inf{sup({−Val
Ĝ
(σ̂ , τ̂) | τ̂ (v0) = v1} ∪ {0}) | σ̂ (v1) = vb

I }

= inf{supτ∈S∀
({b − ValG(σ, τ)} ∪ {0}) | σ ∈ Σ(b)}

= infσ∈S∃ supτ∈S∀
({inf{b | σ ∈ Σ(b)} − ValG(σ, τ)} ∪ {0})

= infσ∈S∃ supτ∈S∀
supσ ′∈S∃

{0, ValG(σ ′, τ) − ValG(σ, τ)}

= Reg(G) as required.

⊓⊔

3.2 Lower bounds

For all the payoff functions, from G we can construct in logarithmic space G ′ such that the

antagonistic value of G is a function of the regret value of G ′, and so we have:

Lemma 3 For payoff functions Inf, Sup, LimInf, LimSup, MP, and MP computing the regret

of a game is at least as hard as computing the antagonistic value of a (polynomial-size) game

with the same payoff function.

Proof Suppose G is a weighted arena with initial vertex vI . Consider the weighted arena G ′

obtained by adding to G the gadget of Fig. 3. The initial vertex of G ′ is set to be v′
I . In G ′

from v′
I Eve can either progress to the original game or to the new gadget, both with weight

L . We claim that the right choice of values for the parameters L , M1, M2, N1, N2 makes it

so that the antagonistic value of G is a function of the regret of the game G ′.

Let us first give the values of L , M1, M2, N1, and N2 for each of the payoff functions

considered. For all our payoff functions we have M1 = M2 = L; N1 = W + 1; and

N2 = −3W − 2. For Inf we have L = W , for Sup we have L = −W and for the remaining

payoff functions we have L = 0. ⊓⊔

The following result shows that computing the regret of G is at least as hard as computing

the (antagonistic) value of G ′.

Claim For all payoff functions:

aVal(G) = W + 1 − Reg(G ′).

Fig. 3 Gadget to reduce a game to its regret game

123

Reactive synthesis without regret 13

We first observe that for all payoff functions we consider we have that aVal(G) and cVal(G)

both lie in [−W, W].

At v′
I Eve has a choice: she can choose to remain in the gadget or she can move to the

original game G. If she chooses to remain in the gadget, her payoff will be −3W − 2,

meanwhile Adam could choose a strategy that would have achieved a payoff of cVal(G) if

she had chosen to play to G. Hence her regret in this case is cVal(G) + 3W + 2 ≥ 2W + 2.

Otherwise, if she chooses to play to G she can achieve a payoff of at most aVal(G). As

cVal(G) ≤ W is the maximum possible payoff achievable in G, the strategy which now

maximizes Eve’s regret is the one which remains in the gadget – giving a payoff of W + 1.

Her regret in this case is W + 1 − aVal(G) ≤ 2W + 1. Therefore, to minimize her regret she

will play this strategy, and Reg(G ′) = W + 1 − aVal(G). ⊓⊔

3.3 Memory requirements for Eve and Adam

It follows from the reductions underlying the proof of Lemma 2 that Eve only requires

positional strategies to minimize regret when there is no restriction on Adam’s strategies. On

the other hand, for any given strategy σ for Eve, the strategy τ for Adam which witnesses

the maximal regret against it consists of a combination of three positional strategies: first he

moves to the optimal vertex for deviating (it is from this vertex that the alternative strategy σ ′

of Eve will achieve a better payoff against τ), then he plays his optimal (positional) strategy

in the antagonistic game (i.e. against σ). His strategy for the alternative scenario, i.e. against

σ ′, is his optimal strategy in the co-operative game which is also positional. This combined

strategy is clearly realizable as a strategy with three memory states, giving us:

Corollary 1 For payoff functions LimInf, LimSup, MP and MP: Reg(G) = RegΣ1
∃ ,Σ3

∀
(G).

The algorithm we give relies on the prefix-independence of the payoff function. As the

transformation from Inf and Sup to equivalent prefix-independent ones is polynomial it

follows that polynomial memory (w.r.t. the size of the underlying graph of the arena) suffices

for both players.

4 Variant II: Adam plays memoryless strategies

For this variant, we provide a polynomial space algorithm to solve the problem for all the

payoff functions, we then provide lower bounds.

Theorem 2 Deciding if the regret value is less than a given threshold (strictly or non-strictly)

playing against memoryless strategies of Adam is PSPACE-complete for LimInf, MP and

MP; in PSPACE and coNP-hard for Inf, Sup and LimSup.

4.1 Upper bounds

Let us now show how to compute regret against positional adversaries.

Lemma 4 For payoff functions Inf, Sup, LimInf, LimSup, MP and MP, the regret of a game

played against a positional adversary can be computed in polynomial space.

Given a weighted arena G, we construct a new weighted arena Ĝ such that we have that

−aVal(Ĝ) is equivalent to the regret of G.

The vertices of Ĝ encode the choices made by Adam. For a subset of edges D ⊆ E ,

let G ↾ D denote the weighted arena (V, V∃, D, w, vI). The new weighted arena Ĝ is the

123

14 P. Hunter et al.

Fig. 4 Example weighted arena G1

Fig. 5 Weighted arena Ĝ1, constructed from G1 w.r.t the MP payoff function. In the edge set component

only edges leaving Adam nodes are depicted

tuple (V̂ , V̂∃, Ê, ŵ, v̂I) where (i) V̂ = V × P(E); (i i) V̂∃ = {(v, D) ∈ V̂ | v ∈ V∃};

(i i i) v̂I = (vI , E); (iv) Ê contains the edge
(

(u, C), (v, D)
)

if and only if (u, v) ∈ C

and, either u ∈ V∃ and D = C , or u ∈ V \V∃ and D = C\{(u, x) ∈ E | x �= v}; (v)

ŵ
(

(u, C), (v, D)
)

= w(u, v) − cVal(G ↾ D). The application of this transformation for the

graph of Fig. 4 w.r.t. to the MP payoff function is given in Fig. 5.

Consider a play π̂ = (v0, C0)(v1, C1) . . . in Ĝ. We denote by [π̂]k, for k ∈ {1, 2}, the

sequence 〈ck,i 〉i≥0, where ck,i is the k-th component of the i-th pair from π̂ . Observe that

[π̂]1 is a valid play in G. Also observe that E ⊇ C j ⊇ C j+1 for all j . Hence [π̂]2 is an

infinite descending chain of finite subsets, and therefore lim [π̂]2 is well-defined. Finally, we

define c(π̂) := cVal(G ↾ lim [π̂]2). The following result relates the value of a play in Ĝ to

the value of the corresponding play in G.

123

Reactive synthesis without regret 15

Lemma 5 For payoff functions LimInf, LimSup, MP, MP and for any play π̂ in Ĝ we have

that Val(π̂) = Val([π̂]1) − c(π̂).

Proof We first establish the following intermediate result. It follows from the existence of

lim [π̂]2 and the definition of c(·) that:

lim sup
n→∞

1

n

n−1
∑

i=0

cVal(G ↾ Ci) = lim inf
n→∞

1

n

n−1
∑

i=0

cVal(G ↾ Ci) = c(π̂). (5)

We now show that the result holds for MP.

Val(π̂) = lim inf
n→∞

(

1

n

n−1
∑

i=0

(

w(vi , vi+1) − cVal(G ↾ C j)
)

)

defs. of Val(·), ŵ

= Val([π̂]1) − lim sup
n→∞

1

n

n−1
∑

j=0

cVal(G ↾ C j) def. of Val(·)

= Val([π̂]1) − c(π̂) from Eq. (5)

The proofs for the other payoff functions are almost identical (for LimInf and LimSup

replace the use of Eqs. (5) by (6)).

lim sup
i→∞

cVal(G ↾ Ci) = lim inf
i→∞

cVal(G ↾ Ci) = c(π̂). (6)

⊓⊔

We now describe how to translate winning strategies for either player from Ĝ back to G,

i.e. given an optimal maximizing (minimizing) strategy for Eve (Adam) in Ĝ we construct the

corresponding optimal regret minimizing strategy (memoryless regret maximizing counter-

strategy) for Eve (Adam) in G. For clarity, we follow this same naming convention throughout

this section: again, we say a strategy is an optimal maximizing (minimizing) strategy when

we speak about antagonistic and cooperative games, we say a strategy is an optimal regret

maximizing (regret minimizing) when we speak about regret games. When this does not

suffice, we explicitly state which kind of game we are speaking about.

Let ǫ̂ ∈ S∃(Ĝ) be an optimal maximizing strategy of Eve in Ĝ and α̂ ∈ S∀(Ĝ) be an

optimal minimizing strategy of Adam. Indeed, in [14] it was shown that mean-payoff games

are positionally determined. We will now define a strategy for Eve in G which for every

play prefix s constructs a valid play prefix ŝ in Ĝ and plays as ǫ̂ would in Ĝ for ŝ. More

formally, for a play prefix s from G, denote by [s]−1
1 the corresponding sequence of vertex

and edge-set pairs in Ĝ (indeed, it is the inverse function of [·]1, which is easily seen to be

bijective). Define σ ∈ S∃(G) as follows: σ(s) = [ǫ̂([s]−1
1)]

1
for all play prefixes s ∈ V ∗ · V∃

in G consistent with a positional strategy of Adam.

For a fixed strategy of Eve we can translate the optimal minimizing strategy of Adam

in Ĝ into an optimal memoryless regret maximizing counter-strategy of his in G. Formally,

for an arbitrary strategy σ for Eve in G, define σ̂ ∈ S∃(Ĝ) as follows: σ̂ (ŝ) = σ([ŝ]1)

for all ŝ ∈ V̂ ∗ · V̂∃. Let τσ be an optimal (positional) maximizing strategy for Adam in

G ↾ lim [π
σ̂ α̂

]
2
.

It is not hard to see the described strategy of Eve ensures a regret value of at most

−aVal(Ĝ). Slightly less obvious is the fact that for any strategy of Eve, the counter-strategy

τσ of Adam is such that supσ ′∈S∃
ValG(σ ′, τσ) − ValG(σ, τσ) ≥ −aVal(Ĝ).

