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Abstract

The theory of reactive systems, introduced by Leifer and
Milner and previously extended by the authors, allows
the derivation of well-behaved labelled transition systems
(LTS) for semantic models with an underlying reduction se-
mantics. The derivation procedure requires the presence of
certain colimits (or, more usually and generally, bicolimits)
which need to be constructed separately within each model.
In this paper, we offer a general construction of such bicol-
imits in a class of bicategories of cospans. The construction
sheds light on as well as extends Ehrig and König’s rewrit-
ing via borrowed contexts and opens the way to a unified
treatment of several applications.

Introduction

Some of the most important operational techniques, devel-
oped through research on concurrency, involve the use of
labelled transition systems (LTS) and the accompanying no-
tions of operational preorders and equivalences, bisimula-
tion being chief among these, in order to reason about pro-
cess equivalence. Some basic concepts, common to many
applications where such operational techniques apply, in-
clude the notions of term, context and reaction.
Such notions began to be studied in the seminal work

of Berry and Boudol [3] on the chemical abstract machine.
More recently, Leifer and Milner [12] introduced the frame-
work of reactive systems, aimed at providing a general set-
ting where such notions can be studied. Reactive systems
can be seen as a generalisation of ground term-rewriting
systems, where a collection of ground rewrite rules is closed
under a set of “reactive” contexts to obtain the rewrite rela-
tion. Contexts are, themselves, organised as the arrows of a
category C.
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(www.brics.dk), funded by the Danish National Research Foundation,
University of Aarhus.

Leifer and Milner’s chief contribution was to utilise a
universal categorical construction, dubbed relative pushout
(RPO), in order to equip each reactive system with an LTS
whose labels can be characterised as the smallest contexts
that allow reactions to occur – an idea originally due to
Sewell [19]. Such LTSs are very well-behaved; in particu-
lar, bisimilarity is a congruence with respect to all contexts,
provided that C has “enough” RPOs. In [16], the authors
proposed an approach based on a 2-dimensional generali-
sation of RPOs, the groupoidal relative pushout (GRPO),
which has been shown in [15] to encompass previous ap-
proaches addressing these issues. Of course, one retains the
congruence theorems (bisimilarity, trace and failures equiv-
alences) in the more general setting.

Several constructions of GRPOs have been proposed in
the literature for particular categories of models. For in-
stance, Milner explicitly constructed such bicolimits for bi-
graphs [13] in full detail,1 but there has been little work on
understanding how such constructions may be performed
in other models. Indeed, the main applications of the the-
ory of reactive systems have, thus far, been relatively sim-
ple [16, 15].
In the paper we address this by giving a construction of

GRPOs for a wide range of models – those which can be
expressed as certain cospans over adhesive categories. The
class of adhesive categories, introduced in [10], includes
many categories where the objects are variants of graphs
– for instance, the category Graph of graphs and graph ho-
momorphisms is adhesive.
An important application of our results is Ehrig and

König’s rewriting via borrowed contexts, an extension of
the double-pushout (DPO) graph transformation approach
with a contextual semantics that allows transfer of con-
cepts and techniques from the field of process algebra to
graphs. The labels of their LTS are the so-called “borrowed-
contexts” – certain contexts which allow a DPO transforma-
tion to be performed.
Other applications include a partial treatment of Milner’s

bigraphs [13], a model introduced to model various fun-

1Milner actually constructs ordinary RPOs in a precategory – this is
equivalent to constructing GRPOs in the bicategory which results from
taking support translations as 2-cells (see [15]).
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damental notions arising from the study of process calculi
such as the pi-calculus, as well as a Petri net-based model
of open systems [17], related to open nets [1].

Before a formal presentation of the technical details of
our results, we shall first allow ourselves a certain amount
of informality in order to illustrate the intuition and the mo-
tivation behind the construction introduced in this paper.
A cospan in an adhesive category is for us a generalised
“graphical context” between “interfaces;” starting with ob-
jects I, J and C of an adhesive category A (the reader could
take A =Graph for concreteness), we can treat C as a con-
text with inner interface I and outer interface J by providing

homomorphisms I
ιC �� C J

oc�� . This resulting cospan is
treated as an arrow of a new category Cospan(A) with the
same objects asA – indeed such cospans may be composed;
intuitively, by “glueing together along the common inter-
face;” concretely, by constructing a pushout. Due to the
nature of pushouts, the composition is, in general, not as-
sociative on the nose, but rather, up to a unique coherent
isomorphism – which means that Cospan(A) is, in general,
a bicategory [2].
Starting with any category A with pushouts, the process

