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ABSTRACT 

A study has been made of r e a c t i o n s between some a l k a l i n e e a r t h 

metal compounds and sulphur d i o x i d e . The compounds studied included 

n a t u r a l l y - o c c u r r i n g forms, limestone and dolomite, and i n d u s t r i a l 

products, Limbux and'quick-lime. P a r t i c u l a r a t t e n t i o n was paid t o 

reacti o n s which could have proved u s e f u l i n the d e s u l p h u r i s a t i o n of 

i n d u s t r i a l f l u e gases. 

A l l the substances used reacted t o some extent w i t h sulphur 

d i o x i d e , but o f t e n slowly. The grea t e s t r e a c t i v i t y was shown by 

calcium-based compounds as the carbonate or hydroxide decomposed t o 

form f r e s h , h i g h l y a c t i v e calcium oxide. Reaction r a t e s , below 400°C, 

were only appreciable f o r calcium oxide. The r e a c t i o n products, 

depending upon c o n d i t i o n s , included s u l p h i t e s , sulphates, sulphides 

and oxides. At lower temperatures, s u l p h i t e was formed and the 

thermal s t a b i l i t i e s of the a l k a l i n e e a r t h metal s u l p h i t e s were 

studied i n greater d e t a i l . 

X-ray d i f f r a c t i o n examination i n d i c a t e d t h a t the s t r u c t u r e s of 

anhydrous calcium, s t r o n t i u m and barium s u l p h i t e s were s i m i l a r and 

c l o s e l y r e l a t e d t o the s t r u c t u r e of calcium s u l p h i t e hemihydrate. 

Differences i n orthorhombic u n i t c e l l dimensions were i n agreement 

w i t h changes i n the c a t i o n i c r a d i i . 

The thermal s t a b i l i t i e s of the a l k a l i n e e a r t h metal s u l p h i t e s 

v a r i e d w i t h changes i n the gaseous atmosphere surrounding the 

samples. I n non - o x i d i s i n g atmospheres there was competition between 

(a) r e a c t i o n s leading t o oxide formation and (b) d i s p r o p o r t i o n a t i o n 

r e a c t i o n s , leading t o the formation of a mixture of sulphate and 

sulphide. The r e l a t i v e importance of the d i s p r o p o r t i o n a t i o n r e a c t i o n 

increased as the atomic number of the c a t i o n increased. A proposed 

mechanism suggested how the various phases found i n d i f f e r e n t r e a c t i o n s 



could be formed. I n o x i d i s i n g atmospheres t h e r e was extensive f o r m a t i o n 

of sulphate from both s u l p h i t e and sulphide. 

The use of dry absorbents, based on a l k a l i n e e a r t h metal compounds, 

f o r the d e s u l p h u r i s a t i o n of f l u e gases appeared t o be an expensive 

process. 
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CHAPTER ONE 

INTRODUCTION 

The work described i n t h i s t h e s i s commenced i n 1970 when a 

number of c o u n t r i e s , p a r t i c u l a r l y the U.S.A. and Japan, were i n t r o d u c i n g 

much s t r i c t e r c o n t r o l s over the emission of sulphur dioxide from 

s t a t i o n a r y sources, i . e . e l e c t r i c i t y generating s t a t i o n s and other 

i n d u s t r i a l p l a n t . At t h i s time few d e s u l p h u r i s a t i o n methods were i n 

ope r a t i o n f o r p l a n t s e m i t t i n g gases c o n t a i n i n g less than IZ sulphur 

d i o x i d e , and r e l a t i v e l y l i t t l e data had been published on the chemical 

r e a c t i o n s which seemed most l i k e l y to be r e a d i l y a p p l i c a b l e t o the 

problems of f l u e gas d e s u l p h u r i s a t i o n . 

Of the many methods of achieving a r e d u c t i o n i n sulphur d i o x i d e 

emissions, i t was decided t o study some of the r e a c t i o n s and re a c t a n t s 

associated with, the use of a l k a l i n e e a r t h metal compounds. This was 

a n a t u r a l c o n t i n u a t i o n of the extensive work already c a r r i e d out i n 

these l a b o r a t o r i e s by Glasson^'^ and the more l i m i t e d studies c a r r i e d 

2 3 

out by the present author ' , 

Dry processes of f l u e gas d e s u l p h u r i s a t i o n have the advantage 

t h a t i t should be possi b l e t o t r e a t the f l u e gas w i t h o u t causing a 

large r e d u c t i o n i n temperature, as occurs w i t h wet scrubbing methods; 

the problems associated w i t h lack of plume buoyancy, v ^ i c h occur when 

the gas temperature becomes too low, would be avoided. Calcium carbonate, 

oxide and hydroxide and the s i m i l a r d e r i v a t i v e s of dolomite are 

r e l a t i v e l y abundant and low-cost m a t e r i a l s ; thus, t h e i r usage was l i k e l y 

to be favoured. 

The i n v e s t i g a t i o n was to examine: 

(a) The thermal s t a b i l i t i e s of the l i k e l y products of the d e s u l p h u r i s a t i o n 

process i n order to assess the p o s s i b i l i t i e s of r e - c y c l i n g the 



a l k a l i n e e a r t h metal compounds and using the captured sulphur as 

a source of sulphur compounds. P a r t i c u l a r a t t e n t i o n was t o be 

d i r e c t e d t o the s u l p h i t e s which were l i k e l y t o be major products 

4 
at f l u e gas temperatures . 

(b) The a p p l i c a b i l i t y of u t i l i z i n g a f l u i d i s e d bed system. Published 

work^ had i n d i c a t e d t h a t the r e a c t i o n of sulphur d i o x i d e w i t h 

p a r t i c l e s o f - c a l c i u m carbonate, e t c . occurred on the surface of 

the p a r t i c l e s and t h a t a surface la y e r of product was formed which 

prevented f u r t h e r r e a c t i o n between the unreacted core of the 

p a r t i c l e s and more sulphur d i o x i d e . F l u i d i s e d beds, as w e l l as 

i n c r e a s i n g the p a r t i c l e / g a s contact time^, o f t e n lead t o abrasion^ 

between the f l u i d i s e d p a r t i c l e s and i t was thought t h a t t h i s might 

help t o remove the reacted surface l a y e r from the p a r t i c l e s . 

(jc) The r e l a t i v e r e a c t i o n r a t e s of various, a l k a l i n e e a r t h metal compounds 

8 9 10 

w i t h sulphur d i o x i d e . Though, thermodynami'c data * * f o r many 

of the re a c t i o n s was a v a i l a b l e , t h i s d i d not i n d i c a t e which, r e a c t i o n s 

a c t u a l l y took, place at a worthwhile r a t e . 

(d). The c r y s t a l s t r u c t u r e of calcium s u l p h i t e hemihydrate, a major 

product i n scrubbing processes i n v o l v i n g calcium compounds. At 

t h i s time, none of the s t r u c t u r e s of the a l k a l i n e e a r t h metal 

s u l p h i t e s were known. I n f a c t , there were s t i l l references t o the 

hydrated form of calcium s u l p h i t e as a d i h y d r a t e ^ ^ . 

(e) The general economics of the implementation of a dry f l u e gas 

d e s u l p h u r i s a t i o n process. 

1.1 H i s t o r i c a l Review 

The use of a l k a l i n e e a r t h metal compounds f o r the removal of 

sulphur d i o x i d e from b o i l e r and furnace exhaust gases has. an extensive 

12 

h i s t o r y , but the major impetus to research i n t h i s area came i n the 

l a t e 1960*s. During t h i s l a t t e r p e r i o d , there was concern i n se v e r a l 



c o u n t r i e s about the large q u a n t i t i e s of sulphur d i o x i d e being e m i t t e d 

by s t a t i o n a r y f o s s i l f u e l burning i n s t a l l a t i o n s and l e g i s l a t i o n was 

13 14 

enacted f o r implementation i n the 1970*s ' . I t would seem to be 

u s e f u l t o consider the p o s i t i o n , as published, of the processes and 

types of r e a c t i o n s used i n the p e r i o d up t o 1970. 

12 

A recent a r t i c l e traces the h i s t o r y of the development of the 

various types of f l u e gas d e s u l p h u r i s a t i o n systemis since 1850, and 

i n d i c a t e s t h a t nine types of process had major studies c a r r i e d out on 

them i n the 1850 - 1950 p e r i o d . The processes considered were 

(1) Water scrubbing; (2) Metal i o n s o l u t i o n s ; (3) C a t a l y t i c o x i d a t i o n ; 

(4) Dry a d s o r p t i o n ; (.5) Wet lime scrubbing; (6) Wet limestone scrubbing; 

(7) Double a l k a l i process; (8) Ammonia scrubbing; (9) Processes 

based on sulphur d i o x i d e r e d u c t i o n . Of these nine areas, f i v e i n v o l v e d 

the use of a l k a l i n e e a r t h metal compounds. These were; 

(a) Dry adsorption ^ using lime and f i r s t developed i n 1915^^, when 

dry lime was i n j e c t e d d i r e c t l y i n t o the bed of the furnace. This 

process, using also limestone, dolomite and hydrated compounds, was 

implemented on a large scale, i n the 1960's^^. 

(b) Wet lime scrubbing - i n which lime s l u r r i e s were used to absorb 

sulphur d i o x i d e . F i r s t patented i n 1909^^ and i n s t a l l e d i n the 

18 

Swansea Power S t a t i o n i n 1935 

(c) Wet limestone scrubbing i n which a s l u r r y of limestone, r a t h e r 

than l i m e , was used to absorb the sulphur d i o x i d e . Though used i n the 

chemical i n d u s t r y to produce s u l p h i t e acid cooking l i q u o r , there was 

l i t t l e development work done u n t i l the l a t e 1960*s, 

19 

(d) Double a l k a l i process - f i r s t patented i n 1918 . The sulphur 

d i o x i d e was absorbed by a s o l u t i o n of a h i g h l y s o l u b l e a l k a l i , u s u a l l y 

sodium hydroxide, which was then t r e a t e d w i t h a lime s l u r r y to 



p r e c i p i t a t e sulphur compounds f o r d i s p o s a l and a l l o w regeneration and 

r e c y c l i n g of the more expensive s o l u b l e a l k a l i . 

(e) Reduction of sulphur d i o x i d e - t h i s type of r e a c t i o n has been 

mainly a p p l i e d t o s i t u a t i o n s where there were r e l a t i v e l y high, concentrations 

of sulphur d i o x i d e , as i n smelter gases. The thiogen process^^ i n v o l v e d 

the use of calcium sulphide or calcium sulphate, or barium s u l p h i d e . 

Up to 19.70, the removal of sulphur d i o x i d e from the gaseous emissions 

of l a r g e scale u n i t s appears to have been operated only on r e l a t i v e l y 

concentrated sources of sulphur d i o x i d e , such as s m e l t e r s , apart from 

the three u n i t s i n s t a l l e d i n the United Kingdom i n the 1930*s, a t 

Battersea, Swansea and Fulham power s t a t i o n s . However, i n the 1960's 

an i n c r e a s i n g amount of i n t e r e s t was developing and various processes 

were being i n v e s t i g a t e d , so t h a t by 1972 a summary of processes^^ 

included 21 being a c t i v e l y worked on, some by s e v e r a l d i f f e r e n t companies. 

1.1.1 Dry I n j e c t i o n Processes 

21 

Wickert c a r r i e d out t e s t s on both l a b o r a t o r y scale and 

commercial u n i t s of dry i n j e c t i o n methods to prevent h i g h - and low-

temperature c o r r o s i o n i n o i l - and c o a l - f i r e d equipment. Carbonates or 

hydroxides of calcium and magnesium, or t h e i r d o l o m i t i c e q u i v a l e n t s , 

i n j e c t e d i n t o the burner zone of a furnace ( a t 1300° - 1400°C) would 

a l l be converted to t h e i r r e s p e c t i v e oxides. Laboratory t e s t s on the. 

degree of r e a c t i o n , w i t h sulphur d i o x i d e , of the v a r i o u s oxides at 

temperatures from 400° to 1400°C were performed and i n d i c a t e d t h a t the 

maximum degree of d e s u l p h u r i s a t i o n occurred at about 900°C w i t h a r a p i d 

decrease i n e f f i c i e n c y above 1000°C f o r MgO.CaO and above 1200°C f o r CaO. 

I n the l a b o r a t o r y s t u d i e s , a r e t e n t i o n time of 0.5 seconds was r e q u i r e d 

f o r almost complete d e s u l p h u r i s a t i o n of a gas c o n t a i n i n g 1 v o l % SÔ * 

but times of 1 second or more would be needed i n o p e r a t i o n a l burners. 

Tests were also c a r r i e d out on commercial furnaces using hydrated dolime, 



Ca(OH)2.Mg(OH)2. which achieved up to 91% sulphur d i o x i d e removal. The 

r e t e n t i o n times quoted were approximately 7 seconds, which were higher 

than other workers^'^^ suggest as l i k e l y i n large furnaces. F u r t h e r 

23 

work i n Germany showed t h a t the removal of sulphur d i o x i d e from c o a l -

f i r e d burners was lower than from o i l - f i r e d burners and t h a t i n both 

cases there was some bui l d - u p of deposits on b o i l e r surfaces. As w e l l 

as s l a g g i n g problems on heat exchanger surfaces, another problem became 

24 25 26 

apparent ' ' . The removal of 1 ton of sulphur d i o x i d e y i e l d s over 

2 tons of s o l i d product, plus the excess unreacted adsorbent, plus the 

normal f l y ash to give a much increased dust load to be removed by the 

dust c o l l e c t i o n system. E l e c t r o s t a t i c p r e c i p i t a t o r s depend upon 
sulphur t r i o x i d e t o provide a l a r g e p o r t i o n of the gas c o n d u c t i v i t y t h a t 

27 

gives t h i s system i t s high e f f i c i e n c y , Limestone-type a d d i t i v e s r e a c t 

p r e f e r e n t i a l l y w i t h the sulphur t r i o x i d e i n the f l u e gas, even though 

i t s c o n c e n t r a t i o n i s only 1% or 2% of t h a t of the sulphur d i o x i d e . 

As a r e s u l t the e f f i c i e n c y of the e l e c t r o s t a t i c p r e c i p i t a t o r s was 

reduced by as much as 30%, 

1.1,2 Comparison of n a t u r a l limestone and magnesite absorbents w i t h 

t h e i r c a l c i n e d and hydrated products 

11 22 28 29 

Various studies * ' ' were made on calcium and magnesium 

carbonate rocks to determine the d i f f e r e n c e s i n the sulphur d i o x i d e 

ab s o r p t i o n c h a r a c t e r i s t i c s of these m a t e r i a l s and of t h e i r c a l c i n e d and 

hydrated products. The aim was to i d e n t i f y the p h y s i c a l and chemical 

p r o p e r t i e s responsible f o r the d i f f e r e n c e s i n the r a t e and q u a n t i t y of 

sulphur d i o x i d e absorption shown by d i f f e r e n t samples. The r e s u l t s 

28 

obtained by P o t t e r suggested the f o l l o w i n g v a r i a b i l i t y : 

(a) There was l i t t l e d i f f e r e n c e between the r e a c t i v i t y of the raw 

stone and p r e - c a l c i n e d samples at 980°C, but there were very large 

d i f f e r e n c e s between carbonate rocks from d i f f e r e n t l o c a l i t i e s . 



(b) The d i f f e r e n c e s i n r e a c t i v i t y w i t h sulphur d i o x i d e could be 

c o r r e l a t e d w i t h the t o t a l mercury pore volume, but there was no 

s i g n i f i c a n t c o r r e l a t i o n w i t h the B.E.T. n i t r o g e n s p e c i f i c surface. 

The number of pores l a r g e r than 0,3 ym appeared p a r t i c u l a r l y s i g n i f i c a n t . 

(c) The u t i l i s a t i o n of calcium oxide i n a fixed-bed r e a c t o r v a r i e d 

from 1% up to 90% w i t h an average of 45%. 

(d) At 430°C, the a b s o r p t i o n c a p a c i t i e s were hydrated > calcined > 

uncalcined stones. At 705^C, the same r e l a t i o n s h i p was found, but the 

c a p a c i t i e s had almost doubled. At 980°C, the c a p a c i t i e s of the hydrated 

and c a l c i n e d samples had f a l l e n , w h i l s t the uncalcined stones had 

increased i n capacity t o the same l e v e l as the c a l c i n e d samples. 

22 

I n c o n t r a s t , Coutant e t a l , using a simulated f l u e gas 

c o n t a i n i n g 3000 ppm sulphur d i o x i d e and a dispersed phase reac t o r at 

temperatures between 815°C and 1150°C, found t h a t limestone r e a c t i v i t y 

was raw stone > hydroxide > l i m e , w h i l e f o r dolomite the r e a c t i v i t y 

was greater and the order was f u l l y hydrated dolime > raw stone > 

monohydrated dolime, and t h a t these r e l a t i o n s h i p s h e l d f o r a l l temperatures 

This work also i n d i c a t e d t h a t as the residence time of a p a r t i c l e i n 

the r e a c t o r increased, the amount of sulphur d i o x i d e absorbed increased 

to a maximum and then decreased. The author's conclusions were t h a t 

"the o v e r a l l r e a c t i o n between raw stones and SO2 i n the r e a c t o r f o l l o w s 

a complex path, the nature of which i s due i n p a r t to the slow heat-up 

of stone p a r t i c l e s as a r e s u l t of the thermal requirements f o r c a l c i n i n g 

of the stone. S u l p h i t e f o r m a t i o n i s the-primary mode of sulphur pick-up 

d u r i n g the e a r l y stages of the process, d u r i n g which time the stone 

i s s t i l l r e l a t i v e l y c o o l . I n l a t e r stages of the process, as the stone 

heats up to temperatures above the thermodynamic l i m i t f o r s u l p h i t e 

existence (about 1400°F) [760*^C], the s u l p h i t e can c a l c i n e , and sulphur 

d i o x i d e i s l o s t from the p a r t i c l e s . Concurrent w i t h these steps, the 

s u l p h i t e can be o x i d i s e d andjor d i s p r o p o r t i o n a t e to form sulphate.. The 



net r e s u l t i s a maximum i n sulphur pick-up dur i n g the f i r s t second of 

exposure i n the r e a c t o r . The time r e q u i r e d f o r attainment of t h i s 

maximum and the magnitude of the maximum pick-up are l i k e l y t o depend on 

f a c t o r s which i n f l u e n c e the heat-up time and the r a t e of o x i d a t i o n or 

d i s p r o p o r t i o n a t i o n , e.g. p a r t i c l e s i z e , i n j e c t i o n temperature, oxygen 

co n c e n t r a t i o n , d u r a t i o n of exposure at a given temperature and the 

d e t a i l s of the p h y s i c a l s t a t e of the lime formed duri n g the c a l c i n a t i o n 

step." 

The r a t e s of r e a c t i o n found by Coutant were much higher than those 

found i n isothermal studies by Borgwardt^^ using pre-calcined limestones 

and dolomites. These studies of isothermal k i n e t i c s of sulphur d i o x i d e 

absorption appear t o i n d i c a t e t h a t the removal of s i g n i f i c a n t q u a n t i t i e s 

of sulphur d i o x i d e would not occur dur i n g the sh o r t residence times, 

0 . 5 - 4 seconds, a v a i l a b l e d u r i n g passage of the gases through a b o i l e r . 

However, i n b o i l e r s , non-isothermal c o n d i t i o n s e x i s t w i t h respect t o the 

s o l i d p a r t i c l e s immediately a f t e r i n j e c t i o n i n t o the gas stream, thus 

f a v o u r i n g Coutant's r e s u l t s . Attempts t o improve the e f f e c t i v e n e s s of 

sulphur d i o x i d e removal i n b o i l e r t e s t s by c a l c i n i n g the stone under 

c o n t r o l l e d c o n d i t i o n s p r i o r t o i n j e c t i o n i n t o the furnace have given 

r e s u l t s which were not as good as the i n j e c t i o n of raw stone"^^. 

Likewise, lime recovered a f t e r i n j e c t i o n t e s t s and then r e - i n j e c t e d has 

proved t o be r e l a t i v e l y u n r e a c t i v e compared t o f r e s h limestone^^. 

These r e s u l t s c o n t r a d i c t the g e n e r a l l y accepted mechanism whereby SO^ 

i s absorbed by CaO a f t e r the loss of CO2, but are e n t i r e l y c o n s i s t e n t 

w i t h the mechanism postulated (by Coutant) where the r e a c t i o n occurs 

d u r i n g heat-up and c a l c i n a t i o n . The low r e a c t i v i t y of pre-calcined l i m e -

stone compared t o raw stone would f o l l o w as a n a t u r a l consequence of the 

more extreme non-isothermal c o n d i t i o n s e x i s t i n g i n the l a t t e r case, where 

considerably more heat i s absorbed d u r i n g the process of chemical 
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1.1.3 Thermogravimetric Studies 

Using thermogravimetric methods, Chan e t a l ^ ^ s t u d i e d the a c t i o n of 

a 5% SO^ : 95% N2 gas mixture on samples of limestone and dolomite pre-^ 

calcined a t 745°C. The r e s u l t s were i n t e r p r e t e d as showing ( i ) r a p i d 

i n i t i a l chemisorption a t room temperature t o form a monolayer; 

( i i ) an in t e r m e d i a t e absorption r e g i o n between 200° - 400°C t o give 8 

layers of s u l p h i t e on the c a l c i n e d limestone and A layers on the c a l c i n e d 

dolomite; ( i i i ) a f a s t a b s o r p t i o n r e g i o n s t a r t i n g between 500° and 600° 

and becoming slower at 750°C. The authors suggested t h a t the d i s p r o p o r t i o n -

a t i o n of calcium s u l p h i t e 

ACaSO^ > 3CaS0^ + CaS 

which, occurs a t about 600°C would break up the surface layers of calcium 

s u l p h i t e , thus exposing f r e s h oxide l a y e r s f o r r e a c t i o n w i t h sulphur 

d i o x i d e . Above 750°C the calcium s u l p h i t e begins to d i s s o c i a t e 

CaSO^ > CaO + SO2 

and a number of other r e a c t i o n s become i m p o r t a n t , namely 

6SO2 > 4SO3 + $2 

CaS + 2SO2 > CaSO^ + S2 

SO, + CaO * CaSO, 

The f i n a l u t i l i s a t i o n of the limestone was 86% of the s t o i c h i o m e t r i c amount, 

and f o r the dolomite i t was 74%. 

1.1.4 E f f i c i e n c y of sulphur d i o x i d e removal 

I n most st u d i e s c a r r i e d out up t o 1970, the e f f i c i e n c y of sulphur 

d i o x i d e removal compared t o the q u a n t i t i e s of calcareous m a t e r i a l s used 
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was not impressive , as i s i l l u s t r a t e d by F i g . 1,1. The r e l a t i v e l y simple 
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process of a d d i t i o n of dry calcareous compounds i s i n f a c t q u i t e complex ' 

I f the p a r t i c l e s are i n j e c t e d d i r e c t l y i n t o the flame zone, t h e i r 

temperatures w i l l r i s e r a p i d l y to a maximum of 1650°C and then f a l l t o 

about 150°C w i t h i n approximately 4 seconds. The average sulphur d i o x i d e 



c o n c e n t r a t i o n f o r a 2.7% S-containing f u e l w i l l be 2200 ppm, but w i l l 

vary widely i n the combustion zone, as w i l l the concentrations of 

oxygen, carbon d i o x i d e and water. As a r e s u l t of these v a r i a b l e s and, 

thus, the large number of p o s s i b l e competing r e a c t i o n s , the rates of 

r e a c t i o n must be determined e x p e r i m e n t a l l y . However, conventional 

thermodynamic c a l c u l a t i o n s can be used t o p r e d i c t whether a r e a c t i o n 

i s l i k e l y t o occur and to what extent i t would occur i f e q u i l i b r i u m was 

reached. Extensive data on the r e a c t i o n s of calcium and magnesium 

compounds w i t h sulphur compounds have been published , although a number 

of important r e a c t i o n s , p a r t i c u l a r l y d i s p r o p o r t i o n a t i o n r e a c t i o n s , 

are not included. Table 1.1 l i s t s r e a c t i o n s which can occur when dry 

d e s u l p h u r i s a t i o n methods are used w i t h calcium and magnesium compounds. 

C a l c u l a t i o n of f r e e energy changes, AG, shows t h a t sulphur d i o x i d e w i l l 

r e act w i t h calcium and magnesium carbonates, oxides and hydroxides i n 

the temperature range found i n furnaces and the associated f l u e gases. 

The e q u i l i b r i u m constant, K, f o r a r e a c t i o n i s r e l a t e d to the change 

i n f r e e energy as shown i n equation 1.1"^^ 

log^^K = 

2.303 RT 1.1 

where K = e q u i l i b r i u m constant 

AG° = standard Gibbs f r e e energy change 

i n J, mol ^ 

T = temperature i n degrees K e l v i n 

R = u n i v e r s a l gas constant 

For the r e a c t i o n between calcium oxide and sulphur d i o x i d e the. e q u i l i b r i u m 

constant i s r e l a t e d also to the p a r t i a l pressure of sulphur d i o x i d e . 



Table 1 .1 Possible r e a c t i o n s i n v o l v i n g calcium, magnesium and sulphur 

compounds under dry f l u e gas d e s u l p h u r i s a t i o n c o n d i t i o n s 

I n each case the symbol M represents an a l k a l i n e e a r t h metal. 

2SO2 + O2 ^ 2SO3 

6SO2 — ^ 4SO3 + $2 

MD + SO2 > MSO3 

2M0 + 2SO2 + O2 > 2MS0^ 

MD + SO3 MSO^ 

2M0 + S2 >� 2MS + O2 

2MD + S2 + 3O2 * 2MS0^ 

MS + 2O2 > MSO^ 

4MSO3 + 2SO2 � WSO^ + S2 

2MSO3 + O2 > 2MS0^ 

4MSO3 > 3MS0^ + MS 

2MSO3 + S2 2MS2O3 

3MS0^ + MS > 4M0 + 4SO2 

2MS2O3 > 2M0 + 2SO2 + S2 

MCO3 + SO2 > MSO3 + CO2 

MCO_ + SO. * MSO, + C0_ 

3 3 4 2 

2MCO3 + 2SO2 + O2 � 2MS0^ + 2CO2 

MCO3 > MO + CO2 

M(0H)2 > MO + H2O 

M(0U)2 + SO2 > MSO3 + H2O 

M(0H)2 + SO3 > MSO^ + H2O 

2M(0H)2 + 2SO2 + O2 > 2MS0^ + 2H2O 
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Therefore K = ^̂ ^̂ ^̂ 3 1.3 

^CaO'^S02 

where a = a c t i v i t y of CaSO- (assumed t o be 1 as s o l i d ) 
uaDU^ 'J 

^CaO " a c t i v i t y of CaO (assumed t o be 1 as s o l i d ) 

â Q = a c t i v i t y of (assumed t o be equal to the p a r t i a l 

pressure of SO2, PgQ ) 

th e r e f o r e K = 1,4 

'2 
Pso. 

t h e r e f o r e f o r r e a c t i o n 1.2, log K = - l o g p 1.5 

Table 1.2 l i s t s the e q u i l i b r i u m constants and e q u i l i b r i u m l e v e l s o f 

sulphur d i o x i d e , a t d i f f e r e n t temperatures, as c a l c u l a t e d f o r r e a c t i o n 

1.2. Table 1.3 shows the e f f e c t of the presence of oxygen, based on 

r e a c t i o n 1.6, and equation 1.7, which was derived i n a s i m i l a r manner 

to equation 1.5. 

CaO, V + S0„, V + iO-, . > CaSO, , . 1.6 

(c) 2(g) ^ 2(g) 4(c) 

log K = -log(pgQ^,pQ^^) 1.7 

where p^ = p a r t i a l pressure of oxygen 

As the concentration of sulphur d i o x i d e i n f l u e gas i s of the order of 

2500 ppm, the upper temperature at which calcium oxide w i l l be e f f e c t i v e 

i n removing sulphur d i o x i d e w i l l be about 750°C f o r r e a c t i o n 1.2 and 

between 1200°C and 1300°C, depending upon the c o n c e n t r a t i o n of oxygen, 

f o r r e a c t i o n 1.6. With decreasing temperature, the q u a n t i t y of sulphur 

d i o x i d e i n e q u i l i b r i u m w i t h the calcium oxide decreases f o r both 

r e a c t i o n s , so th a t the e f f i c i e n c y of removal t h e o r e t i c a l l y increases. 

However, because the r a t e of r e a c t i o n also decreases with, a r e d u c t i o n 

i n temperature, e q u i l i b r i u m may not be reached, p a r t i c u l a r l y f o r s h o r t 
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Table 1.2 E q u i l i b r i u m c o n c e n t r a t i o n of sulphur d i o x i d e i n contact w i t h 

calcium oxide f o r the r e a c t i o n 

CaO. . + SO-, . — 
(c) 2(g) 

— > CaSO„, X 
3(c) 

Temperature E q u i l i b r i u m constant, K 
E q u i l i b r i u m c o n c e n t r a t i o n of 
sulphur d i o x i d e i n p.p.m. 

250 3.2 X 10^^ 3 X 10 ̂  

500 3.9 X 10^ 3 X 10~^ 

750 3,6 X 10^ 3 X 10^ 

1000 1.9 5 X 10^ (0.5 atm) 

1035 1.0 1 X 10^ (1 atm) 

1250 5.5 X 10~^ 2 X 10^ 

Table 1.3 E f f e c t , of oxygen on the e q u i l i b r i u m l e v e l s of sulphur d i o x i d e 

i n contact w i t h calcium oxide, based on the r e a c t i o n 

CaO, . 
(c) * ' ° 2 ( g ) * i 0 2 ( g ) — ^ 

CaSO, / V 
4(g) 

Temperature 
OC 

E q u i l i b r i u m 

Constant, K 
E q u i l i b r i u m c o n c e n t r a t i o n of SO2 i n p.p.m. Temperature 

OC 

E q u i l i b r i u m 

Constant, K 

1 v o l - % ©2 2.5 vol-.% O2 5 v o l - % O2 

800 8.2 X 10^ 1 X lO""^ 7 X 1 0 " ^ 
-4 

5 X 10 

1000 1.9 X 10^ 5 3 2 

1200 7.6 X 10^ 1 X 10"̂  8 X 10^ 6 X 10^ 

1400 47 2 X 10^ 1 X 10^ 9 X 10^ 
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contact times between the calcium oxide and gas, which are l i k e l y i n 

a p r a c t i c a l f l u e gas d e s u l p h u r i s a t i o n system. For these reasons i t 

4 

has been suggested t h a t the working temperature f o r d e s u l p h u r i s a t i o n 

using calcium oxide would be about 960°C to 1230°C and i f magnesium 

oxide was used the working range would be 650°C to 850°C. Table 1.3 

shows that the l i k e l y changes i n oxygen c o n c e n t r a t i o n i n a furnace 

system would have a r e l a t i v e l y small e f f e c t on the sulphur d i o x i d e 

e q u i l i b r i u m c o n c e n t r a t i o n , but of course the complete absence of 

oxygen makes a b i g d i f f e r e n c e , 

. Calcium carbonate can react w i t h sulphur d i o x i d e i n a s i m i l a r 

manner to calcium oxide, equations 1.8 and 1.9: 

CaC03(^j * S02(g) — CaSOj^^^ . CO^^^^ 1.8 

Tables 1.4 and 1.5 i n d i c a t e the r e l a t i v e e q u i l i b r i u m c o n c e n t r a t i o n of 

sulphur d i o x i d e at d i f f e r e n t temperatures. 

On the basis of the fo u r r e a c t i o n s considered, calcium carbonate 

appears to be a b e t t e r absorbent f o r sulphur d i o x i d e than calcium 

oxide at higher temperatures, but the calcium carbonate would d i s s o c i a t e 

i n the burner zone at these temperatures t o form calcium oxide. 

S i m i l a r l y calcium hydroxide would also decompose to form calcium oxide 

when i n j e c t e d i n t o a furnace; Nevertheless calcium carbonate would 

s t i l l be an e f f e c t i v e desulphuriser below i t s decomposition temperature. 

The fo r m a t i o n of sulphur t r i o x i d e , from "the sulphur d i o x i d e , would 

increase the tendency f o r the calcium compounds t o act as d e s u l p h u r i s i n g 

agents because the e q u i l i b r i u m constants f o r these r e a c t i o n s are much 

hig h e r than f o r the corresponding r e a c t i o n s w i t h sulphur d i o x i d e , 

8 
The thermodynamic data f o r magnesium compounds i n d i c a t e s t h a t 

these compounds would not be so e f f e c t i v e as the corresponding c a l c i um 
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Table 1.4 E q u i l i b r i u m c o n c e n t r a t i o n of sulphur d i o x i d e i n contact w i t h 

calcium carbonate, i n the presence of 14 v o l - % CO^, f o r the 

r e a c t i o n 

Temperature 
E q u i l i b r i u m constant, K E q u i l i b r i u m c o n c e n t r a t i o n of 

sulphur d i o x i d e i n p.p.m. 

250 9.6 X 10^ 1 

500 5.5 X 10^ 3 X 10^ 

700 52 3 X 10"̂  

800 23 6 X 10"̂  

*900 16 9 X 10"̂  

Table 1.5 E q u i l i b r i u m c o n c e n t r a t i o n of sulphur d i o x i d e i n contact 

w i t h calcium carbonate, i n the presence of 14 v o l - % CO^ 

and 2.5 v o l - % 0^, f o r the r e a c t i o n 

-> CaSO,, . + CO^, . 
4(c) 2(g) 

Temperature 
E q u i l i b r i u m constant, K E q u i l i b r i u m c o n c e n t r a t i o n of 

sulphur d i o x i d e i n p.p.m. 

250 7.7 X 10^^ 1 X 10-20 

500 2.4 X 10^^ 4 X 10-10 

700 7.1 X 10^° 1 X lo"^ 

800 2.1 X 10^ 4 X lO"^ 

*900 9.8 X 10^ 9 X lO"*' 

*Calcium carbonate thermodynamically unstable 
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compounds at the same temperature. For example, the e q u i l i b r i u m 

c o n c e n t r a t i o n of sulphur d i o x i d e , i n the presence of 2.5 v o l - % O2 at 

700°C, f o r r e a c t i o n 1.10 i s 13 p.p.m. compared to 3 x 10 ^ p.p.m. when 

calcium oxide i s used under the same c o n d i t i o n s . 

^ ( c ) ' ^°2(g) \ i°2(g) ^S°4(c) ^ - 1 ° 

The sulphated magnesium compounds also have lower decomposition 

temperatures than the corresponding calcium compounds so the working 

temperature range w i l l be lower f o r the magnesium compounds. 

The r e s u l t s i l l u s t r a t e d i n F i g . 1.1 which are b e t t e r than normal 

were obtained e i t h e r under l a b o r a t o r y c o n d i t i o n s or i n r e l a t i v e l y s m a l l -
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scale p l a n t s . Z i e l k e et a l used a f l u i d i s e d bed combustion process, 

i n which dolomite was added w i t h the c o a l , to give much b e t t e r sulphur 

oxide removal p r o p e r t i e s . They also demonstrated the p o s s i b i l i t y of 

regeneration of the sulphated dolomite using carbon monoxide at 1065°C 

CaSO^ + CO » CaO + SO2 + CO2 

The c o n c e n t r a t i o n of sulphur d i o x i d e i n the gases from the r e g e n e r a t i o n 

process was about 6% which enables these to be used to produce sulphur 

or other sulphur compounds by standard methods such as the Claus process"^^ 

1,1,5 Comparison of "dry" and "wet" sulphur d i o x i d e removal processes 

Consideration of the r a t h e r poor e f f i c i e n c i e s of the dry 

d e s u l p h u r i s a t i o n systems makes i t c l e a r t h a t t o achieve a reasonable 

degree of d e s u l p h u r i s a t i o n something of the order of twice the 

s t o i c h i o m e t r i c q u a n t i t y of a d d i t i v e must be used. As a r e s u l t , the 

combined t o t a l weight of (a) sulphated product, (b) excess a d d i t i v e 

and (c) f l y ash w i l l be about twice t h a t of f l y ash alone. I f a wet 

scrubbing process based on calcareous m a t e r i a l s was used, the e f f i c i e n c y 

of both the removal of sulphur d i o x i d e (80-90%) and the use of a d d i t i v e 

(approximately s t o i c h i o m e t r i c ) would be much b e t t e r ^ ^ . Because of the 

large amount of water trapped i n the sludge, the d i s p o s a l of 2.5 t o 3 

times the weight of wet sludge, compared w i t h coal ash alone would 
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Figure 1.1 Sulphur d i o x i d e removal e f f i c i e n c i e s obtained 

i n a number of i n v e s t i g a t i o n s 
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be r e q u i r e d ^ ^ . These dis p o s a l problems of throwaway systems seem t o 

make necessary the development of processes i n which the d e s u l p h u r i s i n g 

agent i s regenerated. The a l k a l i n e e a r t h metal compounds are used f o r 

f l u e gas d e s u l p h u r i s a t i o n because they are r e l a t i v e l y cheap and 

a v a i l a b l e i n large q u a n t i t i e s . I t appeared t h a t an i n v e s t i g a t i o n i n 

soma d e t a i l of the thermal s t a b i l i t i e s of the products of the 

d e s u l p h u r i s a t i o n process was r e q u i r e d . I n p a r t i c u l a r , the s u l p h i t e s 

were chosen f o r study because the evidence was t h a t they were the 

f i r s t - f o r m e d compounds i n many of the d e s u l p h u r i s a t i o n r e a c t i o n s and 

t h e i r r e l a t i v e lack of s t a b i l i t y at higher temperatures suggested t h a t 

r egeneration might be p o s s i b l e by thermal methods alone, as w e l l as 

by the use of reducing agents. 

