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Abstract: Carbon Capture and Storage (CCS) is attracting increasing scientific attention. Although
experiments can explore the chemical process of CO2 sequestration, they are limited in time. CO2

geological storage will last hundreds and thousands of years, even much longer, so the numerical
simulation method is used to conduct kinetic batch modeling and reactive transport modeling. The
geochemical simulation tool—TOUGHREACT—is used to imitate CO2-brine–rock interactions at
the Shihezi Formation in the Ordos basin. The mechanisms of CO2-brine–rock interaction and their
effects on the reservoir are discussed, especially the change in structure and properties. K-feldspar
and albite will dissolve as the main primary minerals. However, calcite and quartz will dissolve first
and precipitate last. In addition, siderite and ankerite also appear as precipitation minerals. Mineral
dissolution and precipitation will alter the formation of petrophysical parameters, such as porosity
and permeability, which play significant roles in the geological storage environments. Although the
CO2-brine–rock interaction rate may be small, it is an ideal way of geological storage. Regardless of
what minerals dissolve and precipitate, they will improve the dissolution of CO2. The interaction
between rock and brine with dissolved CO2 can promote the amount of mineralization of CO2, called
mineral trapping, which has a positive effect on the long-term feasibility of CO2 storage.

Keywords: CO2 geological storage; reactive transport modeling; CO2-brine–rock interaction

1. Introduction

Greenhouse gases, especially CO2, have increased rapidly and led to climate change
with severe potential consequences. Novel technologies are proposed for carbon dioxide
(CO2) capture, storage, and utilization. For example, hydrogenation of CO2 is an important
representative among CO2 utilization [1,2]. In addition, in situ catalytic hydrogenation of
CO2 during steam-based enhanced oil recovery not only enhances the oil-recovery factor
but also reduces CO2 emission significantly [3]. Carbon Capture and Storage technology
(CCS) is the best scheme to reduce carbon emissions under the condition of existing
technological means, which is gradually attracting people’s attention [4,5]. As an important
part of CCS technology, the study of CO2 geological storage is of great significance for the
development of CCS technology [6]. At present, research institutions and scholars from
the United States, Norway, Canada, Germany, Australia, China, and other countries have
carried out various studies on CCS and achieved fruitful results [7,8]. Some commercial
CO2 geological sequestration projects in many countries have also been launched, a large
amount of experience and field data have been accumulated in CCS engineering, and some
important progresses have been made [9]. Europe and North America have carried out
CCS projects since the 1990s, such as Norway, Canada, and the United States. Australia
and New Zealand are not far behind. China’s CCS research started relatively late, and there
is still some gap with the international advanced level [10–12].

According to the criteria given by the IPCC, the site for CO2 sequestration should
be guaranteed to remain more than 99% (probability greater than 90%) after 100 years
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and more than 99% (probability greater than 66%) after 1000 years. Although some key
factors of caprock are essential to judge whether the storage site is safe, the influence of CO2
injection on reservoirs cannot be ignored either [13–16]. Therefore, it is of great significance
to study the influence of CO2 injection on reservoirs. CO2-brine-rock interactions are
important for CO2 migration and storage safety. The interaction type includes dissolution
and precipitation. The former may lead to increases in porosity and permeability, which
facilities CO2 migration; the latter may lead to decreases in porosity and permeability,
which may hinder CO2 migration in porous media. For CO2 sequestration safety, CO2 can
be mineralized in the form of carbonatite through CO2-brine-rock interactions. It is the
idealist storage mechanism in CO2 geological storage.

At present, the research methods of CO2-brine-rock reaction during CO2 geological
storage mainly include laboratory test and numerical simulation [17]. Results of the CO2-
brine-rock reaction and the influence on long-term CO2 storage for reservoir performance
can be directly observed by physical experiments, and the risk of leakage can be evaluated
accordingly [11,12]. However, there are some limitations for laboratory investigation. On
the one hand, it is almost impossible to simulate geological conditions in the laboratory,
especially for long-term geochemical reactions. On the other hand, there are a limited
number of natural cores to carry out experiments [18,19]. It is necessary to figure out effects
of geochemical reactions on reservoir physical properties by numerical simulations.