A� Cospan(A) can be thought of as a kind of a canoni-
cal “contextualisation” operation, turning objects of a one
category into the arrows of another (bi)category; the reader
should keep in mind that this is an informal description,
since a cospan consists of not just an object of A, but also
of the two maps to it, and these are of vital importance.
The work of Gadducci et al. (see for instance [6, 7]) on

cospans and their relationship with various aspects of the
theory of graph transformation systems is closely related
to our approach; the idea of using cospans as a notion of
generalised contexts is implicit in their work. Cospans as
well as spans (the dual notion) over graphs have also been
studied by Katis et al. [9] – roughly, they argue that spans
over graphs can be seen as generalised automata.
For an idealised example of cospans, consider the simple

model of a coffee vending machine, illustrated by the left-
most diagram of Fig. 1. It has an outer interface consisting
of two nodes, $ and C, which one can think of as a money
slot and the coffee out-tray. These are the parts of the coffee
machine accessible to the environment, the internal compo-
nents, represented by S , are invisible. The middle diagram
represents a coffee drinker. He expects to see a money slot
and a coffee out-tray, which are his inner interfaces. As the
outer interface of the coffee machine and the inner interface
of the coffee drinker match, one may compose them and
obtain the system pictured in the rightmost diagram.
There are several examples of cospans relevant for com-

puter science. For instance bigraphs are cospans in an ad-
hesive category of place-link graphs with outer interface
maps mono, and graph contexts in the sense of Ehrig and
König [5] are cospans in Graph with both interface maps

$

$
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C

C
take
money

pour
coffee

$

$ C

C

Bobinsert
money

drink
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$

S
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Figure 1. Example of a contextual system.

mono. Examples of reactive systems over such cospan cate-
gories include, therefore, the theory of bigraphical reactive
systems of Milner [13] and the theory of double-pushout
(DPO) graph transformation [4].
The main result of the paper is the construction of

GRPOs in a class of cospan bicategories over adhesive cat-
egories, which in turn allows the derivation of LTSs for all
reactive systems based on such bicategories. Specifically,
we require that the inner interface map of every cospan is
mono. Although technical in nature, the linearity condition
does have an intuitive account. As alluded to in the cof-
fee drinker example, one can consider a cospan as a “black
box,” with an inner interface and an outer interface. The
environment cannot see the internals of the system and only
interacts with it through the outer interface. The fact that
the outer interface need not be linear means that the system
is free to connect the outer interface arbitrarily to its inter-
nal representation. For example, the coffee machine could
have two extra buttons in its outer interface; the “café latte”
button and the “cappuccino” button. The machine internals
could connect both these buttons to the same internal trig-
ger for coffee with milk; the point is that the system controls
its outer interface and is able to equate parts of it. On the
other hand, the system cannot control what is plugged into
one of its slots. Thus, an assumption of input-linearity is
essentially saying that the system does not have the right to
assume that two components coming in through the inner
interface can be confused.

Applying the construction to mono cospans in Graph
yields Ehrig and König’s [5] construction of rewriting via
borrowed contexts – which confirms that their approach is
an instance of the general methodology of reactive systems;
we shall show that their labels actually arise from GRPOs
and thus satisfy a universal property. As a consequence,
their congruence theorem follows automatically from the
theory of reactive systems. Finally, because we require only
the left leg of the cospan to be mono, we are able to gener-
alise their results.
Since Milner’s bigraphs can be seen as output-linear

cospans, the construction does not apply. However, we pro-
vide LTS semantics for a different class of bigraphs: the
input-linear cospans over the same category. The construc-
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tion has also been applied in order to derive LTS semantics
for a compositional model of Petri nets [17].

Structure of the paper. The paper begins with two sec-
tions summarising the background theory necessary for our
construction. First, in §1 we recall Leifer and Milner’s the-
ory of reactive systems and relative pushouts together with
the generalisation of the theory previously worked out by
the authors. Secondly, in §2 we recall about adhesive cate-
gories and cospan bicategories. Our main construction ap-
pears in §3. In §4, we provide a detailed exposition of the
relevance to Ehrig and König’s [5] and mention other appli-
cations.

Preliminaries. Throughout the paper we assume a basic
knowledge of category theory, as well as basic acquaintance
with the concepts of 2-categories and bicategories. Here
we mention only that a bicategory [2] can be described,
roughly, as a 2-category where associativity and identity
laws of horizontal composition hold up to isomorphisms.
We shall denote all associativity isomorphisms by a, as for
example, a : h(g f )⇒ (hg) f . The isomorphisms are required
to respect well-known coherence axioms. We use idX to de-
note the identity at X, while 1 f and • stand, respectively,
for identity and vertical composition of 2-cells.

1 Reactive Systems and GRPOs

Here we briefly recall an extension of Leifer and Milner’s
notion of reactive system to categories with 2-dimensional
structure, as previously introduced by the authors [16]. The
basic idea of a reactive system is to bring together a collec-
tion of contexts, which form the arrows of a category, with
a set of reaction rules on terms. From the reaction rules
one generates a reaction relation by contextual closure. Us-
ing certain pushouts, one equips a reactive system with an
LTS on which bisimilarity is a congruence with respect to
all contexts.
Apart from trivial examples, it is the norm that the con-

texts of a reactive system have some notion of isomorphism
– often referred to as structural congruence in the field of
process calculi. It turns out that ignoring such structure is
often problematic (cf. [16]) and one solution is to include
the isomorphism/structural congruence as part of the struc-
ture; i.e., to consider 2-categories of contexts instead of or-
dinary categories. Guided by examples, we usually consider
only invertible 2-cells. In order to generate an LTS and ex-
tend the congruence results still, one then needs to consider
bipushouts (rather than pushouts) [16].
In this paper we consider cospans as contexts; since the

composition is associative up to isomorphism, we shall need
to work in bicategories instead of 2-categories. Apart from
changing the definition of reactive system, this generalisa-

tion poses no difficulty – bicolimits are naturally a bicate-
gorical notion.