123

16 P. Hunter et al.

Lemma 6 For payoff functions LimInf, LimSup, MP, and MP:

Reg
S∃,Σ

1
∀
(G) = −aVal(Ĝ).

Proof The proof is decomposed into two parts. First, we describe a strategy σ ∈ S∃(G)

which ensures a regret value of at most −aVal(Ĝ). Second, we show that for any σ ∈ S∃(G)

there is a τ ∈ Σ1
∀(G) such that

sup
σ ′∈S∃

ValG(σ ′, τ) − ValG(σ, τ) ≥ −aVal(Ĝ).

The result follows. ⊓⊔

We have already mentioned earlier that for a play π̂ in Ĝ we have that [π̂]1 is a play in

G. Let PPref(G) denote the set of all play prefixes consistent with a positional strategy for

Adam in G. It is not difficult to see that [·]1 is indeed a bijection between plays of Ĝ and

plays of G consistent with positional strategies for Adam.

It follows from the determinacy of antagonistic games defined by the payoff functions

considered in this work that there are optimal strategies for Eve and Adam that ensure a payoff

of, respectively, at least and at most a value aVal(Ĝ) against any strategy of the opposing

player. Let ǫ̂ ∈ S∃(Ĝ) be an optimal maximizing strategy of Eve in Ĝ and α̂ ∈ S∀(Ĝ) be

an optimal minimizing strategy of Adam.

(First part). Define a strategy σ from S∃(G) as follows: σ(s) = [ǫ̂([s]−1
1)]

1
for all s ∈

PPref(G) · V∃. We claim that

regσ

S∃,Σ
1
∀

(G) ≤ −aVal(Ĝ).

Towards a contradiction, assume there are τ ∈ Σ1
∀(G) and σ ′ ∈ S∃(G) such that

ValG(σ ′, τ) − ValG(σ, τ) > −aVal(Ĝ).

Define a strategy τ̂ ∈ S∀(Ĝ) as follows: τ̂ (ŝ) = τ([ŝ]1) for all ŝ ∈ V̂ ∗ · ˆV \V∃. From the

definition of ǫ̂ and our assumption we get that

ValG(σ ′, τ) − ValG(σ, τ) > −aVal(Ĝ) ≥ −Val
Ĝ
(ǫ̂, τ̂). (7)

It is straightforward to verify that [πστ]
−1
1 = π

ǫ̂τ̂
. Therefore, from Lemma 5, we have:

Val(πσ ′τ) > Val(πστ) − Val(π
ǫ̂τ̂

) = cVal(G ↾ lim [π
ǫ̂τ̂

]
2
). (8)

At this point we note that, since τ is a positional strategy, it holds that ValG(σ ′, τ) is at

most the highest payoff value attainable in G restricted to the edges allowed by τ . Formally,

if Eτ = {(u, v) ∈ E | u ∈ V \V∃ �⇒ v = τ(u)} then Val(π
σ ′τ

) ≤ cVal(G ↾ Eτ).

Also, by construction of τ̂ we get that Eτ ⊆ lim [π
ǫ̂τ̂

]
2
. It should be clear that this implies

cVal(G ↾ lim [π
ǫ̂τ̂

]
2
) ≥ cVal(G ↾ Eτ). This contradicts Eq. (8).

(Second part). For the second part of the proof we require the following result which relates

positional strategies for Adam in G that agree on certain vertices to strategies in sub-graphs

defined by plays in Ĝ.

Claim Let σ ∈ S∃(G) and τ, τ ′ ∈ Σ1
∀(G). Then πστ = π

στ ′ if and only if τ ′ ∈ Σ1
∀(G ↾

lim [[πτσ]−1
1]

2
)

123

Reactive synthesis without regret 17

Proof (only if) Note that by construction of Ĝ we have that once Adam chooses an edge
(

(u, C), (v, D)
)

from a vertex (v, C) ∈ V̂ \V̂∃ then on any subsequent visit to a vertex

(u, C ′) ∈ V̂ \V̂∃ he has no other option but to go to (v, C ′). That is, his choice is restricted

to be consistent with the history of the play. For a play π̂ in Ĝ, it is clear that the sequence

[π̂]2 is the decreasing sequence of sets of edges consistent (for Adam) with the history of the

play in the same manner. In particular, for any τ ′ ∈ Σ1
∀(G) and any play π in G consistent

with τ ′ we have that τ ′ is a valid strategy for Adam in G ↾ E ′ where E ′ = lim [[π]−1
1]

2
. As

πστ = π
στ ′ is a play consistent with τ ′, the result follows.

(if) Suppose πστ �= π
στ ′ , and let v be the last vertex in their common prefix. As σ is

common to both plays, we have v ∈ V \V∃, and τ(v) �= τ ′(v). In particular, (v, τ ′(v)) /∈

lim [[πτσ]−1
1]

2
so τ ′ /∈ Σ1

∀(G ↾ lim [[πτσ]−1
1]

2
). ⊓⊔

For an arbitrary strategy σ for Eve in G, define σ̂ ∈ S∃(Ĝ) as follows: σ̂ (ŝ · (v, D)) =

(σ ([ŝ · (v, D)]−1
1), D) for all ŝ·(v, D) ∈ V̂ ∗·V̂∃. Let τσ be an optimal (positional) maximizing

strategy for Adam in G ↾ lim [π
σ̂ α̂

]
2
. We claim that for all σ ∈ S∃(G) we have that

sup
σ ′∈S∃

ValG(σ ′, τσ) − ValG(σ, τσ) ≥ −aVal(Ĝ).

Towards a contradiction, assume that for some σ ∈ S∃(G) it is the case that for all σ ′ ∈

S∃(G) the left hand side of the above inequality is strictly smaller than the right hand side.

By definition of α̂ we then get the following inequality.

sup
σ ′∈S∃

ValG(σ ′, τσ) − ValG(σ, τσ) < −aVal(Ĝ) ≤ −Val
Ĝ
(σ̂ , α̂) (9)

Using the above Claim it is easy to show that [πστσ
]
1

= π
σ̂ α̂

. Hence, by Eq. (9) and Lemma 5

we get that:

sup
σ ′∈S∃

Val(πσ ′τσ
) < cVal(G ↾ lim [π

σ̂ α̂
]
2
) (10)

However, by choice of τσ , we know that there is a strategy σ ′′ ∈ S∃(G) such that

Val(π
σ ′′τσ

) = cVal(G ↾ lim [π
σ̂ α̂

]
2
). This contradicts Eq. (10) and completes the proof

of the Theorem. ⊓⊔

If G was constructed from a Inf or Sup game H , then one could easily transfer the

described strategy of Eve, σ into a strategy for her in H which achieves the same regret.

In order to have a symmetric result we still lack the ability to transfer a strategy of Adam

from Ĝ to the original game H . Consider a modified construction in which we additionally

keep track of the minimal (resp. maximal) weight seen so far by a play, just like described in

Sect. 3. Denote the corresponding game by G̃. The vertex set Ṽ of G̃ is thus a set of triples

of the form (v, C, x) where x is the minimal (resp. maximal) weight the play has witnessed.

We observe that in the proof of the above result the intuition behind why we can transfer

a strategy of Adam from Ĝ back to G as a memoryless strategy, although the vertices in

Ĝ already encode additional information, is that once we have fixed a strategy of Eve in

G, this gives us enough information about the prefix of the play before visiting any Adam

vertex. In other words, we construct a strategy of Adam tailored to spoil a specific strategy

of Eve, σ , in G using the information we gather from [·]−1
1 and his optimal strategy in Ĝ.

These properties still hold in G̃. Thus, we get the following result.

Lemma 7 For payoff functions Inf, Sup: Reg
S∃,Σ

1
∀
(G) = −aVal(G̃).

We recall a result from [14] which gives us an algorithm for computing the value

Reg
S∃,Σ

1
∀
(G) in polynomial space. In [14] the authors show that the value of a mean-payoff

123

18 P. Hunter et al.

game G is equivalent to the value of a finite cycle forming game ΓG played on G. The game

is identical to the mean-payoff game except that it is finite. The game is stopped as soon as

a cycle is formed and the value of the game is given by the mean-payoff value of the cycle.

Proposition 1 (Finite Mean-Payoff Game [14]) The value of a mean-payoff game G is equal

to the value of the finite cycle forming game ΓG played on the same weighted arena.

As LimInf and LimSup games are also equivalent to their finite cycle forming game

(see [2]) it follows that one can use an Alternating Turing Machine to compute the value

of a game and that said machine will stop in time bounded by the length of the largest

simple cycle in the arena. We note the length of the longest simple path in Ĝ is bounded by

|V |(|E | + 1). Hence, we can compute the winner of Ĝ in alternating polynomial time. Since

APTIME = PSPACE, this concludes the proof of Lemma 4.

4.2 Lower bounds

We give a reduction from the QSAT Problem to the problem of determining whether, given

r ∈ Q, Reg
S∃,Σ

1
∀
(G) ⊳ r for the payoff functions LimInf, MP, and MP (for ⊳ ∈ {<,≤}).

Then we provide a reduction from the complement of the 2- disjoint- paths Problem for

LimSup, Sup, and Inf.

The crux of the reduction from QSAT is a gadget for each clause of the QSAT formula.

Visiting this gadget allows Eve to gain information about the highest payoff obtainable in

the gadget, each entry point corresponds to a literal from the clause, and the literal is visited

when it is made true by the valuation of variables chosen by Eve and Adam in the reduction

described below. Figure 7 depicts an instance of the gadget for a particular clause. Let us

focus on the mean-payoff function. Note that staying in the inner 6-vertex triangle would

yield a mean-payoff value of 4. However, in order to do so, Adam needs to cooperate with

Eve at all three corner vertices. Also note that if he does cooperate in at least one of these

vertices then Eve can secure a payoff value of at least 11
3

.

Lemma 8 For r ∈ Q, weighted arena G and payoff function LimInf, MP, or MP, determining

whether Reg
S∃,Σ

1
∀
(G) ⊳ r , for ⊳ ∈ {<,≤}, is PSPACE-hard.