“Coal-to-Liquid Chemical Exhaust Capture and Storage in Deep Saline Aquifer” was
the first CCS project in China [10], which was a whole-process demonstration project. This
project was implemented by the Shenhua Group that was a super-large coal enterprise
ranking first in the world. The Shihezi Formation is one of the five target areas in the Ordos
basin. We study changes in reservoir properties that are influenced by CO2 injection. CO2
migration, CO2-brine-rock interaction, and their effects on the reservoir are investigated
by numerical simulation. In particular, the influence of the CO2-brine–rock reaction on
reservoir physical properties is discussed on a large time scale, which provides theoretical
guidance for long-term safe CO2 storage projects.

2. CO2 Storage Area and Major Interactions
2.1. Background

Geological formations, used for large volumes of CO2 storage, can be categorized:
saline aquifer formations, depleted oil and gas reservoirs, storage as a part of CO2 EOR
projects, coal bed storage, and other formations including volcanic rocks (especially basalt)
and underground caverns. The first two are the main classes of these porous reservoirs.
Generally, CO2 storage sites need to be deeper than 800 m to ensure that CO2 is in a dense
form as a super-critical phase. At a depth of around 1 km or more, the reservoir potentially
contains low-permeably sealing units for long-term trapping of CO2.

The most distinctive feature is porousness and high permeability in the reservoir of the
Ordos basin, where not only are oil, gas, and coal resources abundant, but the brine is also
widely distributed. This means that there is tremendous potential for CO2 sequestration.
Based on the analysis of strata in the Ordos basin, the northeastern part of the basin has
the geological conditions for CO2 storage and has been chosen as the target area for CCS.
Now, the first CCS demonstration and storage basin of China has been built in the Ordos
basin [10].

Based on domestic and foreign CO2 storage experience, the existing geological data,
and stratigraphic characteristics, there are five candidate areas for CO2 storage in the Ordos
Basin: Triassic Liujiagou Formation reservoir-caprock association, Permian Shiqianfeng For-
mation reservoir-caprock association, Permian Shihezi Formation reservoir-caprock associ-
ation, Permian Shanxi Formation reservoir-caprock association, and Ordovician Majiagou
Formation reservoir-cap association. The reservoir types of the above five reservoir-cap
assemblages are all sandstone, with the highest content of quartz as the reservoir mineral.
Geological data of the numerical model are from the Shihezi Formation [10].
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2.2. Numerical Model and Kinetics of CO2-Brine-Rock Interaction
2.2.1. Description of Numerical Model

The numerical models are based on the Shihezi Formation in the Ordos Basin, whose
data are from the real geological data. The depth of the storage site is between 1650 m
and 1850 m, the formation pressure is 16.5 MPa, and the temperature is 55–75 ◦C. The
CO2 migration process in the reservoir is described in a 2D model. At the same time, CO2-
brine-rock interactions, including dissolution or precipitation, are simulated to investigate
changes in minerals in the reservoir, as well as both porosity and permeability. The model
thickness of the reservoir is 100 m, and the longitude distance is 5 km. The CO2 injection
well is located at the lower left, as shown in Figure 1. Vertically, it is divided into 20 layers,
and the mesh size of each layer is 5 m. In the lateral direction, there are 51 grids, and the
grid size increases gradually from left to right. The number of grids is 1020 in total in the
conceptual model.
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2.2.2. Kinetics of CO2-Brine-Rock Interaction

To represent a geochemical system, a subset of NC aqueous species are selected as
the basis species, while other ones are called secondary species including aqueous com-
plexes, precipitated minerals, and gaseous species [20]. In TOUGHREACT, the kinetic
rate is calculated according to basis species that are used to describe the CO2-brine-rock
interaction [21]:

rn = f
(
c1, c2, · · · , cNC

)
= ±kn An

∣∣∣1−Ωθ
n

∣∣∣η , n = 1, 2, · · · , Nq

where rn is positive representing mineral precipitation, and negative represents dissolution.
An stands for the specific reactive surface area. Ωn is the kinetic saturation of reactive
mineral, and can be calculated by Ωn = K−1

n ∏ cv
j γv

j , where Kn is the equilibrium constant
of the n-th mineral, and cv

j and γv
j are the molar concentration and thermodynamic activity

coefficient of j-th basis species in the v-th aqueous complex, respectively. Parameters of
both θ and η are usually set to 1. The kinetic rate constant kn can be calculated by the
following equation:

k = k25 · exp
[

Ea

R

(
1
T
− 1

298.15

)]
where k25 is the kinetic rate constant at 25 ◦C (mol/m2s), Ea is the activation energy (J/mol),
R is the gas constant (8.31 J/mol K), and T is the temperature (K).