Definition 1.1 (Reactive System). A reactive system C
consists of
1. a bicategory B with all 2-cells invertible;
2. a collection D of arrows of B called the reactive con-

texts; it is required to be closed w.r.t. 2-isomorphisms
and be composition-reflecting (see below);

3. a distinguished object 0 ∈ B; arrows with domain 0 are
often referred to as terms;

4. a set of pairs of terms, the reaction rules R. The terms
l,r of any given pair 〈l,r〉 ∈ R have the same codomain
as arrows of B.

The reactive contexts are those inside which evaluation
may occur. Composition-reflecting means that dd′ ∈ D im-
plies d and d′ ∈ D, while the closure property means that
given d ∈ D and an isomorphism ρ : d ⇒ d′ in B implies
d′ ∈ D.
The reaction relation � is defined by taking a � a′ if

there is 〈l,r〉 ∈ R, d ∈ D, α : dl⇒ a and α′ : a′ ⇒ dr. This
represents that, up to structural congruence α, a is the left-
hand side l of a reduction rule in a reactive context d, while
a′ is, up to structural congruence α′, the right-hand side r in
the same context.
Leifer and Milner [12] developed the derivation of a

canonical LTS associated to any given reactive system. The
derivation uses a universal construction, dubbed relative-
pushout (RPO), which is a pushout in a slice category.
Bisimulation on the resulting LTS is a congruence, pro-
vided that the underlying category of the reactive system
has enough RPOs; we shall make the meaning of “enough”
precise below.
A groupoidal-relative pushout (GRPO) is the generalisa-

tion of an RPO to categories with 2-dimensional structure.
We recall the definition below,2 and due to lack of space
refer the reader to [16] for a full presentation. Note that
although GRPOs are introduced there in the setting of G-
categories (2-categories with invertible 2-cells), the devel-
opment is easily transferred to bicategories with invertible
2-cells – it suffices to introduce the coherent associativity
isomorphisms where necessary. In order to increase read-
ability, we leave these out within the definition below.

Definition 1.2 (GRPO). Within the scope of this defini-
tion we shall refer to the diagrams of Fig. 2. A candi-
date for square (i) is a tuple 〈I5, e, f , g, β, γ, δ〉 such that
δb •gβ •γa = α. In other words, the 2-cells γ, β and δ, illus-
trated in diagram (ii), paste together to give α.

A groupoidal-relative-pushout (GRPO) is a candidate
which satisfies a universal property, namely, for any other

2For category theorists, a GRPO can be described concisely as a bi-
pushout in a pseudo-slice category.
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Figure 2. Components of a GRPO.

I4

I2

f �����
α �� I3

d�����

0
a

�����
l

�����

Figure 3. Redex square.

candidate 〈I6, e′, f ′, g′, β′, γ′, δ′〉 there exists a mediating
morphism, that is a quadruple

〈
h : I5→ I6, ϕ : e

′ ⇒ he, ψ : h f ⇒ f ′, τ : g′h′ ⇒ g
〉

illustrated in diagrams (iii) and (iv). The equations that need
to be satisfied are: 1. τe •g′ϕ •γ′ = γ ; 2. δ′ •g′ψ •τ−1 f = δ;
and 3. ψb •hβ •ϕa = β′.
Such a mediating morphism must be essentially unique,

namely, for any other mediating morphism 〈h′, ϕ′, ψ′, τ′〉
there must exist a unique 2-cell ξ : h⇒ h′ which makes the
two mediating morphisms compatible, i.e.: 1. ξe •ϕ = ϕ′; 2.
ψ •ξ−1 f = ψ′; and 3. τ′ •g′ξ = τ.

The reader should note that, in general, the GRPO of di-
agram (i) depends not only on a and b, but also on c, d and
α; that is, given arrows a and b, there may be many dif-
ferent ways of obtaining a “smallest context”; for a simple
example, consider the two GRPOs illustrated in Fig. 7 and
discussed on page 6.
GRPOs are used to classify the smallest contexts nec-

essary for a reaction to be performed. The redex squares
which satisfy this property are known as groupoidal-idem-
pushouts, or GIPOs.

Definition 1.3 (GIPO). Diagram (i) of Fig. 2 is a G-idem-
pushout (GIPO) if

〈
I4, c, d, idI4 , α, 1c, 1d

〉
is its GRPO.