The QSAT Problem asks whether a given fully quantified boolean formula (QBF) is

satisfiable. The problem is known to be PSPACE-complete [17]. It is known the result holds

even if the formula is assumed to be in conjunctive normal form with three literals per clause

(also known as 3-CNF). Therefore, w.l.o.g., we consider an instance of the QSAT Problem

to be given in the following form:

∃x0∀x1∃x2 . . .
(x0, x1, . . . , xn)

where
 is in 3-CNF. Also w.l.o.g., we assume that every non-trivially true clause has at least

one existentially quantified variable (as otherwise the answer to the problem is trivial).

It is common to consider a QBF as a game between an existential and a universal player.

The existential player chooses a truth value for existentially quantified variable xi and the

universal player responds with a truth value for xi+1. After n turns the truth value of

determines the winner: the existential player wins if
 is true and the universal player wins

otherwise. The game we shall construct mimics the choices of the existential and universal

player and makes sure that the regret of the game is small if and only if
 is true.

Let us first consider the strict regret threshold problem. We will construct a weighted arena

G in which Eve wins in the strict regret threshold problem for threshold 2 if and only if
 is

true.

123

Reactive synthesis without regret 19

Lemma 9 For weighted arena G and payoff function LimInf, MP, or MP, determining

whether Reg
S∃,Σ

1
∀
(G) < 2 is PSPACE-hard.

Proof We first describe the value-choosing part of the game (see Fig. 6). V∃ contains vertices

for every existentially quantified variable from the QBF and V \V∃ contains vertices for every

universally quantified variable. At each of this vertices, there are two outgoing edges with

weight 0 corresponding to a choice of truth value for the variable. For the variable xi vertex,

the true edge leads to a vertex from which Eve can choose to move to any of the clause

gadgets corresponding to clauses where the literal xi occurs (see dotted incoming edge in

Fig. 7) or to advance to xi+1. The false edge construction is similar, while leading to the

literal xi rather than to xi . From the vertices encoding the choice of truth value for xn Eve

can either visit the clause gadgets for it or move to a “final” vertex
 ∈ V∃. This final vertex

has a self-loop with weight 2.

To conclude the proof, we describe the strategy of Eve which ensures the desired property

if the QBF is satisfiable and a strategy of Adam which ensures the property is falsified

otherwise.

Assume the QBF is true. It follows that there is a strategy of the existential player in the

QBF game such that for any strategy of the universal player the QBF will be true after they

both choose values for the variables. Eve now follows this strategy while visiting all clause

gadgets corresponding to occurrences of chosen literals. At every gadget clause she visits she

chooses to enter the gadget. If Adam now decides to take the weight 4 edge, Eve can achieve

a mean-payoff value of 11
3

or a LimInf value of 3 by staying in the gadget. In this case the

claim trivially holds. We therefore focus in the case where Adam chooses to take Eve back

to the vertex from which she entered the gadget. She can now go to the next clause gadget

and repeat. Thus, when the play reaches vertex
, Eve must have visited every clause gadget

and Adam has chosen to disallow a weight 4 edge in every gadget. Now Eve can ensure a

payoff value of 2 by going to
. As she has witnessed that in every clause gadget there is at

least one vertex in which Adam is not helping her, alternative strategies might have ensured

a mean-payoff of at most 11
3

and a LimInf value of at most 3. Thus, her regret is less than 2.

Conversely, if the universal player had a winning strategy (or, in other words, the QBF

was not satisfiable) then the strategy of Adam consists in following this strategy in choosing

values for the variables and taking Eve out of clause gadgets if she ever enters one. If the

play arrives at
 we have that there is at least one clause gadget that was not visited by the

play. We note there is an alternative strategy of Eve which, by choosing a different valuation

of some variable, reaches this clause gadget and with the help of Adam achieves value 4.

Hence, this strategy of Adam ensures regret of exactly 2. If Eve avoids reaching
 then she

can ensure a value of at most 0, which means an even greater regret for her. ⊓⊔

Fig. 6 Depiction of the reduction from QBF

123

20 P. Hunter et al.

Fig. 7 Clause gadget for the QBF reduction for clause xi ∨ ¬x j ∨ xk

We observe that the above reduction can be readily parameterized. That is, we can replace

the 4 value, the 3 value and the 2 value by arbitrary values A, B, C satisfying the following

constraints:

– A > B > C ,

– 2A+B
3

− C < r so that Eve wins if
 is true,

– A − C ≥ r so that Adam wins if
 is false, and

– A − 2A+B
3

< r so that he never helps Eve in the clause gadgets.

Indeed, the valuation of A, B, C we chose: 4, 3, 2 with r = 2, satisfies these inequalities

exactly. It is not hard to see that if we find a valuation for r , A, B, C which meets the first

restriction and the last three having changed from strict to non-strict, and vice-versa, we can

get a reduction that works for the non-strict regret threshold problem. That is, find values

such that

– A > B > C ,

– 2A+B
3

− C ≤ r so that Eve wins if
 is true,

– A − C > r so that Adam wins if
 is false, and

– A − 2A+B
3

≤ r so that he never helps Eve in the clause gadgets.

For example, one could consider A = 10, B = 7, C = 5 and r = 4.

Lemma 10 For weighted arena G and payoff function LimInf, MP, or MP, determining

whether Reg
S∃,Σ

1
∀
(G) ≤ 4 is PSPACE-hard.

123

Reactive synthesis without regret 21

Fig. 8 Regret gadget for 2-disjoint-paths reduction

Lemma 11 For r ∈ Q, weighted arena G and payoff function Inf, Sup, or LimSup, deter-

mining whether Reg
S∃,Σ

1
∀
(G) ⊳ r , for ⊳ ∈ {<,≤}, is coNP-hard.

Proof We provide a reduction from the complement of the 2- disjoint- paths Problem

on directed graphs [15]. As the problem is known to be NP-complete, the result follows. In

other words, we sketch how to translate a given instance of the 2- disjoint- paths Problem

into a weighted arena in which Eve can ensure regret value strictly less than 1 if and only if

the answer to the 2- disjoint- paths Problem is negative.

Consider a directed graph G and distinct vertex pairs (s1, t1) and (s2, t2). W.l.o.g. we

assume that for all i ∈ {1, 2}: (i) ti is reachable from si , and (i i) ti is a sink (i.e. has no

outgoing edges). in G. We now describe the changes we apply to G in order to get the

underlying graph structure of the weighted arena and then comment on the weight function.

Let all vertices from G be Adam vertices and s1 be the initial vertex. We replace all edges on

t1—edges of the form (v, t1) incident, for some v—by a copy of the gadget shown in Fig. 8.

Next, we add self-loops on t1 and t2 with weights 1 and 2, respectively. Finally, the weights

of all remaining edges are 0.

We claim that, in this weighted arena, Eve can ensure regret strictly less than 1—for payoff

functions Sup and LimSup—if and only if in G the vertex pairs (s1, t1) and (s2, t2) cannot be

joined by vertex-disjoint paths. Indeed, we claim that the strategy that minimizes the regret

of Eve is the strategy that, in states where she has a choice, tells her to go to t1.

First, let us prove that this strategy has regret strictly less than 1 if and only if no two

disjoint paths in the graph exist between the pairs of states (s1, t1) and (s2, t2). Assume the

latter is the case. Then if Adam chooses to always avoid t1, then clearly the regret is 0. If t1
is eventually reached, then the choice of Eve secures a value of 1 (for all payoff functions).

Note that if she had chosen to go towards s2 instead, as there are no two disjoint paths, we

know that either the path constructed from s2 by Adam never reaches t2, and then the value

of the path is 0—and the regret is 0 for Eve—or the path constructed from s2 reaches t1 again

since Adam is playing positionally—and, again, the regret is 0 for Eve. Now assume that

two disjoint paths between the source-target pairs exist. If Eve changed her strategy to go

towards s2 (instead of choosing t1) then Adam has a strategy to reach t2 and achieve a payoff

of 2. Thus, her regret would be equal to 1.

Second, we claim that any other strategy of Eve has a regret greater than or equal to 1.

Indeed, if Eve decides to go towards s2 (instead of choosing to go to t1) then Adam can

choose to loop on the state before s2 and the payoff in this case is 0. Hence, the regret of Eve

is at least 1.

Note that minimal changes are required for the same construction to imply the result for

Inf. Further, the weight function and threshold r can be accommodated so that Eve wins for

the non-strict regret threshold. Hence, the general result follows. ⊓⊔

123

22 P. Hunter et al.

4.3 Memory requirements for Eve

It follows from our algorithms for computing regret in this variant that Eve only requires

strategies with exponential memory. Examples where exponential memory is necessary can

be easily constructed.

Corollary 2 For all payoff functions Sup, Inf, LimSup, LimInf, MP and MP, for all game

graphs G, there exists m which is 2O(|G|) such that:

Reg
S∃,Σ

1
∀
(G) = RegΣm

∃ ,Σ1
∀
(G).

5 Variant III: Adam plays word strategies

For this variant, we provide tight upper and lower bounds for all the payoff functions: the

regret threshold problem is EXPTIME-complete for Sup, Inf, LimSup, and LimInf, and

undecidable for MP and MP. For the later case, the decidability can be recovered when we

fix a priori the size of the memory that Eve can use to play, the decision problem is then

NP-complete. Finally, we show that our notion of regret minimization for word strategies

generalizes the notion of good for games introduced by Henzinger and Piterman in [19], and

we also formalize the relation that exists with the notion of determinization by pruning for

weighted automata introduced by Aminof et al. in [1].

5.1 Additional definitions

We say that a strategy of Adam is a word strategy if his strategy can be expressed as a function

τ : N → [max{deg+(v) |v ∈ V }], where [n] = {i |1 ≤ i ≤ n} and deg+(v) is the outdegree

of v (i.e. the number of edges leaving v). Intuitively, we consider an order on the successors

of each Adam vertex. On every turn, the strategy τ of Adam will tell him to move to the

i-th successor (or to a sink state, if its outdegree is less than i) of the vertex according to

the fixed order. We denote by W∀ the set of all such strategies for Adam. When considering

word strategies, it is more natural to see the arena as a (weighted) automaton.