A search o f the l i t e r a t u r e showed t h a t r e l a t i v e l y few papers had 

been published concerning the thermal s t a b i l i t i e s of the a l k a l i n e 
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earth metal s u l p h i t e s . Foerster and Kubel heated samples of calcium 

s u l p h i t e hemihydrate and dehydrated magnesium s u l p h i t e t r i h y d r a t e f o r , 

u s u a l l y , two hour periods i n n i t r o g e n at temperatures between 300*̂ C 

and 1100°C. Analysis of the samples showed t h a t calcium s u l p h i t e 

underwent d i s p r o p o r t i o n a t i o n to form calcium sulphate and calcium 

sulphide at temperatures above 600*^C, but magnesium s u l p h i t e decomposed 

to form magnesium oxide at t h i s temperature, w i t h no evidence of i t 

having undergone a s i m i l a r d i s p r o p o r t i o n a t i o n r e a c t i o n at a lower 

temperature. I n 1948 X-ray powder d i f f r a c t i o n data f o r calcium s u l p h i t e 
39 40 41 42 

hemihydrate was published and the various statements ' * t h a t 

there was a dihydrate were r e f u t e d . D i f f e r e n t i a l thermal a n a l y t i c a l 

s t u d i e s , i n a i r , of magnesium s u l p h i t e hexahydrate, together w i t h X-ray 

d i f f r a c t i o n and i n f r a - r e d examination of the products were c a r r i e d 
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out by Okabe and Hori , who showed t h a t dehydration was f o l l o w e d by 

o x i d a t i o n , and then d i s s o c i a t i o n . Strontium and barium s u l p h i t e s 
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heated f o r one hour p e r i o d s ^ ^ , i n n i t r o g e n , between 400°C and 800°C 

both underwent d i s p r o p o r t i o n a t i o n r e a c t i o n s w i t h very l i t t l e 
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d i s s o c i a t i o n . However, Pechkovskii and Ketov , reported r a t h e r more 

extensive d i s s o c i a t i o n of barium s u l p h i t e when they heated i t i n 

argon. 

1.2 The Sulphur Dioxide Problem 

"Sulphur d i o x i d e i s now g e n e r a l l y considered to be a serious 

and damaging a i r p o l l u t a n t vrtien associated w i t h smoke and when present 

i n high concentrations at ground l e v e l . " ^ ^ The extent to which i t 

should be regarded as harmful at low c o n c e n t r a t i o n s , i n the absence 

of smoke, or when dispersed at high l e v e l s i n the atmosphere i s more 

c o n t r o v e r s i a l . 

Most of the sulphur d i o x i d e emitted i n the United Kingdom 

o r i g i n a t e s from the combustion of f o s s i l f u e l s , among which bituminous 

coal and heavy f u e l o i l are those mainly responsible. However, more 

l o c a l i s e d sources of higher c o n c e n t r a t i o n may be provided by the 

gases emitted from various s m e l t i n g o p e r a t i o n s , though these a l l now 

have d e s u l p h u r i s i n g methods a p p l i e d t o them. 

The Clean A i r Act, 1956, together w i t h the move t o the more 

convenient h e a t i n g q u a l i t i e s of e l e c t r i c i t y and gas, has brought 

about a r e d u c t i o n i n the sulphur dioxide, emissions from domestic 

sources. The annual mean con c e n t r a t i o n of sulphur d i o x i d e at U.K. 

measuring s i t e s dropped from 188 pgm ^ to 144 ygm ^ between 1958 and 

1970^^. Against the r e l a t i v e l y small r e d u c t i o n i n domestic-emitted 

sulphur d i o x i d e must be put the l a r g e r increase i n emissions from 

e l e c t r i c i t y power s t a t i o n s (approx. 1 x 10^ tonnes SO2 i n 1952^^ to 

approx. 2.7 x 10^ tonnes SO2 i n 1976/7^^). These f i g u r e s would 

appear to i n d i c a t e t h a t the " t a l l stack" method of d i s p e r s a l has been, 

at l e a s t , p a r t i a l l y s u c c e s s f u l . 
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On a world-wide s c a l e , present estimates are t h a t about seventy 

m i l l i o n tonnes of sulphur per year^^ enter the atmosphere from man-

made emissions and t h i s compares w i t h a t o t a l i n p u t to the atmosphere 

from a l l sources of 200 - 220 m i l l i o n tonnes of sulphur per year^^'^^. 

As the m a j o r i t y of i n d u s t r i a l sources are concentrated i n the Northern 

Hemisphere i t seems probable t h a t man-made emissions now outweigh 

n a t u r a l emissions i n t h i s hemisphere. 

The f a t e of sulphur d i o x i d e i n the atmosphere i s not known i n 

d e t a i l , but the general pathways are now beginning to be understood. 

The sulphur d i o x i d e may be washed out or r a i n e d out. I n moderate 

r a i n f a l l (.1 mm h ^) a l l the sulphur would be removed i n 50 - 100 km, 

whereas i n dry c o n d i t i o n s the sulphur compounds may be c a r r i e d several 

hundred k i l o m e t r e s ^ ^ . The sulphur d i o x i d e i n the atmosphere undergoes 

gradual o x i d a t i o n , becoming converted mainly to sulphate aerosols, 

c o n t a i n i n g species such as ammonium sulpha t e , ammonium hydrogen sulphate 

and s u l p h u r i c a c i d . The a c i d components lower the pH of the r a i n and 

thus cause problems i n the c o r r o s i o n of b u i l d i n g s ^ ^ , e f f e c t s on p l a n t 

52 53 
and f i s h l i f e ' e t c . Sulphates are now being considered as a major 

f a c t o r i n the adverse e f f e c t s of sulphur d i o x i d e on h e a l t h , p a r t i c u l a r l y 

54 55 

w i t h respect t o b r o n c h i t i s and other r e s p i r a t o r y diseases ' 

The l e v e l s of sulphur d i o x i d e , or i t s products, which are 

acceptable have not been c l e a r l y d e t e r m i n e d ^ ^ , Thus, i t i s impossible 

to r e l a t e the costs of d e s u l p h u r i s a t i o n processes, which can be 

c a l c u l a t e d , w i t h the savings, which cannot be c a l c u l a t e d at present. 
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CHAPTER TWO 

EXPERIMENTAL TECHNIQUES 

2.1 I n t r o d u c t i o n 

Prepared specimens of the a l k a l i n e e a r t h metal s u l p h i t e s were 

st u d i e d using thermal a n a l y t i c a l methods. The phase composition and 

c r y s t a l l i n i t y of the products of these s t u d i e s was examined w i t h 

the a i d of an X^ray d i f f r a c t o m e t e r . O p t i c a l and e l e c t r o n microscopes 

were used also i n the examination of samples, p a r t i c u l a r l y i n 

co n j u n c t i o n w i t h hot-stage attachments f o r both instruments. The 

s p e c i f i c surfaces of some of the products were c a l c u l a t e d by the B.E.T.-

procedure from p h y s i s o r p t i o n isotherms of n i t r o g e n , a t 77K, determined 

g r a v i m e t r i c a l l y on a s o r p t i o n balance. Standard chemical methods were 

used t o q u a n t i t a t i v e l y analyse samples. 

The c r y s t a l s t r u c t u r e of calcium s u l p h i t e hemihydrate was 

determined using s i n g l e c r y s t a l X-ray d i f f r a c t i o n methods based on 

i n t e n s i t y data c o l l e c t e d on a Weissenberg camera w i t h copper 

r a d i a t i o n . 

The r e a c t i v i t y of various m a t e r i a l s w i t h sulphur d i o x i d e was 

stu d i e d using a t h e r m o a n a l y t i c a l balance. Phase compositions were 

determined using X-ray d i f f r a c t i o n methods and chemical a n a l y s i s . 

S p e c i f i c surfaces of some reactants and products, together w i t h p o r o s i t y 

values, were c a l c u l a t e d from g r a v i m e t r i c a l l y determined n i t r o g e n 

s o r p t i o n isotherms. 

2.2 Thermal Analysis 

Thermal an a l y s i s may be defined as "those techniques i n which 

some p h y s i c a l parameter of the system i s determined as a f u n c t i o n of 

temperature".^^ The p r i n c i p a l techniques of thermal a n a l y s i s are 

thermogravimetry (TG) and d i f f e r e n t i a l thermal a n a l y s i s (DTA) and these 

were the two techniques used i n t h i s study. 
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2.2.1 Thermogravimetry (TO) 

This i s a technique i n which the change i n mass of a sample i s 

recorded as a f u n c t i o n of temperature or time. I t provides q u a n t i t a t i v e 

i n f o r m a t i o n on processes t a k i n g place w i t h a change i n weight and 

enables the s t o i c h i o m e t r y of such a process to be f o l l o w e d d i r e c t l y . 

Thermogravimetry may be performed i n one of three modes, namely 

(a) i s o t h e r m a l , or s t a t i c , where the sample mass i s recorded as a 

f u n c t i o n of time at a constant temperature; (b) q u a s i - s t a t i c , where 

the sample i s heated t o a constant mass at each of a series of 

temperatures; (c) dynamic, where the sample i s heated at a l i n e a r r a t e . 

The r e s u l t i n g mass change versus temperature, or time, curve can 

provide i n f o r m a t i o n concerning the thermal s t a b i l i t y of a compound, 

e.g. dehydration, decomposition or r e a c t i v i t y w i t h gaseous re a c t a n t s 

i n s u i t a b l y prepared atmospheres. 

Reactions of the type 

^ ( s o l i d ) ^ ^ ( s o l i d ) ^(gas) 

wou I d give a dynamic TG mass loss curve of the type shown i n F i g . 2.1 

T-. i s the ' i n i t i a l temperature", or procedural decomposition temperature, 

when the cumulative mass-change reaches a magnitude t h a t the thermo-

balance can d e t e c t . I t i s n e i t h e r a t r a n s i t i o n temperature, i n the 

phase-rule sense, nor a t r u e decomposition temperature below which the 

r e a c t i o n r a t e suddenly becomes zero. T^ i s the " f i n a l temperature", 

at which the cumulative mass-change f i r s t reaches i t s maximum v a l u e , 

corresponding to complete r e a c t i o n . At a l i n e a r h e a t i n g r a t e T^ must 

be greater than T^ and (T^ - T^) i s c a l l e d the r e a c t i o n i n t e r v a l . The 

values of both T^ and T^ are a f f e c t e d by f a c t o r s such as heating r a t e , 

mass of sample, atmospheric composition. 
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Figure 2.1 C h a r a c t e r i s t i c s of a si n g l e - s t a g e r e a c t i o n 

TG curve 
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Figure 2.2 C h a r a c t e r i s t i c s of an exothermic r e a c t i o n 

DTA curve 
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Isothermal thermogravimetry has been widely used t o study the 

k i n e t i c s of thermal decomposition. The basis f o r the c a l c u l a t i o n of 

k i n e t i c data from isothermal curves i s the general equation^^ 2.1 

- ^ n 2.1 

d t 

where X = sample mass 

n = order of r e a c t i o n 

t = time 

k^ = r a t e constant 

The temperature dependence of the s p e c i f i c r a t e constant, k, i s 

58 
expressed by the Arrhenius equation , 2,2 

k = Ae"^^^^ 2.2 

where A = pre-exponential f a c t o r 

E = a c t i v a t i o n energy 

R = Universal gas constant 

T = temperature, i n K 

The process of c o l l e c t i n g the necessary data to determine the k i n e t i c s 

of a r e a c t i o n and i t s a c t i v a t i o n energy, by isothermal methods, i s 

very time consuming. Dynamic thermogravimetry has the c a p a b i l i t y o f 

p r o v i d i n g , i n one mass-change curve, an amount of i n f o r m a t i o n 

equivalent to t h a t provided by a large number of isothermal mass-change 
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curves . However, dynamic TG data are only narrowly d e f i n i t i v e and, 

i n consequence, i t i s o f t e n only possible to determine e m p i r i c a l k i n e t i c 

parameters. The r e a c t i o n mechanism u s u a l l y cannot be determined and as 

a r e s u l t the meanings of the a c t i v a t i o n energy, order of r e a c t i o n and 

frequency f a c t o r are u n c e r t a i n , A large number of methods of determining 

k i n e t i c parameters nonisothermally have been proposed and a review of 

these i s given by Wendlandt^^, but no one method has outstanding 

advantages over the others." Various c o m p a r i s o n s ^ ^ s h o w e d t h a t many 
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of the methods gave very s i m i l a r r e s u l t s . Several of the methods also 

depend upon knowing the order of r e a c t i o n before they can be f u l l y 

u t i l i s e d . 

There are a large number o f f a c t o r s which a f f e c t the n a t u r e , 

p r e c i s i o n and accuracy of r e s u l t s obtained by dynamic thermogravimetry. 

Of p a r t i c u l a r importance are the f o l l o w i n g : (a) Furnace he a t i n g r a t e -

i n c r e a s i n g the hea t i n g r a t e increases both and T^, the r e l a t i v e 

amounts depending upon whether the r e a c t i o n i s exothermic or endothermic. 

(b) Furnace atmosphere - only r a t e s of r e a c t i o n i n v o l v i n g gaseous 

rea c t a n t s or products w i l l be a f f e c t e d . I n f l o w i n g i n e r t gas 

atmospheres the gaseous products w i l l be removed, so i n c r e a s i n g the 

r a t e of r e a c t i o n , by prev e n t i n g a b u i l d - u p i n the conc e n t r a t i o n of the 

gaseous decomposition product. I n a s t a t i c atmosphere there would tend 

t o be a b u i l d - u p of gaseous decomposition products, but due t o 

convection c u r r e n t s i n the furnace gas atmosphere, the gas c o n c e n t r a t i o n 

around the sample would be changing c o n t i n u o u s l y , and i r r e g u l a r l y , 

g i v i n g i r r e p r o d i i c i b l e r e s u l t s . The presence of a gaseous � r e a c t a n t or 

product i n the furnace atmosphere would a f f e c t the r e a c t i o n i n a manner 

p r e d i c t a b l e from Le C h a t e l i e r * s p r i n c i p l e . The composition of the 

furnace atmosphere w i l l also i n t r o d u c e a buoyancy e f f e c t which must be 

taken i n t o account when measuring mass changes. This can be achieved 

by comparing the mass-change curve f o r the system being studied w i t h 

t h a t obtained w i t h an i n e r t substance i n the place of the s o l i d 

r e a c t a n t . (c) Sample holder * the geometry of the sample holder can 

a f f e c t the r a t e of loss or admission of gaseous products or re a c t a n t s 

and so change the r a t e of mass change. The m a t e r i a l from which the 

sample holder i s constructed may re a c t w i t h one of the products or 

r e a c t a n t s , or catalyse a change i n one of these. (d) Saiiq)le mass -

the TG curve can be a f f e c t e d i n three ways: ( i ) the l a r g e r the mass 
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the greater the d e v i a t i o n of the sample temperature, d u r i n g exothermic 

or endothermic r e a c t i o n s , from the l i n e a r temperature change, 

( i i ) The l a r g e r the mass the slower w i l l be the r a t e of d i f f u s i o n 

of gaseous products, or r e a c t a n t s , through the v o i d space surrounding 

the s o l i d p a r t i c l e s . ( i i i ) The l a r g e r the mass, the greater w i l l be 

the thermal g r a d i e n t throughout the sample, p a r t i c u l a r l y f o r 

m a t e r i a l s of low thermal c o n d u c t i v i t y . (e) Sample packing - may 

a f f e c t the p a r t i a l pressure g r a d i e n t throughout the mass of the sample 

The more loo s e l y and t h i n l y the sample i s packed, the smaller t h i s 

e f f e c t w i l l be. 

2.2.2 D i f f e r e n t i a l Thermal Analysis (DTA) 

This i s a "technique i n which the temperature of a sample, 

compared w i t h the temperature of a t h e r m a l l y i n e r t m a t e r i a l , i s 

recorded as a f u n c t i o n of the saiiq>le, the i n e r t m a t e r i a l , or furnace 

temperature as the sample i s heated or cooled at a uniform r a t e " ^ ^ . 

The temperature changes r e s u l t from exothermic or endothermic 

e n t h a l p i c t r a n s i t i o n s or r e a c t i o n s , e.g. phase changes, decomposition 

r e a c t i o n s , o x i d a t i o n or r e d u c t i o n r e a c t i o n s . Any temperature 

d i f f e r e n c e between the sample and reference m a t e r i a l i s monitored by 

two thermocouples, one close to the sample and one close to the 

reference m a t e r i a l , d i f f e r e n t i a l l y coupled. The output trace (the 

DTA curve) i s a record of temperature d i f f e r e n c e between sample and 

reference a g a i n s t , u s u a l l y , the temperature of the reference. A 

t y p i c a l DTA curve showing an exothermic change i s i l l u s t r a t e d i n 

F i g . 2.2. AB i s the p r e - t r a n s i t i o n baseline and CD i s the p o s t -

t r a n s i t i o n b a s e l i n e , the l a t t e r showing some base-line d r i f t . The 

procedural i n i t i a l d e v i a t i o n temperature i s T^ and the f i n a l d e v i a t i o n 

temperature of the curve i s , The peak maximum temperature i s 

AT^^^ and the peak height i s AT, i . e . the maximum temperature 
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d i f f e r e n c e between the sample and reference. I n p r a c t i c e AT values 

are recorded i n yV i . e . the thermocouple o u t p u t , and a c o r r e l a t i o n 

curve. F i g - 2.3, must be used t o convert these t o temperature 

d i f f e r e n c e s because the thermocouple output i s not l i n e a r w i t h 

temperature. 

The number, shape and p o s i t i o n of the v a r i o u s endothermic 

and exothermic peaks w i t h reference t o the temperature may be used 

as a means of q u a l i t a t i v e i d e n t i f i c a t i o n of the substance under 

i n v e s t i g a t i o n . The area under the peak i s p r o p o r t i o n a l t o the heat 

change i n v o l v e d and may be used f o r the q u a n t i t a t i v e d e t e r m i n a t i o n 

of heats of r e a c t i o n , a f t e r s u i t a b l e c a l i b r a t i o n . The heat of 

t r a n s i t i o n (or r e a c t i o n ) can be determined from equation 2.3^^ 

AH.m = KA " 2.3 

where AH = heat of t r a n s i t i o n (or r e a c t i o n ) 

m = mass of sample 

K = c a l i b r a t i o n c o e f f i c i e n t 

A = curve peak area 

However, de t e r m i n a t i o n of the c a l i b r a t i o n c o e f f i c i e n t t o a p r e c i s i o n 

of +1% at a 95% confidence l e v e l has been c a l c u l a t e d t o r e q u i r e 

30 samples f o r the c a l i b r a t i o n ^ ^ . 

As w i t h thermogravimetry, d i f f e r e n t i a l thermal a n a l y s i s r e s u l t s 

are a f f e c t e d by a wide v a r i e t y of v a r i a b l e s . Amongst the more 

important are the f o l l o w i n g : (a) Heating r a t e increases w i l l 

( i ) increase the T i , AT (or AT . ) and T^ temperatures 

max min' f *̂  

( i i ) decrease peak r e s o l u t i o n ( i i i ) increase s e n s i t i v i t y , i n t h a t 

small t r a n s i t i o n s may be detected. (b) Furnace atmosphere. The 

peak temperature and shape of the peak f o r a r e a c t i o n i n v o l v i n g a 

gaseous component w i l l be a f f e c t e d by pressure.changes, f l o w r a t e s . 
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presence of th f i gaseous component or some other i n t e r a c t i n g gas. 

(c) Sample holders i n f l u e n c e the r a t e of t r a n s f e r of heat out of or 

i n t o the sample and so a f f e c t the shape of the DTA curve. I n ge n e r a l , 

metal sample holders tend t o give smaller peaks at higher temperatures 

f o r endothermic r e a c t i o n s . The r e l a t i v e advantages and disadvantages 

of block or i s o l a t e d sample holders have been reviewed by Wendlandt^^. 

(d) The p o s i t i o n i n g and s i z e of the thermocouples can make considerable 

d i f f e r e n c e s t o the DTA curves, as du r i n g e n t h a l p i c changes the 

temperature of the sample i s not uniform throughout^^. The two 

thermocouples should be as close as p o s s i b l e t o the centre of t h e i r 

r e s p e c t i v e samples. The thickness of the thermocouple wire must be 

such t h a t the thermal conductance i s not too large and the e l e c t r i c a l 

conductance i s not too sm a l l . (e) The packing of the sample a f f e c t s 

i t s thermal c o n d u c t i v i t y and hence the DTA peak area. 

2.2.3 Simultaneous thermogravimetry and d i f f e r e n t i a l thermal a n a l y s i s 

To reduce the e f f e c t s of v a r i a t i o n s i n experimental c o n d i t i o n s 

when c o r r e l a t i n g TG and DTA data on the same substance, i t i s 

advantageous t o ca r r y out both measurements simultaneously on the same 

instrument. However, as the sample f o r DTA measurements should be 

packed around the thermocouple, t h i s i s not always s a t i s f a c t o r y f o r 

TG studies of r e a c t i o n s i n v o l v i n g gases, where a t h i n layer i s 

pr e f e r a b l e t o reduce d i f f u s i o n e f f e c t s . The use of simultaneous TG-DTA 

measurements cannot be used always t o replace TG and DTA performed 

separately. 

2.2.4 The Massflow thermobalance 

The equipment employed t o study the thermal s t a b i l i t i e s of the 

a l k a l i n e e a r t h metal s u l p h i t e s and the r e a c t i v i t y of a number of 

a l k a l i n e e a r t h metal compounds w i t h sulphur d i o x i d e was a Stanton-

Redcroft Massflow Thermobalance Model MF-H5 F i g , 2.4. 
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Figure 2.4 Diagram of Stanton-Redcroft Massflow balance MF-H5 
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The balance chamber was a 10-gauge copper tube w i t h 10 mm t h i c k 

doors sealed w i t h "0" r i n g s . A water-cooled s i l i c o n e "0" r i n g seals 

the m u l l i t e r e a c t i o n sheath t o the chamber. There are four gas 

e n t r y or e x i t p o r t s , two t o the r e a c t i o n sheath and two t o the main 

balance chamber; a l l are f i t t e d w i t h valves. 

The thermobalance design i n c o r p o r a t e s two beams, one i n s i d e the 

chamber and the other o u t s i d e , the two being coupled by a magnetic 

l i n k . Changes i n weight o c c u r r i n g on the inner beam are t r a n s f e r r e d 

t o the outer beam, detected e l e c t r o n i c a l l y and i n d i c a t e d by an arm 

w i t h a f u l l beam d e f l e c t i o n of 20 mg and s e n s i t i v i t y of 0.2 mg. 

Automatic e l e c t r i c weight loading increases the range of the 

instrument t o the equivalent of ten f u l l beam d e f l e c t i o n s of g a i n or 

l o s s , w i t h o u t a decrease i n s e n s i t i v i t y . This enables weight gains 

or losses of up t o 200 mg t o be f o l l o w e d . 

During o p e r a t i o n , the balance a u t o m a t i c a l l y a r r e s t s and releases 

i t s e l f every f i v e minutes to check t h a t i t i s not s t i c k i n g and t o 

improve the s e n s i t i v i t y w i t h very small weight changes. 

When the thermobalance i s used w i t h the DTA attachment, the 

sample holder c o n s i s t s of an aluminium block 20 mm diameter and 13 mm 

i n depth w i t h two w e l l s each 6.3 mm diameter and 10 mm i n depth t o 

take the c r u c i b l e s . The aluminium head i s . coupled t o the i n t e r n a l 

balance by alumina and s i l i c a rods j o i n e d by an aluminium chuck. Two 

Pt/13% Rh.Pt thermocouples are employed t o detect the temperature 

d i f f e r e n c e between sample and reference (a-alumina), 0.025 mm 

compensated platinum wires pass from the thermocouples down the i n s i d e 

of the alumina and s i l i c a rods to the outside of the balance chamber. 

Further compensated leads are used t o connect the thermocouple^ leads 

w i t h a DC a m p l i f i e r and a constant-reference-temperature i c e - b a t h . 
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The DC a m p l i f i e r has seven pre-set ranges from 20 - 1000 yV; the 

100 yV s e t t i n g was used f o r most measurements. A s i n g l e channel 

Leeds-Northrup Speedomax-W chart recorder i s used w i t h a s w i t c h i n g u n i t , 

enabling the d i f f e r e n t i a l output t o be recorded f o r 4 min 55 s and then 

the temperature recorded f o r 5 s. 

Two matched CO.8 g) platinum c r u c i b l e s w i t h dimples were used 

to c o n t a i n the sample and reference m a t e r i a l . The c r u c i b l e s were 

placed i n the 6.5 mm w e l l s of the alumina head w i t h the thermocouples 

s i t t i n g i n the dimples, so t h a t they were e f f e c t i v e l y surrounded by 

the sample. Alumina c r u c i b l e s were also employed f o r r e a c t i o n s i n 

atmospheres c o n t a i n i n g sulphur d i o x i d e and a i r , t o prevent the 

c a t a l y t i c o x i d a t i o n of sulphur d i o x i d e t o sulphur t r i o x i d e by pla t i n u m . 

With the fou r gas e n t r y and e x i t p o r t s i t was po s s i b l e t o keep 

a n i t r o g e n , or a i r , atmosphere i n the balance chamber and add the 

sulphur d i o x i d e t o the r e a c t i o n chamber. By means of the vacuum pumps, 

the system could be flushed out and then known atmospheres introduced. 

The gases used were a l l obtained from pressurised c y l i n d e r s f i t t e d 

with, f l o w r e g u l a t o r s . The gas flow was monitored by rotameters and 

adjusted as necessary. I n a d d i t i o n , the sulphur d i o x i d e f l o w r a t e s 

were p e r i o d i c a l l y monitored on the o u t l e t side by means of a Leco 

sulphur determinator (see s e c t i o n 2.7). 

The vacuum equipment consisted of a single-stage r o t a r y and 

d i f f u s i o n pump w i t h P i r a n i and Penning gauges. The r o t a r y pump 

enabled the pressure t o be reduced t o 10-1 Pa and w i t h the d i f f u s i o n 

pump t o about 0.01 Pa. 

The platinum-rhodium b i f i l a r wound furnace had a 50 mm bore and 

was closed at the top w i t h a 100 mm deep alumina plug f i l l e d w i t h 

a-alumina powder. The maximum temperature the furnace was rated f o r 
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was 1350°C. The temperature was c o n t r o l l e d by a Stanton-Redcroft 

Eurotherm temperature c o n t r o l l e r w i t h a sensing Pt/13% Rh.Pt 

thermocouple trapped between the m u l l i t e r e a c t i o n sheath and the 

furnace w a l l . The c o n t r o l l e r enabled the h e a t i n g r a t e t o be 

con t i n u o u s l y v a r i e d from 1° t o 20^C min ^ w i t h the maximum temperature 

pre-selected and subsequently held constant. 

I n i t i a l l y , a set of c a l i b r a t i o n curves were recorded t o determine 

the buoyancy c o r r e c t i o n s f o r the thermogravimetric work. This was 

done by using the standard reference m a t e r i a l i n both the sample and 

reference c r u c i b l e s and a h e a t i n g r a t e of 5°C min ^. This procedure 

was repeated w i t h the a p p r o p r i a t e gas atmospheres and f l o w r a t e s . These 

c o r r e c t i o n curves were then a p p l i e d t o the experimental r e s u l t s . 

2,3 Surface area, p o r o s i t y and p a r t i c l e size' 

2.3.1 Determination of surface area 

Surface areas of samples were estimated from the a d s o r p t i o n 

isotherms using the Brunauer, Emmett and T e l l e r ^ ^ (BET) approach. 

The a d s o r p t i o n isotherms, which show the r e l a t i o n s h i p between the 

amount of n i t r o g e n adsorbed, at a f i x e d temperature C77K), and a 

known pressure, were constructed f o r each sample from g r a v i m e t r i c 

measurements made on an e l e c t r i c a l s o r p t i o n balance. 

As the n i t r o g e n was below i t s c r i t i c a l temperature the equation 

expressing the isotherm was of the type^^ 

^ = f(P/Po)T. gas. s o l i d 2.4 

where X = weight of n i t r o g e n adsorbed 

p . = e q u i l i b r i u m pressure 

p^ = s a t u r a t e d vapour pressure 

T = temperature 
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The BET method i s an extension of the work of Langmuir^^, who regarded 

the surface of a s o l i d as an array of adsorption s i t e s of equal energy, 

each s i t e being capable of adsorbing one molecule. The BET theory 

extended the mechanism t o second and higher layers and, i n common w i t h 

the Langmuir theory, the ra t e s of condensation and evaporation were 

assumed t o be equal when e q u i l i b r i u m was reached. Making the f o l l o w i n g 

assumptions l e d t o the BET equation. ( i ) The heat of ad s o r p t i o n i n a l l 

la y e r s above the f i r s t was equal t o the l a t e n t heat of condensation, 

( i i ) The evaporation-condensation constants i n a l l l ayers above the 

f i r s t were i d e n t i c a l . ( i i i ) When the e q u i l i b r i u m pressure, P, became 

equal t o the saturated vapour pressure, P̂ , the adsorbate vapour 

condensed as an o r d i n a r y l i q u i d on to the adsorbed f i l m , so t h a t the 

number of molecular l a y e r s became i n f i n i t e on the surface. 

The BET equation may be expressed as 

xCP -P) cx Cx * p 
o m m o 

where X^ = g of adsorbate per g of s o l i d , when there 

i s a complete monolayer of adsorbate on the 

surface of the s o l i d . 

X = g of adsorbate per g of s o l i d 

C = a constant, which may be equated t o the 

r e l a t i v e l i f e times of molecules i n the f i r s t 

and higher l a y e r s , and i s r e l a t e d t o the net 

heat of a d s o r p t i o n . 

I f equation 2.5 i s p l o t t e d i n the form x/x^ against P/P̂ ,̂ the 

p h y s i s o r p t i o n isotherm produced can be c l a s s i f i e d as belonging t o one of 

s i x types. F i g . 2.5 ( f i v e are members of the Brunauer, Deming, Deming, 

T e l l e r ^ ^ , [BDDT] c l a s s i f i c a t i o n plus the stepwise isotherm i d e n t i f i e d 

more r e c e n t l y ^ ^ ) . The isotherms, determined i n the present work were 

e i t h e r of Type I I or Type IV. The monolayer c a p a c i t y , X^, f o r both 
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Figure 2.5 Types of p h y s i s o r p t i o n isotherms 
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p 
these types may be found by p l o t t i n g ^ against P-ZP̂  and 

^ o 

determining the slope and i n t e r c e p t f o r values of PyP^ below about 0.3. 

From the value of the monolayer c a p a c i t y , X^, i t was p o s s i b l e 

t o f i n d the s p e c i f i c s u r f ace, S, of the s o l i d , being defined as 

the surface area i n square metres of one gram of s o l i d . The 

r e l a t i o n s h i p used was 

S = ^ .N.Am 2.6 

M 

where M = molecular weigh.t of adsorbate 

N = Avogadros number 

Am = area occupied by one molecule of adsorbate i n 

2 

the completed monolayer. A value of 0.162 nm 

at 77 K was taken f o r n i t r o g e n ^ ^ 

A discussion of the t h e o r e t i c a l s i g n i f i c a n c e of the BET method has been 

given by Gregg and Sing^^'^^'^^. 

2.3.2 The s o r p t i o n balance 

The s o r p t i o n balance was designed and constructed f o r the 
2 —1 2 —1 

determination of surface areas w i t h i n the range 0.2 m g to 1000 m g 

using samples of 0.25 g. The balance head used was a "CI microforce 

balance Mark 2B" w i t h f i v e weight ranges, 0-25 ug to 0-100 mg w i t h 

-7 -4 

s e n s i t i v i t i e s of 1 x 10 g and 5 x 10 g r e s p e c t i v e l y . I n p r a c t i c e 

there was too much v i b r a t i o n i n the b u i l d i n g f o r the lowest weight 

range to be operated s a t i s f a c t o r i l y . 

The sample was placed i n an aluminium f o i l bucket suspended from 

the balance w i t h a f i n e pyrex f i b r e (27 cm l o n g ) . This enabled the 

sample t o be at l e a s t 15 cm below the l e v e l of the l i q u i d n i t r o g e n , 

keeping the temperature to w i t h i n ± 0.1 K as p r e v i o u s l y determined by 

Glasson^^. A perspex counterweight was suspended from the other arm 

of the balance. The balance head was coupled by taps and glass t u b i n g 
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to a two-stage r o t a r y pump (enabling the pressure to be reduced t o 

0.1 Pa)., and t o a n i t r o g e n r e s e r v o i r and gauges, the n i t r o g e n pressure 

being measured by a mercury manometer. 

A f t e r the sample had been mounted on the balance, the system was 

evacuated and the sample outgassed at 150°C f o r 20 min (except f o r 

magnesium s u l p h i t e hexahydrate samples which were held at room 

temperature to reduce the r a t e of d e h y d r a t i o n ) . A f t e r c o o l i n g t o room 

temperature, the balance limb c o n t a i n i n g the sample was immersed i n 

l i q u i d n i t r o g e n and allowed to reach e q u i l i b r i u m . N i t r o g e n was admitted 

to the system i n amounts which gave pressure increases o f the order of 

5000 Pa (.40 mm Hg) and i n each case the weight change was recorded when 

e q u i l i b r i i i m had been reached. Readings were taken up to pressures of 

4 4 
3 X 10 Pa or 9.5 X 10 Pa depending on whether s p e c i f i c surface or 

p o r o s i t y determinations were t o be made. Readings were cor r e c t e d f o r 

buoyancy e f f e c t s . 

For some of the studies c a r r i e d out i n t h i s t h e s i s , the balance 

constructed by Glasson and described i n previous work^ was used i n 

thermal s t a b i l i t y and surface area dete r m i n a t i o n s . 

2.3.3 Determination of p o r o s i t y 

The h y s t e r e s i s loop of the Type IV isotherm i s associated w i t h 

c a p i l l a r y condensation i n mesopores (Table 2.1) and t h i s p a r t of the 

isotherm was used f o r p o r o s i t y measurements. 

Table 2.1 lUPAC c l a s s i f i c a t i o n of pores according t o t h e i r w i d t h 
70 

Pore Type Pore Width 

Micropores 

Mesopores 

Macropores 

Less than approx. 2 nm 

Between approx, 2 nm and approx^ 50 nm 

Above approx. 50 nin 
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Comprehensive reviews of the theory of p h y s i c a l adsorption of 

gases by porous s o l i d s have been published by Gregg and Sing^^'^^'^^. 