We are now in a position to define the LTS which has
such smallest contexts as labels.

Definition 1.4 (LTS). For C a reactive system and B its
underlying bicategory, define GLTS(C) as follows:
• the states of GLTS(C) are terms;
• there is a transition a f � a′ if there exists a 2-cell α,
a rule 〈l,r〉 ∈ R, and a reactive context d ∈ D such that

D

A

g �����
B

n�����

C
m

�����
f

�����

Figure 4. Pushout diagram.

the diagram in Fig. 3 is a GIPO and a′ is isomorphic to
dr.

In previous work [16, 15], we have considered an ab-
stract LTS where the terms and transitions are quotiented
by isomorphism; this is the norm in specific calculi, for in-
stance in CCS or the pi-calculus the states are processes,
i.e., terms modulo structural congruence. For simplicity,
we leave the terms and transitions unquotiented here, that
is, we deal with the concrete transition system, using the
terminology of [20]. Both (concrete and abstract) versions
have the same congruence properties.

Definition 1.5. A reactive system C is said to have redex-
GRPOs when every redex square (Fig. 3), with a and f ar-
bitrary, d a reactive context and l a part of a reaction rule
〈l,r〉 ∈ R, has a GRPO.
The following is a slight extension of a theorem for 2-

categories which can be found in [16].

Theorem 1.6. Let C be a reactive system with redex-
GRPOs. Then bisimilarity on GLTS(C) is a congruence
with respect to all the contexts of C.

2 Adhesive categories and cospans

Adhesive categories. In order to construct GRPOs in
cospan bicategories we shall need the notion of adhesive
categories, we refer the reader to [10] for an introduction;
here we shall only mention some properties of adhesivity
which shall be used in the later exposition. In §3, we as-
sume that the underlying category of the cospan bicategory
is adhesive and use the structure of adhesive categories re-
peatedly in the construction of GRPOs.
Adhesive categories can be described by a slogan:

pushouts along monomorphisms exist and are well-
behaved. The class of adhesive categories includes Set,
Graph, as well as any elementary topos. It is closed under
product, slice, coslice and functor category. As explained
in [10], many graphical structures relevant to computer sci-
ence form adhesive categories.
We shall need the following properties of adhesive cat-

egories for our constructions. The proof of the following
lemma can be found in [10].

Lemma 2.1. Let A be an adhesive category.
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1. Monos are stable under pushout in A. In other words,
in the diagram of Fig. 4, if m is mono then n is mono.

2. A pushout in A (Fig. 4) is also a pullback diagram, if
m is mono.

3. If it exists, a pushout complement3 of 〈m,g〉, with
m mono, is unique up to a compatible isomorphism;
more precisely, if f ,n and f ′ : C → B′,n′ : B′ → D
are pushout complements, then there exists an isomor-
phism ϕ : B→ B′ such that ϕ f = f ′ and n′ϕ = n.

Recall that, given an object X, a subobject [µ : Y → X] is
an equivalence class of monomorphisms into X, where the
equivalence relation is generated from the canonical pre-
order on monomorphisms into X: µ ≤ µ′ if there exists
k : Y → Y′ such that µ′k = µ. Subobject intersection and
union refers to a meet and join of subobjects (if it exists)
in this preorder. Any category with pullbacks has binary
subobject intersection. Binary subobject unions in adhesive
categories are calculated by pushing out along their inter-
section.

Cospan bicategories. We shall assume that C is a cate-
gory with chosen pushouts. That is, for arrows m : C → A
and f : C → B, there exists unique “chosen” object A+C B
and arrows A→ A+C B and B→ A+C B such that the re-
sulting square is a pushout.
The bicategory of cospans Cospan(C) has the same

objects as C, but arrows from I1 to I2 are cospans.

I1
ιC �� C I2

oC�� . We will denote such cospans CoC
ιC : I1→ I2,

and omit ιC (resp. oC) when I1 (resp. I2) is initial. We shall
sometimes refer to I1 and I2 as, respectively, the inner and
outer interfaces ofCoC

ιC . Intuitively, we can think of a cospan
as a generalised context, where C is the internals, (the im-
age via oC of) I2 represents the public view of C, and (the
image via ιC of) I1 the view of C afforded to the “holes” in
it.
A 2-cell h : CoC

ιC ⇒ C′oC′
ιC′ : I1 → I2 in Cospan(C) is an

arrow h : C → C′ in C satisfying hιC = ιC′ and hoC =

oC′ . The invertible 2-cells provide a canonical notion of
“structural congruence.” We shall denote the bicategory of
cospans which has the 2-cells limited to isomorphisms by
Cospan�(C). Given cospans CoC

ιC : I1 → I2 and D
oC′
ιC′ : I2 →

I3, their composition is the cospan obtained by taking the
pushout of oC and ιD, as illustrated by Fig. 5. Note that
in the resulting composition, I2 is “forgotten.” Composi-
tion is associative up to a unique isomorphism. It is easy to
check that the associativity isomorphisms satisfy the coher-
ence axioms, and thus yield a bicategory.
To perform our construction we need a certain linearity

restriction. In particular, the notion of input-linear cospan.