A weighted automaton is a tuple Γ = (Q, qI , A,Δ,w) where A is a finite alphabet, Q

is a finite set of states, qI is the initial state, Δ ⊆ Q × A × Q is the transition relation,

w : Δ → Z assigns weights to transitions. A run of Γ on a word a0a1 . . . ∈ Aω is a sequence

ρ = q0a0q1a1 . . . ∈ (Q × A)ω such that (qi , ai , qi+1) ∈ Δ, for all i ≥ 0, and has value

Val(ρ) determined by the sequence of weights of the transitions of the run and the payoff

function. The value Γ assigns to a word is the supremum of the values of all its runs on the

word. We say the automaton is deterministic if Δ is functional.

A game in which Adam plays word strategies can be reformulated as a game played on a

weighted automaton Γ = (Q, qI , A,Δ,w) and strategies of Adam – of the form τ : N → A

– determine a sequence of input symbols to which Eve has to react by choosing Δ-successor

states starting from qI . In this setting a strategy of Eve which minimizes regret defines a run

by resolving the non-determinism of Δ in Γ , and ensures the difference of value given by the

constructed run is minimal w.r.t. the value of the best run on the word spelled out by Adam.

For instance, if all vertices in Fig. 1 are replaced by states, Eve can choose the successor of

v1 regardless of what letter Adam plays and from v2 and v3 Adam chooses the successor by

choosing to play a or b. Furthermore, his choice of letter tells Eve what would have happened

had the play been at the other state.

The following result summarizes the results of this section:

123

Reactive synthesis without regret 23

Theorem 3 Deciding if the regret value is less than a given threshold (strictly or non-strictly)

playing against word strategies of Adam is EXPTIME-complete for Inf, Sup, LimInf, and

LimSup; it is undecidable for MP and MP.

5.2 Upper bounds

There is an EXPTIME algorithm for solving the regret threshold problem for Inf, Sup,

LimInf, and LimSup. This algorithm is obtained by a reduction to parity and Streett games.

Lemma 12 For r ∈ Q, weighted automaton Γ and payoff function Inf, Sup, LimInf, or

LimSup, determining whether RegS∃,W∀
(Γ)⊳r , for ⊳ ∈ {<,≤}, can be done in exponential

time.

We show how to decide the strict regret threshold problem. However, the same algorithm

can be adapted for the non-strict version by changing strictness of the inequalities used to

define the parity/Streett accepting conditions.

Proof We focus on the LimInf and LimSup payoff functions. The result for Inf and Sup

follows from the translation to LimInf and LimSup games given in Sect. 3. Our decision

algorithm consists in first building a deterministic automaton for Γ = (Q1, qI , A,Δ1, w1)

using the construction provided in [9]. We denote by DΓ = (Q2, sI , A,Δ2, w2) this deter-

ministic automaton and we know that it is at most exponentially larger than Γ . Next, we

consider a simulation game played by Eve and Adam on the automata Γ and DΓ . The game

is played for an infinite number of rounds and builds runs in the two automata, it starts with

the two automata in their respective initial states (qI , sI), and if the current states are q1 and

q2, then the next round is played as follows:

– Adam chooses a letter a ∈ A, and the state of the deterministic automaton is updated

accordingly, i.e. q ′
2 = Δ2(q2, a), then

– Eve updates the state of the non-deterministic automaton to q ′
1 by reading a using one of

the edges labelled with a in the current state, i.e. she chooses q ′
1 such that q ′

1 ∈ Δ1(q1, a).

The new state of the game is (q ′
1, q ′

2).

Eve wins the simulation game if the minimal weight seen infinitely often in the run of the

non-deterministic automaton is larger than or equal to the minimal weight seen infinitely

often in the deterministic automaton minus r . It should be clear that this happens exactly

when Eve has a regret bounded by r in the original regret game on the word which is spelled

out by Adam.

Let us focus on the lim inf payoff function now. We will sketch how this game can be

translated into a parity game. For completeness, we now provide a formal definition of the

latter.

A parity game is a pair (G,Ω) where G is a non-weighted arena and Ω : V → N

is a function that assigns a priority to each vertex. Plays, strategies, and other notions are

defined as with games played on weighted arenas. A play in a parity game induces an infinite

sequence of priorities. We say a play is winning for Eve if and only if the minimal priority

seen infinitely often is odd. The parity index of a parity game is the number of priorities

labelling its vertices, that is |{Ω(v) | v ∈ V }|.

To obtain the translation, we keep the structure of the game as above but we assign

priorities to the edges of the games instead of weights. We do it in the following way. If

X = {x1, x2, . . . , xn} is the ordered set of weight values that appear in the automata (note

that |X | is bounded by the number of edges in the non-deterministic automaton), then we

123

24 P. Hunter et al.

need the set of priorities D = {2, . . . , 2n + 1}. We assign priorities to edges in the game as

follows:

– when Adam chooses a letter a from q2, then if the weight that labels the edge that leaves

q2 with letter a in the deterministic automaton is equal to xi ∈ X , then the priority is set

to 2i + 1,

– when Eve updates the non-deterministic automaton from q1 with a edge labelled with

weight w, then the color is set to 2i where i is the index in X such that xi−1 ≤ w+r < xi .

It should be clear then along a run, the minimal color seen infinitely often is odd if and only if

the corresponding run is winning for Eve in the simulation game. So, now it remains to solve

a parity game with exponentially many states and polynomially many priorities w.r.t. the size

of Γ . This can be done in exponential time with classical algorithms for parity games.

LimSup to Streett games. Let us now focus on LimSup. In this case we will reduce

our problem to that of determining the winner of a Streett game with state-space exponential

w.r.t. the original game but with number of Streett pairs polynomial (w.r.t. the original game).

Recall that a Streett game is a pair (G, F) where G is a game graph (with no weight function)

and F ⊆ P(V) × P(V) is a set of Streett pairs. We say a play is winning for Eve if and only

if for all pairs (E, F) ∈ F , if a vertex in E is visited infinitely often then some vertex in F

is visited infinitely often as well.

Consider a LimSup automaton Γ = (Q, qI , A,Δ,w). For xi ∈ {w(d) | d ∈ Δ} let us

denote by A≥xi the Büchi automaton with Büchi transition set equivalent to all transitions

with weight of at least xi . We denote by D≥xi = (Qi , qi,I , A, δi ,Ωi) the deterministic parity

automaton with the same language as A≥xi .3 From [24] we have that D≥xi has at most

2|Q||Q||Q|! states and parity index 2|Q| (the number of priorities). Now, let x1 < x2 <

· · · < xl be the weights appearing in transitions of Γ . We construct the (non-weighted) arena

GΓ = (V, V∃, E, vI) and Streett pair set F as follows

– V = Q ×
∏l

i=1 Qi ∪ Q ×
∏l

i=1 Qi × A ∪ Q ×
∏l

i=1 Qi × A × Q;

– V∃ = Q ×
∏l

i=1 Qi × A;

– vI = (qI , q1,I , . . . , ql,I);

– E contains

–
(

(p, p1, . . . , pl)), (p, p1, . . . , pl , a)
)

for all a ∈ A,

–
(

(p, pl , . . . , pl , a), (p, p1, . . . , pl , a, q)
)

if (p, a, q) ∈ Δ,

–
(

(p, pl , . . . , pl , a, q), (q, q1, . . . , ql)
)

if for all 1 ≤ i ≤ l: (pi , a, qi) ∈ δi ;

– For all 1 ≤ i ≤ l and all even y such that Range(Ωi) ∋ y, F contains the pair (Ei , Fi)

where

– Ei,y = {(p, . . . , pi , . . . , pl , a, q) | Ωi (pi , a, δ(pi , a)) = y}, and

– Fi,y = {(p, . . . , p j , . . . , pl , a, q) | (Ωi (pi , a, δ(pi , a)) < y ∧ y (mod 2) = 1) ∨

w(p, a, q) ≥ xi − r}.

It is not hard to show that in the resulting Streett game, a strategy σ of Eve is winning against

any strategy τ of Adam if and only if for every automaton D≥xi which accepts the word

induced by τ then the run of Γ induced by σ has payoff of at least xi − r , if and only if Eve

has a winning strategy in Γ to ensure regret is less than r .

3 Since δi is deterministic, we sometimes write δi (p, a) to denote the unique q ∈ Qi such that (p, a, q) ∈ δi .

123

Reactive synthesis without regret 25

Note that the number of Streett pairs in GΓ is polynomial w.r.t. the size of Γ , i.e.

|F | ≤

l
∑

i=0

|Range(Ωi)|

≤ l · 2|Q|

≤ |Q|2 · 2|Q| = 2|Q|3.

From [25] we have that Streett games can be solved in time O(mnk+1kk!) where n is the

number of states, m the number of transitions and k the number of pairs in F . Thus, in this

case we have that GΓ can be solved in

O
(

(2|Q||Q||Q|!)3+2|Q|3 · 2|Q|3 · (2|Q|3)!
)

.

which is still exponential time w.r.t. the size of Γ . ⊓⊔

5.3 Lower bounds

We first establish EXPTIME-hardness for the payoff functions Inf, Sup, LimInf, and LimSup

by giving a reduction from countdown games [22]. That is, we show that given a countdown

game, we can construct a game where Eve ensures regret less than 2 if and only if Counter

wins in the original countdown game.

Lemma 13 For r ∈ Q, weighted automaton Γ and payoff function Inf, Sup, LimInf, or

LimSup, determining whether RegS∃,W∀
(Γ) ⊳ r , for ⊳ ∈ {<,≤}, is EXPTIME-hard.