I f the pores were a l l c y l i n d r i c a l , the K e l v i n equation^^, 2.7, 

applies 

I n (P/P^) = - §f . cos 4- 2.7 

where P^ = saturated vapour pressure of adsorbate at 

temperature T K of the system 

P = vapour pressure i n the c a p i l l a r y ^ 

V = molar volume of l i q u i d adsorbate 

Y = surface t e n s i o n of l i q u i d adsorbate 

<t> = angle of contact between l i q u i d and c a p i l l a r y 

w a l l s (assumed to be 0) 

R = Un i v e r s a l gas constant 

r = radius of c y l i n d r i c a l pore 

Equation 2.7 i s the l i m i t i n g case of the more general expression, 2.8. 

^ = - RTln(P/P ) � 
ds o 

where V = volume of c a p i l l a r i e s 

s = surface area o f c a p i l l a r y w a l l s per g s o l i d 

[ i . e . the s p e c i f i c ( i n t e r n a l ) surface] 

The pore w i l l have a layer of adsorbate already present before c a p i l l a r y 

condensation occurs, and a layer l e f t a f t e r evaporation of the l i q u i d , 

t h e r e f o r e the " K e l v i n r a d i u s " , r , must be c o r r e c t e d . 

r = r + t 
P 

where r = tr u e pore radius 
P 

t = thickness of adsorbed l a y e r 

The value of t may be obtained from the t curve of Lippens and 

72 64 
de Boer or. by c a l c u l a t i o n from equation 2.10 

' = ^'^[2,303 log(VP)^'^' 
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( 

where P^ = sa t u r a t e d vapour pressure of n i t r o g e n 

P = p a r t i a l pressure of n i t r o g e n 

The method of c a l c u l a t i o n of pore s i z e d i s t r i b u t i o n f o l l o w e d t h a t 

d e t a i l e d by Gregg and Sing^^ (p 162-172). 

2.3.4 E s t i m a t i o n of p a r t i c l e s i z e 

A. From s p e c i f i c surface measurements 

The assumption was made t h a t the samples were non-porous s o l i d s 

though t h i s was not t r u e f o r the specimens g i v i n g Type IV isotherms, 

h y s t e r e s i s being a s i g n of p o r o s i t y . The s p e c i f i c surface of a non-

porous s o l i d must be d i r e c t l y r e l a t e d t o the p a r t i c l e s i z e and shape. 

I t would t h e r e f o r e be r e l a t i v e l y easy t o c a l c u l a t e the mean p a r t i c l e 

s i z e i f the p a r t i c l e s were a l l of the same known shape. Assuming a l l 

the p a r t i c l e s to be s p h e r i c a l then 

4Tr(0.5d)^n 

(4/3iT(0.5d)3pn 
2.11 

' = IF 

where d = mean diameter of s p h e r i c a l p a r t i c l e s 

p = d e n s i t y of s o l i d 

s = s p e c i f i c surface of s o l i d 

n = number of p a r t i c l e s 

R e l a t i o n s h i p 2.12 also holds f o r cubic p a r t i c l e s when d becomes the 

edge length of the cube. Other r e l a t i o n s h i p s may be derived f o r other 

p a r t i c l e s of known shape. I n p r a c t i c e , the wide v a r i e t y of sizes and 

shapes found i n a sample means t h a t the expression of s i z e on the 

basis of a s i n g l e dimension i n e v i t a b l y leads to r e s u l t s which d i f f e r 

from the " t r u e " values. However as i n t e r e s t was only d i r e c t e d t o 

general trends i n p a r t i c l e s i z e changes, between s i m i l a r types of 

p a r t i c l e s , s i m p l i f i c a t i o n s were acceptable. The use of s p e c i f i c -

surface c o e f f i c i e n t s ^ ^ t o take account of p a r t i c l e shape v a r i a t i o n has 
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been suggested as these can lead t o closer agreement between sizes 

derived from s p e c i f i c surface measurements and from microscopic 

observations. For tren d a n a l y s i s t h i s i s of no advantage unless 

d i f f e r e n t f a c t o r s are introduced f o r d i f f e r e n t samples. 

B. From X-ray l i n e broadening 

The d i f f r a c t i o n peak obtained from a powder sample ( s e c t i o n 2.6) 

always shows l i n e broadening due to i n s t r u m e n t a l fa c t o r s ^ " ^ such as 

beam divergence, s l i t w i d t h s , specimen s i z e . I n a d d i t i o n , i f the 

c r y s t a l l i t e s i z e i s smaller than about 200 nm f u r t h e r broadening may 

be produced. Larger c r y s t a l s , which do not have l a t t i c e d e f e c t s , 

c o n t a i n numerous p a r a l l e l planes, w i t h constant i n t e r a t o m i c d i s t a n c e s , 

g i v i n g a sharp d i f f r a c t i o n maximum. With smaller c r y s t a l l i t e s the 

number of atomic planes per c r y s t a l l i t e i s less and there i s incomplete 

reinforcement of the waves s c a t t e r e d by successive planes which leads 

to l i n e broadening. 

Line broadening due to cubic c r y s t a l l i t e s may be expressed by 

equation 2.13 

= 2.13 
t dcos9 

where B^ = broadening 

C = constant (approximately 1) 

X = X-ray wavelength 

d = edge le n g t h of c r y s t a l l i t e 

6 = Bragg angle 

Thus l i n e broadening i s n e g l i g i b l e i f d > 10 ^ m. 

The i n s t r u m e n t a l broadening was determined using a s i n g l e 

74 

c a l c i t e c r y s t a l . The Jones method was employed t o c a l c u l a t e the 

average c r y s t a l l i t e s i z e . 
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Copper r a d i a t i o n was used. This was composed of a doublet 

w i t h a f i n i t e breadth, z, which was c a l c u l a t e d from equation 2.14. 

z = ctanB 2.14 

where 6 = angle of c a l c i t e d i f f r a c t i o n peak used 

c = constant (0.285 f o r copper K r a d i a t i o n ) 

a 

Using the Jones c o r r e c t i o n curve. F i g . 2.6, of b/B^ against z/B^, a 

cor r e c t e d l i n e breadth, b, was obtained (B^ was the measured half-peak 

breadth of the c a l c i t e peak), A f u r t h e r c o r r e c t i o n f o r i n s t r u m e n t a l 

broadening was appl i e d by the curve B^/B against b/B, F i g , 2.7, where 

B^ was the t r u e d i f f r a c t i o n breadth, b was the corr e c t e d breadth f o r 

c a l c i t e and B was the measured half-peak breadth f o r the specimen. 

The mean c r y s t a l l i t e size could then be c a l c u l a t e d from equation 2.13, 

C, From examination using o p t i c a l and e l e c t r o n microscopes. 

Both these methods allowed d i r e c t o b s e r v a t i o n o f the p a r t i c l e s 

or aggregates, so t h a t the size and shape c h a r a c t e r i s t i c s could be 

determined. However, t h i s s o r t of a n a l y s i s i s very time-consuming 

and the r e t u r n of i n f o r m a t i o n obtained was not thought worthwhile i n 

the present study. Therefore, only general observations of s i z e and 

shape v a r i a t i o n s were made. 

I n the case of o p t i c a l microscopy, the small s i z e of many of 

the p a r t i c l e s made ob s e r v a t i o n d i f f i c u l t . 

The method of p r e p a r a t i o n of the samples f o r the e l e c t r o n 

microscope ( s e c t i o n 2.4.3) meant t h a t the l a r g e r p a r t i c l e s were not 

present on the g r i d s , thus b i a s i n g the observations towards the 

smaller p a r t i c l e s i z e s . 

2.4 E l e c t r o n Microscopy 

2.4.1 The e l e c t r o n microscope 

Samples were examined by transmission i n a P h i l i p s EM 300 e l e c t r o n 

microscope. This had a v e r t i c a l tube, w i t h the e l e c t r o n gun at the top 
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Figure 2.6 C o r r e c t i o n o f observed l i n e breadth f o r f a c t 

i t i s formed by a doublet 

b/B 

Figure 2.7 C o r r e c t i o n of l i n e breadth f o r e f f e c t of 

i n s t r u m e n t a l broadening 
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and a f l u o r e s c e n t screen at the bottom t o a l l o w viewing of the sample 

images. An a c c e l e r a t i n g v o l t a g e of 80 kV was used and the app r o p r i a t e 

m a g n i f i c a t i o n f a c t o r was sel e c t e d f o r the specimen under observation. 

The specimens were prepared as d e t a i l e d i n s e c t i o n 2.4.3. 

The microscope could be used e i t h e r i n transmission mode, which 

allowed the normal transmission image t o be s t u d i e d , or i n the 

d i f f r a c t i o n mode, which produced an e l e c t r o n d i f f r a c t i o n image of the 

c r y s t a l l i t e s under o b s e r v a t i o n . E l e c t r o n d i f f r a c t i o n s tudies were 

u n s a t i s f a c t o r y w i t h many samples because they were too t h i c k (>30 nm) 

to give d i f f r a c t i o n p a t t e r n s . The focussed images were photographed 

as necessary, using e i t h e r 35 mm f i l m or 3 1/3" by 4" p l a t e s (or cut 

f i l m ) . The 35 mm camera was quicker t o operate (an advantage f o r 

observations made when the hot-stage was being used) than the p l a t e 

camera, but the q u a l i t y of the photomicrographs was not so high as w i t h 

the l a r g e r p l a t e s . 

2.A.2 Hot-stage e l e c t r o n microscopy 

The e l e c t r o n microscope was mainly used i n c o n j u n c t i o n w i t h the 

P h i l i p s PW 6550 h e a t i n g holder which allowed the sample t o be s t u d i e d 

as i t was heated i n s i d e the e l e c t r o n microscope. I n the hea t i n g 

holder the specimen g r i d was clamped t o a small furnace element. A 

thermocouple was welded to the furnace and was used t o monitor the 

temperature. The temperature c o n t r o l u n i t contained the cu r r e n t supply 

f o r the heater and the c i r c u i t r y necessary t o measure the voltage 

generated by the thermocouple. N i c k e l specimen g r i d s , w i t h a carbon 

f i l m , were mounted i n the holder between p l a t i n u m conduction r i n g s and 

these were h e l d i n p o s i t i o n by a s p r i n g c l i p . The conduction r i n g s 

were used p r i m a r i l y t o prevent welding of the g r i d t o the furnace element 

The temperature was r a i s e d by i n c r e a s i n g the a p p l i e d voltage w i t h 

the c u r r e n t held at a constant value. The maximum temperature 

a t t a i n a b l e was lOOO^C. 
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A number of problems were found i n the use of t h i s equipment, 

(.a) The temperature of the specimen was not n e c e s s a r i l y the same as 

the temperature of the g r i d . This was p a r t i c u l a r l y the case f o r 

c r y s t a l s d i r e c t l y under the e l e c t r o n beam which were, t h e r e f o r e , 

absorbing energy from the beam. At h i g h m a g n i f i c a t i o n s the beam was 

focussed over a very small area and the more electron-opaque m a t e r i a l s 

absorbed a r e l a t i v e l y l arge amount of energy. As a r e s u l t , i t was not 

always p o s s i b l e to use the higher m a g n i f i c a t i o n s to study the lower 

temperature r e a c t i o n s , (b) During and a f t e r temperature changes, 

the p o s i t i o n of the specimen r e l a t i v e to the beam changed, i . e . there 

was specimen d r i f t . This meant t h a t though i t was p o s s i b l e to observe 

th e p a r t i c l e s , and any changes o c c u r r i n g , on the f l u o r e s c e n t screen, 

i t was very d i f f i c u l t t o o b t a i n good q u a l i t y photomicrographs. During 

the time i t took to operate the camera, the p a r t i c l e s would have moved 

s l i g h t l y and no longer be i n sharp focus. This was an acute problem 

at h igh m a g n i f i c a t i o n s where focussing was a very s e n s i t i v e o p e r a t i o n . 

Observations over a wide temperature range r e q u i r e d long periods at 

each temperature, to w a i t f o r the d r i f t t o be reduced t o acceptable 

p r o p o r t i o n s . I n g e n e r a l , the smaller the increase i n temperature, 

the s h o r t e r the w a i t . The photographic r e c o r d i n g of changes as they 

a c t u a l l y happened posed great problems. 

The i n f o r m a t i o n provided by the use of the h e a t i n g holder could 

only be considered as q u a l i t a t i v e as f a r as r e l a t i n g observed changes 

to temperature was concerned. 

2.4.3 P r e p a r a t i o n of specimens 

Samples were dispersed i n dry acetone, t o prevent h y d r a t i o n and 

s o l u t i o n e f f e c t s . The sample was added to a stoppered tube c o n t a i n i n g 

acetone and then dispersed by immersing the tube i n an u l t r a - s o n i c 

bath. A drop of the suspension was t r a n s f e r r e d , by means of a f r e s h l y 
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drawn m i c r o p i p e t t e , t o a carbon f i l m which was supported on a nic l c e l 

g r i d . The acetone evaporated r a p i d l y l e a v i n g the sample p a r t i c l e s 

s c a t t e r e d over the carbon f i l m . 

For specimens being st u d i e d on the hot-stage n i c k e l g r i d s , 3.1 mm 

diameter, w i t h 50 micron p e r f o r a t i o n s were used, but f o r non-heating 

observations standard copper g r i d s of the same dimensions were used 

(copper g r i d s would fuse at the upper temperature range of the h o t -

stage) . 

This method of p r e p a r a t i o n meant t h a t the coarser p a r t i c l e s 

and aggregates were not t r a n s f e r r e d t o the g r i d s . The s i z e d i s t r i b u t i o n 

observed w i t h the e l e c t r o n microscope was, t h e r e f o r e , weighted towards 

the smaller s i z e range. 

2.5 O p t i c a l 'Microscopy 

The thermal s t a b i l i t i e s of the a l k a l i n e , earth, metal s u l p h i t e s 

were s t u d i e d , i n a i r , at temperatures up t o 350*̂ C on a Reichert h o t -

stage microscope. This was a low power p o l a r i s i n g microscope w i t h an 

e l e c t r i c a l l y heated hot-stage. A c o n t r o l u n i t adjusted the a p p l i e d 

v o l t a g e so t h a t the temperature could be increased a t v a r y i n g r a t e s . 

The temperature was read from s p e c i a l l y constructed thermometers which 

f i t t e d i n t o the hot-stage and the instrument was c a l i b r a t e d w i t h pure 

organic compounds of known m e l t i n g p o i n t s . 

2.6 X-Ray D i f f r a c t i o n 

2.6,1 General theory 

Comprehensive surveys of the theory and p r a c t i c e of X-ray 

d i f f r a c t i o n as appl i e d t o s i n g l e c r y s t a l s and powder samples have been 

75 73 
given by Stout and Jensen , and Lipson and Steeple . 

C r y s t a l s c o n s i s t of re g u l a r three-rdimensional arrays of atoms 
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i n space. Points which have i d e n t i c a l surroundings w i t h i n a s t r u c t u r e 

are known as l a t t i c e p o i n t s . A c o l l e c t i o n of l a t t i c e p o i n t s forms a 

c r y s t a l l a t t i c e . When adjacent l a t t i c e p o i n t s are j o i n e d together a 

u n i t c e l l i s obtained; t h i s i s the smallest convenient repeating u n i t 

of the s t r u c t u r e . I n gen e r a l , the u n i t c e l l i s a p a r a l l e l e p i p e d , 

but i t may have a more regu l a r shape. 

The s i z e and shape of a u n i t c e l l can be described by the 

lengths of i t s three edges (a,b,c) and the angles between them (.a,0,Y)» 

i . e . the angle between a and b i s Y. Crystals can be c l a s s i f i e d 

i n t o seven c r y s t a l systems, Table 2.2, according t o the symmetry of 

t h e i r u n i t c e l l s . When the a c t u a l atoms or molecules which are 

associated w i t h each l a t t i c e p o i n t are taken i n t o c o n s i d e r a t i o n 

f u r t h e r symmetry operations become possi b l e t o give a t o t a l of 230 

space groups. 

Table 2.2 C r y s t a l systems 

C r y s t a l system 
Conditions l i m i t i n g 

c e l l dimensions 

C h a r a c t e r i s t i c 

symmetry. 

Cubic a = b = c a = B = Y = 90° Four t h r e e - f o l d axes 

Tetragonal a = b 3̂  C a = 3 = Y = 90° One f o u r - f o l d axis 

Orthorhombic a f b c a - 3 = Y = 90° Two perpendicular 

t w o - f o l d axes or two 

perpendicular planes 

of symmetry 

T r i g o n a l a = b = c a = 3 = Y < 120° 
^ 90° One t h r e e - f o l d a xis 

Hexagonal a = b 3̂  c a = 3 = 90°, 
Y = 120° One s i x - f o l d a x is 

Monoclinic a 3̂  b ?̂  c a = 3 = 90°, 
Y 3* 90° One two-rfold a xis 

T r i c l i n i c a * b f c a 5̂  3 3̂  Y 5̂  90° One-rfold only 
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Various sets of p a r a l l e l planes may be drawn through the l a t t i c e 

p o i n t s . Each set o f planes can be completely described by three 

i n t e g e r s , h, k and 1, known as the M i l l e r i n d i c e s , where the i n t e r c e p t s 

made by the plane w i t h the u n i t c e l l edges are a/h, b/k, and c/1 

r e s p e c t i v e l y . The plane, t h e r e f o r e , i s described as the ( h k l ) plane 

and would produce the h k l X-ray r e f l e c t i o n . 

As the dimensions of a c r y s t a l l a t t i c e are of the same order of 

magnitude as the X-ray wavelength employed, the l a t t i c e behaves 

as a three-dimensional d i f f r a c t i o n g r a t i n g . A d i f f r a c t i o n maximum 

i s formed when the rays s c a t t e r e d from each plane o f a set are i n 

phase. The c o n d i t i o n s f o r t h i s maximum are given by Bragg*s equation^^ 

2d sine = nX 2.15 ' 

where X = X-ray wavelength 

n = order of r e f l e c t i o n ' 

d = i n t e r p l a n a r spacing of l a t t i c e plane 

e = angle of incidence of the X-ray beam to 

the set of l a t t i c e planes - "the Bragg 

angle" 

The i n t e n s i t y and d i s t r i b u t i o n of the d i f f r a c t e d beam w i t h respect t o 

the Bragg angle, 9, i s c h a r a c t e r i s t i c of a p a r t i c u l a r s t r u c t u r e . For 

s i n g l e c r y s t a l s , the d i f f r a c t i o n caused by a set of l a t t i c e planes 

i s a s i n g l e beam. For a powder, which can be considered t o be a 

mass of randomly o r i e n t a t e d c r y s t a l s , the r e s u l t i n g d i f f r a c t i o n w i l l 

produce a cone of X-rays, w i t h i t s apex at the specimen and i t s axis 

i n the d i r e c t i o n of the i n c i d e n t X-ray beam. Therefore, on a 

photographic p l a t e the s i n g l e c r y s t a l produces i n d i v i d u a l spots and 

the powder gives c i r c l e s (or curved l i n e s ) , The l a r g e r the c r y s t a l s 

i n the powder, the more " s p o t t y " i s the l i n e . 

Powder d i f f r a c t i o n p a t t e r n s of many c r y s t a l l i n e m a t e r i a l s are 

l i s t e d i n the ASTM t a b l e s ^ ^ , thus enabling phases to be i d e n t i f i e d ^ 
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As shown i n s e c t i o n 2.3.4, broadening of the d i f f r a c t i o n peaks may be 

used to estimate the size of the c r y s t a l l i t e s i n the powder. 

2.6.2 Procedure f o r X^ray powder d i f f r a c t i o n 

The H i l g e r and Watts X-ray generator was f i t t e d w i t h a P h i l i p s 

X-ray tube and copper t a r g e t . Voltage and current s e t t i n g s of 40 kV 

and 20 mA r e s p e c t i v e l y were used. The X-rays generated were f i l t e r e d 

w i t h n i c k e l f o i l to reduce the K component, passed through a c o l l i m a t o r 

p 

and s l i t s before s t r i k i n g the specimen mounted v e r t i c a l l y at the 

centre of a 50 cm Be r t h o l d d i f f r a c t i o n t a b l e . The d i f f r a c t e d rays 

were detected by a g a s - f i l l e d p r o p o r t i o n a l counter connected to a 

d i s c r i m i n a t o r / r a t e m e t e r and a Honeywell c h a r t recorder. 

The t a b l e was ali g n e d and c a l i b r a t e d w i t h a s i n g l e c a l c i t e 

c r y s t a l . 

Specimens were prepared by mixing the powdered m a t e r i a l w i t h 

acetone and pouring the suspension on to a microscope cover s l i p . 

The acetone evaporated, l e a v i n g the sample adhering to the s l i p . 

(Occasionally a drop of the adhesive " D u r o f i x " was added t o the 

acetone/powder mixture to make the sample adhere to the s l i p . ) 

For phase composition a n a l y s i s , the t a b l e was r o t a t e d at one 

degree per minute and the chart paper at t h i r t y inches per hour; 

t h i s gave a t r a c e of the i n t e n s i t y of the d i f f r a c t e d r a d i a t i o n a g a i n s t 

Bragg angle, i n degrees, w i t h a spacing of 0.5 i n per degree. The 

i n t e g r a t i n g time constant was 3 seconds. 

For l i n e broadening measurements the s l i t s were reduced t o a 

minimum to reduce the e f f e c t of i n s t r u m e n t a l broadening. The t a b l e 

was r o t a t e d at 0.1 degree per minute and the selected peak scanned. 

Chart speed was t h i r t y inches per hour and i n t e g r a t i n g time constant 

3 seconds. 
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2.6.3 Procedure f o r s i n g l e c r y s t a l X-ray d i f f r a c t i o n 

For s i n g l e c r y s t a l s , the d i r e c t i o n s of the emergent beams are 

s u f f i c i e n t t o determine the u n i t c e l l dimensions; the systematic 

absences of r e f l e c t i o n s from c e r t a i n planes provide i n f o r m a t i o n about 

the symmetry elements present i n the c r y s t a l ; w h i l s t , a knowledge of 

the i n t e n s i t i e s of the i n d i v i d u a l d i f f r a c t e d rays i s necessary f o r 

the d e t e r m i n a t i o n of the atomic parameters of the s t r u c t u r e . The 

d i r e c t i o n s and i n t e n s i t i e s of the d i f f r a c t e d beams may be recorded 

using photographic f i l m or by the use of a d i f f r a c t o m e t e r . 

O s c i l l a t i o n photographs were taken by o s c i l l a t i n g the c r y s t a l , 

mounted on a glass f i b r e , about one of i t s a x i a l d i r e c t i o n s i n a 

c y l i n d r i c a l camera. The d i f f r a c t i o n maxima were, arranged i n la y e r s 

and the spacing, h, between the la y e r s was r e l a t e d t o the c e l l 

dimension, q, along the c r y s t a l a xis under c o n s i d e r a t i o n , 

q = nX 2,16 

s i n ( t a n " ^ h / r ) 

where A = X-ray wavelength 

r = radius of camera 

n = i n t e g e r (*'layer number") 

More pre c i s e c e l l dimensions were l a t e r obtained from Weissenberg 

photographs c a l i b r a t e d w i t h gold w i r e . 

Weissenberg photographs of the i n d i v i d u a l layers shown on the 

o s c i l l a t i o n photographs were taken by screening a l l o ther layers and 

photographing the r e q u i r e d one, w h i l e the f i l m was moved i n c o n j u n c t i o n 

w i t h the r o t a t i o n of the c r y s t a l . An Enraf-Nonius Weissenberg camera 

was used i n c o n j u n c t i o n w i t h copper Ka r a d i a t i o n . The zero and f i r s t 

l a y e r Weissenberg photographs taken about two separate axes were used 

to determine the space group from the systematic absences. 
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The d e n s i t y of the c r y s t a l s was measured by the f l o t a t i o n method. 

From a knowledge of the c e l l dimensions^ molecular weight and d e n s i t y 

i t was p o s s i b l e t o determine the number of molecules per u n i t c e l l . 

z = pVN 2,17 

M 

where z = number of molecules per u n i t c e l l 

p = density of c r y s t a l 

V = volume of u n i t c e l l 

N = Avogadrds Number 

M = molecular weight 

I n t e n s i t i e s were c o l l e c t e d w i t h the Weissenberg camera, using a 

f o u r - f i l m pack to extend the range of i n t e n s i t i e s c o l l e c t e d at one 

time. The more intense r e f l e c t i o n s had t h e i r i n t e n s i t i e s attenuated 

by each successive f i l m u n t i l they were reduced t o measurable values. 

The c r y s t a l was mounted about each axis i n t u r n and i n t e n s i t y data 

c o l l e c t e d from a number of l a y e r s . The i n t e n s i t i e s were measured by 

comparison w i t h the i n t e n s i t i e s of a c a l i b r a t e d set of spots. The 

c a l i b r a t e d spots were produced by exposing d i f f e r e n t p o r t i o n s of a 

f i l m to the X-rays d i f f r a c t e d by a s i n g l e set of planes f o r a s e r i e s 

of known exposure times. 

The measured values were corrected f o r a number of e f f e c t s , 

( i ) The unpolarised i n c i d e n t X-ray beam i s p a r t i a l l y p o l a r i s e d on 

d i f f r a c t i o n by a c r y s t a l . This causes a d i m i n u i t i o n of the i n t e n s i t y 

which increases w i t h the angle of r e f l e c t i o n . The phenomenon i s 

c a l l e d the p o l a r i s a t i o n e f f e c t . ( i i ) The Lorentz e f f e c t i s caused by 

the r e l a t i v e time any c r y s t a l plane spends w i t h i n the narrow angular 

range over which r e f l e c t i o n occurs and the value depends upon the 

p o s i t i o n of the plane and the i n t e n s i t y c o l l e c t i n g device used. The 

Lorentz and p o l a r i s a t i o n f a c t o r s are normally ap p l i e d together when 

the c o r r e c t i o n s are made, A prepared computer program f o r these 

c o r r e c t i o n s was used., ( i i i ) The spots on the higher lay e r Weissenberg 
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photographs are extended on one h a l f of the f i l m and conq)acted on the 

other h a l f . The extended spots were measured and the P h i l i p s spot 

shape c o r r e c t i o n was a p p l i e d , A program was w r i t t e n t o carry out t h i s 

c o r r e c t i o n , ( i v ) Absorption and e x t i n c t i o n e f f e c t s were not c o r r e c t e d 

The i n t e n s i t i e s from d i f f e r e n t l a y e r s were put on a common scale 

by r e c a l c u l a t i n g the c o r r e c t e d values so t h a t r e f l e c t i o n s common t o 

more than one layer had the same values. These scaled and co r r e c t e d 

values were used t o compute a three-dimensional P a t t e r s o n map. This 

enabled the p o s i t i o n s of the calcium atoms t o be determined. A s e r i e s 

of F o u r i e r s y n t h e s i s were computed and from the e l e c t r o n d e n s i t y maps 

produced, the p o s i t i o n s of the sulphur and oxygen atoms were e v e n t u a l l y 

determined. 

The d e t a i l s f o r s o l v i n g the s t r u c t u r e of calcium s u l p h i t e 

hemihydrate are provided i n Chapter Three, 

2,7 F l u i d i s e d Bed Studies 

A f l u i d i s e d bed system which could operate at temperatures up to 

400°C was constructed to study the absorp t i o n of sulphur d i o x i d e by 

limestone and r e l a t e d commercial m a t e r i a l s . A schematic diagram of the 

apparatus i s given i n F i g . 2.8. 

The f l u i d i s e d bed, F, was contained i n a glass tube 400 mm l o n g , 

35 ram diameter, above a p o r o s i t y 2 s i n t e r e d glass d i s c , which acted as 

a gas d i s t r i b u t o r . The r e a c t i o n tube was surrounded by two 750 watt 

e l e c t r i c a l tube h e a t e r s , A, w i t h a d j u s t a b l e heat o u t p u t s . The upper 

p o r t i o n of the r e a c t i o n tube was i n s u l a t e d w i t h removable glass f i b r e 

t u b i n g . Above the r e a c t i o n tube there was an expansion chamber, E, to 

reduce the carry-over of f i n e s by the gas stream. The temperature of 

the f l u i d i s e d bed was measured by a chromel-alumel thermocouple, T, i n 

a glass sheath t o p r o t e c t i t from the a c t i o n of the bed contents. The 

gases were su p p l i e d from pressurised containers f i t t e d w i t h flow-rvalves 
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KEY FOR Figure 2.8 

A Tube heaters 

B Pre-heater 

C Water-cooled condenser 

D SO2 absorbing s o l u t i o n (6% ^20^) 

E Expansion chamber 

F F l u i d i s e d bed 

L Leco sulphur determinator 

T Thermocouple 

W Water bath 



Figure 2.8 Apparatus used i n f l u i d i s e d - b e d studies 

eg 

o 

P3 
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and the f l o w r a t e s were monitored w i t h rotameters and manometers. 

Water vapour was- added to the gases by bubbling the a i r and n i t r o g e n 

supplies through water h e l d a t 65°C i n a constant-temperature water 

bath, W. Heating tape was used to prevent condensation before the 

moist gas entered the pre-he?ter, B. The sulphur d i o x i d e was added 

to t h e gas stream j u s t before the pre-heater, which consisted of a 

tube, c o n t a i n i n g alumina granules, i n a tube furnace. The furnace 

was switched on and brought to temperature several hours before a 

run was made, to a l l o w the heat-exchanging granules t o come t o a 

steady temperature. 

The e x i t gases from the f l u i d i s e d bed, a f t e r l e a v i n g the 

expansion chamber, passed through a water cooled condenser, C, 

before e i t h e r being bubbled through 6% hydrogen peroxide s o l u t i o n , 

D, or the Leco sulphur determinatpr ( L ) . The hydrogen peroxide 

s o l u t i o n absorbed a l l the sulphur d i o x i d e , and t i t r a t i o n of the 

contents of the three gas a b s o r p t i o n vessels w i t h standard O.IM NaOH 

enabled the q u a n t i t y of sulphur d i o x i d e absorbed t o be determined. 

"2°2 * * "2^°4 

The c o n c e n t r a t i o n of sulphur d i o x i d e i n the exhaust gases was 

determined by the use of the Leco sulphur determinator, 

The Leco sulphur determinator consisted of a c e l l c o n t a i n i n g 

potassium i o d a t e , excess potassium i o d i d e , h y d r o c h l o r i c acid and 

s t a r c h as i n d i c a t o r . The i o d i n e released gave the s o l u t i o n a blue 

colour and the i n t e n s i t y of t h i s colour was measured by a lamp, 

f i l t e r , and p h o t o c e l l w i t h a c u r r e n t meter. Sulphur d i o x i d e i n the 

gases passing through the c e l l reacted w i t h the iodine and reduced 

the i n t e n s i t y of the blue c o l o u r . 

KIO^ + SKI + 6HC1 > 6KC1 * 3\i^0 + 3I2 
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S02 + l 2 + 2H2O y H2S0^ + 2HI 

Standardised potassi*um iodate s o l u t i o n was i n the b u r e t t e and 

potassium i o d i d e s o l u t i o n , d i l u t e h y d r o c h l o r i c a c i d and s t a r c h were 

added to the r e a c t i o n c e l l . A small a l i q u o t of potassium iodate 

s o l u t i o n was added from the b u r e t t e t o give a small constant reading 

on the meter. This reading was taken as the "zero" reading. Another 

a l i q u o t of potassium ioda t e s o l u t i o n was added and i t s volume 

recorded. The sulphur d i o x i d e c o n t a i n i n g gases were bubbled through 

the c e l l u n t i l the meter r e t u r n e d t o the "zero value". The time 

and r a t e of f l o w of the gas was noted. The c o n c e n t r a t i o n o f the 

sulphur d i o x i d e i n the gas could then be c a l c u l a t e d . The 

s e n s i t i v i t y of d e t e c t i o n of sulphur d i o x i d e could be v a r i e d by 

changing the co n c e n t r a t i o n of potassium ioda t e and the size of 

a l i q u o t added. 

120 g-samples of dry absorbent were added t o the r e a c t i o n 

tube to form a bed about 100 mm deep. The tube he a t e r s , A, were 

switched on and the bed and i t s contents allowed t o heat up. Short 

b u r s t s of dry n i t r o g e n were passed through the bed to give some 

degree of mixing d u r i n g the pre-heating p e r i o d . When e q u i l i b r i u m 

had been reached, the r e q u i r e d gas mixture was passed through the 

bed, at a r a t e s u f f i c i e n t t o give f l u i d i s a t i o n , f o r measured 

periods of time. The pressure b u i l d - u p i n the apparatus was about 

670 Pa (5 cm Hg), The amount of sulphur d i o x i d e absorbed by the » 

f l u i d i s e d bed was determined from the d i f f e r e n c e between the q u a n t i t y 

of sulphur d i o x i d e added to the gas stream and the q u a n t i t y found 

i n the e x i t gases. A f t e r the r e a c t i o n , the s o l i d sample was 

analysed f o r sulphur uptake and sieved t o determine the increase i n 

" f i n e s " d u r i n g f l u i d i s a t i o n . 
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2.8 Chemical Analysis 

Standard methods^^'^^" of chemical analyses were used to 

determine the composition of samples. The mixtures of s u l p h i d e , 

s u l p h i t e and sulphate were analysed by the method given by Mocek 
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and Erdos , B r i e f l y , thi's was addi'tion of carbon d i o x i d e t o a 

b o i l i n g suspension of the specimen, i n water, and a b s o r p t i o n of the 

released hydrogen s u l p h i d e by cadmium acetate s o l u t i o n , f o l l o w e d by 

the a d d i t i o n of d i l u t e h y d r o c h l o r i c a c i d to the suspension and 

ab s o r p t i o n of any remaining hydrogen s u l p h i d e , plus the sulphur 

d i o x i d e released, i n a mixture of cadmium acetate and potassium 

hydroxide s o l u t i o n s . The cadmium sulphide p r e c i p i t a t e s and the 

potassium s u l p h i t e s o l u t i o n were each added t o i o d i n e s o l u t i o n and 

the excess i o d i n e determined by t i t r a t i o n w i t h standard sodium 

t h i o s u l p h a t e s o l u t i o n . The sulphate was determined g r a v i m e t r i c a l l y 

by the a d d i t i o n of barium c h l o r i d e s o l u t i o n to the a c i d i f i e d 

specimen s o l u t i o n . 
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CHAPTER THREE 

THE PREPARATION AND DETERMINATION OF SOME CRYSTALLOGRAPHIC PROPERTIES 

OF ALKALINE EARTH METAL SULPHITES 

The a l k a l i n e e a r t h metal s u l p h i t e s used f o r the thermal s t a b i l i t y 

s t u d i e s d e t a i l e d i n chapter 4 were prepared by the methods i n d i c a t e d 

below. 

At the commencement of the work presented i n t h i s t h e s i s the 

c r y s t a l s t r u c t u r e s of the a l k a l i n e e a r t h metal s u l p h i t e s were not 

known. The s o l u b i l i t i e s of s t r o n t i u m and barium s u l p h i t e s were such 

that only v e r y s m a l l c r y s t a l s were produced and these were too s m a l l 

f o r s i n g l e c r y s t a l X-ray d i f f r a c t i o n methods. Calcium s u l p h i t e 

hemihydrate c r y s t a l s were somewhat l a r g e r and i t was thought t h a t 

c r y s t a l s of a s u i t a b l e s i z e might be grown. Magnesium s u l p h i t e 

hexahydrate produced much l a r g e r c r y s t a l s , but the r e l a t i v e l i g h t n e s s 

of the magnesium atom made t h i s s t r u c t u r e l e s s a t t r a c t i v e f o r an 

i n i t i a l d e t e r m i n a t i o n by photographic methods w i t h the equipment 

a v a i l a b l e . I n i t i a l powder d i f f r a c t i o n s t u d i e s confirmed the r e s u l t s 
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of Matthews and Mcintosh t h a t the p a t t e r n s of hydrated and anhydrous 

c a l c i u m s u l p h i t e were ve r y s i m i l a r thus i n d i c a t i n g l i t t l e d i f f e r e n c e 

between t h e i r s t r u c t u r e s . The s t r u c t u r e of c a l c i u m s u l p h i t e hemihydrate 

might, t h e r e f o r e , provide a good approximation f o r the s t r u c t u r e of 

anhydrous c a l c i u m s u l p h i t e which might, i n t u r n , be used as a model 

to cover the s t r u c t u r e s of the other anhydrous a l k a l i n e e a r t h metal 

s u l p h i t e s . 