3Givenm :C→ A and g : A→D, we say that B is a pushout complement
of 〈m,g〉 when there exist f : C→ B and n : B→ D such that the resulting
diagram (Fig. 4) is a pushout diagram.

C+I2 D

C

�����
D

					

I1

ιC ����
I2

oC

						
ιD

��




I3

oD����

Figure 5. Composition of cospans.

Definition 2.2 (Linearity). A cospan CoC
ιC is said to be

input-linear when ιC is a mono, output-linear when oC is
mono, and linear when it is both input-linear and output-
linear.

A simple corollary of the first part of Lemma 2.1 is that
the composition of two input-linear cospans over an adhe-
sive category yields an input-linear cospan. Similarly, com-
position preserves output-linearity and linearity.

Definition 2.3. Assuming that A is adhesive, let ILC(A) be
the bicategory consisting of input-linear cospans and invert-
ible 2-cells. Similarly, let LC(A) be the bicategory of linear
cospans and invertible 2-cells.

3 GRPOs for cospans

In this section we present a general construction of GRPOs
for a class of reactive systems over cospan bicategories.

Construction. The following result is the main original
contribution of this paper. Several implications of Theo-
rem 3.1 and of the construction which constitutes its proof
are considered in §4.
Theorem 3.1. If A is adhesive, ILC(A) has GRPOs.

The remainder of this section presents a proof of the
above theorem. We shall first outline an algorithm for the
construction of the desired minimal candidate. Because of
space constraints, we have omitted most technical details;
these can be found in the second author’s Ph.D. thesis [20]
and in [18].
Throughout this section, we shall refer to the diagrams

within Fig. 6. An arbitrary square in ILC(A), as illustrated
in diagram (i), amounts to a commutative diagram (ii) in A,
with α an isomorphism.

Definition 3.2 (Frame of reference). Given a diagram (i)
in ILC(C), by a frame of reference we mean an arbitrary
object X equipped with isomorphisms ωl : A+I2 C→ X and
ωr : B+I3 D→ X such that ω−1r ωl = α. Let ωA =ωliA→A+C :
A→ X, ωC = ωliC→A+C : C → X, ωB = ωriB→B+D : B→ X
and ωD = ωriD→B+D : D→ X.

Clearly, a frame of reference for (i) always exists. For
instance, one can let X be B+I3 D, ωr be the identity and
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�������� ιB
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��
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µ
��

�� D
ωD��������

X

(v)

γ
����
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����

I4
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C
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β
��

I5

δ����

������G
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I3F��

D
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I1
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�������� B
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(vi)

Figure 6. Construction of GRPOs

ωl be α. It follows easily that diagram (iii) is commutative.
Notice that both of the squares in diagram (iii) are actually
pushouts.
Since ωA and ωB are readily seen to be mono, being

pushouts of monos in an adhesive category (Lemma 2.1),
we are able to obtain the subobject union – an object
Y = A∪ B and monomorphisms µ : Y → X, ε1 : A→ Y and
ε2 : B→ Y satisfying µε1 = ωA and µε2 = ωB.
Notice that since µ is mono and µε1ιA = ωAιA = ωBιB =

µε2ιB we have that ε1ιA = ε2ιB. We obtain the commutative
diagram (iv).

Algorithm 3.3 (GRPO Construction in ILC(A)). The
construction of the components of the minimal candidate is
outlined below. They are illustrated in diagrams (v) and (vi).
We obtain:

1. G as the pullback of ωC :C→ X and ωD : D→ X;

2. E as the pullback of µ : Y → X and ωC :C→ X;

3. F as the pullback of µ : Y → X and ωD : D→ X;

4. I5 as the pullback of ρ2 : F → D and π2 :G→ D; no-
tice that due to the properties of pullbacks, we obtain a
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Figure 7. GRPOs in ILC(Set).

morphism oE : I5→ E such that all the faces of (v) are
pullbacks.

The following two lemmas show that the construction of
Algorithm 3.3 indeed results in a GRPO, and complete the
proof of Theorem 3.1.

Lemma 3.4. The construction as outlined in Algorithm 3.3
provides a candidate for square (i).

Proof. In order to prove the lemma, we are required to:

1. demonstrate the existence of appropriate inner and
outer interfaces for each of E, F and G;

2. show that there exist isomorphisms β : A+I2 E→ B+I3
F, γ :C→ E+I5 G and δ : F +I5 G→ D;

3. show that these isomorphisms paste together in way
which results in a 2-cell equal to α : A+I2 C→ B+I3 D.

We omit the details, and refer the reader to [18, 20]. �

Lemma 3.5. The candidate constructed using Algo-
rithm 3.3 satisfies the universal property of a GRPO.