The above equation can be expressed in a more complicated form:

k = kn
25 · exp

[
−En

a
R

(
1
T
− 1

298.15

)]
+ kH+

25 · exp

[
−EH+

a
R

(
1
T
− 1

298.15

)]
a

nH+

H+ + kOH−
25 · exp

[
−EOH−

a
R

(
1
T
− 1

298.15

)]
a

nOH−
OH−
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where n, H+, and OH− stand for the neutral, acid, and base mechanism, respectively;
En

a , −EH+

a , and −EOH−
a are the corresponding activity energies; kn

25, kH+

25 , and kOH−
25 are

kinetic rate constants at 25 ◦C; a
nH+

H+ and a
nOH−
OH−

are activities of H+ and OH−, respectively,

calculated by a
nH+

H+ = γH+cH+ and a
nOH−
OH−

= γOH−cOH− , where γH+ , cH+ , γOH− , and
cOH− are thermodynamic activity coefficients and molar concentrations of H+ and OH−,
respectively. For CO2 sequestration, the acidity and basicity of brine in the reservoir will
vary, which will result in different reactions for acid and base mechanisms.

2.3. Parameters of Numerical Simulation and Geochemical Interactions

The reservoir is modeled as porous media, the parameters of which are detailed in
Table 1. Core samples are from the Shihezi Formation in the Ordos basin, and geological
model parameters are from [11], including the minerals content and brine composition.
The minerals content data are listed in Table 2, and the brine composition is listed in Table 3.
The injection period is 30 years, and the simulation time is 2000 years. Here, some primary
minerals are chosen to analyze the sensitivity of the numerical model. Based on the content
of alkali feldspar and plagioclase, we set four cases for sensitivity analysis, which are
classified by the compositions and contents of primary minerals.

Table 1. Parameters of numerical model [22].

Parameter Reservoir

Thickness (m) 100

Temperature (◦C) 50

Pressure (MPa) 20.0

Density of rock (kg/m3) 2400

Porosity (%) 12.0

Horizontal permeability (m2) 5.47 × 10−15

Vertical permeability (m2) 5.47 × 10−15

Liquid relative permeability

krl =


√

S∗
{

1−
(

1− (S∗)
1
m

)m}2

1

Sl < Sls
Sl ≥ Sls

,

S∗ = (Sl−Slr)
(1−Slr)

,

m = 0.457, Slr = 0.300

Gas relative permeability
krg =

{
1− krl(
1− Ŝ

)2(1− Ŝ2) Sgr = 0
Sgr > 0 , Ŝ = (Sl−Slr)

(1−Slr−Sgr)
,

Sgr = 0.05

Capillary pressure
Pc = −P0

[
(S∗)

−1
m − 1

]1−m
, Pmax ≤ Pc ≤ 0,

m = 0.457, Slr = 0.200, Pmax = 1.00× 107Pa,

P07.71× 105Pa,

Table 2. Minerals content [11].

No. Minerals Content1 (V%)
Case 1

Content2 (V%)
Case 2

Content3 (V%)
Case 3

Content4 (V%)
Case 4

1 quartz 60.44 60.44 60.44 60.44

2 K-feldspar 4.50 4.50 12.00 12.00

3 albite 12.50 6.50 6.00 12.00

4 anorthite 8.00 14.00 7.00 1.50
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Table 2. Cont.

No. Minerals Content1 (V%)
Case 1

Content2 (V%)
Case 2

Content3 (V%)
Case 3

Content4 (V%)
Case 4

5 calcite 3.00 3.00 3.00 5.00

6 illite 4.50 4.50 2.00 2.00

7 smectite-Ca 1.25 0.50 2.5 1.25

8 smectite-Na 1.25 2.00 2.5 1.25

9 chlorite 4.56 4.56 4.56 4.56

Table 3. Brine composition [11].