The major f e a t u r e s of the s t r u c t u r e of c a l c i u m s u l p h i t e hemi-

hydrate had been determined when a f u l l s t r u c t u r a l a n a l y s i s , based on 
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d i f f r a c t o m e t e r measurements, was p u b l i s h e d by Schropper . As the 

major f e a t u r e s of the two d e t e r m i n a t i o n s agreed and as the data obtained 

by a d i f f r a c t o m e t e r i s of h i g h e r q u a l i t y than t h a t determined by 
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photographic methods, f u r t h e r refinement of the present author's d a t a , 

which would have i n v o l v e d a r e d e t e r m i n a t i o n of the i n t e n s i t y data, 

was not c a r r i e d out. 
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The s t r u c t u r e of magnesium s u l p h i t e hexahydrate was published 

d u r i n g t h i s p e riod as w e l l . 

The powder d i f f r a c t i o n p a t t e r n s of s t r o n t i u m and barium s u l p h i t e 

were indexed and the c e l l parameters determined. 

3.1 Magnesium S u l p h i t e 

3.1.1 P r e p a r a t i o n of magnesium s u l p h i t e hexahydrate 

C r y s t a l s of magnesium s u l p h i t e hexahydrate were prepared by 
3 3 

adding 250 cm 3M sodium s u l p h i t e s o l u t i o n to 250 cm 4M magnesium 

sulphate s o l u t i o n and a l l o w i n g to stand overnight under an atmosphere 

of n i t r o g e n 

}^a^SO^ + MgSO^ + 6H2O > MgSO^.BH^O + Na2S0^ 

The c o l o u r l e s s c r y s t a l l i n e product was f i l t e r e d under reduced 

p r e s s u r e , washed w i t h c o l d de-oxygenated water, and then w i t h acetone. 

The c r y s t a l s were d r i e d and s t o r e d i n a d e s i c c a t o r over s i l i c a g e l . 

Chemical a n a l y s i s i n d i c a t e d the product was 99.6% pure. T a b l e 3.1.1. 

Table 3.1.1 Composition of prepared magnesium s u l p h i t e hexahydrate 

Component 
Percentage Composition 

A c t u a l T h e o r e t i c a l 

Magnesium 

S u l p h i t e 

Water 

Sulphate 

11.5 

37.6 

50.6 

0.3 

11.45 

37.7 

50.85 

The water used i n a l l s t a g e s of the above p r e p a r a t i o n was 

de-oxygenated by b o i l i n g d i s t i l l e d water v i g o r o u s l y f o r f i v e minutes 
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and bubbling n i t r o g e n through c o n t i n u o u s l y d u r i n g the l a t t e r s t a g e s of 

b o i l i n g and as the water cooled to room temperature. Analar BDH 

sodium s u l p h i t e heptahydrate and magnesium s u l p h a t e heptahydrate were 

used f o r the a p p r o p r i a t e s o l u t i o n s . A number of batches of magnesium 

s u l p h i t e hexahydrate were prepared and the p u r e s t batch used i n 

subsequent experiments. 

3.1.2 S t r u c t u r e of magnesium s u l p h i t e hexahydrate 
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F l a c k found t h a t MgS0^.6H20 c r y s t a l l i s e d i n the space group 

R3 w i t h a = 8.830 X, c = 9-075 S (hexagonal a x e s ) and z = 3. The 

s t r u c t u r e c o n s i s t e d of a s l i g h t l y d i s t o r t e d C s C l arrangement of 
2+ 2— 

o c t a h e d r a l Vigi^^O)^ and pyramidal SO^ i o n s w i t h 0-S-O angles 

of 103.9°. 
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Koehler and Burns r e p o r t e d that MgSO^-3H20 was orthorhombic 

of space group Pbn2i, c o n t a i n i n g 4 molecules per u n i t c e l l , w i t h 

a = 9.36 8; b = 9.45 8; c = 5.51 8. A c l e a r powder d i f f r a c t i o n 

p a t t e r n f o r anhydrous magnesium s u l p h i t e was not obtained due to the 

dehydration products being so f i n e t h a t e x c e s s i v e l i n e broadening 
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o c c u r r e d . T h i s same phenomenon was reported by Okabe and Hori 

3.2 Calcium S u l p h i t e 

3.2.1 P r e p a r a t i o n of c a l c i u m s u l p h i t e hemihydrate 

A. For thermal s t a b i l i t y s t u d i e s . 

The water used i n the p r e p a r a t i o n of the s o l u t i o n s was 

de-oxygenated by the method d e s c r i b e d i n 3,1.1. The c r y s t a l s of 

c a l c i u m s u l p h i t e hemihydrate were p r e c i p i t a t e d by mixing 250 cm^ 

IM sodium s u l p h i t e s o l u t i o n w i t h 250 cm^ IM c a l c i u m c h l o r i d e 

s o l u t i o n . The p r e c i p i t a t e was f i l t e r e d o f f u s i n g reduced p r e s s u r e 

and washed w i t h c o l d de-oxygenated water and then w i t h acetone. 

The c r y s t a l s were d r i e d a t 105°C i n an oven and kept i n a d e s i c c a t o r 
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over s i l i c a g e l . Chemical a n a l y s i s i n d i c a t e d t h a t the product was 

99.2% pure, see Table 3.2.1. 

Table 3.2.1 Composition of prepared c a l c i u m s u l p h i t e hemihydrate 

Component 
Percentage Composition 

Component 
A c t u a l T h e o r e t i c a l 

Calcium 30.9 31.04 

S u l p h i t e 61.5 61.99 

Water 7.3 6.97 

Sulphate 0.45 -

Three samples of c a l c i u m s u l p h i t e hemihydrate were prepared 

by the above method wi t h p u r i t i e s of 98.9%, 99.1% and 99.2% 

r e s p e c t i v e l y and the purest sample was used i n subsequent experiments. 

B. For s i n g l e c r y s t a l X-ray d i f f r a c t i o n s t u d i e s 

The method of growing c a l c i u m s u l p h i t e hemihydrate c r y s t a l s 
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was that o u t l i n e d by Matthews and Mcintosh i n which s o l u t i o n s of 

sodium s u l p h i t e and c a l c i u m c h l o r i d e were allowed to s l o w l y d i f f u s e 

i n t o each other. 0,5 g sodium s u l p h i t e was p l a c e d i n a 50 cm^ 

f i l t r a t i o n tube and 0.5 g c a l c i u m c h l o r i d e p l a c e d i n a s i m i l a r tube. 

The two s i d e arms were j o i n e d by a s h o r t length of rubber tubing. 

The two tubes were each c a r e f u l l y f i l l e d w i t h de-oxygenated water 

upto the cross-arras. F u r t h e r water was added to completely f i l l both 

tubes and rubber stoppers f i t t e d . These d i s p l a c e d the excess water 

so t h a t no a i r was trapped i n the tubes. The apparatus was l e f t f o r 

two or t h r e e days to enable some c r y s t a l s to grow. Longer p e r i o d s 

of time produced intergrown masses of c r y s t a l s . The e x c e s s l i q u i d 

was poured o f f . The c r y s t a l s were washed out on to a f i l t e r paper 

w i t h acetone and a i r d r i e d . 
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The dry c r y s t a l s were examined through a p o l a r i s i n g microscope. 

I t was found t h a t the l a r g e r c r y s t a l s were not s i n g l e c r y s t a l s but 

aggregates. S e v e r a l batches of c r y s t a l s had to be grown before one 

of a s u i t a b l e s i z e (0.08 mm x 0.08 mm x 0.04 mm) f o r s i n g l e - c r y s t a l 

X-ray d i f f r a c t i o n was obtained. 

3«2.2 C a l c i u m s u l p h i t e hemihydrate c r y s t a l s t r u c t u r e d e t e r m i n a t i o n 

A. Data C o l l e c t i o n 

A s m a l l t a b u l a r c r y s t a l of c a l c i u m s u l p h i t e hemihydrate was 

mounted on a g l a s s f i b r e , under a p o l a r i s i n g microscope, to give 

as c l o s e alignment as p o s s i b l e w i t h the e x t i n c t i o n d i r e c t i o n . The 

g l a s s f i b r e was a t t a c h e d to the goniometer head. O s c i l l a t i o n 

photographs were taken about t h i s a x i s and the c r y s t a l l i n e d up so 

t h a t i t s a x i s was c o i n c i d e n t w i t h the a x i s of r o t a t i o n of the camera. 

A z e r o - l a y e r Weissenberg photograph was taken and t h i s was 

c a l i b r a t e d by r e p l a c i n g the c r y s t a l w i t h gold w i r e and superimposing 

the powder p a t t e r n of the gold a t the two ends of the f i l m . A f i r s t -

l a y e r Weissenberg photograph was a l s o taken. The c r y s t a l was then 

mounted about another a x i s and another z e r o - l a y e r , gold c a l i b r a t e d , 

Weissenberg photograph was taken, followed by* a f i r s t r ^ l a y e r photograph,. 

The s y s t e m a t i c absences were of the t y p e s ; 

Okl k = 2n + 1 

hOl 1 = 2n + 1 

hkO h + k = 2n + 1 

hOO h = 2n + 1 

OkO k = 2n + 1 

001 1 =-2n 1 

These i n d i c a t e d t h a t the space group was Pbcn, though u s i n g the a l t e r n a t i v e 

s e t t i n g based on i n c r e a s i n g l e n g t h of the a, b and c a x i s the space 

group symbol becomes Pbna. 
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The u n i t c e l l dimensions were determined to be 

a = 6.486 ± 0.005 S 

b = 9.810 ± 0.005 X 

c = 10.664 ± 0.005 S 

hence the u n i t c e l l volume was 678.5 The u n i t c e l l dimensions 

81 

reported by Schropper were 

a = 6.4844 ± 0.0005 X 

b = 9.8123 ± 0.0005 X 

c = 10.6629 ± 0.001 X 

The d e n s i t y of c a l c i u m s u l p h i t e hemihydrate was measured by t h e 

f l o t a t i o n method u s i n g a mixture of acetone and tribrojQoujethane. 

and was found to be 2.5463 gem ^. Therefore f o r the molecular 

formula CaSO^O.511^0, molecular weight = 129.15, the number of 

molecules per u n i t c e l l = 8. The c a l c u l a t e d d e n s i t y was 2.528 cm ^, 

I n t e n s i t i e s were c o l l e c t e d from the c r y s t a l r o t a t e d about i t s 

c a x i s u s i n g copper r a d i a t i o n and an E n r a f Nonius Weissenberg 

camera. A f o u r - f i l m pack was used and the l a y e r s hkn (n = 0 - 51 

were s t u d i e d . The c r y s t a l was then mounted about i t s b a x i s and l a y e r s 

hnk (n = 0 - 5) s t u d i e d . Because the c r y s t a l was t a b u l a r mounting 

about the a a x i s was not convenient, though the z e r o ^ l a y e r i n t e n s i t i e s 

were c o l l e c t e d . 

The i n t e n s i t i e s were measured by comparison w i t h a c a l i b r a t e d 

spot s c a l e w i t h a /2 d i f f e r e n c e i n i n t e n s i t i e s between s p o t s . L a y e r s 

were s c a l e d by hand u s i n g r e f l e c t i o n s common to more than one l a y e r . 

B. S t r u c t u r e Determination 

The. r e f l e c t i o n s were c o r r e c t e d f o r L o r e n t z aiid p . o l a r i ^ a t i p n 

e f f e c t s , but not f o r a b s o r p t i o n . The, P h i l l i p s spot shape c o r r e c t i o n 

was a p p l i e d to non-zero l a y e r r e f l e c t i o n s , to compensate f o r the 

e x t e n s i o n of the measured spots i n these l a y e r s . The Durban^^ package 
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of x-ray programmes f o r the IBM1130 computer, together w i t h the 

a d d i t i o n of a program f o r the P h i l l i p s spot shape c o r r e c t i o n . 

Appendix 1, were used f o r these c a l c u l a t i o n s and i n subsequent s t e p s 

of the s t r u c t u r e d e t e r m i n a t i o n . 

A t h r e e dimensional P a t t e r s o n map was computed. Space group 

Pbna would .give r i s e to heavy atom peaks i n the v e c t o r p o s i t i o n s 

given i n Table 3.2.2 and the peaks of height g r e a t e r than 250 which 

were found i n the asymmetric u n i t of the P a t t e r s o n map have been 

l i s t e d i n T a b l e 3.2.3. The c o - o r d i n a t e s of the c a l c i u m i o n were 

determined to be x = 0.01 ; y = 0.13; z = 0.355. 

The p o s i t i o n of the c a l c i u m i o n was used i n a s t r u c t u r e f a c t o r 

c a l c u l a t i o n f o r which the r e l i a b i l i t y index, R, was 0.46. Using 

the phases provided f o r t h i s atom a t h r e e dimensional e l e c t r o n 

d e n s i t y map was computed. Peaks i n t h i s map suggested the p o s i t i o n 

of the sulphur atom f a i r l y c l e a r l y and p o s s i b l e p o s i t i o n s f o r the 

oxygen atoms. I n c o r p o r a t i o n of these atoms and the c o m p i l a t i o n of 

a s e r i e s of maps allowed the p o s i t i o n s of a l l the oxygens to be 

found e v e n t u a l l y and the p o s i t i o n s of a l l the atoms (c a l c i u m , sulphur 

and oxygen, but not hydrogen) to be a d j u s t e d t o g i v e a r e l i a b i l i t y 

index v a l u e of 0.154. The p o s i t i o n s of the atoms found agreed, w i t h i n 

the l i m i t s of the d a t a a v a i l a b l e , with the s t r u c t u r e determinatio n 
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of Schropper . I t was, however, c l e a r t h a t f u r t h e r refinement of 

the s t r u c t u r e would e n t a i l a checking of the measured i n t e n s i t i e s and 

i n t e r - f i l m s c a l e f a c t o r s . The purpose of the s t r u c t u r e d e t e r m i n a t i o n 

was to f i n d the r e l a t i v e p o s i t i o n s of the atoms i n c a l c i u m s u l p h i t e 

hemihydrate i n order to p o s s i b l y provide some i n s i g h t i n t o the 

mechanism of thermal s t a b i l i t y changes. The e x t r a e f f o r t r e q u i r e d to 

improve the data was not thought worthwhile as a s t r u c t u r e based on 

d i f f r a c t o m e t e r data, which a r e i n h e r e n t l y more p r e c i s e than photographic 
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Table 3.2.2 General e q u i v a l e n t p o s i t i o n s i n P a t t e r s o n map for space 

group Pj,^^ 

i - 2x; i - 2y; i 

i - 2x; ; 0 

0 ; 2y ; i 

2x ; 0 ; i - 22 

i ; i - 2y; 2z 

i ; ; i - 2z 

2x ; 2y ; 2z 

Table 3.2.3 Peaks corresponding to g e n e r a l e q u i v a l e n t p o s i t i o n s i n 

P a t t e r s o n map. 

x y z Peak height 

0.24 0.21 0.48 306 

0. 24 0. 50 0 504 

0 0. 21 0.5 413 

0.26 0.01 0.49 453 

0.5 0.29 0. 01 443 

0.5 0.5 0.5 886 

0.26 0.29 0 276 
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data, had been published. 

The p o s i t i o n a l parameters and i n t e r - a t o m i c d i s t a n c e s have been 

l i s t e d i n T a b l e 3.2.4 and T a b l e 3.2,5 r e s p e c t i v e l y . F i g . 3.2.1 -

3.2.3 i l l u s t r a t e d the p o s i t i o n s of the atoms as p r o j e c t e d on the 

ab, be and ac planes r e s p e c t i v e l y . The l i s t s of ^ h k l ( o b s ) 

^ h k l ( c a l c ) been given i n Appendix 2. 

The c a l c i u m ions i n c a l c i u m s u l p h i t e hemihydrate were surrounded 

by seven oxygen atoms s i t u a t e d at the c o m e r s of an i r r e g u l a r 

polyhedron. S i x of these oxygen atoms were a l s o bound to sulphur 

atoms. Each sulphur atom was at the apex of a t r i g o n a l pyramid w i t h 

oxygen atoms occupying the base c o m e r s . The seventh oxygen atom 

i n the Ca-0 polyhedron was d e r i v e d from the water molecule and, as 

the r e were only four water molecules per u n i t c e l l , t h i s oxygen was 

l i n k e d to two c a l c i u m i o n s . The hydrogen atoms were too l i g h t to 
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d e t e c t by photographic methods, but Schropper i n d i c a t e d t h e i r 

probable p o s i t i o n s . 

The d i s t a n c e s between the oxygen atoms. T a b l e 3.2,5, i n the 

Ca-0 polyhedron d i f f e r e d depending upon whether a d j a c e n t oxygen atoms 

were attached to the same sulphur atom or not. Adjacent Ca-0 

polyhedra had some common edges r e s u l t i n g i n the c a l c i u m atoms being 

a l i g n e d along the c a x i s , 

3.2,3 Powder d i f f r a c t i o n p a t t e r n s of hydrated and anhydrous c a l c i u m 

s u l p h i t e 

Comparison of the powder d i f f r a c t i o n p a t t e r n s of a i r - d r i e d and vacuum-

d r i e d samples of p r e c i p i t a t e d c a l c i u m s u l p h i t e hemihydrate i n d i c a t e d 

t h a t t h e r e were s m a l l d i f f e r e n c e s i n t h e i r c r y s t a l l o g r a p h i c parameters. 

Table 3,2.6, which a l s o d i f f e r e d s l i g h t l y from those determined from 

s i n g l e c r y s t a l s . The parameters of a sample c a l c i n e d i n vacuo f o r 

two hours at 400°C to produce anhydrous c a l c i u m s u l p h i t e gave u n i t 
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Table 3. 2.4 P o s i t i o n a l parameters f o r atoms i n CaSO^.0.5H2O 

Atom X y z 

I s o t r o p i c temperature 

f a c t o r 

Ca 0.014 0.133 0.356 1 

S 0.169 0.384 0.127 1 

^ 
0.362 0.404 0.053 2 

^2 
0. 204 0. 260 0. 206 2 

O3 
0.177 0.507 0-211 2 

0 0.253 0. 250 0.500 2 
w 

Tab l e 3.2.5 I n t e r - a t o m i c d i s t a n c e s (8) and angles (°) 

Calcium-oxygen polyhedron 

Ca^ 
- ^ 7 

2.58 Ca2 -
^ 3 

2.34 

Ca^ 
- ^ 9 

2.46 Ca2 -
^45 

2. 99 

Ca2 
- ^22 

2.37 Ca2 - °46 
2.45 

Ca2 
" °24(w) 

2.46 Mean 2.52 

S u l p h i t e pyramid 

S 9 - °17 
1.49 

°i7 - h - ^ 1 8 
106.0 

S 9 - °18 
1.50 - ^ 9 

100.6 

S 9 -
1.50 

°18 - .̂ 9 - ^ 9 
108. 2 

Mean 1.50 Mean 104. 9 
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Figure 3.2.1 Projection of part of CaSO-j.0.5H2O unit c e l l 

onto the ab plane 

9 

^. _._,_._.o-
©Calcium (1-8) ©Sulphur (9-16) ;Qoxygen of sulphite 

Oxygen of water molecule 

I 

group; 
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Figure 3.2.2 Projection of part of CaS02.0.5H20 unit c e l l 

onto the be plane 

o 
U i 

O Calcium (1-8) ;(2)Sulphur (9-16) ;Qoxygen of sulphite 

Oxygen of water molecule 

. _ . J 
group; 

66 



F i g u r e -3.2.3 P r o j e c t i o n of p a r t of 0350^.0.51120 u n i t c e l l 

onto the ac plane 

Symbols as f o r F i g u r e 3.2.2 

Q 
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Table 3.2.6 Comparison of c r y s t a l parameters of hydrated and anhydrous 

c a l c i u m s u l p h i t e 

Sample 
Orthorhombic 

parameters 

Unit c e l l edge 

length (8) 

CaS0^.0.5H20 A 0.01425 a 6.46 

" A i r d r i e d " B 0.00622 b 9.78 

C 0.00523 c 10-66 

CaS0^.0.5H20 A 0.0143 a 6.45 

"Vacuum d r i e d " B 0.00627 b 9.74 

C 0.00526 c 10.63 

CaS0^.0.5H20 A 0.01413 a 6.486 

S i n g l e c r y s t a l , present work B 0.00618 b 9.810 

C 0.00522 c 10.664 

CaS02.0.5H20 A 0.014144 a 6.4844 

81 
S i n g l e c r y s t a l , Schropper B 0,006177 b 9.8123 

C 0.005230 . c .10.6629 

CaSO^ A 0.0143 a 6.45 

B 0.00630 b 9.72 

C 0.00530 c 10.60 
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c e l l dimensions only s l i g h t l y s m a l l e r than those of the hydrated 

samples. T h i s s m a l l d i f f e r e n c e i n u n i t c e l l dimensions between the 

anhydrous and hydrated forms of c a l c i u m s u l p h i t e i n d i c a t e d t h a t the 

l o s s of water probably caused l i t t l e change i n the r e l a t i v e 

p o s i t i o n s of the c a l c i u m and s u l p h i t e i o n s . The c a l c i u m would 

become o c t a h e d r a l l y surrounded by oxygen atoms due to the l o s s of 

the water oxygen, which occupied the seventh c o - o r d i n a t i o n p o s i t i o n 

i n the hemihydrate, and was i t s e l f c o - ordinated to two c a l c i u m i o n s . 

3.3 Strontium S u l p h i t e 

3.3.1 P r e p a r a t i o n of strontium s u l p h i t e 

A. For thermal s t a b i l i t y s t u d i e s 

Samples of s t r o n t i u m s u l p h i t e were prepared by mixing 250 cm^ 

M sodium s u l p h i t e s o l u t i o n w i t h 250 cm"̂  M s t r o n t i u m n i t r a t e s o l u t i o n 

w h i l e n i t r o g e n was bubbled through the s o l u t i o n s . The p r e c i p i t a t e d 

s t r o n t i u m s u l p h i t e was f i l t e r e d under reduced p r e s s u r e and the 

p r e c i p i t a t e washed w i t h c o l d water, followed by acetone. The 

samples were d r i e d i n an oven a t 105°C and s t o r e d i n a d e s i c c a t o r 

over s i l i c a g e l . The water used i n the p r e p a r a t i o n of s o l u t i o n s , 

and f o r washing, was de-oxygenated as d e s c r i b e d p r e v i o u s l y i n s e c t i o n 

3.1.1 

T a b l e 3.3.1 Composition of prepared s t r o n t i u m s u l p h i t e 

S p e c i e s 
Percentage Composition 

A c t u a l T h e o r e t i c a l 

Strontium 

S u l p h i t e 

Sulphate 

Water 

52.0 

47.3 

0.21 

0.56 

52.26 

47.74 
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B. Using sulphur d i o x i d e 

A sample of s t r o n t i u m s u l p h i t e was prepared by p a s s i n g s u l p h u r 

d i o x i d e i n t o 100 cm^ M s t r o n t i u m n i t r a t e s o l u t i o n . The p r e c i p i t a t e d 

s t r o n t i u m s u l p h i t e was f i l t e r e d under reduced p r e s s u r e , washed, 

d r i e d and s t o r e d as above. 

3,3,2 X-ray s t u d i e s 

The powder d i f f r a c t i o n p a t t e r n of s t r o n t i u m s u l p h i t e was not 

recorded i n the ASTM t a b l e s ^ ^ . The X-ray powder d i f f r a c t i o n t r a c e s 

obtained from samples prepared as i n 3.3.1 A and B were recorded and 

subsequently indexed. I t was assumed t h a t the u n i t c e l l of s t r o n t i u m 

s u l p h i t e would be s i m i l a r to t h a t of anhydrous c a l c i u m s u l p h i t e , 

2+ 108 

but s l i g h t l y l a r g e r due to the i n c r e a s e d r a d i u s of the Sr i o n 

( o c t a h e d r a l r a d i u s 1,16 8) compared to the Ca^^ i o n ^ ^ ^ ( o c t a h e d r a l 

r a d i u s 1.00 8). The r e s u l t s obtained from the d i f f r a c t i o n t r a c e s , 

together w i t h the suggested i n d i c e s and c e l l parameters have been 

l i s t e d i n T a b l e s 3.3,2 and 3.3.3. Lutz and E l S u r a d i p u b l i s h e d 

i n t e n s i t y d a t a and d v a l u e s f o r s t r o n t i u m s u l p h i t e which contained 

many more peaks than those found by the present author. The s t r o n t i u m 

s u l p h i t e had been prepared by the a c t i o n of sulphur d i o x i d e on 

s t r o n t i u m hydroxide. Comparison w i t h the d v a l u e s of s t r o n t i u m 

hydroxide, c o n t a i n i n g a l i t t l e s t r o n t i u m carbonate, as prepared and 

indexed (Appendix 3) by G l a s s o n , i n accordance w i t h e a r l i e r work^^^, 

i n d i c a t e d t h a t s t r o n t i u m hydroxide was not the source of t h e s e e x t r a 

peaks. C l o s e r study showed t h a t the e x t r a peaks had d v a l u e s c l o s e 

to those of c e l e s t i t e , the m i n e r a l form of s t r o n t i u m s u l p h a t e . 

Assuming t h a t f r e s h l y p r e c i p i t a t e d s t r o n t i u m s u l p h a t e had l a t t i c e 

c o n s t a n t s i n c r e a s e d by 1 - 3% compared to c e l e s t i t e , gave a s e t 

of d v a l u e s which could be s a t i s f a c t o r i l y indexed and which 

corresponded to the m a j o r i t y of the e x t r a peaks found by Lutz and 
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Table 3.3.2 X-ray powder d i f f r a c t i o n data for strontium sulphite 

prepared from solutions of strontium n i t r a t e and 

. sodium sulphite 

Orthorhombic parameters: A = 0.0140; B = 0.0060; C = 0.0052 

Lattice constants: a = 6.52 8; b = 9.96 &; c = 10.70 X 

Inte n s i t y h k 1 dX 

m 11.13 1 2 0 3.99 

s 13.67 ± 0.04 2 0 0 3.26 ± 0.01 

s 17.00 2 2 1 2.64 

w 18.53 0 3 3 2.43 

2 2 2 

0 4 1 

s 20.35 1 2 4 2.22 

s 22.78 ± 0.05 3 2 0 1.992 ± 0.004 

w 23.20 3 2 1 1.957 

m 23.94 2 2 4 1.909 

m 27.10 2 5 0 1.693 

m 28.45 3 3 3 1.619 

3 4 1 

w 31.78 4 1 3 1.464 

w 32.87 4 2 3 1.421 

w 35.80 4 4 2 1.318 

s = strong; m = medium; w = weak 
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Table 3.3.3 X-ray powder d i f f r a c t i o n data for strontium sulphite 

prepared by passing sulphur dioxide i n t o strontium 

n i t r a t e solution 

Orthorhombic parameters: A = 0.01405; B = 0.00605; C = 0.0052 

Lattice constants: a = 6.5lX; b = 9,92 8; c = 10.70 X 

Inte n s i t y h k 1 d(X) 

wB 10.63 ± 0.07 1 0 2 4.18 ± 0.03 

w 11.60 1 1 2 3.84 

m 11.80 SrSO, 
4 

1 1 1 3.77 

w 12.50 0 0 3 3.56 

m 13.00 SrSO, 
4 
0 0 2 3.43 

s 13.55 0 3 0 3.29 

s 14.05 1 2 2 3.18 

s 15.05 2 1 1 2.97 

s 16.40 2 2 0 2.73 

s 16.75 0 0 4 2.68 

2 1 2 

w 17.40 0 1 4 2.58 

m 18.90 SrSO, 
4 
2 1 2 2.38 

w 19.85 1 3 3 2.27 

mB 20.00 ± 0.05 2 3 1 2.255 ± 0.005 

1 4 1 

0 4 2 

w 20.40 1 2 4 2.212 

m 20.85 2 2 3 2.167 

m 21.10 0 0 5 2.142 

w 21.65 0 1 5 2.090 

s 22.15 SrSO, 
4 

1 2 2 2.045 

s 22.60 3 0 2 2.007 
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Intensity h k 1 

m 23.30 3 2 1 

0 5 1 

1.950 

w 23.45 1 4 3 1.938 

V 24.45 3 2 2 1.863 

w 25.10 0 4 4 1.818 

w 25,25 3 3 0 1.808 

s 25.85 SrSO, 3 0 3 
4 

1.769 

w 26.20 1 4 4 1.747 

wB 26.50 ± 0.05 SrSO, 0 3 1 
4 

1.728 ± 0.003 

wB 26.70 ± 0.05 3 3 2 1.716 ± 0.003 

w 27.15 SrSO, 412/131 
4 

1.690 

m 27.30 3 0 4 1.681 

m 28.00 SrSO^ 2 3 0 1.643 

w 28.30 4 0 0 1.627 

m 28.75 4 1 0 1.603 

m 28.90 3 2 4 1.596 

w 29.40 SrSO^ 2 3 1 1.571 

m 29.70 4 0 2 1.556 

w 31.00 3 3 4 1.497 

w 31.30 4 2 2 

3 4 3 

1.484 

m 31.45 4 0 3 1.478 

w 31.75 4 1 3 1.466 

m 32.15 4 3 1 1.449 

m 32.70 SrSO, 1 2 4 
q 

. 1.428 

w 32.90 4 2 3 1.420 

w 33.10 SrSO, 3 1 4 
4 

1.412 

73 



I n t e n s i t y h k 1 d(X) 

w 33.25 4 3 2 1.407 

w . 33.60 3 4 4 1.394 

m 33.70 4 0 4 1.390 

wB 34.10 ± 0-05 4 1 4 1.376 

w 34.55 4 4 0 1.360 

w 34.85 4 4 1 1.350 

4 3 3 

m * 35.15 4 2 4 1.340 

w 35.80 4 4 2 1.318 

w 37.00 4 3 4 1.281 

m 37.40 4 4 3 1.270 

wB 39.50 + 0.10 4 4 4 1.216 

*Reinforced by 040 r e f l e c t i o n of SrSO^, d = 1.338 X 

s = strong; m = medium; w = weak; B = broadened 
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Table 3.3.4 X-ray powder d i f f r a c t i o n data for strontium sulphite 

86 

recorded by Lutz and El Suradi 

Orthorhombic parameters: A = 0.01411; B = 0.00602; C = 0.00522 
Lce constants: a = 6. 49 A; b = = 9.94 / i; c = 10.68 

Intensity e° h k 1 d (8) 

46 11.18 1 2 0 3.979 

71 13.46 0 3 0 3.314 

78 13.86 SrSO, 
4 

1 0 2 3.220 

10 14.40 1 0 3 3.101 

2 0 1 

100 14.69 SrSO, 
4 

2 1 1 3.041 

25 16.80 2 1 2 2.668 

0 0 4 

89 17.01 2 2 1 2.636 

28 17.72 SrSO, 
4 

0 2 1 2.534 

15 18.58 0 3 3 2.420 

2 2 2 

0 4 1 

10 20.16 SrSO, 
4 

1 0 3 2.238 

57 20.44 1 2 4 2.208 

10 21.32 3 0 1 2.121 

32* 22.34 (1 0 5) 2.029 

43 22.55 3 0 2 2.011 

43 22.74 SrSO, 
4 

4 1 0 1.995 

30 23.30 3 2 1 1.950 

25 23.58 SrSO^ 411/222 1.928 

39 24.01 SrSO, 
4 

3 2 1 1.895 
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I n t e n s i t y h k 1 d (X) 

10 24.55 3 2 2 1.856 

2 4 2 

10 26.15 2 3 4 1.750 

1 4 4 

10 26.45 3 2 3 1.731 

20** 27.10 (1 1 6) 1.693 

10 28.37 4 0 0 1.623 

10 28.52 3 3 3 1.615 

3 4 1 

10 30.35 4 2 1 1.526 

10 30.85 SrSO, 3 2 3 1.504 

10 31.35 3 4 3 1.482 

4 2 2 

15 31.86 4 1 3 1.461 

10 32.84 SrSO^ 5 2 1 1.422 

10 33.37 1.402 

10 34.37 SrSO. 4 2 3 
4 

1.366 

10 34.66 SrSO. 2 3 3 
4 1.356 

10 35.44 1.330 

. 15 35.84 4 4 2 .1.317 

*Reinforced by 203 r e f l e c t i o n of SrSO, 

4 

Reinforced by 420 r e f l e c t i o n of SrSO, 

4 
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El Suradi, Table 3.3.4. I t would therefore appear that t h e i r strontium 

sulphite sample contained s i g n i f i c a n t amounts of strontium sulphate. 

The present author found that the preparation of strontium sulphite 

samples low i n sulphate required a l o t of care i n excluding 

atmospheric oxygen. 

3.4 Barium Sulphite 

3,4.1 Preparation of barium sulphite 

Batches of barium sulphite were prepared by mixing 250 cm̂  

M sodium sulphite solution with 250 cm^ M barium .chloride solution 

while nitrogen was bubbled through.the solutions. The precipitated 

barium sulphite was f i l t e r e d under reduced pressure and the 

precipitate washed with cold water, followed by acetone. The samples 

were dried in an oven at 105*̂ C and stored i n a desiccator over 

s i l i c a gel. The water used i n the preparation of the solutions, and 

for washing, was de-oxygenated as described i n section 3.1.1. 

Table 3.4.1 Composition of prepared barium sulphite 

Species 

Barium 

Sulphite 

Sulphate 

Water 

Percentage Composition 

Actual 

63.0 

36.5 

0.25 

0.27 

Theoretical 

63.18 

36.82 

3.4.2 X-ray studies 

Samples prepared as i n section 3.4.1 produced X-ray powder 

d i f f r a c t i o n traces similar to the un-indexed data recorded in. th( 

ASTM tables^^. Again, on the assumption that the unit c e l l of 
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barium sulphite would be s l i g h t l y larger than the unit c e l l s of 

calcium and strontium sulphites (octahedral radius^^^ Ba^* = 1.36 X), 

possible cell.parameters were proposed which resulted i n the indexing 

of the peaks as l i s t e d i n Table 3.4.2 and 3.4.3. Data for barium 

sulphite prepared by the action of sulphur dioxide on barium 

86 

hydroxide were published by Lutz and El Suradi and t h i s has also 

been indexed and the c e l l parameters determined. Table 3-4.4, 
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The published data ' showed the 004 and 220 r e f l e c t i o n s 

as being coincident, whereas i n the present work the peak at t h i s 

position was broadened, indicating a tendency f o r the two peaks to 

be separated. A strong peak at 200 was found, which was not 
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recorded i n other work ' and t h i s confirmed the lower value 

determined for the A parameter. 

A sample of barium sulphite which had been heated up to 500°C, 

i n vacuo, as part of the thermal s t a b i l i t y studies (chapter 4) gave 

an X-ray pattern whose peaks were recorded i n Table 3.4.5. The c e l l 

parameters required to index t h i s pattern indicated that the value 

of the B parameter must be lower than i n the previously discussed 

examples. This lower value was confirmed by the 220 and 004 

ref l e c t i o n s being separated i n t h i s sample and the peaks at higher 

angles were correspondingly displaced towards lower angles. A 

small quantity of barium sulphate was also present i n the vacuum 

heated sample which indicated that disproportionation may have 

commenced, see chapter 4. 