Proof. Omitted, see [18, 20]. �

Examples. First, with the aid of a simple example, we
shall demonstrate that it is critical that one fixes a particular
isomorphism α : A+I2 C → B+I3 D. Indeed, consider the
two diagrams in ILC(Set) in the first row of Fig. 7; the ar-

row 0
1−→ 1 denotes the cospan 0

!−→ 1
id←− 1, while 1 2−→ 0

denotes the cospan 1
0−→ 2

!←− 0, and γ : 2→ 2 is the bijec-
tion which swaps the two elements. We illustrate the two

resulting candidates in the second row of Fig. 7: 1
id−→ 1

is the identity cospan 1
id−→ 1

id←− 1, whereas 1 2−→ 2 is the

cospan 1
0−→ 2 id←− 2 and 1 2′−→ 2 is the cospan 1 0−→ 2 γ←− 2.
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Figure 8. GRPO in ILC(Graph)

Intuitively, in the first case, the two lower arrows corre-
spond to the same element. Thus the context contains re-
dundant information which can be factored out resulting in
a candidate which is just the identity context. Conversely,
they are different in the second case, meaning that the con-
text has to be kept in the minimal candidate.

We shall give one more example with ILC(Graph) as
our category of contexts in order to illustrate some of the
effects of allowing non-mono outer interfaces. In the ac-
companying Fig. 8, we label the nodes of the graphs in or-
der to clarify the action of various graph morphisms, which
we leave unlabelled. We also do not draw the 2-cells as the
labelling on the nodes makes these clear. The exterior maps
of Fig. 8 correspond to two different ways of decomposing
the graph illustrated below.

c d

a

����� ��





b

The GRPO is illustrated in the interior of the diagram. One
can compare this “blowing up” of the outer interface in the
GRPO with the phenomenon of “forking” as described by
Leifer [11, Fig. 1.4].

L
f





K
g




l�� r �� R
h





C Ev
��

w
�� D

Figure 9. Rewrite rule application (DPO).

4 Applications

In this sections we shall examine some of the applications of
Theorem 3.1 and Algorithm 3.3. Due to space restrictions,
we shall concentrate on the application Ehrig and König’s
rewriting via borrowed contexts and briefly summarise ap-
plications to bigraphs and Petri nets.

4.1 Rewriting via borrowed contexts

Our results both shed light on and extend Ehrig and
König’s rewriting via borrowed contexts [5]. First, we shall
show that borrowed contexts correspond to GIPOs, and
therefore satisfy a universal property. Consequently, the
theory of rewriting via borrowed contexts falls within the
framework of reactive systems [12, 16, 15] and therefore the
various congruence properties and constructions carry over.
In particular, Ehrig and König’s congruence theorem can be
seen as an application of the congruence of bisimilarity the-
orem for reactive systems. Finally, due to the generality of
Theorem 3.1, we relax some of the technical conditions im-
posed by Ehrig and König and thereby introduce the notion
of extended borrowed contexts (Definition 4.7).
We begin with a brief account of a variant of double-

pushout (DPO) graph transformation [4], working at the
level of an arbitrary adhesive category A.

Definition 4.1 (Rewrite Rule). A rewrite rule p is a span

L K
l�� r �� R (1)

in A. No assumptions are made about either l or r.

Here L and R represent respectively the left and right-
hand side of the rule, while K is information which remains
unaffected by the rewrite. A redex in an object C is identi-
fied by matching a rule’s left-hand side, which is done via a
morphism f : L→C.

Definition 4.2 (Grammar). A grammar G is a pair 〈C,P〉
where C is a category and P is a set of rewrite rules. A
grammar is said to be adhesive when C is adhesive.

Definition 4.3 (Rewrite rule application). Object C
rewrites to D with rule p, in symbols C �p, f D, if there
exist an object E and morphisms so that the two squares in
Fig. 9 are pushouts. We shall write C � D if there exist
p ∈ P and f : L→C such that C �p, f D.
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Using the conclusion of the third part of Lemma 2.1, one
can show that in adhesive grammars, the application of left-
linear rewrite rules is functional, in the sense that if C
�p, f D and C �p, f D′, then D � D′ (cf. [10]).
Any grammarG = 〈C,P〉 can be seen translated into a re-

active system on Cospan(C). Let 0 denote the empty graph,
and the set R contain for each rewrite rule p (1) a pair

〈
0→ L

l←− K, 0→ R
r←− K
〉
.

We choose all arrows of Cospan(C) to be reactive. Let �
denote the resulting reaction relation. The translation pre-
serves semantics, as demonstrated by the following lemma,
which is similar to a previously published result [6] and can
be considered folklore. We use the shorthand C � D to
mean that C and D are cospans with empty inner and outer
interfaces. It is crucial for us because it serves as a founda-
tion for relating the theory of DPO transformation systems
and reactive systems over cospans.

Lemma 4.4. C � D iff C � D.

In order to apply Theorem 3.1, we need restrict to graph
transformation systems which correspond to reactive sys-
tems over input-linear cospans.