Composition Concentration
(mol/L) Composition Concentration

(mol/L)

Ca2+ 1.6113× 10−1 Cl− 5.0558× 10−1

Na+ 1.6779× 10−1 NO−3 6.3000× 10−4

Mg2+ 8.2800× 10−3 HCO−3 1.0300× 10−3

K+ 6.3000× 10−4 SO−4 1.6980× 10−4

Fe2+ 1.6980× 10−4

3. Discussion of Numerical Simulation
3.1. CO2 Migration

CO2 will migrate upward with buoyancy after injection, some of which will move into
both sides laterally because of the performance of caprock overlying the formation. Gas
saturation (Sg) is used to describe the distribution of gaseous CO2 after injection into the
formation, as shown in Figure 2. Simulation results in Sections 3.1–3.4 are based on Case 1.
In the reservoir, Sg near the injection point in the vertical direction is much larger than the
area far from the injection point. Once CO2 is injected into the reservoir, gaseous CO2 will
migrate upward until reaching the caprock, and then spread in the lateral direction along
caprock, as shown in Figure 2. During the CO2 injection period, the horizontal distance is
approximately 500 m, illustrated in Figure 2a. CO2 will migrate horizontally and the largest
distance from the injection point is about 600 m and a bit more, illustrated in Figure 2c,d.
Moreover, the smaller the Sg value, the longer the time. During the migration of CO2, the
descending finger-like CO2 distribution can be found from the region of the edge because
the denser brine migrates downward. The reason is that CO2 dissolves into the brine,
which leads to greater brine density.
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The residual sequestration amount depends upon the maximal CO2 saturation. The
larger the gas saturation, the larger the CO2 sequestration amount. Gaseous CO2 content
is greatly reduced in the reservoir by comparison among Figure 2a–d. On the one hand,
massive CO2 is dissolved into the brine, producing HCO−3 , CO2−

3 , and H+, which promotes
reactions in porous media. On the other hand, CO2-brine-rock interactions facilitate the
CO2 dissolution reversely.

The brine density will increase because of dissolved CO2 and ions entering the solution
resulting from minerals dissolution. The range of brine density variation is consistent with
CO2 gas saturation, as shown in Figure 3.
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The density of the aqueous phase with dissolved CO2 is calculated assuming the
additivity of the volumes of brine and dissolved CO2 as follows [20]:

1
ρaq

=
1− X3

ρb
+

X3

ρCO2

where X3 is the mass fraction of CO2 in the aqueous phase; ρaq, ρb, and ρCO2 are densities
of aqueous, brine, and CO2, respectively. The density of dissolved CO2, ρCO2 , is a function
of temperature and calculated by

ρCO2 =
MCO2

Vφ
× 103

where MCO2 is the molecular weight of CO2, and Vφ is the molar volume of dissolved CO2:

Vφ = a + bT + cT2 + dT3

in units of cm3 per gram-mole, T is the temperature in ◦C, and a through d are fitting
parameters: a = 37.51, b = −9.585 × 10−2, c = 8.74 × 10−4, and d = −5.044 × 10−7.
Dissolved CO2 is always dilute regardless of total fluid pressure, because it amounts at
most to a few percent of total aqueous density. Accordingly, it is permissible to neglect the
pressure dependence of the partial density of dissolved CO2.

3.2. pH Value of Reservoir

The pH value decreases because of CO2 dissolution, and the corresponding geochemi-
cal processes (Equations (1)–(3)) are listed as follows:

CO2(g) + H2O↔ H2CO3 (1)

H2CO3 ↔ H+ + HCO−3 (2)

HCO−3 ↔ H+ + CO2−
3 (3)

Figure 4 shows pH value distributions in the reservoir. CO2 moves upward and
diffuses around the injection well, where the pH value demonstrates this process due
to CO2 solution in reservoir. During the CO2 injection period, CO2 moves upward and
spreads along the bottom of the caprock, where the pH value decreases. The CO2 migration
range in the reservoir top is almost the same as in the reservoir base since stopping injection.
This is because of the lower permeability and higher residual gas saturation. In the reservoir
base, the radius of the lateral migration region is about 600 m, while, in the top, it reaches
700 m. According to Figure 4b–d, pH values will increase over time. The main reason is
geochemical interactions among CO2, brine, and minerals in rock. These reactions will
consume a large amount of CO2, which will buffer the pH value of brine.