Let us first formalize what a countdown game is. A countdown game C consists of a

weighted graph (S, T), where S is the set of states and T ⊆ S × (N\{0})× S is the transition

relation, and a target value N ∈ N. If t = (s, d, s′) ∈ T then we say that the duration of

the transition t is d . A configuration of a countdown game is a pair (s, c), where s ∈ S is

a state and c ∈ N. A move of a countdown game from a configuration (s, c) consists in

player Counter choosing a duration d such that (s, d, s′) ∈ T for some s′ ∈ S followed by

player Spoiler choosing s′′ such that (s, d, s′′) ∈ T , the new configuration is then (s′′, c+d).

Counter wins if the game reaches a configuration of the form (s, N) and Spoiler wins if the

game reaches a configuration (s, c) such that c < N and for all t = (s, d, ·) ∈ T we have

that c + d > N .

Deciding the winner in a countdown game C from a configuration (s, 0) – where N and

all durations in C are given in binary – is EXPTIME-complete.

Proof (of Lemma 13) Let us fix a countdown game C = ((S, T), N) and let n = ⌊log2 N⌋+2.

Simplifying assumptions. Clearly, if Spoiler has a winning strategy and the game continues

beyond his winning the game, then eventually a configuration (s, c), such that c ≥ 2n , is

reached. Thus, we can assume w.l.o.g. that plays in C which visit a configuration (s, N) are

winning for Counter and plays which don’t visit a configuration (s, N) but eventually get to

a configuration (s′, c) such that c ≥ 2n are winning for Spoiler.

Additionally, we can also assume that T in C is total. That is to say, for all s ∈ S there is

some duration d such that (s, d, s′) ∈ T for some s′ ∈ S. If this were not the case then for

every s with no outgoing transitions we could add a transition (s, N + 1, s⊥) where s⊥ is a

123

26 P. Hunter et al.

newly added state. It is easy to see that either player has a winning strategy in this new game

if and only if he has a winning strategy in the original game.

Reduction. We will now construct a weighted arena Γ with W = 2 such that, in a regret

game with payoff function Sup played on Γ , Eve can ensure regret value strictly less than 2

if and only if Counter has a winning strategy in C.

As all weights are 0 in the arena we build, with the exception of self-loops on sinks, the

result holds for Sup, LimSup and Inf. We describe the changes required for the inf result at

the end.

Implementation. The alphabet of the weighted arena Γ = (Q, qI , A,Δ,w) is A = {bi | 0 ≤

i ≤ n} ∪ {ci | 0 < i ≤ n} ∪ {bail, choose} ∪ S. We now describe the structure of Γ (i.e. Q,

Δ and w).

Initial gadget. Figure 9 depicts the initial state of the arena. Here, Eve has the choice of

playing left or right. If she plays to the left then Adam can play bail and force her to ⊥0

while the alternative play resulting from her having chosen to go right goes to ⊥2. Hence,

playing left already gives Adam a winning strategy to ensure regret 2, so she plays to the

right. If Adam now plays bail then Eve can go to ⊥2 and as W = 2 this implies the regret

will be 0. Therefore, Adam plays anything but bail.

Counter gadget. Figure 10 shows the left sub-arena. All states from {xi | 0 ≤ i ≤ n}

have incoming transitions from the left part of the initial gadget with symbol A\{bail} and

weight 0. Let y0 . . . yn ∈ B be the (little-endian) binary representation of N , then for all xi

such that yi = 1 there is a transition from xi to ⊥0 with weight 0 and symbol bail. Similarly,

for all xi such that yi = 0 there is a transition from xi to ⊥0 with weight 0 and symbol bail.

All the remaining transitions not shown in the figure cycle on the same state, e.g. xi goes to

xi with symbol choose and weight 0.

The sub-arena we have just described corresponds to a counter gadget (little-endian encod-

ing) which keeps track of the sum of the durations “spelled” by Adam. At any point in time,

the states of this sub-arena in which Eve believes alternative plays are now will represent the

binary encoding of the current sum of durations. Indeed, the initial gadget makes sure Eve

plays into the right sub-arena and therefore she knows there are alternative play prefixes that

could be at any of the xi states. This corresponds to the 0 value of the initial configuration.

Adder gadget. Let us now focus on the right sub-arena in which Eve finds herself at the

moment. The right transition with symbol A\{bail} from the initial gadget goes to state s –

the initial state from C. It is easy to see how we can simulate Counter’s choice of duration

Fig. 9 Initial gadget used in reduction from countdown games

123

Reactive synthesis without regret 27

Fig. 10 Counter gadget

and Spoiler’s choice of successor. From s there are transitions to every (s, c), such that

(s, c, s′) ∈ T for some s′ ∈ S in C, with symbol choose and weight 0. Transitions with all

other symbols and weight 0 going to ⊥1 – a sink with a 1-weight cycle with every symbol –

from s ensure Adam plays choose, lest since W = 2 the regret of the game will be at most

1 and Eve wins.

Figure 11 shows how Eve forces Adam to “spell” the duration c of a transition of C from

(s, c). For concreteness, assume that Eve has chosen duration 9. The top source in Fig. 11 is

therefore the state (s, 9). Again, transitions with all the symbols not depicted go to ⊥1 with

weight 0 are added for all states except for the bottom sink. Hence, Adam will play b0 and

Eve has the choice of going straight down or moving to a state where Adam is forced to play

c1. Recall from the description of the counter gadget that the belief of Eve encodes the binary

representation of the current sum of delays. If she believes a play is in x1 (and therefore none

in x1) then after Adam plays b0 it is important for her to make him play c1 or this alternative

play will end up in ⊥2. It will be clear from the construction that Adam always has a strategy

to keep the play in the right sub-arena without reaching ⊥1 and therefore if any alternative

play from the left sub-arena is able to reach ⊥2 then Adam wins (i.e. can ensure regret 2).

Thus, Eve decides to force Adam to play c1. As the duration was 9 this gadget now forces

Adam to play b4 and again presents the choice of forcing Adam to play c5 to Eve. Clearly this

can be generalized for any duration. This gadget in fact simulates a cascade configuration of

n 1-bit adders.

Finally, from the bottom sink in the adder gadget, we have transitions with symbols from

S with weight 0 to the corresponding states (thus simulating Spoiler’s choice of successor

state). Additionally, with any symbol from S and with weight 0 Eve can also choose to go to

a state qbail where Adam is forced to play bail and Eve is forced into ⊥0.

Argument. Note that if the simulation of the counter has been faithful and the belief of Eve

encodes the value N then by playing bail, Adam forces all of the alternative plays in the

left sub-arena into the ⊥0 sink. Hence, if Counter has a winning strategy and Eve faithfully

123

28 P. Hunter et al.

Fig. 11 Adder gadget: depicted +9

simulates the C she can force this outcome of all plays going to ⊥0. Note that from the right

sub-arena we have that ⊥2 is not reachable and therefore the highest payoff achievable was

1. Therefore, her regret is of at most 1.

Conversely, if both players faithfully simulate C and the configuration N is never reached,

i.e. Spoiler had a winning strategy in C then eventually some alternative play in the left sub-

arena will reach xn and from there it will go to ⊥2. Again, the construction makes sure that

Adam always has a strategy to keep the play in the right sub-arena from reaching ⊥1 and

therefore this outcome yields a regret of 2 for Eve.

Changes for Inf. For the same reduction to work for the Inf payoff function we add an

additional symbol kick to the alphabet of Γ . We also add deterministic transitions with kick,

from all states which are not sinks ⊥x for some x , to ⊥0. Finally, all non-loop transitions

in the initial gadget are now given a weight of 2; the ones in the counter gadget are given a

weight of 2 as well; the ones in the adder gadget (i.e. right sub-arena) are given a weight of

1.

We observe that if Counter has a winning strategy in the original game C then Eve still

has a winning strategy in Γ . The additional symbol kick allows Adam to force Eve into

a 0-loop but also ensures that all alternative plays also go to ⊥0, thus playing kick is not

beneficial to Adam unless an alternative play is already at ⊥2. Conversely, if Spoiler has a

winning strategy in C then Adam has a strategy to allow an alternative play to reach ⊥2 while

Eve remains in the adder gadget. He can then play kick to ensure the payoff of Eve is 0 and

achieve a maximal regret of 2.

123

Reactive synthesis without regret 29

Once again, we observe that the above reduction can be readily parameterized. That is,

we can replace the 2 value, the 1 value and the 0 value from the ⊥2,⊥1,⊥0 sink loops by

arbitrary values A, B, C satisfying the following constraints:

– A > B > C ,

– A − C ≥ r so that Eve loses by going left in the initial gadget,

– A− B < r so that she does not lose by faithfully simulating the adder if she has a winning

strategy from the countdown game, or in other words: if Adam cheats then A − B is low

enough to punish him,

– B − C < r so that she does not regret having faithfully simulated addition, that is, if she

plays her winning strategy from the countdown game then she does not consider B − C

too high and regret it.

Changing the strictness of the last three constraints and finding a suitable valuation for r and

A, B, C suffices for the reduction to work for the non-strict regret threshold problem. Such

a valuation is given by A = 2, B = 1, C = 0 with r = 1. ⊓⊔

To show undecidability of the problem for the mean-payoff function we give a reduction

from the threshold problem in mean-payoff games with partial-observation. This problem

was shown to be undecidable in [12,20].

Lemma 14 For r ∈ Q, weighted automaton Γ and payoff function MP or MP, determining

whether RegS∃,W∀
(Γ) ⊳ r , for ⊳ ∈ {<,≤}, is undecidable even if Eve is only allowed to

play finite memory strategies.

A mean-payoff game with partial-observation (MPGPO for short) G is a tuple

(Q, qI , A,Δ,w, Obs) where Q is a set of states, qI is the initial state of the game, A is

a finite set of actions, Δ ⊆ Q × A × Q is the transition relation, w : Δ → Q is a weight

function and Obs ⊆ P(Q) is a partition of Q into observations. In these games a play is

started by placing a token on qI , Eve then chooses an action from A and Adam resolves non-

determinism by choosing a valid successor (w.r.t. Δ). Additionally, Eve does not know which

state Adam has chosen as the successor, she is only revealed the observation containing the

state. More formally: a concrete play in such a game is a sequence q0a0q1a1 . . . ∈ (Q × A)ω

such that q0 = qI and (qi , ai , qi+1) ∈ Δ, for all i ≥ 0. An abstract play is then a sequence

ψ = o0a0o1a1 . . . ∈ (Obs × A)ω such that there is some concrete play π = q0a0q1a1 . . .

and qi ∈ oi , for all i ≥ 0; in this case we say that π is a concretization of ψ . Strategies

of Eve in this game are of the form σ : (Obs × A)∗Obs → A, that is to say they are

observation-based. Strategies of Adam are not symmetrical, he is allowed to use the exact

state information, i.e. his strategies are of the form τ : (Q × A)∗ → Q.