3.5 Comparison of Anhydrous Calcium, Strontium and Barium Sulphites 

The l a t t i c e constants for calcium sulphite, strontium sulphite 

and barium sulphite as determined from the X-ray powder d i f f r a c t i o n 

data have been l i s t e d i n Table 3.5.1. The increases i n size of the 
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Table 3.4.2 X-ray powder d i f f r a c t i o n data for barium sulphite 

prepared from solutions of barium chloride and sodium 

sulphite 

Orthorhombic parameters: A = 0.0137; B = 0.00581; C = 0.00492 

Lattice constants: a = 6.59 X; b = 10.12 X; c = 11.00 X 

Intensity h k 1 d (X) 

s 10.62 1 0 2 4.18 

s 13.00 0 1 3 3.43 

s 13.55 2 0 0 3.29 

wB 15.9 ± 0.1 2 0 2 2.81 ± 0.02 

SB 16.25 ± 0.05 2 2 0 2.75 ± 0.01 

0 0 4 

wB 16.7 ± 0.1 2 2 1 2.68 ± 0.02 

s 19.40 1 3 3 2.32 

mB 21.3 ± 0.1 0 3 4 2.12 ± 0.01 

sB 21.72 ± 0.05 0 4 3 2.08 ± 0.005 

1 0 5 

mB 22.78 ± 0.005 3 1 2 1.99 ± 0.005 

0 5 1 

mB 25.85 ± 0.05 0 5 3 1.77 ± 0.005 

1 0 6 

3 2 3 

2 4 3 

w 26.90 2 5 1 1.70 

m 27.17 3 1 4 1.69 

0 6 0 

w 29.00 3 4 2 1.59 
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I n t e n s i t y h k 1 d (X) 

w 

wB 

30.13 

31.1 ± 0.1 

3 1 5 

4 0 3 

0 5 5 

1.54 

1.49 ± 0.01 

s = strong; m = medium; w = weak; B = broadened 
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Table 3.4.3 X-ray powder d i f f r a c t i o n data for barium sulphite 

recorded in ASTM tables 1 - 0604^^ 

Orthorhombic parameters: A = 0.01385; B = 0.00581; C = 0.00492 

Lattice constants: a = 6.55 8; b = 10.12 X; c = 11.00 X 

Intensity h k 1 d (X) 

63 10.58 1 0 2 4.20 

100 12.95 1 3 0 3.44 

75 13.95 0 3 1 3.20 

63 16.29 0 0 4 2,75 

2 2 0 

35 19.41 1 3 3 2.32 

45 21.76 0 4 3 2.08 

1 0 5 

10 22.80 3 1 2 1.99 

0 5 1 

10 25.83 0 5 3 1.77 

1 0 6 

10 27.17 3 1 4 1.69 

0 6 0 

5 29.00 3 4 2 1.59 

5 31.17 4 0 3 1.49 

0 5 5 

5 33.98 0 0 8 1.38 

4 4 0 

5 35.75 3 6 1 1.32 

5 37.74 5 2 1 1.26 

5 40.81 5 0 4 1.18 
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Table 3.4.4 X-ray powder d i f f r a c t i o n data for barium sulphite 

�86 

recorded by Lutz and El Suradi 

Orthorhombic parameters: A = 0.1385; B = 0.00581; C = 0.00491 

Lattice constants: a = 6.55 8; b = 10.12 X; c = 11.01 X 

Inte n s i t y h k 1 d (&) 

57 10,67 1 0 2 4.163 

35 12,88 0 1 3 3.458 

28 13.24 0 3 0 3.368 

100 13.97 1 0 3 3,195 

28 16.28 2 2 0 2.751 

0 0 4 

18 16.94 0 1 4 2.647 

35 19.43 1 3 3 2.318 

18 21.50 2 0 4 2,104 

18 21.72 0 4 3 2.084 

1 0 5 

28 22.81 3 1 2 1.989 

0 5 1 
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Table 3.4.5 X-ray powder d i f f r a c t i o n data for barium sulphite 

sample heated for 2 h, i n vacuo, at 500°C 

Orthorhombic parameters: A = 0.0137; B = 0.00575; C = 0.00492 

Lattice constants: a = 6.59 X; b = 10.17 X; c = 11.00 X 

I Intensity h k 1 d(X) 

mB 10.10 + 0.05 BaSO. 
4 

4.39 + 0.03 

s 10.60 1 0 2 4.19 

w 11.40 1 1 2 3.90 

s 12.95 0 1 3 3.44 

wB 13.55 ± 0.05 2 0 0 3.29 ± 0.01 

s 13.85 0 3 1 3.22 

1 0 3 

w 14.4 BaSO, 
4 

3.10 

w 15.75 2 0 2 2.84 

s 16.15 2 2 0 2.77 

s 16.30 0 0 4 2.75 

w 16.70 2 2 1 2.68 

s 19.30 1 3 3 2.33 

w 21.17 0 3 4 2.13 

wB 21.40 ±0.1 3 0 4 2 a i ± 0.01 

s 21.70 0 4 3 2.09 

1 0 5 

s 22.70 3 1 2 2.00 

0 5 1 

m 25.70 * 0 5 3 1.78 

m 25.95 1 0 6 1.76 

3 2 3 

2 4 3 
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I n t e n s i t y h k 1 d(X) 

mB 26.9 ± 0 . 1 2 5 1 1.705 ± 0.005 

m 27alO 0 6 0 1.693 

3 1 4 

w 28aO ± 0 . 1 4 0 0 1.643 ± 0.005 

w 28.7 4 1 1 1.606 

mB 29 .0 ± 0 . 1 3 4 2 1.591 ± 0.005 

mB 30.05 ± 0.05 3 1 5 1.540 ± 0.002 

s = strong; m = medium; w = weak; B = broadened 

84 



Table 3.5.1 Lattice constants of anhydrous calcium, strontium and 

barium sulphites 

Compound a (8) b (X) c (X) 

CaSÔ  6.45 9.72 10.60 

SrSO^ ( i ) see Table 3.3.2 6.52 9.96 10.70 

( i i ) see Table 3.3.3 6.51 9.92 10.70 

( i i i ) see Table 3.3.4 6.49 9.94 10.68 

BaSÔ  ( i ) see Table 3.4.2 6.59 10.12 11.00 

( i i ) see Table 3.4.3 6.55 10.12 11.00 

( i i i ) see Table 3.4.4 6.55 10.12 11.01 

( i v ) see Table 3.4.5 6.59 10.17 11.00 

Table 3.5.2 Comparison of sizes of unit c e l l s and cations 

Compound 
Cation 
radius 

Unit 
c e l l 

volume 

X̂" 

Volume 
per 

molecule 

X3 

Volume 
occupied 

by cation 

X̂  

Volume available 
for sulphite ion Compound 

Cation 
radius 

Unit 
c e l l 

volume 

X̂" 

Volume 
per 

molecule 

X3 

Volume 
occupied 

by cation 

X̂  X̂  % 

CaSÔ  1.00 664.5 83.1 4.2 78.9 94.7 

SrSO^ 1.16 691.3 86.4 6.5 79.9 92.5 

BaSÔ  1.36 733.6 91.7 10.5 81.2 88.5 
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u n i t c e l l with the increase i n atomic number of the cation appeared 

to be due to the increased size of the cation as the volume of the 

unit c e l l available for occupation by the sulphite ion only 

increased s l i g h t l y . Table 3.5.2 and the proportion actually decreased. 

The c r y s t a l structures of the anhydrous sulphites appeared to 

be closely related to each other, being based on an orthorhombic 

unit c e l l , and similar to the structure of calcium sulphite hemihydrate 

These relationships were supported by the assignment of reasonably 

small indices to the recorded X-ray powder d i f f r a c t i o n peaks based 

on the assumed c e l l parameters. 
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F i g u r e 4.1.9 

( c ) At 150°C 

(d) At 310'^C . Lit, 
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F i g u r e 4.1.9 

(e) At 310 C, 4 minutes a f t e r (d) 

9 

( f ) At 323''C 
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Figure 4.1.9 
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(g) At 467°C 

(h) At 594 C 
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Figure 4.1.10 S p e c i f i c surfaces o f MgS03.6H20 samples 

ca l c i n e d f o r 2h i n vacuo 
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Figure 4.1.11 X-ray powder d i f f r a c t i o n p a t t e r n s o f MgS0^.6H20 

samples c a l c i n e d f o r 2h i n vacuo 
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Figure 4.1.11 

( f ) 628*C 
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Figure 4.1,12 Parts o f TG curves f o r MgS03.6H20 samples 

heated i n a i r a t 5*̂ 0 min ^ 
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Figure 4.1.13 Exothermic peaks i n DTA curves shown by MgS02.6H20 

samples heated i n a i r a t 5 C min 

467 *C 
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CHAPTER FOUR 

THERMAL STABILITY OF ALKALINE EARTH METAL SULPHITES 

Magnesium, calcium, s t r o n t i u m and barium s u l p h i t e s have been 

prepared, as d e t a i l e d i n Chapter 3, and the various r e a c t i o n s they 

undergo on hea t i n g (a) i n vacuo, Cb) i n n i t r o g e n , Cc) i n a i r , (d) i n 

sulphur d i o x i d e and n i t r o g e n , have been s t u d i e d . 

The r e s u l t s obtained f o r each a l k a l i n e e a r t h metal 

compound w i l l be discussed i n d i v i d u a l l y and the types o f r e a c t i o n 

w i l l be compared f o r the s u l p h i t e s of a l l four elements. 

4.1 Magnesium s u l p h i t e 

4.1.1 Results 

Dynamic thermogravimetry (TG) c a r r i e d out under various 

atmospheric c o n d i t i o n s , a t a he a t i n g r a t e of 5°C per minute, gave 

the weight changes shown i n f i g u r e s 4.1.1, 4.1.3, 4.1,5, 4.1.7 and 

the simultaneous d i f f e r e n t i a l thermal a n a l y s i s (DTA) curves are 

reproduced i n f i g u r e s 4.1.2, 4.1.4, 4.1.6, 4.1.8. 

I n a l l cases, the i n i t i a l r e a c t i o n was dehydration and the f i n a l 

product was magnesium oxide, but sometimes d i f f e r e n t i n termediate 

r e a c t i o n s were found, 

(a) " I n vacuo" 

The dehydration commenced at room temperature under a reduced 

pressure of 1.3 Pa (10 ̂  t o r r ) and became very r a p i d between 42°C 

and 160°C, f i g . 4.1.1. This stage of the r e a c t i o n was so v i o l e n t 

t h a t , i n the f i r s t runs c a r r i e d out under these c o n d i t i o n s , the sample 

spurted out of the holder. To overcome t h i s problem, s i l i c a wool 

was placed i n the c r u c i b l e above the sample t o t r a p the s o l i d 

p a r t i c l e s but allow r a p i d escape of the gaseous products. I n atmospheres 

of n i t r o g e n and of a i r , where there was only occasional s p u r t i n g , 

the presence or absence of the s i l i c a wool made no apparent d i f f e r e n c e 

to the TG and DTA r e s u l t s obtained and i t was assumed t h a t the " i n 
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vacuo" r e s u l t s were s i m i l a r l y u n a f f e c t e d . 

The loss of water produced a s i n g l e large endothermic peak a t 

113°C, which terminated at 198*^C, f i g , 4.1.2. Though the loss of 

water appeared t o occur i n one step, the l a s t remnants (A.4%) were 

not completely removed u n t i l the temperature reached 230*^C. 

The f i n a l stages of the dehydration and the commencement of 

breakdown of the magnesium s u l p h i t e o v e r l a p , so t h a t there was a 

steady weight loss as the temperature rose to 387°C, At t h i s 

temperature, 6% of the magnesium s u l p h i t e had been converted t o 

magnesium oxide. 

MgSO^ > MgO + 4.1 

Above t h i s temperature the decomposition became r a p i d and 

d e s u l p h u r i s a t i o n was completed a t 531°C. This decomposition 

produced an endothermic peak a t 506°C on the DTA curve. 

The photomicrographs f i g . 4.1.9 (a) - (h) i l l u s t r a t e the 

e f f e c t s , caused by the various stages of the r e a c t i o n , on the 

morphology of c r y s t a l s which were heated, on the hot-stage attachment, 

-2 

i n the e l e c t r o n microscope (pressure 10 Pa). Even w i t h a nominal 

temperature of 25°C, f i g . 4.1.9.(a), dehydration had commenced, 

though, as discussed i n chapter 2, the a c t u a l temperature of the 

c r y s t a l s may have been somewhat higher than the r e g i s t e r e d temperature 

due to the he a t i n g e f f e c t of the e l e c t r o n beam. The increase i n 

temperature to 100°C, f i g . 4.1,9(b) caused the break-up of the 

o r i g i n a l hexahydrate c r y s t a l s . I n p a r t i c u l a r , the c r y s t a l i n the 

centre of the f i e l d of view became gr o s s l y d i s t o r t e d . An i n t e r e s t i n g 

f e a t u r e of the changes was the "bubbling e f f e c t " which a number of 
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the c r y s t a l s showed as a r e s u l t of dehydration. Other workers using 

hot-stage o p t i c a l microscopy have observed s i m i l a r e f f e c t s d u r i n g 

the dehydration of other hydrated compounds, but the s t r u c t u r e s have 
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collapsed too r a p i d l y f o r photographs to be obtained. The o p t i c a l 

hot-stage microscope a v a i l a b l e f o r the work described i n t h i s t h e s i s 

could not be operated w i t h the sample i n vacuo. Because of the 

small m a g n i f i c a t i o n and the large d i f f e r e n c e i n r e f r a c t i v e index 

between the c r y s t a l s and t h e i r surroundings, i t would have been 

u n l i k e l y t h a t the phenomena would have been observed. The "bubbled" 

surfaces shown on the e l e c t r o n photomicrographs were preserved by 

the supporting s e c t i o n of the carbon f i l m on the "blown out" fragments 

of magnesium s u l p h i t e . The dehydrated magnesium s u l p h i t e underwent 

some rearrangement of the c r y s t a l l i t e s as the temperature rose. 

F i g . A.1.9(c), to 150°C, and higher m a g n i f i c a t i o n s could be used 

w i t h o u t causing f u r t h e r changes i n s t r u c t u r e . When the temperature 

reached 310°C, F i g . 4.1.9(d) and ( e ) , d e s u l p h u r i s a t i o n had commenced 

and the c r y s t a l l i t e s can be seen to have changed w i t h time as (e) 

was taken f o u r minutes a f t e r ( d ) . F i g . 4 . 1 . 9 ( f ) , taken fourteen 

minutes a f t e r ( e ) , w i t h the temperature at 323°C, showed th a t the 

rearrangement, due to loss of sulphur d i o x i d e , v;as j u s t about 

complete. The f i n a l two photomicrographs, (g) and (h) show the 

gradual r e o r g a n i s a t i o n of the magnesium oxide c r y s t a l l i t e s as the 

temperature was increased f u r t h e r . Comparison w i t h Che low 

temperature photomicrographs i n d i c a t e d t h a t the e l e c t r o n t r a n s -

m i s s i v i t y of the magnesium oxide c r y s t a l l i t e s , despite t h e i r higher 

d e n s i t y , was much higher than t h a t of the magnesium s u l p h i t e 

hexahydrate c r y s t a l s . This was due to the t h i n n i n g which had 

occurred on the loss of water and sulphur d i o x i d e . On the basis 

t h a t the c r y s t a l s were t a b u l a r , and t h a t only the thickness was 

reduced by the loss of mass (81.02%), the magnesium oxide c r y s t a l s 

would be less than one t e n t h the thickness of the o r i g i n a l magnesium 
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s u l p h i t e hexahydrate. The photomicrographs i n d i c a t e d t h a t the 

r e d u c t i o n i n thickness was probably g r e a t e r than t h i s as the area 

covered by the magnesium oxide c r y s t a l s was about 20% l a r g e r than 

the area of the o r i g i n a l c r y s t a l s . 

Samples of the hexahydrate were i s o t h e r m a l l y heated f o r two 

hour p e r i o d s , i n vacuo. The v a r i a t i o n i n s p e c i f i c surface of the 

product w i t h temperature. F i g . 4.1.10, showed t h a t the dehydration 

process produced a large increase i n surface area, f o l l o w e d by 

a decrease, as the f r e s h l y produced anhydrous magnesium s u l p h i t e 

c r y s t a l l i t e s became more ordered. The i n i t i a l decomposition of the 

magnesium s u l p h i t e formed magnesium oxide w i t h a high s p e c i f i c 

s u r f ace, as shown by the 353^C sample. Samples c a l c i n e d at 

the higher temperatures of 425°C, 535°C and 628°C had s p e c i f i c 

surfaces which decreased as the temperature increased. Though 

the r a p i d r i s e t o the i s o t h e r m a l c a l c i n a t i o n temperature would be 

expected t o produce very high surface area products, due to 

extremely r a p i d dehydration and d e s u l p h u r i s a t i o n causing massive 

d i s r u p t i o n of the c r y s t a l l a t t i c e s , t h i s e f f e c t would be superseded 

by the r e o r g a n i s a t i o n of the f i n a l product as the c r y s t a l l a t t i c e s 

became more ordered and the l a r g e r c r y s t a l l i t e s grew at the expense 

of the smaller ones. This l a t t e r process, which i n the case of 

magnesium oxide i n v o l v e d only s o l i d d i f f u s i o n r e a c t i o n s , occurred 
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more r e a d i l y as the temperature increased . As a r e s u l t , those 

samples i n which the f i n a l products were held at the highest 

temperatures f o r the longest periods had the smallest s p e c i f i c 

surfaces. 

The X-^ray d i f f r a c t i o n traces of the products of isothermal 

h e a t i n g shox^red, F i g , 4,1.11, t h a t the i n i t i a l l y c r y s t a l l i n e 

magnesium s u l p h i t e hexahydrate formed e s s e n t i a l l y X-ray amorphous 
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dehydrated products and, then, as the magnesium oxide c r y s t a l l i t e s 

became l a r g e r and more ordered the peaks due to the 200 and 220 

r e f l e c t i o n s appeared and became sharper. Average c r y s t a l l i t e s i z e s . 

Table 4.1.1, determined from (a) s p e c i f i c surfaces measurements and 

(b) peak broadening of the X-ray t r a c e s , both showed the same t r e n d 

i n increase i n c r y s t a l l i t e s i z e w i t h i n c r e a s i n g temperature. 

Table 4.1.1 C r y s t a l l i t e sizes of the products of the i s o t h e r m a l , i n 

vacuo, c a l c i n a t i o n of NgSO^-BH^O, 

Isothermal 

c a l c i n a t i o n 

temperature 

°c 

Apparent c r y s t a l l i t e 

s i z e , based on X-ray 

line-broadening 

nm 

I 

Equivalent s p h e r i c a l 

diameters, based 

on s p e c i f i c surfaces 

nm 

I n i t i a l sample. - 4900 

120 - 40 

235 - 75 . 

353 5 13 

425 7 15 

535 21 32 

628 47 77 

Chemical analyses of the i s o t h e r m a l l y decomposed samples 

showed t h a t the 120°C sample was 96.5% dehydrated. The 235*̂ C sample 

was completely dehydrated and 15% of the magnesium s u l p h i t e had 

been converted to magnesium oxide. The remaining samples were 

completely converted to magnesium oxide. 

(b) I n n i t r o g e n 

Both the dynamic thermogravimetric curve, F i g . 4.1.3, and the 

DTA curve. F i g , 4.1.4, f o r the c a l c i n a t i o n s c a r r i e d out i n an 

atmosphere of n i t r o g e n , f l o w i n g at a r a t e of 1 Imin ^, showed 
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d i f f e r e n c e s from the corresponding " i n vacuo" curves. The increased 

pressure due to the atmosphere of n i t r o g e n (approx. 1 x 10^ Pa) 

increased the temperature, a t which dehydration produced a n o t i c e a b l e 

weight change, t o 54*̂ C compared to 20°C at 1,3 Pa. However, the DTA 

curve showed t h a t the f i r s t endotherm associated w i t h the dehydration 

r e a c t i o n had an i n i t i a l d e v i a t i o n temperature of 42°C i n d i c a t i n g t h a t 

the i n i t i a l stages i n the dehydration had produced a rearrangement 

of the c r y s t a l s t r u c t u r e before a weight loss was recorded. The 

dehydration occurred r a p i d l y as the temperature rose t o 114°C,*by 

which time the e q u i v a l e n t of three molecules of water had been l o s t . 

The r a t e of weight loss was reduced f o r about 5°C r i s e and then 

increased again as approximately another two and a h a l f molecules of 

water were l o s t as the temperature rose t o 215°C, By 350°C the f i n a l 

6.8% of the water ( e q u i v a l e n t to 0.4 H2O) was removed. This three 

step process was also i n d i c a t e d i n the DTA curv ^ where there were three 

endotherms w i t h peak temperatures of 105°C, 193°C and 336°C. 

The-weight loss g r a d u a l l y increased as the temperature rose 

above. 400°C, as a r e s u l t of the decomposition of the magnesium s u l p h i t e , 

b u t , u n l i k e the decomposition i n vacuo, t h i s d e s u l p h u r i s a t i o n stage 

came to an end at 576°C before there was complete conversion to 

magnesium oxide. A sample which had been heated t o 639°C and analysed 

a f t e r r a p i d c o o l i n g was found t o c o n t a i n 46.1% MgSO^, 53.8% MgO and 

0.2% MgS. 

A number of competing r e a c t i o n s can be considered t o take place: 

(1) Decomposition of magnesium s u l p h i t e t o form magnesium oxide 

MgSO^ > MgO + SO2 4.1 

This became the dominant r e a c t i o n above 440°C, but occurred t o a les s e r 

e x t e n t a t lower temperatures. 
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(2) Formation of magnesium t h i o s u l p h a t e 

MgSO^ > MgO + SO2 4,1 

4MgS03 + 2SO2 > 4MgS0^ + Ŝ  4.2 

2MgS03 + ^ ZMgS^O^ 4.3 

This s e r i e s of reacti o n s occurred t o a small extent at temperatures 

above 300°C, w i t h 1.4% ̂ 2^2^3 ^̂ "̂S found i n a sample which had 

been heated t o 370°C and then cooled r a p i d l y . As the temperature 

increased, two f a c t o r s would tend to reduce the q u a n t i t i e s of 

magnesium t h i o s u l p h a t e produced, namely the increase i n vapour 

pressure of any sulphur formed would reduce the chances of i t r e a c t i n g 

w i t h magnesium s u l p h i t e and the rat e of d i s s o c i a t i o n of the magnesium 

t h i o s u l p h a t e would increase. 

2MgS203 > 2MgO + 2SO2 + S2 4.4 

^^^2*^3 * 2MgS03 + S2 4.5 

(3) Formation of sulphur 

No d i r e c t evidence of the formation of sulphur was found i n 

00 go 

samples heated on the Mass-Flow balance, but othex workers ' have 

described the formation of sulphur i n small q u a n t i t i e s . A I g sample 

of magnesium s u l p h i t e hexahydrate was heated i n n i t r o g e n ( f l o w r a t e 

1 Imin ^) at 320°C f o r one hour, w i t h the e x i t gases passing over a 

cold f i n g e r . A t o t a l of 1.8% sulphur was found, together w i t h 3.8% 

MgS202. The most probable method f o r the formation of sulphur would 

be by reacti o n s 4.1 and 4.2. 

(.4) Formation of magnesium sulphate 

Reactions 4.1 and 4.2 as w e l l as p l a y i n g a p a r t i n the 

production of sulphur and magnesium t h i o s u l p h a t e also y i e l d magnesium 

sulphate. D i s p r o p o r t i o n a t i o n of magnesium s u l p h i t e would be another 

r e a c t i o n by which magnesium sulphate could be formed 

4MgS03 ? 3MgS0^ + MgS 4.6 
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D i s p r o p o r t i o n a t i o n d i d not appear t o be a major r e a c t i o n pathway 

as only traces of magnesium sulphide were found i n the 639°C sample 

and even t h i s magnesium sulphide could have been formed by r e a c t i o n 

of magnesium oxide and sulphur 

2MgO + ^ 2MgS + O2 4.7 

90 

Schwitzgebel and Lowell have re p o r t e d t h a t "no MgS i s found 

i n the decomposition products", however, e a r l i e r i n the same a r t i c l e 

they s t a t e " I n c o n t r a s t t o the f i n d i n g s from most of the other 

s u l f i : t e s few or no s u l f i d e s were found i n magnesium s u l f i t e 

decomposition products." C e r t a i n l y the small amount of published 

work on magnesium s u l p h i t e does not s p e c i f i c a l l y mention the f o r m a t i o n 

of magnesium sulphide. 

The TO curve i n d i c a t e d the presence of magnesium sulphate, which 

was s t a b l e u n t i l the temperature reached 819°C when gradual 

conversion t o magnesium oxide occurred. The decomposition being 

completed at 1002°C. The conversion of 22.3% of the o r i g i n a l 

magnesium s u l p h i t e t o magnesium sulphate provided t h i s step i n the 

TO curve, which was not found i n vacuo. The higher pressure of 
5 -2 

about 1 X 10 Pa (760 t o r r ) , compared t o 1.3 Pa (10 t o r r ) i n vacuo, 

under which the r e a c t i o n s occurred, i n the runs c a r r i e d out i n 

nitrogen,reduced the r a t e of e v o l u t i o n of' sulphur d i o x i d e , thus 

more time was allowed f o r the i n t e r a c t i o n between sulphur d i o x i d e and 

the undecomposed magnesium s u l p h i t e , r e q u i r e d t o produce magnesium 

sulphate ( r e a c t i o n 4.2). The higher temperature at which the main 

decomposition of the magnesium s u l p h i t e occurred i n n i t r o g e n (.437*̂  -

576°C compared t o 387° - 531°C, i n vacuo) (a) gave more time f o r 

the secondary r e a c t i o n s to occur, and (b) as the secondary r e a c t i o n s 

were o c c u r r i n g at higher temperatures t h e i r r a t e s of r e a c t i o n would 

be increased. The higher temperature r e a c t i o n s would favour t h e 
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p r o d u c t i o n of magnesium sulphate and sulphur since magnesium 

t h i o s u l p h a t e , which had a s i m i l a r s t a b i l i t y range as magnesium 

s u l p h i t e , would be unstable above 500°C^^. The v o l a t i l i t y of sulphur, 

b o i l i n g p o i n t 444,6°C, would also be much greater at these higher 

temperatures, which would markedly reduce the tendency f o r the 

magnesium th i o s u l p h a t e r e a c t i o n (4.3) to occur. 

The various peaks i n the DTA curve may be explained as f o l l o w s . 

At 385°C an endotherm, due to i n i t i a l decomposition of magnesium 

s u l p h i t e , commenced, but t h i s was soon converted i n t o an exotherm, 

as magnesium sulphate was formed, to give a peak at 460*^C. The 

large scale decomposition of the magnesium s u l p h i t e then became the 

major r e a c t i o n and the endotherm peaking at 550°C was produced. The 

f i n a l decomposition of the magnesium sulphate was shown by the 

broad endotherm peaking at 960*^ - 970°C. 

(c) I n a i r 

The TG, F i g , 4.1.5, and DTA, F i g . 4.1.6, curves were i n i t i a l l y 

s i m i l a r to those given i n n i t r o g e n . Dehydration occurred i n three 

steps, w i t h i n i t i a l loss of three molecules of water between 57°C 

and 115°C, followed by the loss of approximately two and a h a l f 

molecules of water by 220°C and the remaining water by 340°C, The 

presence of oxygen introduced the p o s s i b i l i t y of o x i d a t i o n of the 

magnesium s u l p h i t e to magnesium sulphate o c c u r r i n g , 4,8, i n a d d i t i o n 

to the various r e a c t i o n s 4,1 to 4.7 discussed above. 

ingSO^ + 0^ ^ 2MgS0^ 4.8 

The major r e a c t i o n s o c c u r r i n g i n a i r were the o x i d a t i o n r e a c t i o n 

4.8 and decomposition r e a c t i o n 4.1 and the small weight changes 

which were recorded between 340°C and 600*̂ C i n d i c a t e d t h a t the 

o v e r a l l e f f e c t s of these two r e a c t i o n s j u s t about cancelled each 

other out. I n p r a c t i c e i t was found t h a t d i f f e r e n t samples 
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produced s l i g h t l y d i f f e r e n t r e s u l t s and the TG curve. F i g . 4.1,5, 

was a record of the mean of the weight changes observed. I n F i g . 4.1.12 

other a c t u a l traces of a number of TG curves, as recorded, have been 

reproduced to i n d i c a t e the v a r i a t i o n a c t u a l l y observed and i n Table 

4.1.2 the percentage conversion of magnesium s u l p h i t e to magnesium 

sulphate and magnesium oxide has been presented. 

Table 4.1.2 P r o p o r t i o n a l o x i d a t i o n and d e s u l p h u r i s a t i o n of MgSO^ i n 

a i r 

C a l c i n a t i o n temperature 

°C 

Percentage of MgSO^ converted t o 

(a) MgSO^ (b) MgO 

400 25,3 5.4 

450 50.5 13,0 

500 66,3 19.4 

550 73.8 22.6 

600 76.1 23.9 

The o x i d a t i o n r e a c t i o n produced an exotherm i n the DTA curve 

w i t h u s u a l l y one or two shoulders, presumably as a r e s u l t of the 

competing endothermic d i s s o c i a t i o n r e a c t i o n , though the o x i d a t i o n 

process i t s e l f may have been complex w i t h the i n d i v i d u a l steps i n 

the process producing a se r i e s of exothermic r e a c t i o n s . As w i t h 

the TG curves, the d e t a i l s of the DTA curves v a r i e d between runs as 

i l l u s t r a t e d i n F i g . 4.1.13, but i n every case the maximum exothermic 

d e f l e c t i o n occurred at 467*^C. 

Comparison of the TG curves obtained i n n i t r o g e n and i n a i r 

( F i g . 4.1.3 and 4.1.5) and of the corresponding DTA curves ( F i g . 4.1.4 

and 4.1.6) showed c l e a r l y t h a t , i n the 400° - 600°C temperature 

range, i n n i t r o g e n the decomposition of magnesium s u l p h i t e t o form 
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magnesium oxide was the dominant r e a c t i o n , which produced a l a r g e 

weight loss and endothermic d e f l e c t i o n , whereas, i n a i r , the loss 

i n weight was very much less and an exothermic d e f l e c t i o n was 

produced due to the dominance of the magnesium sulphate forming 

r e a c t i o n . 

The magnesium sulphate was more st a b l e i n a i r than i n n i t r o g e n 

and began to decompose at 883°C ( c f . 819°C i n N2). The decomposition 

to magnesium oxide was completed w i t h the temperature at 1022°C, 

and an endotherm peaking at 986°C was recorded i n the D.T.A, curve, 

(d) I n mixtures of sulphur d i o x i d e and n i t r o g e n 

Figs. 4.1.7 and 4.1.8 record the r e s u l t s which were obtained 

when magnesium s u l p h i t e hexahydrate was t h e r m a l l y decomposed i n the 

presence of (a) 2.8 v o l % SO^ i n and (b) 20.9 v o l % SO2 i n 

The r e s u l t s obtained, p a r t i c u l a r l y w i t h the higher c o n c e n t r a t i o n of 

sulphur d i o x i d e , i n d i c a t e d t h a t magnesium s u l p h i t e x̂ as more r e a d i l y 

91 

o x i d i s e d by oxygen ( a i r contains 20.95 v o l % 0^ ) than by 

sulphur d i o x i d e . 

The presence of 2.8 v o l % SO2 i n N2 made l i t t l e apparent 

d i f f e r e n c e to the TG curve, f o r the dehydration of the hexahydrate, 

compared to the use of n i t r o g e n alone. However i n the DTA curve 

what was a s i n g l e endotherm, i n n i t r o g e n , corresponding to the loss 

of three molecules of water appeared as a composite of two 

overlapping peaks w i t h maxima a t 88°C and 98°C. With a higher 

con c e n t r a t i o n of sulphur d i o x i d e , 20.9 v o l %, the r e s o l u t i o n i n t o 

two endothermic peaks was even c l e a r e r . This double i n i t i a l 

endotherm, c o i n c i d i n g w i t h the loss of the f i r s t three molecules of 

43 

water, had been reported by Okabe and H o r i f o r DTA runs c a r r i e d 

out i n a i r at heating r a t e s of 3̂ C and 5°C per minute. They used 

r e l a t i v e l y large samples» 0.5 g compared to the 0.1 g samples used 

i n the present work and t h i s would e x p l a i n the absence of two peaks 
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f o r the runs i n a i r , and presumably n i t r o g e n . The greater d e n s i t y 

of sulphur d i o x i d e , compared to n i t r o g e n and oxygen, meant t h a t the 

pressure i n the r e a c t i o n vessel was r a i s e d and t h i s would increase 

the r e s o l u t i o n of the DTA peaks^^. The TG curve gave no i n d i c a t i o n 

of a two stage loss of water i n t h i s temperature range. MgS0^.6H20 

81 
has a rhombohedral s t r u c t u r e w i t h three molecules i n the u n i t c e l l 

whereas MgSO<j.3H20 has an orthorhombic s t r u c t u r e w i t h f o u r molecules 

82 

i n the u n i t c e l l . The two peaks could be due t o the combined 

e f f e c t s of (a) loss of water and (b) rearrangement of the c r y s t a l 

l a t t i c e . That the MgSO^.311^0 l a t t i c e was s t a b i l i s e d by the presence 

of sulphur d i o x i d e (or the higher pressure associated w i t h i t s 

presence) was shown by the r e l a t i v e l y long i n t e r v a l (114°C - 157°C 

i n 20,9 v o l % SO2) before the MgSO^.311^0 began t o decompose r a p i d l y 

and a f u r t h e r two and a h a l f molecules of water were l o s t . 

The f i n a l stages of dehydration were accompanied by the onset 

of o x i d a t i o n , w i t h the higher c o n c e n t r a t i o n of sulphur d i o x i d e 

producing a greater degree of o x i d a t i o n , 

mgSO^ + SO2 » 2MgS0^ + S 4.9 

The concentrations of the various products, Table 4,1,3, and the 

weight changes observed, F i g . 4.1.7, i n d i c a t e d t h a t the presence 

of sulphur d i o x i d e reduced the i n i t i a l r a t e of decomposition of 

magnesium s u l p h i t e , but the degree of o x i d a t i o n of the remaining 

s u l p h i t e was not as great as i n a i r . The breakdown, to magnesium 

oxide, of both the magnesium s u l p h i t e and the small q u a n t i t y of 

magnesium t h i o s u l p h a t e which had been formed, became the dominant 

r e a c t i o n above 502°C. 
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Table 4.1,3 Composition of magnesium s u l p h i t e samples heated i n 

SO^ and at 5°C min~^ 

Volume % 

SO2 i n N2 

Temperature 

°C 

Wt loss % 

(MgS03.6H20) 

Composition % 
Volume % 

SO2 i n N2 

Temperature 

°C 

Wt loss % 

(MgS03.6H20) MgSO^ MgS203 MgSO^ MgO 

2.76 421 50.1 84,5 0.8 14.4 0.3 

2.76 615-890 68.2 - - 60.8 39.2 

20.9 496 47.8 53.8 2,2 43,7 0,3 

20,9 590-960 63.3 - - 72.7 27.3 

The formation of magnesium t h i o s u l p h a t e depended upon the 

r e a c t i o n sequence 4,1, 4,2, 4.3. The increased c o n c e n t r a t i o n of 

sulphur d i o x i d e would reduce the r a t e of r e a c t i o n 4,1, but the r a t e 

of r e a c t i o n 4.2 would be increased, and hence the t o t a l amount of 

magnesium t h i o s u l p h a t e formed should be increased compared t o the 

rea c t i o n s i n n i t r o g e n alone. However, when the magnesium sulphate 

and sulphur were formed by the a c t i o n of the sulphur d i o x i d e i n the 

surrounding gas atmosphere the conversion would take place from the 

outside of the p a r t i c l e inwards. The sulphur so produced, unless i t 

reacted r a p i d l y w i t h magnesium s u l p h i t e would be i s o l a t e d from f u r t h e r 

r e a c t i o n as the SO^/}i%SO^ r e a c t i o n zone moved inwards l e a v i n g the 

sulphur surrounded by magnesium sulphate. The sulphur would tend t o 

migrate outwards, due to i t s high vapour pressure a t these temperatures, 

and only come i n contact w i t h magnesium sulphate, or more sulphur, 

as i t d i d so. I n c o n t r a s t the produ c t i o n of magnesium sulphate and 

sulphur by the thermal decomposition of magnesium s u l p h i t e would be 

more evenly spread through the p a r t i c l e and the sulphur which migrated 

towards the e x t e r i o r could come i n contact w i t h magnesium s u l p h i t e t o 

allow r e a c t i o n 4.3 to occur. 
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The s t a b i l i t y range of magnesium sulphate was increased t o 

higher temperatures by the presence of sulphur d i o x i d e . The onset 

of decomposition was at 890°C i n 2.8 v o l %S02 and 965°C i n 20,9 

v o l % SO2 compared to 819^0 i n n i t r o g e n and 883°C i n a i r . These 

changes were q u a l i t a t i v e l y as p r e d i c t e d by r e a c t i o n 4,10 w i t h the 

p a r t i a l pressure of sulphur d i o x i d e having a gr e a t e r e f f e c t than the 

p a r t i a l pressure of oxygen on the e q u i l i b r i u m constant, 

2MgS0^ p 2MgO + 2SO2 + O2 4.10 

The DTA curve, F i g , 4,1.8, showed t h a t the i n i t i a l exothermic 

o x i d a t i o n r e a c t i o n almost completely masked the f i n a l endothermic 

loss of water. The main o x i d a t i o n produced the exothermic peak 

between 420° and 487°C fo l l o w e d by the large endotherm r e l a t e d t o 

the f o r m a t i o n of magnesium oxide between 500*^ and 600° C. This 

endotherm commenced at 483°C i n 2,8 v o l %S02 and 511°C i n 20.9 v o l 

%S02. The f i n a l decomposition of the magnesium sulphate was marked 

by the endotherms peaking between 980° and 990°C. 