Definition 4.5 (Input-Linear Rewrite Application). Ob-
ject C rewrites to D input-linearly with rule p, in symbols
C � �p, f D, if C �p, f D and in addition f , g and h of
Fig. 9 are mono.

It follows that starting with an adhesive grammar G =
〈A,P〉 and an input-linear rewrite relation � �, we may con-
struct a corresponding reactive systemA over the bicategory
of input-linear cospans ILC(A). Clearly, Lemma 4.4 spe-
cialises, and thus semantics is preserved. Now, using the
construction of GRPOs of Theorem 3.1, we obtain an LTS;
let LTS(G) = GLTS(A). Using the congruence theorem for
bisimilarity from [16] on such an LTS, we obtain that bisim-
ilarity on LTS(G) is a congruence.
A rewrite rule (1) is called linear when both l and r are

mono. If we restrict our view to DPO rewriting systems
with linear rewrite rules and input-linear rewrites then we
are in a position to compare the resulting LTS with rewriting
via borrowed contexts, which requires these extra assump-
tions.
Precisely, given an adhesive grammar G = 〈A,P〉, where

P consists of linear rewrite rules, let RBC(G) be the LTS
derived via rewriting with borrowed contexts as defined
in [5]. Recall that the states of RBC(G) are graphs with a
mono outer interface. The transitions are labelled by mono

cospans of graphs; there is a transition GoG
F

oF
ιF �Hθ2oC pre-

cisely when there exists a diagram as illustrated in Fig. 10

with all arrows mono, L
l←− I

r−→ R ∈ P, regions (1–4)
pushouts and region (5) a pullback.

D

(1)








�� �� L

(2)



ε2




I

(3)



ιC




l�� r �� R



θ1





G

(4)

�� ε1 �� G+

(5)

Cσ2�� θ2 �� H

J

oG

��

��
ιF

�� F

σ1

��

K

oC

��

oF
��

Figure 10. Borrowed context.

Theorem 4.6. LTS(G) = RBC(G).

Proof. The proof consists of showing that borrowed
contexts correspond to contexts obtained from GIPOs.
Throughout the proof, we shall refer to the diagrams within
Fig. 11.

From borrowed contexts to GIPOs. Given a borrowed
context diagram as illustrated in Fig. 10, we shall show that
one may construct a GIPO, as illustrated in diagram (i).
Assume without loss of generality that L+I C =G+. Let

α : F+J G→G+ be the unique isomorphism such that αi1 =
σ1 : F→G+ and αi2 = ε1 :G→G+.
Since square (1) of Fig. 10 is a pushout of monos

and we are in an adhesive category, it is also a pullback
(Lemma 2.1). This implies that L ∪G = G+. The cube
which results from an application of Algorithm 3.3 is il-
lustrated in (ii), in the construction we use only the fact that
square (5) of Fig. 10 is a pullback. Thus, the GRPO of redex
square (i) is 〈K,F,C, id, id, id,α〉, meaning that it is a GIPO.

From GIPOs to borrowed contexts. Suppose that

GoG
F

oF
ιF �HoH is a transition in LTS(G). then FoF

ιF must be
a part of a GIPO diagram. Since every GIPO can be con-
structed as a GRPO, we have a redex diagram as the outside
of diagram (iii), with 〈LoL ,RoR〉 being a reaction rule, cor-
responding via the translation of Lemma 4.4 to the rewrite

rule L I3
oL��

oR �� R. The candidate 〈I5,F,C,G,β,γ,δ〉
illustrated is the GRPO obtained via the construction of Al-
gorithm 3.3.
We also have HoH � CoC

iC
◦ RoR , which in other words

means that diagram (iv) is a pushout with oH : I5→ H equal
to θ2 ◦oC .
Recall that from the construction, we have that

diagram (v) is a pushout, diagram (vi) is a pullback, dia-
grams (vii) and (v) are pushouts. Diagrams (iv) through
to (viii) paste together to give the required borrowed con-
text. �

We end this section with an extension of borrowed con-
texts suggested by the linearity conditions imposed in the
construction of Algorithm 3.3.
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Figure 11. GIPOs and Borrowed Contexts

Definition 4.7 (Extended Borrowed Contexts). Given an
adhesive grammar G = 〈C,P〉 with an arbitrary set of rules
P, we shall construct a labelled transition system with:

−−− States: Graphs with outer interfaces, J oG−→G where oG

is arbitrary;

−−− Transitions: Cospans of graphs J
ιF−→ F

oF←− K where
ιF is mono and oF is arbitrary.

We derive a transition GoG
F

oF
ιF �HoH if there exists a

commutative diagram as in Fig. 10, where (1), (2), (3) and
(4) are pushouts, while square (5) is a pullback. The indi-
cated morphisms are assumed to be mono, the others are
arbitrary.

As a corollary of the translation between borrowed con-
texts and GIPOs of Theorem 4.6 and the congruence we
have that bisimilarity on the labelled transition system re-
sulting from Definition 4.7 is a congruence with respect to
arbitrary input-linear graph contexts.