The threshold problem for mean-payoff games is defined as follows. Given ν ∈ Q, deter-

mining whether Eve has an observation-based strategy such that, for all counter-strategies of

Adam, the resulting abstract play has no concretization with mean-payoff value (strictly)

less than ν. For convenience, let us denote this problem by maxMPGPO(>ν) and by

maxMPGPO(≥ν) when the inequality is strict and non-strict, respectively. Note that in this

case Eve is playing to maximize the mean-payoff value of all concrete runs corresponding

to the abstract play being played while Adam is minimizing the same.

It was shown in [12,20] that both problems are undecidable for MP and for MP. That

is, determining if maxMPGPO(>ν) or maxMPGPO(≥ν) is undecidable regardless of the

definition used for the mean-payoff function. Further, if we ask for the existence of finite

memory observation-based strategies of Eve only, both definitions (MP and MP) coincide

and the problem remains undecidable.

Consider a given MPGPO H = (Q, qI , A,Δ,w, Obs), and denote by H ′ the game

obtained by multiplying by −1 all values assigned by w to the transitions of H . Clearly,

123

30 P. Hunter et al.

we get that the answer to whether maxMPGPO(>ν) (resp. maxMPGPO(≥ν)) in H is

affirmative if and only if in H ′ Eve has an observation-based strategy to ensure that against

any strategy of Adam, the resulting abstract play is such that all concretizations have mean-

payoff value of less than or equal to −ν (resp. strictly less than −ν). Denote these problems

by minMPGPO(<μ) and minMPGPO(≤μ), respectively. It follows that for any definition

of the mean-payoff function, these problems are undecidable (even if we are only interested

in finite memory strategies of Eve).

Simplifying assumptions. We assume, w.l.o.g., that in mean-payoff games with partial-

observation the transition relation is total. As the weights in mean-payoff games with

partial-observation can be shifted and scaled, we can assume w.l.o.g. that ν is any inte-

ger N . Furthermore, we can also assume that the mean-payoff value of any concrete play in

a game is bounded from below by 0 and from above by M (this can again be achieved by

shifting and scaling).

Proof (of Lemma 14) We give a reduction from the threshold problem of mean-payoff

games with partial observation [12,20] that resembles the reduction used for the proof of

Lemma 13. More specifically, given a mean-payoff game with partial-observation H =

(S, sI , T, B, c, Obs), we construct a weighted automaton ΓH = (Q, qI ,Δ, A, w) with the

same payoff function such that

RegΣ∃,Σ
1
∀
(ΓH) < R

if and only if the answer to minMPGPO(<N) is affirmative. The reduction we describe

works for any R, N , M, C such that

– C < R,

– M
2

− C < R, and

– N
2

≤ R,

for concreteness we consider R = 4, N = 4, M = 6 and C = 3.

Let us describe how to construct the weighted arena ΓH from G. The alphabet of ΓH is

A = B ∪ {bail} ∪ Obs. The structure of ΓH includes a gadget such as the one depicted in

Fig. 9. Recall from the proof of Lemma 12 that this gadget ensures Eve chooses to go to the

right sub-arena, lest Adam has a spoiling strategy. As the left sub-arena we have a modified

version of H . First, for every state s ∈ S and every action b ∈ B, we add an intermediate

state (s, b) such that when b is played from s the play deterministically goes to (s, b) and for

any transition (s, b, s′) in H we add a transition in ΓH from (s, b) to s′ with action os′ , where

os′ is the observation containing s′. Second, we add transitions from every s ∈ S to ⊥C for

symbol bail with weight 0 and from every (s, b) to ⊥C with symbol o if there is no s′ ∈ o

such that (s, b, s′) ∈ T . The sink ⊥C has, for every symbol a ∈ A, a weight C self-loop. As

the right sub-arena we will have states qb for all b ∈ B. For any such qb there are transitions

with weight 0 and symbol b to qobs and transitions with weight 0 and symbols A\{b} to ⊥C .

From qobs with any symbol from Obs, there are 0-weight transitions to qb′ (for any b′ ∈ B)

and transitions with weight 0 and symbols A\Obs to ⊥C . All qb have incoming edges from

the state of the initial gadget which leads to the right sub-arena.

We claim that Eve has a strategy σ in ΓH to ensure regret less than R if and only if the

answer to minMPGPO(<N) is affirmative. Assume that the latter is the case, i.e. in H Eve

has an observation-based strategy to ensure that against any strategy of Adam the abstract

play has no concretization with mean-payoff value greater than or equal to N . Let us describe

the strategy of Eve in ΓH . First, she plays into the right sub-arena of the game. Once there,

123

Reactive synthesis without regret 31

she tries to visit states qb0 qb1 . . . based on her strategy for H . If Adam, at some qbi
does not

play bi , or at some visit to qobs he plays a non-observation symbol, then Eve goes to ⊥C .

The play then has value C . Since no alternative play in the left sub-arena can have value

greater than M
2

and we have that M
2

− C < R, Eve wins. Thus, we can assume that Adam,

at every qbi
plays the symbol bi and at every visit to qobs plays an observation. Note that, by

construction of the left sub-arena, we are forcing Adam to reveal a sequence of observations

to Eve and allowing her to choose a next action. It follows that the value of the play in ΓH

is 0. Any alternative play in the right sub-arena would have value of at most C as the highest

weight in it is C . In the left sub-arena, we have that all alternative plays have value less than
N
2

. Indeed, since she has followed her winning strategy from H , and since by construction

we have that all alternative plays in the left sub-arena correspond to concretizations of the

abstract path spelled by Adam and Eve, if there were some play with value of at least N
2

this

would contradict her strategy being optimal. As C < R and N
2

< R, we have that Eve wins

the regret game, i.e. her strategy ensures regret less than R.

Conversely, assume that the answer to minMPGPO(<N) is negative. Then regardless,

of which strategy from H Eve decides to follow, we know there will be some alternative play

in the left sub-arena with value of at least N
2

. If Adam allows Eve to play any such strategy

then the value of the play is 0 and her regret is at least N
2

≤ R, which concludes the proof

for the strict regret threshold problem.

We observe that the restriction on N , M, R and C can easily be adapted to allow for a

reduction from minMPGPO(≤N) to the non-strict regret threshold problem.

Finally, we note that in the above proof Eve might require infinite memory as it is known

that in mean-payoff games with partial-observation the protagonist might require infinite

memory to win. Yet, as we have already mentioned, even if we ask whether Eve has a winning

finite memory observation-based strategy, the problem remains undecidable. Notice that the

above construction–when restricting Eve to play with finite memory–gives us a reduction

from this exact problem. Hence, even when restricting Eve to use only finite memory, the

problem is undecidable. ⊓⊔

5.4 Memory requirements for Eve and Adam

It is known that positional strategies suffice for Eve in parity games. On the other hand,

for Streett games she might require exponential memory (see, e.g. [13]). This exponential

blow-up, however, is only on the number of pairs—which we have already argued remains

polynomial w.r.t. the original automaton. It follows that:

Corollary 3 For payoff functions Sup, Inf, LimSup, LimInf, for all weighted automata A,

there exists m which is 2O(|A|) such that:

RegS∃,W∀
(A) = RegΣm

∃ ,W∀
(A).

5.5 Fixed memory for Eve

Since the problem is EXPTIME-hard for most payoff functions and already undecidable for

MP and MP, we now fix the memory Eve can use.

Theorem 4 For r ∈ Q, weighted automaton Γ and payoff function Inf, Sup, LimInf,

LimSup, MP, or MP, determining whether RegΣm
∃ ,W∀

(Γ) ⊳ r , for ⊳ ∈ {<,≤}, can be

done in NTIME(m2|Γ |2).

123

32 P. Hunter et al.

Denote by R∀ ⊆ W∀ the set of all word strategies of Adam which are regular. That is to say,

w ∈ R∀ if and only if w is ultimately periodic. It is well-known that the mean-payoff value

of ultimately periodic plays in weighted arenas is the same for both MP and MP.

Before proving the theorem we first show that ultimately periodic words suffice for Adam

to spoil a finite memory strategy of Eve. Let us fix some useful notation. Given weighted

automaton Γ and a finite memory strategy σ for Eve in Γ we denote by Γσ the deterministic

automaton embodied by a refinement of Γ that is induced by σ .

Lemma 15 For r ∈ Q, weighted automaton Γ , and payoff function Inf, Sup, LimInf,

LimSup, MP, or MP, if RegΣm
∃ ,W∀

(Γ) ⊲ r then RegΣm
∃ ,R∀

(Γ) ⊲ r , for ⊲ ∈ {>,≥}.

Proof For Inf, Sup, LimInf, and LimSup the result follows from Lemma 12. It is known

that positional strategies suffice for either player to win a parity game. Thus, if Adam wins

the parity game defined in the proof of Lemma 12 then he has a positional strategy to do so.

Now, for any strategy of Eve in the original game, one can translate the winning strategy of

Adam in the parity game into a spoiling strategy of Adam in the regret game. This strategy

will have finite memory and will thus correspond to an ultimately periodic word. Hence, it

suffices for us to show the claim follows for mean-payoff. We do so for MP and ≥ but the

result for MP follows from minimal changes to the argument (a small quantifier swap in fact)

and for > variations we need only use the strict versions of Eqs. (∗) and (11). We assume

without loss of generality that all weights are non-negative.

Let σ be the best (regret minimizing) strategy of Eve in Γ which uses at most memory

m. We claim that if Adam has a word strategy to ensure the regret of Eve in Γ is at least r

then he also has a regular word strategy to do so.