4.1.2 Discussion 

The dehydration of magnesium s u l p h i t e hexahydrate c l e a r l y 

i n v o l v e d the prod u c t i o n of magnesium s u l p h i t e t r i h y d r a t e as an 

in t e r m e d i a t e , except " i n vacuo" where the r e a c t i o n was too r a p i d 

to d i s t i n g u i s h t h i s step. The c r y s t a l s t r u c t u r e of the hexahydrate 

was rhombohedral w i t h three molecules i n the u n i t c e l l whereas the 

t r i h y d r a t e was orthorhombic w i t h f o u r molecules i n i t s u n i t c e l l . 

The water molecules i n the hexahydrate were arranged octahedrally-

around the magnesium i o n w i t h two a x i a l waters having s l i g h t l y -

81 
longer Mg-0 bond lengths than the four square planar molecules 

The two-step dehydration process i n d i c a t e d by DTA measurements i'n 

43 

SO2 and i n a i r could p o s s i b l y be due t o the i n i t i a l loss of two 

molecules of water f o l l o w e d by- the loss of the t h i ^ d molecule i n 
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a s s o c i a t i o n w i t h the rearrangement of the c r y s t a l s t r u c t u r e . 

The question of the formation of a hemihydrate was not 

s a t i s f a c t o r i l y resolved. Long periods of dehydration a t temperatures 

below 200°C led t o the removal of more than f i v e and a h a l f molecules 

of water. Nevertheless the l a s t few percent of water was very 

82 

d i f f i c u l t to remove, as the TG curves also i n d i c a t e . Other workers 

have heated both the hexahydrate and t r i h y d r a t e f o r 94 hour p e r i o d s , 

at 160°C, and obtained a product of composition MgSO^.0.5H2O, 

A f t e r dehydration the subsequent r e a c t i o n sequence appeared 

simple " i n vacuo", w i t h r a p i d decomposition t o magnesium oxide, whereas, 

i n n i t r o g e n , a number of side r e a c t i o n s occurred leading t o the 

formation of magnesium sulphate together w i t h some magnesium t h i o s u l p h a t e 

and magnesium sulphide. I n a i r and sulphur d i o x i d e the formation of 

magnesium sulphate was mainly by d i r e c t o x i d a t i o n r e a c t i o n s w i t h the 

introduced atmosphere r e s u l t i n g i n a greater degree of conversion t o 

sulphate. The f i n a l r e a c t i o n was the decomposition of the sulphate t o 

magnesium oxide. 

A recent study^^ of MgS02.6H20, using DTA at 10°C min""*" and TG 

and DTG ( d e r i v a t i v e thermogravimetry) a t 2°C min ̂ , both i n argon, 

produced r e s u l t s e s s e n t i a l l y s i m i l a r t o those obtained i n n i t r o g e n , 

i n the present work; v a r i a t i o n s were of the type expected from the 

d i f f e r e n t heating r a t e s and equipment. No explanation of the r e s u l t s 

was o f f e r e d , apart from the dehydration o c c u r r i n g i n two steps w i t h 

MgSO^,3H20 as an intermediate. 
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Figure 4.2.3 TG curve. CaS0^.0.5H20 heated in nitrogen 

(flow rate 11 min"^) at 5°C min ^ 
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Figure 4.2.4 DTA curve, 0350^.0.51120 heated i n nitrogen 

(flow rate 11 min ^) at 5°C min ^ 
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Figure 4.2.5 TG curve. CaS0^.0.5H20 heated in a i r (flow rate iCt min ^) 

at 5°C min""^ 
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Figure 4.2.7 TG curve. CaS0^.0.5H20 heated i n N2/SO2 mixtures (flow 

rate Ifi min ^ ) at 5°C min"^ 
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Figure 4.2.9 Free energy changes for some reactions 

involving calcium sulphite 
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Figure 4.2.10 CaS02.0.5H20 calcined i n vacuo for 2h periods 
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Figure 4.2.11 CaSO^.O.SH^O heated on e l e c t r o n microscope hot-stage 

(a) At 327°C 

(b) At ^^rc 
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Figure 4.2.11 

(c ) At 393 C 

(d) At 393°C, 10 minutes a f t e r ( c ) ^ =^ 
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Figure 4.2.11 

(e) At 510°C 

(f ) At 510°C, 15 minutes after (e) I iiL 
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Figure 4.2.1. 

' � V 

(g) At 7orc 

(h) At 897°C 
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Figure 4.2.12 E f f e c t of i n c r e a s i n g electron-beam i n t e n s i t y 

( a ) CaSO^.O.SH^O a t 25 C; low m a g n i f i c a t i o n and i n t e n s i t y 

(b) At 25 C; higher m a g n i f i c a t i o n and i n t e n s i t y 
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Figure 4.2.13 Comparison of s p e c i f i c surface changes found 

on heating CaS0^.0.5H20 and CaS0^.2H20 in vacuo 

.(a) 2h calcination periods 
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Figure 4,2.14 CaSO^.O.SH^O cal c i n e d i n a i r f o r 2h periods 
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4.2 Calcium S u l p h i t e 

4.2.1 Results 

Simultaneous dynamic thermogravimetry and d i f f e r e n t i a l thermal 

a n a l y s i s on samples of calcium s u l p h i t e hemihydrate ( a t h e a t i n g r a t e s 

of 5*̂C min "'') under d i f f e r e n t atmospheric c o n d i t i o n s produced the 

r e s u l t s summarised i n Figs 4.2.1 to 4.2.8 i n c l u s i v e . As w i t h magnesium 

s u l p h i t e hexahydrate, the f i r s t r e a c t i o n i n each case was dehydration, 

but complete conversion t o the oxide was not a t t a i n e d always at the 

highest temperatures (llOO^^C) reached. 

(a) " I n vacuo" 

The TG curve. F i g 4.2.1, and the DTA curve. F i g . 4.2.2, show 

dehydration between 329°C and 393°C, when the pressure was 1.3 Pa, 

accompanied by an endotherm w i t h a peak at 369°C. The 0.3% water 

e x t r a t o th a t r e q u i r e d by the s t o i c h i o m e t r y of CaSO^.iH20 was l o s t 

between 110°C and 250*^C. At 560°C the calcium s u l p h i t e began to 

decompose, r e l e a s i n g sulphur d i o x i d e w i t h a consequent weight l o s s . 

CaSO^ > CaO + SO2 4.11 

4CaS03 > 3CaS0^ + CaS 4.12 

However, the d i s p r o p o r t i o n a t i o n r e a c t i o n , 4.12, also occurred, and 

consequently the weight loss came to an end at 740*̂ C when 72% of 

the calcium s u l p h i t e had been converted to calcium oxide. The 

remainder of the sample consisted of a mixtur e of calcium sulphate 

and calcium- sulphide both of which had higher decomposition temperatures 

than calcium s u l p h i t e . The decomposition of calcium s u l p h i t e by 

r e a c t i o n 4.11 was an endothermic change which gave the peak at 691°C 

on the DTA curve. This endotherm l a r g e l y masked the exotherm which 

might have been expected from; the d i s p r o p o r t i o n a t i o n r e a c t i o n ; 

nevertheless, the endotherm may have what might be the t a i l of an 

exothermic peak f o l l o w i n g i t . Another pos s i b l e decomposition r e a c t i o n 
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would lead t o the loss of sulphur. 

eCaSO^ > 4CaS0^ + 2CaO + ^2 ^'^^ 

This r e a c t i o n would be thermodynamically more favourable than 4.11, 

see F i g . 4.2.9, and would lead to an o v e r a l l weight loss of 15.25% 

(based on loss of water and s u l p h u r ) . The a c t u a l weight losses 

obtained were very much greater than 15.25%, which would i n d i c a t e 

t h a t r e a c t i o n 4.11 was the major pathway by which decomposition 

occurred. 

Samples of calcium s u l p h i t e hemihydrate were heated f o r two 

hours i n vacuo at a number of d i f f e r e n t temperatures and surface area 

measurements were made, by a g r a v i m e t r i c B.E.T. method with, n i t r o g e n 

as the adsorbate, on the samples c a l c i n e d a t temperatures up to 

600°C. The v a r i a t i o n s i n s p e c i f i c surface values obtained are 

i l l u s t r a t e d i n F i g . 4.2.10(.a) and the weight losses from these 

isothermal r e a c t i o n s have been p l o t t e d on F i g . 4.2.1 f o r comparison 

w i t h the dynamic thermogravimetric r e s u l t s and F i g . 4.2.10(b). 

Heating the samples i s o t h e r m a l l y f o r two-hour periods produced 

the e quivalent degree of dehydration or decomposition at 

correspondingly lower temperatures than those r e q u i r e d w i t h a hea t i n g 

r a t e of 5°C per minute. The d i f f e r e n c e s were of the order of 50° -

100°C as i l l u s t r a t e d i n Table 4.2.1. 
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Table 4.2.1 Temperatures r e q u i r e d t o produce given weight losses when 

he a t i n g CaSO^.jH^O i n vacuo 

Percentage 

weight loss 

Temperature i n 
Percentage 

weight loss 
Isothermal h e a t i n g f o r 2 hours Heating a t 5*̂C min ̂  

0 200 340 

1.08 250 357 

2.86 300 365 

6.89 350 390 

7.12 400 500 

8.73 450 565 

11.93 500 575 

34.62 550 700 

45.53 600 930 

As would be expected, the longer p e r i o d at an i n d i v i d u a l temperature 

i n the isot h e r m a l experiments allowed the reactants and products 

to more n e a r l y reach t h e i r thermodynamically s t a b l e e q u i l i b r i u m 

s t a t e s f o r t h a t temperature. I n the dynamic he a t i n g experiments, 

the f i n i t e time r e q u i r e d f o r a phase change meant t h a t , a t f a s t e r 

h e a t i n g r a t e s , the temperature would have r i s e n appreciably before 

the phase change had been completed. When a r e a c t i o n occurred r a p i d l y 

above a p a r t i c u l a r i n i t i a t i o n temperature, the d i f f e r e n c e s i n 

temperature between corresponding weight losses i n the isothermal 

and dynamic experiments were reduced, as the r e s u l t s i n Table 4.2.1 

and F i g . 4,2.1 i l l u s t r a t e d f o r the dehydration of calcium s u l p h i t e 

hemihydrate. 

The changes i n su r f a c e area caused by the deh y d r a t i o n , s u l p h i t e 

decomposition and d i s p r o p o r t i o n a t i o n processes r e f l e c t e d the thermal 
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s t a b i l i t i e s of the compounds. Thus the s p e c i f i c surface of the products. 

F i g . 4.2.10(a) reached a maximum at 400°C corresponding t o complete 

dehydration. The average c r y s t a l l i t e sizes (equivalent s p h e r i c a l 

diameters) of the products have been c a l c u l a t e d from the s p e c i f i c 

surfaces and the X-ray d e n s i t i e s (which were determined to be. 2.55 g cm ̂ , 

2.40 g cm~^, 3.34 g cm""̂  and 2.85 g cm f o r CaSO^.jH^O, CaSO^, 

CaO and 3CaS0^/CaS r e s p e c t i v e l y ) . The f r a c t i o n a l increase i n the 

numbers of c r y s t a l l i t e s was then deduced from the cube of the s i z e 

r a t i o of the i n i t i a l r e a c t a n t and the product. 

3 18 3 
No. of c r y s t a l l i t e s per cm = 10 pm 

3 
(equ i v a l e n t s p h e r i c a l diameter, ym ) 

No. of c r y s t a l l i t e s per cm^ i n product 

Therefore, f r a c t i o n a l increase = „ c- i-i � 3 . . . . , 
No, of c r y s t a l l i t e s per cm i n i n i t i a l 

r e a c t a n t 

(Equivalent s p h e r i c a l di'ametex i n i t i a l 

r e a c t a n t , pm)'^ 

(Equivalent s p h e r i c a l diameter 

product, pm) 

The r e s u l t s have been presented i n Table 4.2.2 and F i g . 4.2.10(c) 

which i n d i c a t e t h a t each i n i t i a l c r y s t a l of CaSO^.jH^O s p l i t i n t o 

about 150 c r y s t a l l i t e s of CaSO^ on complete dehydration a t 400°C. 

This corresponded t o a r e d u c t i o n i n size from 1,7 pm to 0.3 ym. 

Decomposition of the anhydrous calcium s u l p h i t e d i d not produce 

a f u r t h e r increase i n s p e c i f i c surface as occurred d u r i n g the s i m i l a r 

experiments w i t h magnesium s u l p h i t e , F i g . 4.1.10. This was because 

the decomposition of the calcium s u l p h i t e was not so r a p i d , nor d i d 

i t go to completion. Consequently, there was p r o p o r t i o n a t e l y less 

d i s r u p t i o n of the c r y s t a l l i t e s ; also the higher temperatures f o r 

these r e a c t i o n s favoured the re.-ordering of tKe new. c r y s t a l l i t e s . 
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Table 4.2.2 C r y s t a l l i t e s i z e changes i n CaSO^.jH^O i s o t h e r m a l l y 

heated f o r 2 h i n vacuo. 

Temperature 

OC 

Density 
-3 

g cm 

Equivalent s p h e r i c a l 

diameter, ym 

Increase i n no. 

of c r y s t a l l i t e s 

I n i t i a l 2,55 1.68 -

200 2,57 1.46 1.5 

250 2.55 1.18 2.9 

300 2.50 0.857 7.6 

350 2.41 0.402 73 

400 2.41 0.313 155 

450 2.43 0.468 46 

500 2.46 0.739 12 

550 2.70 1.06 4 

600 2.92 3.42 0.12 

The l a t t e r also occurred at the comparable, temperatures i n 

the c a l c i n e d magnesium s u l p h i t e samples. The f o r m a t i o n of calcium 

sulphate and i n p a r t i c u l a r the presence of lower-melting calcium 

s u l p h i d e , m.p. 1223K, would a i d the s i n t e r i n g process. Temperatures 

above h a l f the m e l t i n g p o i n t , i n degrees abso l u t e , favour both surface 

88 
and bulk d i f f u s i o n v h i c h would lead t o adhesion of i n d i v i d u a l 

94 

p a r t i c l e s t o each other and the removal of surface i r r e g u l a r i t i e s 

The photomicrographs. F i g , 4.2.11(a) - ( h ) , of c r y s t a l s of 

calcium s u l p h i t e hemihydrate heated t o vari o u s temperatures, on the 

hot-stage i n the e l e c t r o n microscope, i l l u s t r a t e d the changes i n 

c r y s t a l morphology during decomposition " i n vacuo". I n F i g . 4.2,llCa) 

the f i r s t signs of dehydration can be seen. Small l i g h t patches have, 

appeared i n some of the smaller c r y s t a l s , i n d i c a t e d by arrows. A l l 
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the c r y s t a l s showed dark, patches and signs of formation of small 

c r y s t a l l i t e s , which were due to the e f f e c t of the e l e c t r o n beam. I f 

the e l e c t r o n beam i n t e n s i t y was kept very low, the c r y s t a l s were 

l a r g e l y u n a f f e c t e d . F i g . 4.2.12(a), but as soon as the m a g n i f i c a t i o n , 

and hence the beam i n t e n s i t y , was increased the changes i n s t r u c t u r e 

were brought about. F i g . 4.2.12(b). The subsequent changes i n the 

c r y s t a l s on the hot-stage i n d i c a t e t h a t the rearrangement i n the. e l e c t r o n 

beam was not due to complete dehydration of the hemihydrate. At 

363°C, F i g . 4.2.11(b), the dehydration had produced very noticeable, 

e f f e c t s w i t h the t h i n n e r p o r t i o n s of the. c r y s t a l s having the. appearance., 

at f i r s t s i g h t , of having holes i n them. With the temperature at 

393°C, F i g . 4.2.11(c), the maximum d i s r u p t i o n of the c r y s t a l s , due to 

dehydration, seems to have been reached with. more, l i g h t patches 

than at 363°C. F i g . 4.2.11(d), which was taken ten miTiutes a f t e r , (c)., 

i l l u s t r a t e d t h a t rearrangement of the new s t r u c t u r e s had commenced 

as the number of l i g h t patches had decreased. The commencement of 

d e s u l p h u r i s a t i o n at 510°C was i n d i c a t e d by F i g . 4.2.11(e) and ( f > , 

w i t h ( f ) having been taken f i f t e e n minutes a f t e r ( e ) . Comparison with, 

the photomicrographs (a) - (d) c l e a r l y showed t h a t the t h i c k e r 

c r y s t a l s , which had shown l i t t l e change on dehydration, were beginning 

to "break up", being less e l e c t r o n dense and w i t h g r a i n boundaries 

being much more evident. The f i n a l two photomicrographs i n the 

s e r i e s , (g) at 701°C and (h) at 897°C, showed the g r e a t l y reduced 

thickness of what were, by then, only calcium s u l p h i t e pseudomorphs 

due to conversion t o calcium oxide. Comparison of (h) w i t h (g). 

i l l u s t r a t e d the growth i n size of the calcium oxide c r y s t a l l i t e s , so 

th a t the pseudomorphs were composed of a smaller number of l a r g e r 

c r y s t a l l i t e s w i t h more d e f i n i t e g r a i n boundaries as the l a r g e r 

141 



c r y s t a l l i t e s grew at the expense of the smaller ones. The arrows 

i l l u s t r a t e two regions where t h i s g r a i n growth was p a r t i c u l a r l y 

c l e a r l y shown. 

The types of changes i n c r y s t a l s i z e i n d i c a t e d by surface area 

measurements were shown by the c r y s t a l s s t u d i e d under the e l e c t r o n 

microscope, i . e . the large changes on f o r m a t i o n of anhydrous calcium 

s u l p h i t e , and the e f f e c t of s i n t e r i n g as the temperature increased. 

The e f f e c t of the e l e c t r o n beam at low temperatures on the s t r u c t u r e 

of the o r i g i n a l c r y s t a l s appeared to i n f l u e n c e the subsequent changes 

which occurred. The i n t r o d u c t i o n of defects i n t o the c r y s t a l 

s t r u c t u r e would tend to a i d the loss of water and sulphur d i o x i d e 

w i t h o u t causing a s p l i t t i n g apart of the o r i g i n a l c r y s t a l form. The 

dehydration c a r r i e d out on the hot-stage showed t h a t an increase i n 

surface area associated w i t h t h i s change was due to an increase i n 

surface i r r e g u l a r i t y r a t h e r than the f o r m a t i o n of i s o l a t e d new 

c r y s t a l l i t e s . The s i n t e r i n g was c l e a r l y i l l u s t r a t e d i n the photo-

micrographs, where the corresponding reductions i n s p e c i f i c surface 

were shown to be due to (a) growth, of the anhydrous calcium sulphite., 

which remained undecomposed, (b) growth of t h a newly-^formed calcium 

oxide, c r y s t a l l i t e s and (c). the concurrent r e d u c t i o n i n surface 

i r r e g u l a r i t i e s . The e f f e c t of the presence of calcium s u l p h a t e and 

calcium sulphide could not be d i s t i n g u i s h e d under the e l e c t r o n 

microscope. To a s c e r t a i n the degree of s i n t e r i n g of the products, i t 

would be necessary to determine the surface areas of samples which 

had been heated f o r var i o u s periods at each temperature. 

A mixture of calcium s u l p h i t e hejnihydrate and gypsum, wi.th. the 

molecular r a t i o of 3CaS0^.jH20;lCaS0^,2H20, was also heated under 

s i m i l a r c o n d i t i o n s f o r two-hour p e r i o d s , and s p e c i f i c surfaces were 

determined t o give the r e s u l t s i l l u s t r a t e d i n F i g . 4.2.13. Comparison 
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2 
w i t h those obtained p r e v i o u s l y from gypsum alone , also given i n 
F i g . 4.2.13, and w i t h calcium s u l p h i t e hemihydrate alone, showed t h a t 
the e s s e n t i a l f e a t u r e s of the three sets were s i m i l a r , v i z . increase, 
i n surface area due to dehydration followed by r e d u c t i o n i n surface 
area due to s i n t e r i n g . The increase i n s p e c i f i c s u r f a c e due to the 
conversion of y-CaSO^ to g-CaSO^ (.anhydrite), caused a second peak i n 
the. pure gypsum curve and enhanced the second peak i n the curye f o r 
the mixture of gypsum and calcium s u l p h i t e hemihydrate. However, the 
major f a c t o r i n the increase i n s p e c i f i c surface of t h i s mixture 
at 400°C compared to pure calcium s u l p h i t e hemihydrate was the presence 
of the small c r y s t a l l i t e s of calcium sulphate formed by the 
dehydration of gypsum. 

The f i n a l d e s u l p h u r i s a t i o n r e a c t i o n as shown by the TG and 

DTA curves took place between 915° and 990° C to give calcium ojcide. 

(b). I n n i t r o g e n 

The f i r s t step i n the decomposition of calcium s u l p h i t e 

hemihydrate when heated a t 5°C min ̂  i n n i t r o g e n , f l o w i n g at 1 Imin ^, 

was caused by dehydration between 345°C and 396°C, F i g , 4.2.3, and 

there was a corresponding endothermic peak at 371°C i n the DTA curve. 

F i g . 4.2.4. The anhydrous c a l c i u m � s u l p h i t e apparently then remained 

s t a b l e up to 682°C, when a slow weight loss began which became more 

r a p i d as the temperature.rose above 850°C. The decomposition of 

calcium s u l p h i t e by e i t h e r r e a c t i o n 4,11 or 4.13 would be endothermic, 

but the DTA curve showed an exotherm commencing at 600°C and peaking 

at 718°C, f o l l o w e d by an endotherm commencing at 920°C and peaking 

at 1033°C. Chemical a n a l y s i s . Table 4.2.3, and examination of X-ray 

d i f f r a c t i o n p a t t e r n s of samples confirmed t h a t d i s p r o p o r t i o n a t i o n , an 

exothermic r e a c t i o n , had occurred before the d e s u l p h u r i s a t i o n r e a c t i o n 

became dominant. The exotherm was t h e r e f o r e c o r r e l a t e d with, the. 
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d i s p r o p o r t i o n a t i o n r e a c t i o n which occurred a t the s.ame time as the. 

slower breakdown of calcium s u l p h i t e t o l i b e r a t e sulphur d i o x i d e . The 

high-temperature endotherm was formed by the conversion of the calcium 

sulphateycalcium sulphide mixture t o calcium oxide. 

Table 4.2.3 Composition of samples of calcium s u l p h i t e hemihydrate 

heated i n l^^ at 5°C min ̂  

Temperature 

°C 

% weight loss 

less 6.98 

Percentage composition of ca l c i n e d sample 
Temperature 

°C 

% weight loss 

less 6.98 CaSO^ CaSO, 
4 

CaS CaO 

620 0 99.6 0.2 - -

770 0.6 83.2 13.8 2.3 0.6 

897 4,4 3.4 78,5 13.8 4.4 

1074 42.9 - 23 1.9 74.9 

(c) I n a i r 

As i n the cases above, the f i r s t r e a c t i o n when calcium s u l p h i t e 

hemihydrate was heated i n a i r , f l o w r a t e 1 1 min""^, at 5°C min"^ was 

the loss of water. F i g . 4.2.5, accompanied by the absorp t i o n of energy. 

F i g , 4.2.6. However, t h i s was almost immediately f o l l o w e d by an 

increase i n weight as the anhydrous calcium s u l p h i t e was o x i d i s e d 

to calcium sulphate. 

2CaS0^ + 0^ 2CaS0 4.14 

The o x i d a t i o n was r a p i d as the temperature rose t o 520 C, when 83.5% 

of the o r i g i n a l s u l p h i t e had been o x i d i s e d . There was then only a 

small degree of f u r t h e r o x i d a t i o n up to 998°C. The co a t i n g of 

calcium sulphate formed reduced the r a t e of r e a c t i o n w i t h the. inner 

core of calcium s u l p h i t e . This core of calcium s u l p h i t e underwent 

d i s p r o p o r t i o n a t i o n , to give a mixture of calcium sulphate, and 

calcium s u l p h i d e , as w e l l as a small degree of d i s s o c i a t i o n to 

calcium oxide. The slow increase i n weight between 520°C and 998°C 
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was due to o x i d a t i o n of both calcium s u l p h i t e and calcium sulphide. 

CaS + 2O2 ^ CaSO^ 4.15 

The o x i d a t i o n commenced before the dehydration was completed, 

as shown by the maximum wei;ght loss of 6.62% compared t o the 

t h e o r e t i c a l 6.98%, A sample of calcium s u l p h i t e hemihydrate was 

heated to 390°C before the furnace was removed and the balance 

chamber evacuated, t o prevent f u r t h e r o x i d a t i o n ; i t was found 

f i n a l l y to contain 2.8% calcium sulphate. The o x i d a t i o n of the. 

calcium s u l p h i t e c o r r e l a t e d w i t h the large exotherm peaking at 

467°C. 

A number of samples of calciu^n s u l p h i t e , heinihydrate. were, 

i s o t h e r m a l l y heated i n s t a t i c a i r f o r two-hour periods at a ser i e s 

of temperatures. The s p e c i f i c surfaces of the products were 

determined g r a v i m e t r i c a l l y , F i g , 4.2,14, Above 300°C dehydration 

occurred and o x i d a t i o n had begun at 350°C, Table 4.2.4. Oxidation 

became i n c r e a s i n g l y i m p o r t a n t , as the c a l c i n a t i o n temperatures 

increased, u n t i l there was 100% o x i d a t i o n at 500*^C. 

Table, 4.2.4 Composition of samples of calcium s u l p h i t e i s o t h e r m a l l y 

heated f o r two hour periods i n a i r . 

Temperature 

oc 

Composition of product 
%age conversion of CaSO-

to CaSO, 
4 

Temperature 

oc %CaSO^ %CaSO, 
4 

%age conversion of CaSO-

to CaSO, 
4 

350 96.2 3.8 3,4 

400 76.9 23.1 21 

450 19.0 81.0 79 

500 0 100 100 

The maximum i n s p e c i f i c s u r f ace, F i g . 4.2.14(a), corresponded 

to the dehydration r e a c t i o n and also the i n i t i a l f ormation of 

calcium sulphate at the y- to 3^aS0^ t r a n s i t i o n temperature. 
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However, f u r t h e r o x i d a t i o n t o calcium sulphate, together w i t h a 

greater degree of order i n the anhydrous calcium s u l p h i t e , caused a 

re d u c t i o n i n surface area so t h a t the maxima i n a i r occurred at a 

lower temperature than " i n vacuo", where there was no conversion t o 

calcium sulphate i n t h i s temperature range. 

The calcium sulphate began to decompose at 1064°C and there 

was a continuous weight loss as the temperature rose t o 1096°C. 

(d) I n sulphur d i o x i d e and n i t r o g e n 

I n order t o compare the r e l a t i v e importance of the o x i d a t i o n 

r e a c t i o n s 2CaS0^ + O2 

and 2CaS0^ + SO2 

-> 2CaS0, 

-> 2CaS0, + S 
4 

4.14 

4.16 

samples of calcium s u l p h i t e hemihydrate were heated i n atmospheres 

o f . n i t r o g e n and sulphur d i o x i d e w i t h the o v e r a l l f l o w r a t e being 

1 Imin ^. The TG r e s u l t s are i l l u s t r a t e d i n Fig. 4.2.7 and i n 

Fig. 4.2.8 two of the DTA curves are reproduced. Comparison w i t h 

r e s u l t s obtained by h e a t i n g i n a i r and i n a m i x t u r e of a i r and 

n i t r o g e n (shown by broken l i n e s i n Fig. 4,2.7) i n d i c a t e d t h a t the 

r e a c t i o n paths were s i m i l a r f o r comparable concentrations of oxygen 

and sulphur d i o x i d e r e s p e c t i v e l y . The only d i f f e r e n c e s were t h a t , 

i n the presence of oxygen, the r a t e of o x i d a t i o n was g r e a t e r , but 

s l i g h t l y smaller amounts of s u l p h i t e were converted u l t i m a t e l y t o 

sulphate, as shown i n Table 4.2.5. 

Table 4,2.5 Degree of o x i d a t i o n of calcium s u l p h i t e i n oxygen and 

i n sulphur d i o x i d e 

Gas composition 

i n volume % 

Temperature at 

completion of main 

o x i d a t i o n r e a c t i o n 

%age conversion of 

CaS03 at end of main 

o x i d a t i o n r e a c t i o n 

20.9 02;79.1 N2 520°C 83.5 

20.2 S02;79.8 N2 610°C 87.3 

4.2 02;95.8 N2 680*̂ C 77,8 

4.5 S02;95.5 N2 790°C 83,5 
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Complete o x i d a t i o n was prevented by the c o a t i n g of calcium 

sulphate formed h i n d e r i n g access of the gaseous oxidant t o the 

i n t e r n a l remnants of unreacted calcium s u l p h i t e . The formation of 

an unreacted core would appear t o have been an u n l i k e l y event based 

on the o r i g i n a l morphology of the calcium s u l p h i t e hemihydrate 

c r y s t a l s , which, as the e l e c t r o n micrographs i n F i g . 4.2.11 and 

4.2,12 show, were t a b u l a r . The packing of the samples i n the c r u c i b l e s 

was also r e l a t i v e l y open as i n d i c a t e d by the low sample weight 

loaded, i n r e l a t i o n t o the volume occupied and the d e n s i t y of the 

compound. However, on dehydration the samples i n the c r u c i b l e s 

showed a very large r e d u c t i o n i n volume, approximately 70%, w i t h 

the sample having shrunk from the e x t e r n a l w a l l s and packed 

c l o s e l y about the c e n t r a l dimple. As o x i d a t i o n proceeded the sample 

became much harder, as neighbouring c r y s t a l s were fused together 

and e f f e c t i v e l y reduced the access of the oxidant i n the l a t e r stages 

of the r e a c t i o n . The o x i d a t i o n r e a c t i o n i n v o l v i n g sulphur d i o x i d e 

r e s u l t e d i n a gaseous product, sulphur, and the e v o l u t i o n of t h i s 

would tend t o reduce the coherence of the sulphate c o a t i n g , thus 

a l l o w i n g r a t h e r greater access of the gaseous oxidant t o the sample 

and hence a greater degree of conversion to calcium sulphate. 

The r e a c t i o n w i t h 20.2 v o l - % sulphur d i o x i d e came t o an end 

at 620°C and was followed by d i s p r o p o r t i o n a t i o n of the unreacted 

calcium s u l p h i t e , as i n d i c a t e d by the low, broad exotherra peaking 

at 710°C, Fig. 4.2.8. In the presence of 20.9 v o l - % oxygen, the 

main o x i d a t i o n r e a c t i o n was completed by 520°C but a f u r t h e r slow 

steady o x i d a t i o n continued u n t i l the temperature reached 1000°C. 

There was also d i s p r o p o r t i o n a t i o n , but the calcium sulphide formed 

was p a r t i a l l y o x i d i sed to calcium sulphate. The corresponding 

r e a c t i o n w i t h sulphur dioxide d i d not appear to occur though 
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thermodynamically favourable at temperatures up to about 900°C^^. 

CaS + 2SO2 > CaSO^ + S2 4.17 

The presence of sulphur d i o x i d e i n the atmosphere of the 

r e a c t i o n chamber repressed the small amount of decomposition of 

calcium s u l p h i t e ( t o calcium oxide) which, i n n i t r o g e n alone. 

Fig. 4.2,3, occurred above 680*^0, and only traces o f calcium oxide 

were found i n samples heated t o temperatures below 900°C. The 

decomposition of calcium sulphate was also i n h i b i t e d by the presence 

of sulphur d i o x i d e . The s t a b i l i t y range of calcium sulphate, 

compared t o calcium s u l p h i t e , was extended at the lower temperature 

end as w e l l . At 398°C a sample heated i n 20.6 v o l - % SO2 contained 

13.6% calcium sulphate, whereas a sample t r e a t e d s i m i l a r l y i n a i r 

contained 2.8% calcium sulphate, 

4.2.2 Discussion 

A comparison of the r e s u l t s presented i n s e c t i o n 4,2,1 w i t h a 

86 93 96 97 98 
number of r e c e n t l y - p u b l i s h e d studies ' » » » on aspects of 

the thermal s t a b i l i t y of calcium s u l p h i t e i n d i c a t e s close agreement 

96 

w i t h the r e s u l t s obtained by Aoki et a l . They studied the 

thermal s t a b i l i t y i n a i r and i n n i t r o g e n , up to 1500*^C, of calcium 

s u l p h i t e hemihydrate samples, prepared by several d i f f e r e n t methods. 

Using micro-TG-DTA and X-ray powder d i f f r a c t i o n methods, the r a t e 

of o x i d a t i o n i n a i r was found t o c o r r e l a t e w i t h the s i z e o f the 

o r i g i n a l hemihydrate c r y s t a l s , w i t h the l a r g e r c r y s t a l s having a 

lower r a t e o f o x i d a t i o n and a l l o w i n g more d i s p r o p o r t i o n a t i o n t o 

occur. A comparison of the c r y s t a l sizes and shapes shown i n the 

published e l e c t r o n micrographs w i t h the specimens used i n the 

present study i n d i c a t e d t h a t comparable degrees of o x i d a t i o n were 

obtained f o r s i m i l a r samples. 
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ft A 

Lutz and E l Suradi s t a t e t h a t t h e i r DTA and TG studies were 

performed, i n argon, up t o 800*^C, but the curves shown only continue 

up t o about 580°C. Therefore, only the dehydration step i s 

in d i c a t e d w i t h i t s associated endotherm. 

97 

Ingraham and Marier c a r r i e d out DTA stu d i e s on CaSO^ m 

streams of n i t r o g e n , oxygen and sulphur d i o x i d e , up t o temperatures 

of about 850°C. The f a c t t h a t they s t a r t e d w i t h anhydrous calcium 

s u l p h i t e r a t h e r than the hemihydrate appears t o be the major reason 

f o r the marked d i f f e r e n c e s i n DTA r e s u l t s compared t o the curves 

reported i n t h i s t h e s i s . I n oxygen, they obtained an exothermic 

peak at 540°C due t o the o x i d a t i o n o f calcium s u l p h i t e ( c f 467*^ i n 

Fig . 4.2.6) followed by a second l a r g e r exotherm at 700°C due t o 

d i s p r o p o r t i o n a t i o n . I t might be expected t h a t there would be more 

extensive o x i d a t i o n i n oxygen than i n a i r . However, the dehydration 

of CaSÔ .O.SĤ O produces an inc r e a s e ' i n surface area and number of 

c r y s t a l l i t e s of anhydrous CaSO^ and t h i s a c t i v a t e d product begins t o 

react r a p i d l y , so t h a t o x i d a t i o n i s almost complete by 520°C. The 

smaller c r y s t a l l i t e s would not be deact i v a t e d so r a p i d l y by a surface 

c o a t i n g of sulphate, e s p e c i a l l y as the d e a c t i v a t i o n process apparently 

r e q u i r e s the aggregation of p a r t i c l e s , which i s favoured by higher 

temperatures. Ingraham and Marier d i d not s t a t e e i t h e r how t h e i r 

calcium s u l p h i t e was prepared or what i t s size c h a r a c t e r i s t i c s were. 
L 

S i m i l a r d i f f e r e n c e s are shoxm between t h e i r DTA curve i n SO2 and 

Fig . 4.2.8. Again the a c t i v a t i o n caused by the dehydration r e a c t i o n 

enhances the o x i d a t i o n r e a c t i o n , even though the concentration of 

oxidant i s lower. 

98 

C u b i c c i o t t i e t a l measured the decomposition pressure of 

calcium s u l p h i t e over the temperature range 723 - 767 K, by the 

t o r s i o n - e f f u s i o n method, using mass spectrometric a n a l y s i s of the 
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e f f u s i n g gases t o i d e n t i f y them. I n the temperature range used o n l y 

r e a c t i o n 4.11 was found, and the thermodynamically more favourable 

r e a c t i o n , 4.13, d i d not commence u n t i l the temperature reached 

about 900 K. 