CO2 dissolution will promote multiple complex physical and chemical processes,
where there are super-critical CO2 flow diffusion and convection, and many geochemical
interactions with CO2. In the reservoir, the geochemical process involves minerals dissolu-
tion and precipitation. On the one hand, the acidized brine will result in some minerals
dissolving, such as calcite dissolution, whose geochemical processes equations are listed
in (4)–(5):

CaCO3 + CO2 + H2O � CaHCO+
3 + HCO−3 (4)

CaHCO+
3 → Ca2+ + HCO−3 (5)
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On the other hand, bicarbonate, and cations, such as Ca2+, Mg2+, Fe2+, will produce
carbonate eventually. These chemical processes are the main ways of CO2 mineralization,
and the corresponding geochemical processes equations are (6)–(8):

Ca2+ + HCO−3 → CaCO3(s) + H+ (6)

Mg2+ + HCO−3 → MgCO3(s) + H+ (7)

Fe2+ + HCO−3 → FeCO3(s) + H+ (8)

3.3. Main Geochemical Interactions

At the first stage of injection, CO2 will be stored in the free state in the reservoir.
Hydrogen ions, induced by carbonic acid due to CO2 dissolution, will reduce the pH value
of brine, which will increase the reactivity of minerals and provide initial conditions for
the CO2-brine-rock reaction. Minerals dissolution and precipitation occur simultaneously.
Dissolution is often observed first, and then precipitation. If minerals dissolution predomi-
nates, reservoir porosity will increase as well as its permeability. Otherwise, if the minerals
precipitation plays a dominant role in reactions, the reservoir porosity will be weakened
as well as its permeability. CO2-brine-rock interaction can alter the mineral composition
dramatically in the reservoir, and particularly have a significant influence on the reservoir
pore structure, which will change the CO2 storage capacity. In this numerical simulation,
mineral dissolution and precipitation will be distinguished by negative and positive values,
respectively, listed on the right side of the figures.
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3.3.1. K-Feldspar

K-feldspar is the principal component of alkaline feldspar. In the laboratory, K-feldspar
underwent only a weak dissolution and retained its crystalline form even in 100 ◦C [11].
However, K-feldspar dissolution can be observed on a large time scale in the numerical
simulation. This means that in an acidic environment, it will be dissolved, as well as in
CO2 geological storage. The corresponding reaction equation is

KAlSi3O8︸ ︷︷ ︸
K−feldspar

+ 4H+ + 4H2O→ K+ + Al3+ + 3H4SiO4 (9)

H4SiO4 → SiO2 + 2H2O (10)

Quartz will precipitate while K-feldspar dissolves, according to Equations (9) and (10),
which is consistent with the SiO2 content increase in Section 3.3.3. In Equation (9), H4SiO4
is in the form of hydrate and can be usually expressed as Equation (10).

K-feldspar dissolution can be modeled by numerical simulation, as shown in Figure 5.
During the CO2 injection period, there is only a little amount of dissolution, as shown in
Figure 5a. The degree of K-feldspar dissolution increases gradually, as shown in Figure 5b–d.
This means that a lot of CO2 will be consumed by K-feldspar dissolution.
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3.3.2. Albite

Albite showed no noticeable dissolution at lower temperature and weak dissolution
at higher temperature [11]. In the numerical simulation, there is no change in albite
volume content. Otherwise, albite precipitation is observed after 500 years, as well as
1000 years, as shown in Figure 6. This is because a large amount of Al3+ is released by
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K-feldspar dissolution, which will combine Na+ in brine-forming albite precipitation. The
amount of albite precipitation in the acidized environment is much less than in the neutral
environment from the comparison between Figure 6a,b. Moreover, precipitated albite will
transform another secondary mineral, dawsonite, which can be found in the simulation
after 2000 years, and the corresponding chemical equation is

NaAlSi3O8︸ ︷︷ ︸
albite

+CO2 + H2O � NaAlCO3(OH)2︸ ︷︷ ︸
dawsonite

+ 3SiO2 (11)
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Dawsonite does not always exist during the simulation period, which will dissolve after
precipitation. The stability of dawsonite will be weakened with the increase in temperature.