Consider the bi-weighted graph G constructed by taking the synchronous product of Γ

and Γσ while labelling every edge with two weights: the value assigned to the transition by

the weight function of Γσ and the value assigned to the transition by that of Γ . For a path

π in G, denote by wi (π) the sum of the weights of the edges traversed by π w.r.t. the i-th

weight function. Also, for an infinite path π , denote by MPi the mean-payoff value of π

w.r.t. the i-th weight function. Clearly, Adam has a word strategy to ensure a regret of at

least r against the strategy σ of Eve if and only if there is an infinite path π in G such that

MP2(π) − MP1(π) ≥ r . We claim that if this is the case then there is a simple cycle χ in G

such that 1
|χ |w2(χ) − 1

|χ |w1(χ) ≥ r . The argument is based on the cycle decomposition of

π (see, e.g. [14]).

Assume, for the sake of contradiction, that all the cycles χ in G satisfy the following:

1

|χ |
w2(χ) −

1

|χ |
w1(χ) ≤ r − ǫ, for some 0 < ǫ ≤ r, (∗)

and let us consider an arbitrary infinite path π = v0v1 Let l = MP1(π). We will show

lim inf
k→∞

w2(〈v j 〉 j≤k)

k
− l ≤ r − ǫ, (11)

from which the required contradiction follows.

For any k ≥ 0, the cycle decomposition of 〈v j 〉 j≤k tells us that apart from a small sub-path,

π ′, of length at most n (the number of states in G), the prefix 〈v j 〉 j≤k can be decomposed

into simple cycles χ1, . . . , χt such that wi (〈v j 〉 j≤k) = wi (π
′) +

∑t
j=1 wi (χ j) for i = 1, 2.

If W is the maximum weight occurring in G, then from Eq. (∗) we have:

123

Reactive synthesis without regret 33

w2(〈v j 〉 j≤k) ≤ nW +

t
∑

j=1

w2(χ j)

≤ nW + (r − ǫ)

t
∑

j=1

|χ j | +

t
∑

j=1

w1(χ j)

≤ nW + k(r − ǫ) + w1(〈v j 〉 j≤k).

Now, it follows from the definition of the limit inferior that for any ǫ′ > 0 and any K > 0

there exists k > K such that w1(〈v j 〉 j≤k) ≤ k(l + ǫ′). Thus for any ǫ′ > 0 and K ′ > 0,

there exists k > max{K ′, nW/ǫ′} such that

w2(〈v j 〉 j≤k)

k
≤

nW

k
+ (r − ǫ) + (l + ǫ′) < (l + r − ǫ) + 2ǫ′.

Equation (11) then follows from the definition of limit inferior.

The above implies that Adam can, by repeating χ infinitely often, achieve a regret value

of at least r against strategy σ of Eve. As this can be done by him playing a regular word,

the result follows. ⊓⊔

We now proceed with the proof of the theorem. The argument is presented for mean-

payoff (MP) but minimal changes are required for the other payoff functions. For simplicity,

we use the non-strict threshold for the emptiness problems. However, the result from [9] is

independent of this. Further, the exact same argument presented here works for both cases.

Thus, if suffices to show the result follows for ≥.

Proof (of Theorem 4) We will “guess” a strategy for Eve which uses memory at most m and

verify (in polynomial time w.r.t. m and the size of Γ) that it ensures a regret value of strictly

less than r .

Let A be the mean-payoff (MP) automaton constructed as the synchronous product of

Γ and Γσ . The new weight function maps a transition to the difference of the values of the

weight functions of the two original automata. We claim that the language of A is empty (for

accepting threshold ≥ r) if and only if regσ
Σm

∃ ,W∀
(Γ) < r . Indeed, there is a bijective map

from every run of A to a pair of plays π, π ′ in Γ such that both π and π ′ are consistent with

the same word strategy of Adam and π is consistent with σ . It will be clear that A has size

at most m|Γ |. As emptiness of a weighted automaton A can be decided in O(|A|2) time [9],

the result will follow.

We now show that if the language of A is not empty then Adam can ensure a regret value

of at least r against σ in Γ and that, conversely, if Adam has a spoiling strategy against σ in

Γ then that implies the language of A is not empty.

Let ρx be a run of A on x . From the definition of A we get that MP(ρx) =

lim inf i→∞
1
i

∑i
j=0(a j −b j) where αx = 〈ai 〉i≥0 and βx = 〈bi 〉i≥0 are the infinite sequences

of weights assigned to the transitions of ρ by the weight functions of Γ and Γσ respectively.

It is known that if a mean-payoff automaton accepts a word y then it must accept an ulti-

mately periodic word y′, thus we can assume that x is ultimately periodic (see, e.g. [9]).

Furthermore, we can also assume the run of the automaton on x is ultimately periodic. Recall

that for ultimately periodic runs we have that MP(ρx) = MP(ρx). We get the following

123

34 P. Hunter et al.

MP(ρx) = lim sup
i→∞

1

i

i
∑

j=0

(a j − b j)

≤ lim sup
i→∞

1

i

i
∑

j=0

a j + lim sup
i→∞

−1

i

i
∑

j=0

b j sub-additivity of lim sup

≤ lim sup
i→∞

1

i

i
∑

j=0

a j − lim inf
i→∞

1

i

i
∑

j=0

b j

≤ lim inf
i→∞

1

i

i
∑

j=0

a j − lim inf
i→∞

1

i

i
∑

j=0

b j ultimate periodicity.

Thus, as x and ρx can be be mapped to a strategy of Adam in Γ which ensures regret of at

least r against σ , the claim follows.

For the other direction, assume Adam has a word strategy τ in Γ which ensures a regret

of at least r against σ . From Lemma 15 it follows that τ and the run ρ of Γ with value Γ (τ)

can be assumed to be ultimately periodic w.l.o.g.. Denote by ρσ and wσ the run of Γσ on τ

and the weight function of Γσ respectively. We then get that

lim inf
i→∞

1

i
wσ (ρσ) − lim inf

i→∞

1

i
w(ρ)

= lim inf
i→∞

1

i
wσ (ρσ) + lim sup

i→∞

−1

i
w(ρ)

= lim inf
i→∞

1

i
wσ (ρσ) + lim inf

i→∞

−1

i
w(ρ) ultimate periodicity

≤ MP(ψτ) super-additivity of lim inf,

where ψτ is the corresponding run of A for τ and ρ. Hence, A has at least one word in its

language. ⊓⊔

We provide a matching lower bound. The proof is an adaptation of the NP-hardness proof

from [1].

Theorem 5 For r ∈ Q, weighted automaton Γ and payoff function Inf, Sup, LimInf,

LimSup, MP, or MP, determining whether RegΣ1
∃ ,W∀

(Γ) ⊳ r , for ⊳ ∈ {<,≤}, is NP-

hard.

Proof We give a reduction from the SAT problem, i.e. satisfiability of a CNF formula. The

construction presented is based on a proof in [1]. The idea is simple: given boolean formula

 in CNF we construct a weighted automaton Γ
 such that Eve can ensure regret value of

0 with a positional strategy in Γ
 if and only if
 is satisfiable.

Let us now fix a boolean formula
 in CNF with n clauses and m boolean variables

x1, . . . , xm . The weighted automaton Γ
 = (Q, qI , A,Δ,w) has alphabet A = {bail, #} ∪

{i | 1 ≤ i ≤ n}. Γ
 includes an initial gadget such as the one depicted in Fig. 9. Recall

that this gadget forces Eve to play into the right sub-arena. As the left sub-arena of Γ
 we

attach the gadget depicted in Fig. 12. All transitions shown have weight 1 and all missing

transitions in order for Γ
 to be complete lead to a state ⊥0 with a self-loop on every symbol

from A with weight 0. Intuitively, as Eve must go to the right sub-arena then all alternative

plays in the left sub-arena correspond to either Adam choosing a clause i and spelling i#i

123

Reactive synthesis without regret 35

Fig. 12 Clause choosing gadget for the SAT reduction. There are as many paths from top to bottom (⊥1) as

there are clauses (n)

to reach ⊥1 or reaching ⊥0 by playing any other sequence of symbols. The right sub-arena

of the automaton is as shown in Fig. 13, where all transitions shown have weight 1 and all

missing transitions go to ⊥0 again. Here, from q0 we have transitions to state x j with symbol

i if the i-th clause contains variable x j . For every state x j we have transitions to jtrue and

j f alse with symbol #. The idea is to allow Eve to choose the truth value of x j . Finally, every

state jtrue (or j f alse) has a transition to ⊥1 with symbol i if the literal x j (resp. ¬x j) appears

in the i-th clause.

The argument to show that Eve can ensure regret of 0 if and only if
 is satisfiable is

straightforward. Assume the formula is indeed satisfiable. Assume, also, that Adam chooses

1 ≤ i ≤ n and spells i#i . Since
 is satisfiable there is a choice of values for x1, . . . , xm

such that for each clause there must be at least one literal in the i-th clause which makes

the clause true. Eve transitions, in the right sub-arena from q0 to the corresponding value

and when Adam plays # she chooses the correct truth value for the variable. Thus, the play

reaches ⊥1 and, as W = 1 in
 it follows that her regret is 0. If Adam does not play as

assumed then we know all plays in Γ
 reach ⊥0 and again her regret is 0. Note that this

strategy can be realized with a positional strategy by assigning to each x j the choice of truth

value and choosing from q0 any valid transition for all 1 ≤ i ≤ n.

Conversely, if
 is not satisfiable then for every valuation of variables x1, . . . , xm there

is at least one clause which is not true. Given any positional strategy of Eve in Γ
 we can

123

36 P. Hunter et al.

Fig. 13 Value choosing gadget for the SAT reduction. Depicted is the configuration for (x1 ∨ x2) ∧ (¬x1 ∨
x2) ∧ (¬x1 ∨ ¬x2)

extract the corresponding valuation of the boolean variables. Now Adam chooses 1 ≤ i ≤ n

such that the i-th clause is not satisfied by the assignment. The play will therefore end in ⊥0

while an alternative play in the left sub-arena will reach ⊥1. Hence the regret of Eve in the

game is 1.