CaSO^ > CaO + SO2 (AG^^^ =98.5 kJ/mol) 4.11 

6CaS0^ > 4CaS0^ + 2CaO + S2 (^O^QQ = 39.1 kJ/mole) 4.13 

The higher a c t i v a t i o n energy f o r r e a c t i o n 4,13 was explained by the 

need t o r u p t u r e s i x S-0 bonds compared t o only one S-O bond i n 

r e a c t i o n 4.11. 
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F i g u r e 4.3.5 SrSO^ c a l c i n e d i n vacuo f o r 2h p e r i o d s 
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F i g u r e A. 3.6 SrSO,^ heated on e l e c t r o n microscope hot-stage 

(a) At 26''C 

(b) At 335^C 

1/^ 
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F i g u r e 4.3.6 

(c ) At 616°C 

% 

(d) At 807"C 
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F i g u r e 4.3.6 

(e) At 9^5"'C 

( f ) At 949'^C 
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F i g u r e A,3,6 

(g) E l e c t r o n d i f f r a c t i o n p a t t e r n at 741 C 

(h) E l e c t r o n d i f f r a c t i o n p a t t e r n at 945 C 
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4.3 Strontium S u l p h i t e 

4,3.1 R e s u l t s 

F i g . 4.3.1 - 4.3.4 summarise the r e s u l t s obtained by the use 

of simultaneous dynamic thermogravin^try and d i f f e r e n t i a l thermal 

a n a l y s i s , a t h e a t i n g r a t e s of 5°C min ^, i n v a r i o u s atmospheres. 

Strontium s u l p h i t e d i f f e r e d from magnesium and c a l c i u m s u l p h i t e i n 

not forming an hydrated compound, thus, there could be no 

a c t i v a t i o n of the anhydrous s u l p h i t e caused by the break up of the 

hydrated s t r u c t u r e , 

a) I n vacuo 

D e s u l p h u r i s a t i o n commenced a t 415^C, F i g . 4.3.1(a) and 

continued to 550*^C w i t h a weight l o s s of 2.6%, which was e q u i v a l e n t 

to 6.8% of the s t r o n t i u m s u l p h i t e decomposing to form s t r o n t i u m 

oxide, ( i ) , w h i l e the remainder d i s p r o p o r t i o n a t e d , ( i i ) . 

( i ) SrSO^ ^ SrO + 80^ ( i i ) 4SrS03 3SrS0^+ SrS 4.18 

There was v e r y l i t t l e f u r t h e r weight l o s s u n t i l the temperature 

reached 870*^0 when slow decomposition o c c u r r e d , becoming more r a p i d 

above 975°C. Complete decomposition to s t r o n t i u m oxide was not 

achieved a t the h i g h e s t temperature reached, 1088°C. 

3SrS0^ + SrS > 4SrO + 4SO2 4.19 

The DTA curve. F i g . 4.3.1(b), showed that the i n i t i a l 

decomposition r e a c t i o n was accompanied by a broad endothermic peak 

between 460°C and 540*^C. There was a s m a l l exothermic peak a t 

808°C which was not a s s o c i a t e d w i t h any weight change, followed by 

an endothermic d r i f t as the f i n a l decomposition r e a c t i o n became 

dominant. 

Samples of s t r o n t i u m s u l p h i t e heated i s o t h e r m a l l y f o r two-hour 

periods confirmed the concurrent nature of the d e s u l p h u r i s a t i o n and 
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d i s p r o p o r t i o n a t i o n r e a c t i o n s . The a n a l y s e s of the products a r e 

given i n Table 4.3.1 and the weight l o s s e s are shown i n F i g . 4.3.1(a) 

The s p e c i f i c s u r f a c e s of these samples were a l s o determined. 

F i g . 4.3.5. The high s u r f a c e a r e a of the o r i g i n a l s t r o n t i u m 

s u l p h i t e , due to i t s r a p i d p r e c i p i t a t i o n from s o l u t i o n , was i n 

marked c o n t r a s t to the low s u r f a c e a r e a s of the more s l o w l y grown 

hydrated c r y s t a l s of magnesium and c a l c i u m s u l p h i t e . The s p e c i f i c 

s u r f a c e was r a p i d l y reduced w i t h i n c r e a s e i n temperature, and the 

s m a l l degree of i n i t i a l decomposition, to s t r o n t i u m oxide, was not 

s u f f i c i e n t to outweigh the s i n t e r i n g e f f e c t s promoted by the c r y s t a l 

l a t t i c e rearrangements a s s o c i a t e d w i t h d i s p r o p o r t i o n a t i o n . S i m i l a r l y 

a t 984°C the f r e s h l y formed s t r o n t i u m oxide was q u i c k l y reduced i n 

a c t i v i t y . 

The specimens of s t r o n t i u m s u l p h i t e examined, u s i n g hot-stage 

e l e c t r o n microscopy, i l l u s t r a t e d some of the changes d i s c u s s e d . 

F i g . 4.3.6(a) - (h) . The c r y s t a l s heated to 335*^C, (b) , had under-

gone some changes which were marked by a tendency to occupy a 

s m a l l e r volume, thus producing l a r g e r gaps between aggregates and 

a "smoothing" of some of the edge f e a t u r e s . With the temperature a t 

616°C, ( c ) , the t h i n n i n g of many c r y s t a l l i t e s was n o t i c e a b l e as 

was the r e d u c t i o n i n a r e a of the aggregates. Photomicrograph ( d ) , 

taken a t 807°C, showed s t r a i n l i n e s on the carbon f i l m consequent 

on the changes which had taken p l a c e c a u s i n g a f u r t h e r r e d u c t i o n i n 

the volume of the aggregates. The f i n a l two t r a n s m i s s i o n e l e c t r o n 

photomicrographs ( e ) and ( f ) , taken a t 945°C and 949°C r e s p e c t i v e l y 

w i t h a time i n t e r v a l of 38 minutes, showed e x t e n s i v e " d e c r e p i t a t i o n " 

as w e l l as s i n t e r i n g . The s m a l l p a r t i c l e s on the carbon f i l m were 

c l o s e to or a t t h e i r m e l t i n g point and i n some c a s e s c o u l d be seen 
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to move over the s u r f a c e of the f i l m . I n the l a r g e r masses used 

f o r the thermogravimetric s t u d i e s , these s m a l l e r p a r t i c l e s , i f 

formed, would be r a p i d l y r e i n c o r p o r a t e d i n the l a r g e r aggregates 

thus r e d u c i n g the s p e c i f i c s u r f a c e . Changes i n phase composition 

were confirmed by changes i n the e l e c t r o n d i f f r a c t i o n p a t t e r n s 

obtained.^ F i g . 4.3.6(g) and ( h ) , taken a t 741°C and 949°C 

r e s p e c t i v e l y , which showed d i f f r a c t i o n r i n g s of d i f f e r e n t 

r e l a t i v e diameters f o r the same microscope s e t t i n g s . The 

" s p o t t i n e s s " o f the r i n g s i n d i c a t e d t h a t the d i f f r a c t i n g 

c r y s t a l l i t e s were r e l a t i v e l y l a r g e , though i n (h) the d i f f u s e n e s s 

of some of the r i n g s showed that some of the newly-formed s t r o n t i u m 

oxide c r y s t a l l i t e s were ve r y s m a l l . 

b) I n n i t r o g e n 

I n the presence of n i t r o g e n . F i g . 4.3.2, the decomposition 

of s t r o n t i u m s u l p h i t e to form s t r o n t i u m oxide commenced a t a h i g h e r 

temperature, 507°C, than " i n vacuo", 415°C, and a l s o proceeded l e s s 

r a p i d l y . The decomposition had v i r t u a l l y ceased by 745°C, but 

f u r t h e r r e a c t i o n began above 1007*^C. The DTA curve d i f f e r e d from 

that obtained i n vacuo, F i g . 4.3.1(b), by h a v i n g a broad exotherm 

between 434°C and 585°, w i t h a s m a l l i n i t i a l peak a t 448°C, due 

to the d i s p r o p o r t i o n a t i o n r e a c t i o n . The second l a r g e r exotherm 

commencing a t 755°C, and peaking a t 796°C, must have been due to 

some phase change, because the exothermic d i s p r o p o r t i o n a t i o n 

r e a c t i o n was v i r t u a l l y completed a t t h i s temperature and t h e r e f o r e 

could not be r e s p o n s i b l e f o r such a r e l a t i v e l y l a r g e peak, 

c) I n a i r 

Strontium s u l p h i t e was o x i d i s e d to s t r o n t i u m s u l p h a t e when 

heated i n a i r as shown by the i n c r e a s e i n weight. F i g . 4 . 3 . 3 ( a ) , 

commencing a t 351°C and c o n t i n u i n g to 565°C. 

2SrS03 + O2 * SrSO^ 4.20 
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The r a t e of weight i n c r e a s e became ver y slow u n t i l the temperature 

reached 895°C when a r a t h e r more r a p i d i n c r e a s e occurred as the 

s t r o n t i u m s u l p h i d e , formed by d i s p r o p o r t i o n a t i o n , was o x i d i s e d . 

SrS + 20„ » SrSO, 4.21 

2 4 

When the i n i t i a l o x i d a t i o n step was complete, 78.5% of the s t r o n t i u m 

s u l p h i t e had been o x i d i s e d w i t h the remaining s u l p h i t e 

d i s p r o p o r t i o n a t i n g to g i v e a mixture of strontium sulphate and 

Sulphide. Above 1060°C there was a s m a l l amount of d i s s o c i a t i o n of 

the s u l p h a t e 

SrSO, > SrO + S0_ 4.22 

4 3 

A sample of strontium s u l p h i t e heated i n a i r at 5°C min , to 

578°C (the system was then evacuated and cooled r a p i d l y to prevent 

f u r t h e r o x i d a t i o n ) was found to have i n c r e a s e d i n weight by 7.51% 

and to c o n t a i n 96.4% SrSO^ and 3.5% SrS. T h i s corresponded to 78.7% 

of the o r i g i n a l s t r o n t i u m s u l p h i t e being o x i d i s e d and 21.3% 

d i s p r o p o r t i o n a t i n g . 

The DTA curve, F i g . 4.3.3(b), showed a s e r i e s of r a t h e r low 

exothermic peaks between 361°C and 735°C, though the peak at 445°C 

was somewhat sharper. These corresponded to the o x i d a t i o n and 

d i s p r o p o r t i o n a t i o n r e a c t i o n s . The o x i d a t i o n of the s t r o n t i u m s u l p h i d e 

produced a s m a l l peak at 899°C, and again t h e r e was the exotherm, 

peaking at 804*^C, shown " i n vacuo" and i n n i t r o g e n . 

(d) I n sulphur d i o x i d e and n i t r o g e n 

Strontium s u l p h i t e was o x i d i s e d by sulphur d i o x i d e as w e l l as 

by oxygen 

4SrS0_ + 2S0, > 4SrS0, + S„ 4.23 

3 2 4 2 

There were, however, a number of d i f f e r e n c e s i n the e x t e n t of the 

r e a c t i o n s . 
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w i t h the c o n c e n t r a t i o n s of sulphur d i o x i d e used, namely 

5.1 v o l - % and 2.8 v o l - % , the s t a r t of the o x i d a t i o n r e a c t i o n was at a 

higher temperature. F i g . 4 . 3 . 4 ( a ) , than i n a i r . F i g . 4 . 3 . 3 ( a ) , but 

with the 5.1 v o l - % SO2 mixture the r e a c t i o n proceeded more n e a r l y 

to completion as the temperature rose to 876°C. As i n the e q u i v a l e n t 

r e a c t i o n s w i t h c a l c i u m s u l p h i t e , the formation of sulphur as a 

gaseous product prevented the sulphate c o a t i n g from becoming too 

coherent and so allowed t h e sulphur d i o x i d e to p e n e t r a t e the i n n e r 

l a y e r s of the aggregates. The r e a c t i o n between s t r o n t i u m s u l p h i d e was 

a l s o f a v o u r a b l e so the o x i d a t i o n went almost to completion. 

SrS + 2SO2 9- SrSO^ + 4,24 

These r e a c t i o n s produced corresponding low exotherms on the DTA 

curve. F i g . 4.3.4(b). 

The r a t e of o x i d a t i o n w i t h the 2.8 v o l - % SO2 mixture was lower 

than with 5.1 v o l - % SO2 and the r e a c t i o n almost ceased at 788°C when 

73.8% of the o r i g i n a l s t r o n t i u m s u l p h i t e had been o x i d i s e d . The 

slower formation of sulphur had a p p a r e n t l y allowed a more coherent 

sulphate c o a t i n g to b u i l d up which prevented the weaker sulphur d i o x i d e 

mixture from p e n e t r a t i n g and r e a c t i n g w i t h the s t r o n t i u m s u l p h i d e formed 

by d i s p r o p o r t i o n a t i o n . 

4.3.2 D i s c u s s i o n 

The d i s p r o p o r t i o n a t i o n of st r o n t i u m s u l p h i t e has been found to 

be more important than the d i s s o c i a t i o n r e a c t i o n , as shown by the 

s m a l l q u a n t i t i e s d i s s o c i a t i n g " i n vacuo" and i n n i t r o g e n . Oxidation 

by oxygen and sulphur d i o x i d e were both e x t e n s i v e r e a c t i o n s when the 

r e s p e c t i v e gases were present i n s u f f i c i e n t c o n c e n t r a t i o n s . 

The r e s u l t s obtained were i n ge n e r a l agreement wi t h the i s o t h e r m a l 

s t u d i e s of Cola and C a s t e l l a r i B i s i ^ ^ , i . e . d i s p r o p o r t i o n a t i o n being 
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the major r e a c t i o n i n n i t r o g e n between 450*^C and 800°C. The degree 

of d i s s o c i a t i o n found i n the present work was somewhat h i g h e r , maybe 

due to s m a l l e r samples being used. The only other experimental work 

which appears to have been r e c e n t l y published on the thermal s t a b i l i t y 

86 

of strontium s u l p h i t e i s t h a t of Lutz and E l S u r a d i , who used an 

argon atmosphere i n t h e i r TG and DTA apparatus. They do not i l l u s t r a t e 

t h e i r r e s u l t s and only r e p o r t a broad endotherm at 560*^C, which they 

equate to the d i s p r o p o r t i o n a t i o n r e a c t i o n . T h i s r e s u l t does not 

correspond to the f i n d i n g s reported i n s e c t i o n 4.3.1, where the 

d i s p r o p o r t i o n a t i o n r e a c t i o n was shown to be exothermic. They r e p o r t 

a s i m i l a r r e s u l t f o r barium s u l p h i t e which again i s not i n agreement 

wit h e i t h e r the r e s u l t s reported i n s e c t i o n 4.4.1 or those obtained 

45 

by other workers . Decomposition of s t r o n t i u m s u l p h i t e , and of 

barium s u l p h i t e , to form the oxide i s an endothermic r e a c t i o n ; 

however, Lutz and E l S u r a d i do not r e p o r t that any decomposition 

occurred. As d i s c u s s e d i n Chapter 3, the X-ray powder d i f f r a c t i o n 

p a t t e r n of Lutz and E l S u r a d i ' s strontium s u l p h i t e sample i n d i c a t e d 

t h a t i t contained an a p p r e c i a b l e q u a n t i t y of s t r o n t i u m s u l p h a t e . 
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Figure 4,4.5 BaSO heated on e l e c t r o n microscope hot-stage 

(a) At 2S^C 

(b) At 348''C 
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Figure 4.4.5 

(c) At 383 C 

(d) At 519 C 
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Figure 4.4.5 

(e) At 551 C 

( f ) At 620"C 
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Figure 4.4.5 

(g) At 719 C 

>. 
(h) At 777 C 
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4. 4 Barium S u l p h i t e 

4.4,1 Results 

Fig. 4.4,1 - 4.4.4 i n d i c a t e the thermal s t a b i l i t y of barium 

s u l p h i t e as determined by the use of simultaneous dynamic thermo-

gravimetry and d i f f e r e n t i a l thermal a n a l y s i s , at heating rates of 

5°C min ̂ , i n various atmospheres. Barium s u l p h i t e , l i k e s t r o n t i u m 

s u l p h i t e , d i d not form an hydrated compound and the thermal s t a b i l i t i e s 

of the two compounds were s i m i l a r , 

(a) " I n vacuo" 

Decomposition of barium s u l p h i t e t o form barium oxide began at 

549°C, Fig. 4.4.1(a), 

BaSO^ 1 BaO + SÔ  4.25 

This decomposition r e a c t i o n was not very r a p i d and became even slower 

above 725°C. At chat temperature 6.25% had d i s s o c i a t e d and by 959*̂ C 

the amount d i s s o c i a t e d had only r i s e n t o 7.64%. The DTA curve. 

Fig. 4,4,1(b), showed a small endotherm w i t h a peak at 580°C associated 

w i t h the onset of t h i s d i s s o c i a t i o n r e a c t i o n . 

The small degree of d e s u l p h u r i s a t i o n was due t o the competing 

d i s p r o p o r t i o n a t i o n r e a c t i o n which occurred over the same temperature 

range and gave an exothermic DTA peak at 730°C. 

4BaS0. > 3BaS0, + BaS 4.26 

3 4 

Samples of barium s u l p h i t e were heated i s o t h e r m a l l y f o r two-hour 

periods a t a number of temperatures, Fig. 4.4.1(a), and they too 

only showed a small degree of d i s s o c i a t i o n . Table 4.4.1, 

They also gave i n d i c a t i o n s t h a t some of the barium s u l p h i t e was 

d i s s o c i a t i n g by a mechanism th a t produced f r e e sulphur 

BaSO^ > BaO + SO2 4.25 

4BaS0^ + 2S0^ ^ 4BaS0^ + S2 4.27 

(4.25 + 4.27) 6BaS0^ > 4BaS0^ + 2Ba0 + Ŝ  4.28 
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Table 4.4.1 Composition of samples of BaSO^ i s o t h e r m a l l y heated f o r 

2 h periods *'in vacuo" 

Temperature Weight 

loss % 

Percentage composition Temperature Weight 

loss % BaSO„ BaSO, 
4 

BaS BaO 

586 2.93 74.6 14.7 1.3 9.3 0.1 

687 2.93 26.2 54.0 10.8 8.8 0.2 

900 2.98 0 75.2 16.1 8.8 -

*Determined by d i f f e r e n c e 

The samples heated t o 586°C, 649°C, 687°C and 749°C, r e s p e c t i v e l y , 

consisted of coarse grained, l o o s e l y fused p e l l e t s w i t h a yellow or 

red-brown spotted appearance t o the upper la y e r s but w i t h white 

i n t e r i o r s and bases. Portions of the coloured coating were scraped o f f 

and e x t r a c t e d w i t h carbon d i s u l p h i d e . Evaporation of the s o l u t i o n on 

a microscope s l i d e produced some pale yellow c r y s t a l s which melted at 

116°C on the hot stage of the o p t i c a l microscope. 

The smaller percentage of barium oxide i n the product a t 900*^C, 

compared t o the lower-temperature samples, was due t o the d i s s o c i a t i o n 

o c c u r r i n g mainly by loss of sulphur d i o x i d e , r e a c t i o n 4.25, r a t h e r 

than by loss of sulphur, r e a c t i o n 4.27. The t h e o r e t i c a l r a t i o of 

%sulphate t o %sulphide due t o d i s p r o p o r t i o n a t i o n i s 4.13:1 whereas 

the r a t i o s found were 4.68:1 at 900°C; 5.0:1 at 687°C; 11.6:1 a t 

586°C. The excess sulphate was due t o decomposition by r e a c t i o n 4.28. 

The s p e c i f i c surfaces. Table 4.4.2, of these i s o t h e r m a l l y heated 

samples decreased very markedly w i t h increase i n temperature. 

C r y s t a l s of barium s u l p h i t e were heated on the hot-stage i n 

the e l e c t r o n microscope, Fig. 4.4.5(a) - ( h ) . The changes i n c r y s t a l 

form and e l e c t r o n o p a c i t y i n d i c a t e d t h a t r e a c t i o n s were o c c u r r i n g 

s t e a d i l y from 348°C, ( b ) , up t o 777°C, ( h ) , w i t h the arrowed c r y s t a l s 

showing these changes p a r t i c u l a r l y c l e a r l y . The r e a c t i o n proceeded 

somewhat more r a p i d l y a t about 600°C ( c f (e) and ( f ) ) . 
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Table 4.4.2 S p e c i f i c surfaces of samples of barium s u l p h i t e i s o t h e r m a l l y 

heated f o r 2 h periods " i n vacuo". 

Temperature °C 
2 -1 

S p e c i f i c surface m g 

O r i g i n a l sample 43.2 

463 1.1 

586 1.0 

649 0.7 

687 0.5 

749 0.1 

900 0.3 

975 0.1 

No f u r t h e r r e a c t i o n was noted above 777°C. Photomicrograph (h) 

showed t h a t decomposition and d i s p r o p o r t i o n a t i o n had produced 

c r y s t a l s of s i m i l a r sizes to the o r i g i n a l barium s u l p h i t e , ( a ) , but 

t h i n n e r . The marked increase i n the number of c r y s t a l l i t e s shown by 

magnesium and calcium s u l p h i t e s was not found, i n d i c a t i n g less 

d i s r u p t i v e l a t t i c e changes. The d i s p e r s a l of the c r y s t a l s on the 

carbon f i l m prevented them f u s i n g together t o give the coarse 

aggregates found w i t h the l a r g e r samples used i n thermogravimetric 

studies. 

(b) I n n i t r o g e n 

The decomposition of barium s u l p h i t e , t o form barium oxide, 

brought no measurable weight change u n t i l 727°C, Fig. 4.4.2(a). 

The slow weight loss continued up to 970°C, by which temperature 

i t had reached 2.18%, equ i v a l e n t t o the d e s u l p h u r i s a t i o n , as 

Sulphur d i o x i d e , of 7.4% of the o r i g i n a l barium s u l p h i t e . However, 
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samples removed at temperatures below 800°C contained traces of 

sulphur i n d i c a t i n g t h a t both d e s u l p h u r i s a t i o n mechanisms had been 

i n operation. The DTA curve, Fig. 4.4.2(b) contained an exothermic 

peak at 686°C, associated w i t h the d i s p r o p o r t i o n a t i o n r e a c t i o n , 

followed by a small endotherm, peaking at 731°C, associated w i t h the 

onset of d e s u l p h u r i s a t i o n . 

(c) I n a i r 

Oxidation of barium s u l p h i t e began at 342*^C, Fig. 4.4.3(a), and 

continued t o about 530°C when 79% of the o r i g i n a l barium s u l p h i t e 

had reacted. 

2BaS0^ + O2 > 2BaS0^ 4.29 

The o x i d a t i o n r e a c t i o n produced a coherent c o a t i n g of barium 

sulphate which prevented access of the oxygen t o the inner zone of 

the o r i g i n a l barium s u l p h i t e c r y s t a l s . The unoxidised barium s u l p h i t e 

d i s p r o p o r t i o n a t e d and the barium sulphide, so formed, was also p r o t e c t e d 

from r e a c t i o n w i t h oxygen so t h a t v i r t u a l l y no o x i d a t i o n occurred as 

the temperature rose t o over 1000°C. The o x i d a t i o n r e a c t i o n produced 

a l a r g e exotherm between 320*^0 and 530°C, peaking at 427°C w i t h a 

shoulder at 457°C, i n the DTA curve. Fig. 4.4.3(b). The shoulder 

presumably i n d i c a t e d t h a t the o x i d a t i o n was o c c u r r i n g by more than a 

si n g l e - s t e p process. 

(d) I n sulphur d i o x i d e and n i t r o g e n 

The o x i d a t i o n of barium s u l p h i t e by sulphur d i o x i d e commenced 

at about 365°C, Fig. 4.4.4(a). 

4BaS02 + 2SO2 > 4BaS0^ + 4.30 

The r e a c t i o n proceeded more r a p i d l y i n the higher concentration 

of sulphur d i o x i d e (5.3 v o l - % ) u n t i l 53% o f the barium s u l p h i t e had 

reacted, at 470°C, when the r a t e of o x i d a t i o n became very much slower 

due t o the build-up of sulphate coating. The o x i d a t i o n f i n a l l y 
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ceased at about 755°C, by which temperature the i n t e r n a l barium s u l p h i t e 

had l a r g e l y d i s p r o p o r t i o n a t e d t o a mixture of barium sulphate and 

sulphide. The great degree of s i n t e r i n g which these mixtures of barium 

compounds undergo was s u f f i c i e n t t o prevent contact between the 

o x i d i s i n g atmosphere and the barium sulphide. 

The 2.4 v o l - % SO2 atmosphere i n i t i a l l y produced less extensive 

o x i d a t i o n , 23.4% barium s u l p h i t e at 457*^C, but the o x i d a t i o n 

continued at a reduced r a t e up t o 895°C w i t h 48.0% of the barium 

s u l p h i t e o x i d i s e d ; the s u l p h i t e c o a t i n g had by then b u i l t up t o a 

s u f f i c i e n t thickness t o prevent f u r t h e r r e a c t i o n . 

S i m i l a r DTA curves. Fig. 4.4.4(b), were obtained w i t h an 

exotherm corresponding t o the o x i d a t i o n r e a c t i o n peaking at 473°C, 

i n 2.4 v o l - % SO^, and 469°C, i n 5.3 v o l - % SO2. 

4.4.2 Discussion 

As w i t h s t r o n t i u m s u l p h i t e the d i s p r o p o r t i o n a t i o n r e a c t i o n of 

barium s u l p h i t e was more important than the d e s u l p h u r i s a t i o n r e a c t i o n s . 

The d e s u l p h u r i s a t i o n of barium s u l p h i t e took place by two mechanisms, 

rea c t i o n s 4.25 and 4.28, le a d i n g to the emission of n o t i c e a b l e 

q u a n t i t i e s o f sulphur as w e l l as sulphur d i o x i d e . 

Mocek and Erdas ' have c a r r i e d out extensive studies of the 

k i n e t i c s o f d i s p r o p o r t i o n a t i o n of barium s u l p h i t e at temperatures 

between 600°C and 700°C, i n n i t r o g e n . They found t h a t the r a t e was 

slow below 670*̂ C and was increased by the presence of water vapour. 

A r e a c t i o n mechanism proposed by "Nechkovskij" (Pechkovskii) and 

Ketov^*^^ was mentioned, but not discussed i n r e l a t i o n t o t h e i r r e s u l t s . 

The r e a c t i o n s e r i e s was: 

BaSO^ > BaO + SO2 4.31 

2 B a S 0 ^ + SO2 * 2 B a S 0 ^ + JS2 A.32 

2BaO + 3 / 2 S 2 ^ 2BaS + SO2 4.33 
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Though Mocek and Erdos stated " I t i s p o s s i b l e to e x p l a i n the c a t a l y t i c 

e f f e c t s of the water vapour by t h a t the water vapour acts as an 

oxygen c a r r i e r and thus supports the d i s p r o p o r t i o n a t i o n . " i t i s not 

c l e a r t o which step they are r e f e r r i n g the need f o r an oxygen c a r r i e r . 

Further discussion of the mechanism v / i l l be made i n se c t i o n 4.5. 

The r e s u l t s obtained i n the present work were s i m i l a r to those 

44 
obtained i n the isothermal studies of Cola and C a s t e l l a n i B i s i , 

c a r r i e d out i n n i t r o g e n , and the DTA r e s u l t s , i n argon, of 

45 
Pechkovskii and Ketov . As mentioned i n s e c t i o n 4.3.2, the 

86 

endotherm, stated by Lutz and E l Suradi t o be due t o d i s p r o p o r t i o n a t i o n , 

must have been caused by a d i s s o c i a t i o n r e a c t i o n . l^Jhether an endotherm 

or exotherm i s obtained depends upon the r e l a t i v e r a t e s of d i s s o c i a t i o n 

(endothermic) and d i s p r o p o r t i o n a t i o n (exothermic). 
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4.5 General Discussion 

The r e s u l t s obtained from studies of the thermal s t a b i l i t i e s 

of the a l k a l i n e e a r t h metal s u l p h i t e s are summarised i n Tables 

4.5.1 - 4.5.4. 

Considering f i r s t l y the r e a c t i o n s " i n vacuo" and n i t r o g e n , the 

extent by which the s u l p h i t e s decompose by e i t h e r loss o f sulphur 

d i o x i d e , equation 4.34, or by d i s p r o p o r t i o n a t i o n , equation 4.35, 

v a r i e s w i t h the a l k a l i n e e a r t h metal. 

MSÔ  > MO + SO2 4.34 

4MS0^ > 3MS0^ + MS 4.35 

The equation f o r the d i s p r o p o r t i o n a t i o n r e a c t i o n appears t o be very 

u n l i k e l y t o be an expression of how the r e a c t i o n a c t u a l l y occurs. 

Equation 4.35 r e q u i r e s four s o l i d - s t a t e species to interchange oxygen 

atoms and then migrate t o form separate c r y s t a l l i n e regions of 

sulphate and sulphide which are large enough t o give c l e a r X-ray 

d i f f r a c t i o n powder patterns- I f there was l i t t l e or no m i g r a t i o n the ' 

d i f f r a c t i o n p a t t e r n s would be e i t h e r o f an amorphous substance or 

show l i n e broadening. 

The same mechanism f o r the d i s p r o p o r t i o n a t i o n r e a c t i o n has been 

proposed by Pechkovskii and Ketov^^*^, f o r barium s u l p h i t e (see s e c t i o n 

93 

4.4.2) and by T a r r a d e l l a s and Bonnetain , f o r calcium s i i l p h i t e . The 

l a t t e r authors heated a sample of calcium s u l p h i t e , i n helium, i n 

a closed c o n t a i n e r , attached t o an X-ray d i f f r a c t o m e t e r , from 350^C t o 

950°C. The X-ray traces obtained i n d i c a t e d t h a t calcium oxide was 

formed i n i n c r e a s i n g amounts up t o about 650°C and the q u a n t i t i e s present 

then decreased as the temperature rose f u r t h e r . At the same time 

there was a corresponding increase i n the amounts of calcium sulphate 

and sulphide. As a r e s u l t , they proposed t h a t the f o l l o w i n g s e r i e s of 
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Table 6.5.1 Sunnary of TC re s u l t s obtained when HgSO^.SH^O was heated at 5°C ain"* 

in various atoospheres 

Atmosphere 

Temperature °C 

Atmosphere 
Dehydration Sulphate fomation Itesulphurisation of 

Atmosphere 
No. of mols IL,0 remaining Primary Secondary Non-sulphate 

compounds 

MgSO^ 
Atmosphere 

6 3 <0.5 0 

Secondary Non-sulphate 
compounds 

MgSO^ 

" i n vacuo" 25 198 230 [2 30]-3 87 

-531 

Nitrogen 56 116 215 350 300-576 [3501-637 

-576 

819-

1002 

Air 57 115 220 (3A0) (320)-

600 

(300)-

(600) 

(360)-

(600) 

883-

1022 

2.8 v o « SOj 

in 
59 116 213 (350) (320)-

615 

(300)-

(615) 

(350)-

615 

890-

1038 

20.9 v o K SO2 59 116-

157 

222 (350) (320)-

590 

(300)-

(590) 

(350)-

590 

965-

(1100) 

Temperatures indicated: ( ) estimated 

[ ] i n i t i a l temperature, but only sli g h t decomposition 

Primary sulphate fomation due to reactions with introduced atmosphere 

2MgS0^ ( i ) mgSO^ * O2 

( i i ) 2MgS03 * ^°2 2MgS0^ + S 

Secondary sulphotc formation due to reactions not d i r e c t l y dependent upon introduced 

atmosphere 

( i ) MgSOj � MgO + SOj 

( i i ) 6MgS03 » 3MgS0^ + MgS 

2MgS0, 
2MgS0^ + S 
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Table 4.5.2 Sucoary of the TC r e s u l t s obtaioed when CaSO^. jHjO was heated at 5°C aia~^ 

in various atmospheres 

1 

At ensphere 

Temperature **C 
1 

At ensphere 
Dehydration Sulphate formation Oesulphurisation of 

1 

At ensphere 

I n i t i a l F i n a l Dispropor-

tionation 

Oxidation Sulphite Non-sulphite 

compounds 

" i n vacuo" 329 393 (600)-740 540-740 915-990 

Nitrogen 345 396 (6O0)-900 [682]-850 

-(925) 

(925)->1075 

Air 343 395 (600)-

(900) 

(385)-520 

-[998] 

{ [ 6 8 2 ] ) -

([900]) 

1064->1096 

2.8 voK SO-
in 

343 399 (600)-

(900) 

450-920 ( [ 7 0 0 ] ) -

([990]) 

940->1055 

4.5 voM SO-

in N2 

343 (399) (600)-

(900) 

(375)-790 ( [ 7 0 0 ] ) -

([aoo]) 

>1020 

20.2 voHE SO-

in 
344 (399) (600)-

(800) 

{360)-610 ( [ 7 0 0 ] ) -

([800]) 

>1068 

Temperatures indicated ( ) estimated 

[ ] only s l i g h t reaction 
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Table 4.5.3 Summary of the TG r e s u l t s obtained when SrSO^ was heated 

at 5°C min ^ i n vari o u s atmospheres 

Atmosphere 

Temperature °C 

Atmosphere 
Sulphate formation Desulphurisation of 

Atmosphere 

Dispropor-

t i o n a t i o n 

Oxidation 

S u l p h i t e Non-sulphite 

compounds 

" i n vacuo" (434)-(870) 415-550 

-[870] 

[870]-975 

.->1088 

Nitrogen 434-(1007) 507-745 

- ( [ 1 0 0 7 ] ) 

[1007]-

>1050 

A i r (434)-(578) 351-565-

[895]-1060 

1060-

>1082 

2.8 vol-% SÔ  

i n 

(434)-(60O) 392-788 

5.1 vol-% 

i n N2 

(434)-(578) 390-87 6 1050-

>1060 

Temperatures i n d i c a t e d ( ) estimated 

[ ] only s l i g h t r e a c t i o n 
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Table A,5.4 Summary of the TG r e s u l t s obtained when BaSO^ was heated 

at 5°C min ^ i n vari o u s atmospheres 

Atmosphere 

Temperature °C 

Atmosphere 
Sulphate f o r m a t i o n Desulphurisation of 

Atmosphere 

Dispropor-

t i o n a t ion 

O x i d a t i o n 

S u l p h i t e 

Other S 

Compounds 

" i n vacuo" (500)-939 549-725 

-[959] ' 

Nitrogen (500)-970 727-970 

A i r (500)-(725) 342-530 

-[1001] 

2.4 VOI-TS SO2 

i n 

(500)-(800) 367-457 

-895 

5.3 vol-% SO2 

i n 

(500)-(755) 365-470 

-[755] 

Temperatures i n d i c a t e d ( ) estimated 

[ ] only s l i g h t r e a c t i o n 
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r e a c t i o n s were o c c u r r i n g : 

20350^ > 2CaO + 2SO2 ^-36 

6CaS0^ + 3SO2 > 6CaS0^ + 3/2 S2 4.37 

2CaO + 3/2S2 > 2CaS + A. 38 

The a t t r a c t i v e f e a t u r e of t h i s mechanism i s t h a t i t contains gaseous 

molecules, sulphur d i o x i d e and sulphur, which could d i f f u s e r a p i d l y 

through the s o l i d l a t t i c e and so promote the t r a n s f e r o f m a t e r i a l . 

However, these equations must only represent the o v e r a l l r e a c t i o n s , 

w i t h the a c t u a l i n d i v i d u a l steps i n v o l v i n g fewer species. 

The f i r s t step, 4.36, i s i d e n t i c a l w i t h the d i s s o c i a t i o n 

r e a c t i o n , 4.34, and involves the breaking of one S-0 bond t o release 

the SO2 molecule and leave the remaining oxygen co-ordinated t o the 

metal i o n . A study of the s t r u c t u r e of calcium s u l p h i t e hemihydrate 

shows t h a t i t contains "channels" perpendicular t o the ac plane. 