3.3.3. Quartz

Quartz is commonly found in sand reservoirs, whose main chemical composition is
SiO2. It is difficult to observe quartz corrosion even at higher temperature. Some intense
corrosion can be found at 250 ◦C [23]. In our simulation, there is little volume change
during the first 30 years, as shown in Figure 7a. Quartz precipitation results in a volume
content increase 300 years after injection, and the content continues to increase, as depicted
in Figure 7b–d. The main reason of quartz precipitation is related to the dissolution of
K-feldspar and albite, as illustrated in Equations (10) and (11).
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3.3.4. Calcite

Calcite is one of the most common carbonate minerals, which distributes widely in
various geological environments. During the simulation, calcite dissolves in the range of
CO2 sequestration area and precipitates in the other areas, as shown in Figure 8. On the
one hand, calcite dissolution in acidized brine can be described by chemical equations
(Equations (4) and (5)). On the other hand, in a neutral environment, Ca2+ will combine
with HCO−3 or CO2−

3 , leading to calcite precipitation. This can be observed in Figure 8b-d,
where some dark red areas are regions with the highest density of calcite precipitation.
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3.3.5. Other Minerals

Some other minerals precipitations can be found in the simulation, such as siderite
and ankerite, as shown in Figures 9 and 10. It is the important way of CO2 mineralization
after CO2 injection into the reservoir.
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Siderite is formed in the region between the CO2 acidized area and neutral area. In this
region, CO2 dissolution into the brine will provide CO2−

3 , which will combine with Fe2+ to
form siderite precipitation. In the CO2 acidized area, siderite will dissolve because of the
lower pH value. In the neutral area, there is not enough CO2−

3 to form precipitation. This is
the main reason for siderite precipitation along the junction area. Ankerite precipitation
can be found 500 years after injection. After that, a large amount of Ca2+ will be provided
by calcite dissolution, and there is more ankerite precipitated in the higher-pH area than in
the lower-pH area.

3.4. Porosity and Permeability

There are many methods to deal with the permeability variation of the reservoir. Here,
the Kozeny-Carman equation is used to calculate the permeability value of the reservoir as
the porosity changes [16]. There are some assumptions when dealing with this problem,
such as the reservoir rock with uniform voids, ignoring the influence of rock particle size,
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bending degree, and reaction surface area, whose changes have no effect on permeability.
The Kozeny-Carman equation is listed as follows:

k = ki
(1− φi)

2

(1− φ)2

(
φ

φi

)3
(12)

where ki and φi are the initial permeability and porosity, respectively. Variations in both
porosity and permeability are illustrated in Figures 11 and 12, respectively, and the simu-
lation time is 1000 years. The porosity will first increase and then decrease. The increase
is due to primary minerals dissolution and the decrease is due to secondary minerals
precipitation. According to Figures 11 and 12, their trends are almost the same, because the
relationship between porosity and permeability is chosen as positively correlated.
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3.5. Long-Term CO2 Geological Storage

After 2000 years of CO2 injection into the target area, the corresponding volume
content changes of main minerals are shown in Figures 13–19.
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For K-feldspar dissolution reaction, the higher the content, the greater the dissolution,
as shown in Figure 13. Because of both K-feldspar and albite generating AlO−2 , there will
be a common ion effect. Therefore, the degree of K-feldspar dissolution in Case 2 is greater
than in Case 1, as shown in Figure 13a,b. The reason is that the albite content in the latter
case is almost twice the value of the first case. There is much more K-feldspar dissolution
in Cases 3 and 4 than in Cases 1 and 2, because of the greater content than in Cases 3 and 4,
as depicted in Figure 13c,d.
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The contents of calcite in four cases are almost the same, as well as chlorite. There
is little difference in the amount of dissolution of both calcite and chlorite, which can
be found in both Figures 14 and 15. Chlorite dissolution will produce large amounts of
Mg2+, Al3+, and AlO−2 . Mg2+ is the main source of magnesite, smectite-Na, and smectite-
Ca precipitation, as shown in Figures 16–18, respectively. Al3+ is the main source for
smectite-Na and smectite-Ca precipitation.