To complete the proof we note that the above analysis is the same for payoff functions

Inf, LimInf, LimSup, and MP. For Sup it suffices to change all the weights in the gadgets

from 1 to 0.

We observe that, once more, we can adapt the values of the loops in the sinks ⊥1 and ⊥0

to get the same result for the non-strict regret threshold problem. ⊓⊔

123

Reactive synthesis without regret 37

5.6 Relation to other works

Let us first extend the definitions of approximation, embodiment and refinement from [1]

to the setting of ω-words. Consider two weighted automata A = (QA, qI , A,ΔA, wA)

and B = (QB, qI , A,ΔB, wB) and let d : R × R → R be a metric.4 We say B (strictly)

α-approximates A (with respect to d) if d(B(w), A(w)) ≤ α (resp. d(B(w), A(w)) < α)

for all words w ∈ Aω. We say B embodies A if QA ⊆ QB, ΔA ⊆ ΔB and wA agrees

with wB on ΔA. For an automaton A = (Q, qI , A,Δ,w) and an integer k ≥ 0, the k-

refinement of A is the automaton obtained by refining the state space of A using k boolean

variables. Intuitively, this corresponds to having 2k copies of every state, with each copy of

p transitioning to all copies of q with a if (p, a, q) ∈ Δ. The automaton A is said to be

(strictly) (α, k)-determinizable by pruning (DBP, for short) if the k-refinement of A embodies

a deterministic automaton which (strictly) α-approximates A. The next result follows directly

from the above definitions.

Proposition 2 For α ∈ Q, k ∈ N, a weighted automaton Γ is (strictly) (α, k)-DBP (w.r.t.

the difference metric) if and only if Reg
Σ2k

∃ ,W∀
(Γ) ≤ α (resp. Reg

Σ2k

∃ ,W∀
(Γ) < α).

In [19] the authors define good for games automata. Their definition is based on a game

which is played on an ω-automaton by Spoiler and Simulator. We propose the following

generalization of the notion of good for games automata for weighted automata. A weighted

automaton A is (strictly) α-good for games if Simulator, against any word w ∈ Aω spelled

by Spoiler, can resolve non-determinism in A so that the resulting run has value v and

d(v, A(w)) ≤ α (resp. d(v, A(w)) < α), for some metric d . We summarize the relationship

that follows from the definition in the following result:

Proposition 3 For α ∈ Q, a weighted automaton Γ is (strictly) α-good for games (w.r.t. the

difference metric) if and only if RegS∃,W∀
(Γ) ≤ α (resp. RegS∃,W∀

(Γ) < α).

6 Discussion

In this work we have considered the regret threshold problem in quantitative games. We have

studied three variants which corresponds to different assumptions regarding the behavior of

Adam. Our definition of regret is based on the difference measure: Eve attempts to minimize

the difference between the value she obtains by playing the game, and the value she could

have obtained if she had known the strategy of Adam in advance. In [1] the ratio measure was

used instead. We believe some of the results obtained presently can be extended to arbitrary

metrics (as in, e.g., [5]). In particular, all hardness statements should hold. We give more

precise claims for the ratio measure below.

6.1 For Inf, Sup, LimInf, and LimSup

We have already observed that upper bounds for the regret threshold problem follow directly

from our results if regret is defined using ratio (see Remark 1). Furthermore, all hardness

results presented here can also be adapted to obtain the same result for ratio. Indeed, the

same constructions and gadgets can be used. These, together with correctly chosen regret

threshold value r and modified edge weights and inequalities (such as the ones given to prove,

4 The metric used in [1] is the ratio measure.

123

38 P. Hunter et al.

for instance, Lemma 8) are sufficient to show the same results hold for regret defined with

ratio.

6.2 For MP

All hardness results also hold for regret defined with ratio. As with the other payoff functions,

minimal modifications are needed for the proofs given in this work to imply the result for the

alternative definition of regret. Regarding the algorithms, we have solved the regret threshold

problem for the first two variants. In the third variant, we have considered a restricted version

of the game (Theorem 4) and given an algorithm for it by reducing it to an the emptiness

problem for mean-payoff automata. We claim the corresponding problems are in the same

complexity classes, respectively, when regret is defined with ratio. For the first two, the

proofs are almost identical to the ones we have give in the present work for the difference

measure. For the third problem, Lemma 15 must be restated for ratio, yet the proof requires

minimal modifications to work in that case. Finally, the argument used to prove Theorem 4

requires the reduction to mean-payoff automata be replaced by a reduction to ratio automata.

However, all the properties from mean-payoff automata which were used in the proof, are

also true for ratio automata (e.g. ultimately periodic words being accepted if an arbitrary

word is accepted). The latter follow from results regarding ratio games in [4].

Acknowledgements We thank Udi Boker for his comments on how to determinize LimSup automata.

References

1. Aminof, B., Kupferman, O., Lampert, R.: Reasoning about online algorithms with weighted automata.

ACM Transactions on Algorithms (2010)

2. Aminof, B., Rubin, S.: First cycle games. In: SR, pp. 83–90 (2014)

3. Bell, D.E.: Regret in decision making under uncertainty. Oper. Res. 30(5), 961–981 (1982)

4. Bloem, R., Chatterjee, K., Greimel, K., Henzinger, T.A., Hofferek, G., Jobstmann, B., Könighofer, B.,

Könighofer, R.: Synthesizing robust systems. Acta Inf. 51(3–4), 193–220 (2014)

5. Boker, U., Henzinger, TA.: Exact and approximate determinization of discounted-sum automata. LMCS

10(1) (2014). doi:10.2168/LMCS-10(1:10)2014

6. Brim, L., Chaloupka, J., Doyen, L., Gentilini, R., Raskin, J.-F.: Faster algorithms for mean-payoff games.

Form. Methods Syst. Des. 38(2), 97–118 (2011)

7. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces. In: EMSOFT, volume

2855 of LNCS, pp. 117–133. Springer (2003)

8. Chatterjee, K., Doyen, L., Filiot, E., Raskin, JF.: Doomsday equilibria for omega-regular games. In:

VMCAI, vol. 8318, pp. 78–97. Springer (2014)

9. Chatterjee, K., Doyen, L., Henzinger, TA.: Quantitative languages. ACM Transactions on Computational

Logic 11(4), 1–38 (2010)

10. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Generalized mean-payoff and energy games.

In: FSTTCS, pp. 505–516 (2010)

11. Damm, W., Finkbeiner, B.: Does it pay to extend the perimeter of a world model? In: FM, volume 6664

of LNCS, pp. 12–26. Springer (2011)

12. Degorre, A., Doyen, L., Gentilini, R., Raskin, J.-F., Toruńczyk, S.: Energy and mean-payoff games with

imperfect information. In: CSL, pp. 260–274 (2010)

13. Dziembowski, S., Jurdziński, M., Walukiewicz, I.: How much memory is needed to win infinite games?

In: LICS of IEEE computer society, pp. 99–110 (1997)

14. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. J. Game Theory 8,

109–113 (1979)

15. Eilam-Tzoreff, T.: The disjoint shortest paths problem. Discrete Appl. Math. 85(2), 113–138 (1998)

16. Filiot, E., Le Gall, T., Raskin, J.-F.: Iterated regret minimization in game graphs. In: MFCS, volume 6281

of LNCS, pp. 342–354. Springer (2010)

123

http://dx.doi.org/10.2168/LMCS-10(1:10)2014

Reactive synthesis without regret 39

17. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness.

W. H. Freeman and Company, New York (1979)

18. Halpern, J.Y., Pass, R.: Iterated regret minimization: a new solution concept. Games Econ. Behav. 74(1),

184–207 (2012)

19. Henzinger, T.A., Piterman, N.: Solving games without determinization. In CSL, pp. 395–410 (2006)

20. Hunter, P., Pérez G.A., Raskin, J.-F.: Mean-payoff games with partial-observation-(extended abstract).

In: Reachability Problems, pp. 163–175 (2014)

21. Jurdziński, M.: Deciding the winner in parity games is in UP ∪ coUP. IPL 68(3), 119–124 (1998)

22. Jurdzinski, M., Sproston, J., Laroussinie, F.: Model checking probabilistic timed automata with one or

two clocks. LMCS 4(3) (2008). doi:10.2168/LMCS-4(3:12)2008

23. Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. TCS 84(1), 127–150 (1991)

24. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity automata. LMCS

3(3) (2007). doi:10.2168/LMCS-3(3:5)2007

25. Piterman, N., Pnueli, A.: Faster solutions of Rabin and Streett games. In: LICS, pp. 275–284 (2006)

26. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–190. ACM Press (1989)

27. Wen, M., Ehlers, R., Topcu, U.: Correct-by-synthesis reinforcement learning with temporal logic con-

straints. In: IEEE of IROS, pp. 4983–4990 (2015)

28. Zinkevich, M., Johanson, M., Bowling, M., Piccione, C.: Regret minimization in games with incomplete

information. In: NIPS, pp. 905–912 (2008)

29. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. TCS 158(1), 343–359 (1996)

123

http://dx.doi.org/10.2168/LMCS-4(3:12)2008
http://dx.doi.org/10.2168/LMCS-3(3:5)2007

	Reactive synthesis without regret
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related works

	2 Preliminaries
	2.1 Payoff functions
	2.2 Regret

	3 Variant I: Adam plays any strategy
	3.1 Upper bounds
	3.2 Lower bounds
	3.3 Memory requirements for Eve and Adam

	4 Variant II: Adam plays memoryless strategies
	4.1 Upper bounds
	4.2 Lower bounds
	4.3 Memory requirements for Eve

	5 Variant III: Adam plays word strategies
	5.1 Additional definitions
	5.2 Upper bounds
	5.3 Lower bounds
	5.4 Memory requirements for Eve and Adam
	5.5 Fixed memory for Eve
	5.6 Relation to other works

	6 Discussion
	6.1 For Inf, Sup, LimInf, and LimSup
	6.2 For MP

	Acknowledgements
	References