4.2 Bigraphs and Petri nets

Bigraphs are a graphical formalism originally introduced
by Milner [13] in order to model dynamic systems with in-
dependent locality and connectivity structures [8]. They can

be seen as ‘output-linear’ cospans over a certain adhesive
category, as we shall explain below.
It follows, that by considering an input-linear variant –

a model which still incorporates many of bigraphs’ funda-
mental features – we meet the requirements of our frame-
work. Using Algorithm 3.3, we are then able to derive an
LTS for any reactive system on such bigraphical structures.
Such an LTS coincides with Milner’s on the bigraphs in
the intersection of the respective definitions. Here we of-
fer only a brief discussion, the reader is referred to [18, 20]
for details. We introduce the adhesive category of place-
link graphs, which can be considered as “bigraphs without
interfaces.” Interfaces will be handled by considering the
bicategory of cospans over this category.
For an alphabet of controls Σ, we define a place-graph G

to be a directed graph with nodes labelled over Σ. Here
edges represent (a generalisation of) the nesting of loca-
tions. The connectivity of each K ∈ Σ is determined by
an arity function ar : Σ→ N, so that K has ports numbered
1, . . . ,ar(K). By “set of ports” of G we indicate the disjoint
union of all the ports associated to all the nodes of G.

Definition 4.8 (Place-Link Graphs). A place-link (pl)
graph is a place-graphG together with a link map l : P→ S ,
where P is the set of ports ofG and S is a finite set of “con-
nections”. The role of l and S is to jointly describe the
connections between ports; two ports p, p′ ∈ P are said to
be connected iff l(p) = l(p′).
A place-link (pl) morphism is a graph morphism together

with a function between the sets of connections so that the
port connections are preserved in the obvious way. Let
PLGraphΣ be the category of pl-graphs and pl-graph mor-
phisms over Σ.

It is easy to construct a category XΣ so that PLGraphΣ
is a presheaf category SetXΣ and, as such, is adhesive. We
can then conclude as follows.

Corollary 4.9. ILC(PLGraphΣ) has GRPOs, calculated
using Algorithm 3.3.

There are two aspects of our bicategory of pl-graphs
that generalise the theory of bigraphs. Firstly, interfaces
here need not be “discrete,” i.e., specify just nodes to be
merged and ports to be connected, but allow for more com-
plex forms of composition. Secondly, place graphs are usu-
ally forests of trees, and their input (resp. output) interfaces
reach only leaves (resp. roots), while we allow all directed
graphs. One can, however, prove that Corollary 4.9 remains
valid when the arrows of ILC(PLGraphΣ) are restricted to
such bigraphs.
The main difference with bigraphs remains the input-

vs output-linearity issue, which has the interesting effect
of banning name aliasing in respectively the inner and the
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outer interface. We leave a deeper analysis of this di-
chotomy as future work.

Petri nets provide another application of our framework,
described in [17]. The model consists of adding an ele-
mentary notion of interface to Petri nets, similarly to other
proposals in the literature, as e.g. [1, 14]. Specifically, we
equip each net with two ordered subsets of places: the in-
ner and the outer interface. This, together with morphisms
that respect net topologies and interfaces, yields a bicate-
gory INet, which can easily be recast in terms of cospans
over an adhesive category. Formally, let MNet be the cat-
egory of marked Petri nets and structure-preserving homo-
morphisms. As MNet is adhesive, we have the following
result, where GRPOs are calculated via Algorithm 3.3.

Corollary 4.10. ILC(MNet) has GRPOs,

INet consists of the linear cospans with discrete in-
terfaces in ILC(MNet) and, once again, the existence of
GRPOs is not affected by this restriction. Then, consider-
ing the usual Petri “token game” as a reactive system over
INet, we automatically derive an LTS for Petri nets with
interfaces over which bisimulation is congruence.
As it turns out, such a bisimulation admits a very sim-

ple characterisation consisting of only three kinds of tran-
sitions: p τ � p′, if p′ results from p through an internal
firing; p +i� p′ if p′ results from p by adding a token at its
ith outer place; and p −i� p′ if p′ results from p by remov-
ing a token from its ith outer place. We remark that this is
the same bisimulation as derived by Milner using a bigraph-
based representation of Petri nets with interfaces [14].

5 Conclusion

We have constructed groupoidal relative pushouts (GRPOs)
in a general framework of generalised contexts and inter-
faces, represented by cospan bicategories over adhesive cat-
egories. This allows us to systematically derive a composi-
tional semantics for each reactive system in the framework,
in the form of a LTS determining a bisimulation congru-
ence. We have shown in detail how Ehrig and König’s
rewriting via borrowed contexts [5] falls within the frame-
work and can be obtained as an application of our theory,
and mentioned two others, a variant of Milner’s bigraphs
and a compositional approach to Petri nets [17].
As future work, we plan to investigate conditions under

which a general construction of GRPOs exists for output-
linear cospan bicategories.
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