The amount of smectite-Na precipitation is proportional to the content of albite. The
largest amount of smectite-Na precipitation appears in Figure 17a, and the least amount
appears in Figure 17c. For smectite-Ca precipitation, the largest amount appears in Case 1,
as shown in Figure 18, which corresponds to the least amount of illite precipitation. The
reason for the smallest illite precipitation in Case 1, to some extent, is that smectite-Ca takes
up more Mg2+ and Al3+.

Illite precipitate is also an important secondary mineral in CO2-brine-rock interactions.
From Figure 19, we can see that Case 3 has the largest amount of illite precipitation, and
the next is Case 4, both of which are proportional to the contents of K-feldspar, as listed in
Table 2.

For different compositions of the reservoir, the degree of minerals dissolution may
vary as well as minerals precipitation, which may lead to a different variation tendency.
On the one hand, the porosity will increase first due to minerals dissolution after CO2
injection into the reservoir, which results from the lower pH value of brine because of the
acidity of CO2. On the other hand, the porosity will then decrease due to the formation of
secondary minerals in the CO2-brine-rock reaction, resulting in precipitation. Therefore,
the change in reservoir porosity results from two reactions: primary mineral dissolution
and secondary mineral precipitation. As shown in Figures 20 and 21, the porosity and
permeability change in different cases. The overall trends are similar. The decrements of
Case 2 and Case 3 are larger than those of the other two cases. Case 1 and Case 4 are almost
the same. These differences may be associated with anorthite and K-feldspar dissolution.
The sum of the two feldspar determines the decrease in porosity and the permeability.
For CO2 geological sequestration, mineralization will consume vast quantities of CO2
regardless of the matter dissolution or precipitation. The process is of positive significance
to safe CO2 sequestration, which is regarded as the safest storage mechanism.
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4. Conclusions

The process of CO2 sequestration will have significant impacts on the geochemical
properties and physical parameters of the reservoir. During CO2 injection, the largest
factor affecting the security of storage is the rapidly increasing pressure brought by gas
injection. The gas saturation in the reservoir reaches the maximum around the injection
well at the end of the injection period, which is the time node with the highest probability
of reservoir risk. After that, CO2 will migrate horizontally. The spreading width may be
several kilometers; however, the risk of leakage may be reduced. During the long storage
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life after injection, the CO2-brine-rock reaction driven by a large amount of CO2 exerts the
greatest influence on the reservoir physical properties.

Carbonation is the most important one among all interactions according to the numeri-
cal simulation. The acidized brine will promote CO2-brine-rock interactions because of CO2
dissolution. The lower pH will increase the reaction rate, and the reaction will buffer the
pH value of acidized brine. Feldspar, calcite, and chlorite will dissolve once CO2 is injected
into the reservoir. Magnesite, illite, smectite, siderite, and ankerite will precipitate after
the beginning of the dissolution. Minerals dissolution will provide cations for secondary
minerals precipitation. To analyze the sensitivity of numerical simulation, we also set four
cases to investigate the mineral contents effect on the reaction. The results show that there
is competition among ions. One mineral may precipitate first, which may result in another
mineral precipitation decrease.

Moreover, the CO2-brine-rock interaction occurring after CO2 injection can alter the
physical property distribution of the reservoir. From the simulation results, the porosity
of the reservoir increases first and then decreases on long-term CO2 sequestration, which
is closely related to the geochemical reaction of the main minerals. On the contrary,
mineral components of the reservoir are of great significance to the mineralization of
CO2. Regardless of the mineral dissolution or precipitation, they all play important roles
in the long-term safe storage of CO2. On the one hand, these interactions will promote
CO2 dissolution and reduce leakage risk; on the other hand, secondary minerals in the
CO2-brine-rock reaction can permanently sequester CO2 in the reservoir. Although the
reaction rate is very slow, it is the most ideal storage mechanism from the perspective of
storage safety.
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