Fig. 4.5.1, which seem s u i t a b l e f o r the promotion of the r e a c t i o n 

s e r i e s proposed. I t i s assumed t h a t the s t r u c t u r e of anhydrous 

calcium s u l p h i t e i s very s i m i l a r t o t h a t of the hemihydrate, as the 

loss of water causes very l i t t l e d i f f e r e n c e t o the c e l l parameters 

as determined from the X-ray powder p a t t e r n s , and t h a t the other 

s u l p h i t e s also have s i m i l a r s t r u c t u r e s (see Chapter 3 ) . The "channels" 

2 + 

are bounded by s i x Ca ions each connected t o s u l p h i t e groups v i a 

oxygens. The breaking of one S-0 bond would f r e e a SO2 molecule and 

allow i t t o come i n contact w i t h other s u l p h i t e groups i n the "channel" 

The arrangement of groups around the "channels" i s such t h a t the 

2-

pyramidal SÔ  species have t h e i r a p i c a l sulphur atoms d i r e c t e d 
towards the centre of the "channel" so t h a t oxygen could be bonded 

2-

t o t h i s sulphur to form the t e t r a h e d r a l SÔ  group, the oxygen being 

dominated by the SÔ  molecule. The r e s u l t i n g SO could react s i m i l a r l y 
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Figure 4.5,1 P r o j e c t i o n of u n i t c e l l of CaSO .0.5H 0 

81 
a f t e r Schropper 

> a 

(cl) Calcium 

/^^\ Oxygen of s u l p h i t e 

— group 

(H) Hydrogen 

Sulpllur 

Oxygen of water 

molecule 
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Figure 4.5.2 Possible r e a c t i o n steps i n v o l v e d i n the thermal 

decomposition of a l k a l i n e e a r t h metal s u l p h i t e s 

s u l p h i t e 

/N 

.3 O 

sulphide 

oxide 

5 O' 

sulphate 

/ 

1. 

N 

t h i o s u l p h a t e 
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2-w i t h another SO^ group forming sulphur. I t i s of i n t e r e s t t o note 

t h a t Papazion et a l ^ ^ ^ have reported the presence of SO, as w e l l as 

SO2, i n the e f f l u e n t gas from the vacuum decomposition of calcium 

s u l p h i t e . The r e a c t i n g sulphur could then (a) combine w i t h another 

sulphur atom t o form a diatomic molecule, which could escape from the 

2+ 
s t r u c t u r e ; (b) exchange w i t h an oxygen attached t o the Ca t o form 

calcium sulphide; (c) react w i t h exchanged oxygen t o form sulphur 

2-
d i o x i d e (or monoxide); (d) bond t o the sulphur o f a SO^ group t o form 

2-

a t e t r a h e d r a l t h i o s u l p h a t e , 820^ , group. This s e r i e s of r e a c t i o n 

steps would appear t o be capable of producing a number of r e l a t e d 

mechanistic pathways by which the formation of a l l the phases found i n 

the s tudies of the thermal s t a b i l i t i e s of the a l k a l i n e e a r t h metal 

s u l p h i t e s i n i n e r t atmospheres can be explained. The f o l l o w i n g 

equations, and F i g . 4.5.2, summarise the proposed mechanisms: 

MOSO2 > MO + SO2 4.39 

2M0^S + . SO2 >� 2M0^S0 + S 4.40 

or MÔ S + SO2 > MÔ SO + SO 4.40A 

and MÔ S + SO f MÔ SO + S 4-40B 

MO + S > MS + 0 4.41 

MO3S + S > MO3SS 4.42 

MO3S + 0 * MÔ SO 4.43 

S + 0 — ? SO —2^ SO2 4.44 

S + S ^ S2 

Re l a t i n g these r e a c t i o n s t o the r e s u l t s obtained from each o f the 

s u l p h i t e s s t u d i e d : 

( i ) Magnesium s u l p h i t e . " I n vacuo" r e a c t i o n 4.39 i s dominant, but 

i n n i t r o g e n the slower loss of sulphur d i o x i d e and the higher temperature 

r e q u i r e d enables r e a c t i o n s 4.40, 4.42 and 4.45 t o proceed and produce 

magnesium sulphate, magnesium t h i o s u l p h a t e and sulphur as w e l l as the 
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major products, magnesium oxide and sulphur d i o x i d e . Reaction 4.41 on l y 

occurred t o a very small extent presumably because i t has a high 

a c t i v a t i o n energy and the temperature d i d not reach a high enough 

value before a l l the magnesium s u l p h i t e had decomposed. Schwitzgebel 

90 

and Lowell p o i n t out t h a t the f r e e energy change f o r the o v e r a l l 

d i s p r o p o r t i o n a t i o n r e a c t i o n i s favourable f o r the r e a c t i o n t o occur, 

but t h a t the r a t e i s n e g l i g i b l e below 600°C. The f r e e energy change 

f o r r e a c t i o n 4.41^, at 480*^C, i s about +186 kJmole ^ which i s not 

very favourable, even making allowance f o r the f a c t t h a t on the 

molecular scale the species involved are l i k e l y t o be more r e a c t i v e , 

( i i ) Calcium s u l p h i t e . The temperature r e q u i r e d t o i n i t i a t e r e a c t i o n 

4.39 i s higher and as a r e s u l t the species involved i n re a c t i o n s 

4.40 and 4.41 are more a c t i v a t e d , r e s u l t i n g i n d i s p r o p o r t i o n a t i o n 

becoming the major r e a c t i o n i n n i t r o g e n . 

( i i i ) Strontium s u l p h i t e . The formation of sulphate and sulphide i s 

even more favoured than w i t h calcium s u l p h i t e , so t h a t even " i n vacuo" 

only about 10% of the sulphur d i o x i d e i s removed by r e a c t i o n 4.39. 

( i v ) Barium s u l p h i t e . The replacement of oxygen by sulphur i s not 

so favoured, as i n the case of s t r o n t i u m , below 800*̂ C and t h i s 

r e s u l t s i n the e v o l u t i o n of sulphur as w e l l as sulphur d i o x i d e . 

I n the presence of oxygen or sulphur d i o x i d e , a second group 

of r e a c t i o n s , i . e . o x i d a t i o n r e a c t i o n s , compete w i t h the thermal 

decomposition r e a c t i o n s considered above. The extents of the 

o x i d a t i o n r e a c t i o n s i n the presence of e i t h e r oxygen, 4.46, 4.47, 

or sulphur d i o x i d e 4.48, 4.49 are very s i m i l a r f o r corresponding 

concentrations of oxidant. 

2MSO3 + O2 > 2MS0^ 4.46 

MS + 2O2 * MSÔ  4.47 

4MS0.3 + 2S0„ > 4MS0, + S. 4.48 

3 2 4 2 
MS + 2SO2 * MSÔ  + 4.49 
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The degree t o which o x i d a t i o n occurs w i t h the var i o u s a l k a l i n e 

e a r t h metal s u l p h i t e s i s c o n t r o l l e d by the extent of the decomposition 

r e a c t i o n 4.34. The lower the temperature at which decomposition t o 

oxide occurs the less s u l p h i t e , or sulphide, there i s t o be o x i d i s e d ; 

t h e r e f o r e , the degree of o x i d a t i o n i s low f o r magnesium s u l p h i t e and 

high f o r s t r o n t i u m and barium s u l p h i t e . 

Examination of the r e s u l t s of t h i s study w i t h a view t o the 

possible u t i l i s a t i o n of a l k a l i n e e a r t h metal compounds i n c y c l i c processes 

of f l u e gas d e s u l p h u r i s a t i o n ( i n which the oxide i s converted t o s u l p h i t e 

and then regenerated by thermal decomposition), i n d i c a t e s t h a t 

magnesium s u l p h i t e i s the only p o s s i b i l i t y using temperatures of about 

1000*^C, or less. However, calcium s u l p h i t e would also decompose i n 

t h i s temperature range " i n vacuo". The d i s p r o p o r t i o n a t i o n and 

o x i d a t i o n r e a c t i o n s , which would accompany s u l p h i t e f o rmation and 

thermal decomposition r e a c t i o n s , produce sulphates and sulphides w i t h 

greater thermal s t a b i l i t i e s than the s u l p h i t e s . The r e s u l t i s t h a t 

the thermal decomposition of the s u l p h i t e , t o form the oxide, i s not 

an e x c l u s i v e r e a c t i o n and thermal decomposition alone, at temperatures 

below 1000°C, cannot be used t o regenerate an a l k a l i n e e a r t h metal 

oxide absorbent. The commercial a p p l i c a b i l i t y of these r e a c t i o n s i s 

discussed i n Chapter 6. 
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CHAPTER FIVE 

REACTIVITY OF SOME ALKALINE EARTH METAL COMPOUNDS WITH SULPHUR DIOXIDE 

5.1 Dynamic Thermogravimetric Studies 

A number of s o l i d reactants were heated i n atmospheres 

c o n t a i n i n g sulphur d i o x i d e i n order t o determine the changes i n 

r e a c t i v i t y which occurred. The f o l l o w i n g s o l i d s were used: 

(a) Calcium oxide - prepared by c a l c i n i n g BDH calcium carbonate, 

i n a i r , at 925*̂ C f o r three hours. 

(b) I C I quicklime - a commercially produced quicklime. 

(c) Calcium hydroxide, BDH, 

(d) Limbux - an hydrated lime produced by I C I f o r i n d u s t r i a l use. 

(e) Calcium carbonate, BDH. 

( f ) Limestone - a Carboniferous limestone quarried by I C I from t h e i r 

Tunstead Quarry i n Derbyshire. 

(g) Magnesite. 

(h) Dolomite - quarried by Steetley. 

( i ) Strontium carbonate, BDH, 

( j ) Barium carbonate, BDH. 

The s p e c i f i c surfaces of the s o l i d s are given i n Table 5.1.1, 

The atmospheres under which the r e a c t i o n s were c a r r i e d out, i n 

the Mass-flow balance, were produced by mixing the required gases and 

c o n t r o l l i n g the f l o w - r a t e s w i t h valves and rotameters. The 

atmospheres used were (a) 2 volume-% sulphur d i o x i d e i n n i t r o g e n ; 

(b) 0,8 volume-% sulphur d i o x i d e i n n i t r o g e n ; (c) 0,8 volume-% sulphur 

d i o x i d e , plus 8.2 volurae-% oxygen, i n n i t r o g e n ; (d) n i t r o g e n alone. 

Heating r a t e s were 5°C min ̂  and f l o w rates 1 Imin"^. 

The m a j o r i t y of published TG studies (see f o r example Borgwardt^*^; 

Coutant^^^; Chan^^; Marrier^*^^; James^^^) have employed isothermal 
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Table 5.1.1 S p e c i f i c surfaces of samples used i n TG studies 

Sample 

S p e c i f i c surface 

2 -1 
m g 

Calcium oxide 5.0 

I C I quicklime 0.8 

Calcium hydroxide 4.9 

Limbux 14.2 

Calcium carbonate 0.7 

Limestone 0.5 

Magnesium carbonate 0.6 

Dolomite 0.4 

Strontium carbonate 0.8 

Barium carbonate 4.7 

193 



c o n d i t i o n s and, u s u a l l y , the m a t e r i a l s have been p r e - c a l c i n e d , i . e . 

r e a c t i o n s between oxides and sulphur d i o x i d e have been studied. As 

i n t e r e s t was d i r e c t e d towards determining the r e l a t i v e r a t e s of 

r e a c t i o n a t temperatures lower than those found i n the furnace, dynamic 

TG methods had the advantages t h a t they would ( i ) a l l o w a comparison 

of the r e l a t i v e r a t e s of r e a c t i o n at d i f f e r e n t temperatures t o be 

conveniently made on the same sample; ( i i ) give an i n d i c a t i o n of the 

rea c t i o n s which could occur d u r i n g the period a cold p a r t i c l e was 

r a i s e d i n temperature up t o t h a t of the hot gas i n t o which i t was 

i n j e c t e d . 

I t was found t h a t simultaneous DTA and TG measurements d i d not 

provide much more u s e f u l i n f o r m a t i o n . The sulphur d i o x i d e r e a c t i o n 

r a t e s were i n many cases i n s u f f i c i e n t t o give a marked temperature 

d i f f e r e n c e between the sample and reference m a t e r i a l . Also, the type 

of sample container i n f l u e n c e d the r e a c t i o n r a t e s . The comparatively 

narrow and deep c r u c i b l e s ( r a d i u s 2.75 mm) necessary f o r DTA 

measurements, r e s u l t e d i n reduced r e a c t i o n r a t e s compared t o those 

found w i t h wider, shallower c r u c i b l e s ( r a d i u s 5.75 mm) s u i t a b l e f o r 

TG measurements. This e f f e c t i s i l l u s t r a t e d i n Fig. 5.1.1 f o r the 

r e a c t i o n between 2 volume-% SO2 and Limbux. I n (a) the a c t u a l 

measured percentage weight changes, have been p l o t t e d , and i n (b) 

the weight changes have been adjusted t o make allowance f o r the 

breakdown of calcium hydroxide t o form calcium oxide, plus the 

decomposition o f the small q u a n t i t i e s o f calcium carbonate also present. 

The wider container allowed the dehydration of the calcium hydroxide 

and the r e a c t i o n w i t h sulphur d i o x i d e t o proceed f r e e l y a t the same 

time, whereas i n the narrower DTA container the slower r a t e of 

s u l p h u r i s a t i o n was not s u f f i c i e n t t o compensate f o r the loss i n weight 

due t o dehydration between 400°C and 500*^0. The o v e r a l l r e s u l t was 
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Figure 5.1«1 E f f e c t of c r u c i b l e type on r e a c t i o n of Limbux w i t h 
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Figure 5.1.2 Reaction of CaO w i t h SO2 
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Figure 5.1.3 Reaction of I . C . I , q u i c k - l i m e w i t h SÔ  
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Figure 5.1.4 Reaction of calcium hydroxide w i t h SO2 
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Figure 5.1.5 Reaction of Limbux w i t h 
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Figure 5.1.6 Reaction of CaCO^ w i t h SÔ  
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Figure 5.1.7 Reaction of limestone w i t h 
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Figure 5.1.8 Reaction of magnesium carbonate w i t h SO, 
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Figure 5.1.10 Reaction of s t r o n t i u m carbonate w i t h SO, 

10 h 

4J 20 
00 

Temperature 
SrCO^ + 2volume-%S02 i n n i t r o g e n 

SrCO^ + O.8volume-%S02 i n n i t r o g e n 

SrCO^ + 0.8volume-%S02+ 8volume-%02 i n n i t r o g e n 

SrCO^ + n i t r o g e n 

Heated a t 5**C min ̂ . Gas fl o w r a t e itl min ^ 

1100 

Figure 5.1.11 Reaction of barium carbonate w i t h SO 
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Figure 5.1.12 Rates of uptake of SO2 by various a l k a l i n e 

e a r t h metal compounds 
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Figure 5,1;12 
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Table 5.1.2 Maxinun rates of veighc increase shown by samples heated in the presence of 

sulphur dioxide 

Solid 
reactant 

Gas mixtures 
Solid 

reactant 2 v o K SOj + Nj 0.8 v o U SOj + 
0.8 vol-Z S0_ + 

8.2 TOITC OJ + 

Solid 
reactant 

Temp 
»C 

Bate* Tonp. 
oc 

Rate* Temp, 
oc 

Sate* Tenp. 
°C 

Bate* Toap. 
°C 

Elate* Tcop. 
oc 

Rate* 

C a l c i i a 
oxide 

311 
-321 1.1 

650 
-676 2.1 

315 
-325 0.57 

594 
-689 1.3 

311 
-330 0.41 

714 
-747 1.4 

I. C . I . 
Quicklime 

415 
-429 0.44 

710 
-740 0, 39 

434 
-457 0.39 

755 
-780 0.31 

412 
-433 0.41 

678 
-708 0.32 

Calcium 
hydroxide 

311 
-326 0.59 

457 
-494 1.3 

301 
-331 0.41 

467 
-549 0.76 

301 
-336 0.16 

464 
-831 0.65 

Limbux 311 
-331 0.96 

467 
-504 1.3 

309 
-321 0.77 

453 
-460 l . l 

306 
-331 0. 63 

476 
-549 1.0 

Calcium 
carbonate 

672 
-755 0.34 

832 
-852 0.69 

714 
-735 0.45 

804 
-836 1.0 

710 
-720 0. 13 

792 
-828 1.2 

Limestone 646 
-697 0.17 

771 
-832 0.69 

650 
-663 0.19 

771 
-784 0.57 

651 
-667 0.18 

800 
-880 0.61 

Magncsite 330 
-351 0.02 

439 
-480 0.02 

745 
-828 0.14 

Dolcciite 321 
-334 0.08 

697 
-752 1.3 

321 
-346 0.04 

765 
-787 0.45 

696 
-764 0.17 

842 
-863 0.57 

Strent ium 
carbonate 

705 
-739 0. 56 

667 
-864 0.22 

966 
-999 0.34 

747 
-808 0.47 

Barium 
carbonate 

531 
-567 0.45 

659 
-697 0.32 

549 
-629 0. 32 

*Ratc expressed as weight increase per 100 mg s o l i d reactant per minute 
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Table 5.1.3 Canparleon of adjusted weight increases, u t i l i s a t i o n factors and decooposition 

tcnperatures of s o l i d absorbents 

Solid 

reactant 

Gas mixtures 

Solid 

reactant 

2 voliC SO2 + 0.8 v o « SOj + 
0.8 voIrZ SO^ + 

8.2 voW Oj + 
Solid 

reactant 
Max.* 
wt. 

incr. 

B 

convers. 

Decoap. 
temp, 
©c 

vt. 
incr. 

B 

convers. 

Decomp. 
temp. 
OC 

Max.* 

incr. 

B 

convcrs. 

Decoop. 
tcnp. 
oc 

Calcitm 
oxide 70.6 49.5 895 55.9 39.2 888 103.7 72.7 >IC86 

I.C . I , 
quicklime 25.7 24.3 923 24.5 23.1 890 31.6 29.8 *1031 

Calcium 
hydroxide 75.4 69.7 895 58.6 54.2 862 99.5 92.1 >1059 

Limbux 67.7 62.7 930 69.0 63.9 900 89 .'8 83.1 >1085 

Calcium 
carbonate 46.8 58.5 916 37.2 46.5 907 56.0 70.0 >1045 

Limestone 41.7 52.1 907 23.4 29.3 868 71.3 89.1 >1059 

Magnesite 0.5 
C 

2.1 476 8.6 9.1 891 

Dolomite 25.8 29,7 882 17.3 19.9 88A 22.8 26.3 992 

Strontium 
carbonate 19.A 

D 

79.4 >1003 18,2 

D 

74.6 >1004 24.4 100 >972 

Barium 
carbonate 17.7 

D 
96.9 >1014 13.8 

D 
75.5 >995 15,1 

D 
82,6 >999 

Moxiniim percentage weight increase, adjusted for loss due to decomposition reactions 
where necessary. 

Percentage conversion co sulphate based on A. 

Percentage conversion to sulphite. 

Actually lOOZ u c i l i s o c i o n in terms of sulphur to metal r a t i o . 
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Table 5.1.4 A c t i v a t i o n energy f o r the r e a c t i o n between sulphur 

d i o x i d e and calcium oxide 

A c t i v a t i o n energy 

kJ mole ^ 

Determined by 

115 Coutant et a l 

41 - 103 I s h i h a r a 

64 H a t f i e l d et a l ^ ^ ^ 

33 - 75 Borgwardt R.H. 

128 
p « u 104 

� James & Hughes 
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t h a t there was n e a r l y twice as much r e a c t i o n i n the wider container as 

i n the narrower c o n t a i n e r , between sulphur d i o x i d e and limbux, before 

the decomposition temperature was reached. The detectable decomposition 

temperature was also in f l u e n c e d by the container. With the loss of 

decomposition products being hindered i n the narrower c r u c i b l e , the 

apparent decomposition temperature was r a i s e d from 930°C t o 938°C. 

The wide shallow type of alumina c r u c i b l e w i t h o n l y a t h i n l a y e r of 

s o l i d r eactant was used t o minimise the various e f f e c t s caused by the 

reactant gases having t o d i f f u s e through a bed of s o l i d p a r t i c l e s . 

The r e s u l t s of a series of studies i n which gas mixture composition, 

c r u c i b l e type and bed depth were matched as c l o s e l y as p o s s i b l e have 

been shown i n Fig. 5.1.2 - 5.1.12 and i n Tables 5.1.2 and 5.1.3. Because 

of the various competing r e a c t i o n s , see Table 1.1 (p.10), which could 

be o c c u r r i n g at the same time over a given temperature range (the 

a c t u a l simultaneous r e a c t i o n s would depend upon the s o l i d reactants 

and gas composition) i t was decided t h a t attempts t o e x t r a c t precise 

q u a n t i t a t i v e values t o describe the r e a c t i o n k i n e t i c s would not y i e l d 

much u s e f u l i n f o r m a t i o n . The range of published values f o r the 

a c t i v a t i o n energy of the r e a c t i o n between sulphur d i o x i d e and calcium 

oxide. Table 5.1.4, i l l u s t r a t e s t h a t even when r e s u l t s were analysed 

q u a n t i t a t i v e l y , they were of l i t t l e general a p p l i c a b i l i t y due t o 

v a r i a t i o n s i n study c o n d i t i o n s and between samples. 

Fig. 5.1.2 - 5.1.12 i n d i c a t e d the r e l a t i v e e f f e c t i v e n e s s of the 

various compounds i n r e a c t i n g w i t h sulphur d i o x i d e . Fig. 5.1.12 

allowed a r a p i d comparison of the v a r i a t i o n i n r e a c t i o n r a t e s w i t h 

temperature, gas composition and s o l i d reactant t o be made. Maximum 

rat e s of weight increase and the corresponding temperature ranges, as 

presented i n Table-5.1-2, d e f i n e the c o n d i t i o n s f o r maximum 

r e a c t i v i t y r a t h e r more c l o s e l y than does Fig. 5.1.12. This assumed the 
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weight increase was mainly r e l a t e d t o sulphur uptake r a t h e r than t o 

o x i d a t i o n r e a c t i o n s . 

5.1.1 E f f i c i e n c y of s o l i d absorbents 

A major d i f f i c u l t y was found t o be the p r e s e n t a t i o n of a 

simple measure of how e f f e c t i v e a p a r t i c u l a r s o l i d r e a c t a n t was i n 

terms of what p r o p o r t i o n of i t s possible sulphur absorbing capacity 

had a c t u a l l y bfeen u t i l i s e d . The problems may be i l l u s t r a t e d by the 

r e a c t i o n s , w i t h 0,8 volume-% sulphur d i o x i d e i n n i t r o g e n , of I C I 

quicklime. F i g . 5-1.3, and barium carbonate. F i g . 5.1.11. The 

quicklime increased i n weight by 24.5%, a f t e r making allowance f o r the 

6.25% Ca(0H)2 and 2.7% CaCO^ also present, and the barium carbonate 

showed a 13.8% weight increase. I f the maxinium q u a n t i t y o f calcium 

s u l p h i t e had been formed, a weight increase of 105.8% should have been 

recorded, which i n d i c a t e d 23.2% u t i l i s a t i o n of the lime. S i m i l a r l y , 

the maximum conversion of barium carbonate t o barium s u l p h i t e would 

have given a 10.2% weight increase and, thus, the apparent u t i l i s a t i o n 

of the barium carbonate was 135.3%. I f the end products were assumed 

t o be calcium sulphate and barium sulphate, these would give increases 

of 136.2%-and 18.3% r e s p e c t i v e l y and i n d i c a t e corresponding u t i l i s a t i o n s 

of 18% and 75.4%. Both the quicklime and barium carbonate samples, 

a f t e r r e a c t i o n , were found t o co n t a i n both sulphate and sulphide, 

which showed t h a t some s u l p h i t e had been formed and t h i s had subsequently 

d i s p r o p o r t i o n a t e d . I n the presence of oxygen or sulphur d i o x i d e , 

p a r t i c u l a r l y at higher c o n c e n t r a t i o n s , any s u l p h i t e or sulphide formed 

could be ox i d i s e d t o sulphate, as discussed i n Chapter 4, but these 

r e a c t i o n s r a r e l y go to completion due t o the formation of p r o t e c t i v e 

l a y e r s of sulphate. Therefore, comparing the a c t u a l weight increase 

w i t h the t h e o r e t i c a l increase due t o s u l p h i t e f o rmation would be 

l i k e l y t o give too high a value f o r the u t i l i s a t i o n f a c t o r , due t o the 
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e f f e c t s of o x i d a t i o n , and a comparison w i t h the t h e o r e t i c a l increase 

due t o sulphate formation would g i v e t oo low a value f o r the 

u t i l i s a t i o n f a c t o r , i f a l l the s u l p h i t e and sulphide had not been 

ox i d i s e d . I n Table 5.1.3 comparison was made w i t h the t h e o r e t i c a l 

amount of sulphate which could be formed even though t h i s would lead 

t o apparently low u t i l i s a t i o n f a c t o r s , p a r t i c u l a r l y f o r the r e a c t i o n s 

i n 0.8 v o l - % sulphur d i o x i d e i n n i t r o g e n , where the tendency f o r 

o x i d a t i o n was l e a s t . 

The r e s u l t s obtained were c o n s i s t e n t w i t h the view t h a t t h e 

i n i t i a l r e a c t i o n w i t h sulphur d i o x i d e , at lower temperatures, led 

to the formation of s u l p h i t e , even i n the presence of oxygen. The 

r e a c t i v i t y of the s o l i d s w i t h the sulphur dioxide/oxygen mixtures 

was only s l i g h t l y greater than thac w i t h gas mixtures c o n t a i n i n g the 

same q u a n t i t y of sulphur d i o x i d e , but no oxygen. The greater weight 

increases shown i n the sulphur dioxide/oxygen mixtures were not as 

great as would have been expected i f only sulphate was being formed. 

The l a r g e r t o t a l weight increases shown i n the oxygen-containing gas 

mixtures were o f t e n due t o the higher i n i t i a l decomposition 

temperatures of the products which enabled the re a c t i o n s t o continue 

both t o a higher temperature and f o r a longer period of time. This 

l a t t e r f e a t u r e would also i n d i c a t e t h a t conversion of sulphur d i o x i d e 

t o sulphur t r i o x i d e was not a major f a c t o r i n the increased uptake 

i n the presence of oxygen. The p r o p o r t i o n of sulphur t r i o x i d e i n 

e q u i l i b r i u m w i t h sulphur d i o x i d e and oxygen decreases w i t h r i s i n g 

temperature, though, of course, the r a t e of r e a c t i o n would increase. 

102 

This would agree w i t h the f i n d i n g s of Coutant et a l , and H a t f i e l d 

et a l ^ ^ ^ , t h a t the presence of a i r had l i t t l e e f f e c t on the ra t e s of 

sulphur d i o x i d e uptake by ca l c i n e d limestones and dolomites. 

The V a r i a t i o n s i n r e a c t i v i t y shown by the carbonates studied 

could be explained i n terms of the r e l a t i v e thermal s t a b i l i t i e s of the 
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unreacted carbonates and the sulphur c o n t a i n i n g products. 

Magnesium carbonate. F i g . 5.1.8, only reacted s l i g h t l y below 

i t s decomposition temperature and, as magnesium s u l p h i t e decomposed 

i n the same temperature range, t h e r e was no p o s s i b i l i t y of r e a c t i o n 

between the f r e s h l y formed magnesium oxide and sulphur d i o x i d e t o form 

magnesium s u l p h i t e . The f r e e energy of formation of magnesium 

s u l p h i t e , from magnesium carbonate and sulphur d i o x i d e , i s p o s i t i v e 

below 500*̂ C whereas i t i s negative f o r r e a c t i o n s w i t h sulphur t r i o x i d e 

and w i t h sulphur d i o x i d e plus oxygen; however, even w i t h the l a t t e r 

m ixture there was l i t t l e r e a c t i o n u n t i l the magnesium carbonate 

decomposed t o magnesium oxide. The f r e s h l y produced magnesium oxide 

reacted w i t h the SO2/O2 mixture t o form magnesium sulphate, but 

only t o a l i m i t e d .extent ( l e s s than 10% conversion t o sulphate)-

H a t f i e l d et a l ^ ^ ^ found t h a t magnesium oxide, prepared by c a l c i n i n g 

magnesium hydroxide, d i d not re a c t w i t h a SO2/O2 m i x t u r e a t 900°C i n 

the absence of water vapour. I n the present work, the magnesium 

sulphate formed began t o decompose at 891°C and the m a j o r i t y of the 

r e a c t i o n w i t h the sulphur d i o x i d e occurred w i t h the more a c t i v e 

magnesium oxide before i t had had time to. s i n t e r . These fea t u r e s 

would e x p l a i n the lack of r e a c t i o n a t 900°C. 

Calcium carbonate. F i g . 5.1.6, limestone. F i g . 5.1.7 and 

dolomite. F i g . 5.1.9, a l l behaved s i m i l a r l y . i n t h a t the major degree 

of r e a c t i o n w i t h sulphur d i o x i d e occurred as the carbonates were 

decomposing t o form a c t i v e calcium oxide. The e v o l u t i o n o f carbon 

d i o x i d e reduced the r a t e of r e a c t i o n i n some cases, presumably by 

h i n d e r i n g the access of the sulphur d i o x i d e t o the decomposed p a r t i c l e s , 

I n the absence of oxygen the r e a c t i o n products decomposed a t about 

900*^C, but the o x i d a t i o n t o sulphate, i n the presence of oxygen. 
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increased the s t a b i l i t y of the products and thus the degree of u t i l i s a t i o n 

was increased. S u r p r i s i n g l y , H a t f i e l d et a l ^ ^ ^ could not detect a r e a c t i o n 

between sulphur d i o x i d e and limestone on t h e i r TG apparatus below the 

c a l c i n a t i o n temperature. This may have been due to lack of* 

s e n s i t i v i t y i n t h e i r apparatus or to the design of the sample ho l d e r , 

or they may have chosen a p a r t i c u l a r l y unreactive limestone. Though 

the general f e a t u r e s of the r e a c t i o n sequence f o r the samples of 

calcium carbonate, limestone and dolomite studied were s i m i l a r , the 

dolomite was much less r e a c t i v e than the other two samples. As the 

highest rates of r e a c t i o n i n the dolomite corresponded w i t h the 

c a l c i n a t i o n of the calcium carbonate r a t h e r than the magnesium carbonate 

component, i t could be presumed t h a t the magnesium carbonate i n 

dolomite, l i k e f r e e magnesium carbonate, was r e l a t i v e l y u n reactive. 

Strontium carbonate and barium carbonate were t h e r m a l l y more 

st a b l e than the other a l k a l i n e e a r t h metal carbonates and as a 

r e s u l t the m a j o r i t y of the r e a c t i o n w i t h sulphur d i o x i d e took place 

w i t h the carbonate r a t h e r than the oxide. In the case of barium 

carbonate, there had been t o t a l replacement of carbonate before the 

decomposition temperature was reached. I n 2 volume-% sulphur d i o x i d e 

the f i n a l product was 98.6% BaSO^ and 1.4% BaS whereas i n 0.8 volume % 

sulphur dioxide i t was 89.2% BaSO^ and 10.8% BaS. The presence of the 

sulphide i n d i c a t e d t h a t barium s u l p h i t e had been present o r i g i n a l l y . 

This s u l p h i t e had then d i s p r o p o r t i o n a t e d t o form a mixture of sulphate 

and sulphide, though some may have been oxidised d i r e c t l y t o sulphate 

by e i t h e r excess sulphur d i o x i d e or oxygen, as described i n Chapter 4; 

Complete o x i d a t i o n of the sulphide had not taken place due t o the 

formation of an impervious sulphate c o a t i n g , which prevented the 

r e a c t i o n between the gaseous oxidant and the unreacted sulphide a t the 

centre of the s i n t e r e d p a r t i c l e . 
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The apparently greater r e a c t i v i t y , at lower temperatures of the 

barium carbonate compared to s t r o n t i u m carbonate may have been due t o 

d i f f e r e n c e s i n s p e c i f i c surface between the two samples. Though the 

degree of sulphur d i o x i d e uptake by s t r o n t i u m carbonate (as measured 

by the increase i n weight) was less than f o r barium carbonate, the 

thickness of the reacted l a y e r c o a t i n g the s t r o n t i u m carbonate (as 

determined from the s p e c i f i c surface of the sample) was much greater 

than the c o a t i n g on the barium carbonate at temperatures up to 500°C, 

Table 5.1.5. The t h i c k e r c o a t i n g would reduce the r a t e of r e a c t i o n u n t i l 

t h i s e f f e c t was outweighed by the increase i n r a t e w i t h temperature. 

The thickness of the s u l p h i t e c o a t i n g , as presented i n Table 

5.1.5 and Table 5.1.6, was based on the average area occupied by the 

metal s u l p h i t e . This average area was estimated by t a k i n g the mean 

of the areas occupied by each side of the p o r t i o n of the corresponding 

c r y s t a l u n i t c e l l occupied by one metal s u l p h i t e group. For example, 

the u n i t c e l l dimensions of barium s u l p h i t e (see Chapter 3) were 

10.12 X X 11.01 X x 6 . 5 5 8, w i t h e i g h t molecules per u n i t c e l l . 

Therefore each BaSO^ was contained i n a s u b - c e l l of dimensions 

5.06 X X 5.50 X X 3,27 X g i v i n g side areas of 27.83 X^, 16.55 X^ and 

17.99 X , w i t h a mean value of 20.79 X^. This assumed t h a t each side 

was e q u a l l y p o s s i b l e as a base, though a p r e f e r r e d o r i e n t a t i o n may have 

been d i c t a t e d by the c r y s t a l l a t t i c e of the barium carbonate. However, 

as a l l samples would have been a f f e c t e d s i m i l a r l y and as only l a r g e 

general d i f f e r e n c e s were of s i g n i f i c a n c e , : t h i s o r i e n t a t i o n e f f e c t was 

discounted. 

None of the carbonates reacted very r a p i d l y below 500°C, but the 

calcium hydroxide samples. Fig. 5.1.4 and 5.1.5, reached t h e i r 

maximum a c t i v i t y a t , or below, t h i s temperature. Table 5.1.2. The 

enhanced r e a c t i v i t y a t these r e l a t i v e l y low temperatures was r e l a t e d 

t o the decomposition of calcium hydroxide t o form calcium oxide, which 
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Table 5.1.5 Re l a t i v e thickness of s u l p h i t e c oating formed on barium 

and s t r o n t i u m carbonate d u r i n g r e a c t i o n w i t h sulphur dioxide, 

J 

Number of l a y e r s * of s u l p h i t e formed i n 

Sample 
Temp. 2 vol-% S0» 0.8 vol-% SO- 0.8 vol-% SO2 + 

8.2 v o l % O2 + N2 

Strontium 

carbonate 

400 34 22 20 Strontium 

carbonate 
500 91 98 54 

Barium 

carbonate 

400 6 2 2 
Barium 

carbonate 
500 37 26 25 

*Assuming average area occupied by SrSO^ group i s 20.0 8̂  and by 

BaSO- group i s 20.8 8̂ . 

Table 5.1.6 Re l a t i v e thickness of s u l p h i t e c o a t i n g formed on calcium 

hydroxide and Limbux, a t 300°C d u r i n g r e a c t i o n w i t h 

sulphur d i o x i d e . 

Gas composition 

No. of l a y e r s * of s u l p h i t e formed on 

Gas composition 
Calcium hydroxide Limbux 

2 vol-% SO2 + ^2 13 5 

0.8 vol-% SO2 + N2 8 3 

0.8 vol-% SO2 + 8.2 v o l % O2 + N2 8 8 

*Assuming average area occupied by CaSO^ group i s 19.5 8̂  
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was completed by the time the temperature had r i s e n t o 500°C. Even 

before the decomposition of calcium hydroxide was under way, the r a t e 

of r e a c t i o n w i t h sulphur d i o x i d e was i n c r e a s i n g r a p i d l y , p a r t i c u l a r l y 

i n the case of Limbux which had the high i n i t i a l s p e c i f i c surface of 

2 - 1 2 - 1 
14.2 m g , c f . 4, 9 m g f o r the BDH calcium hydroxide. However, 

the more r a p i d r e a c t i o n between sulphur d i o x i d e and Limbux was not i n 

d i r e c t p r o p o r t i o n t o i t s g r e a t e r s p e c i f i c surface and, as Table 5.1.6 

i l l u s t r a t e d , the r e l a t i v e degree of coverage of the Limbux was lower. 

Apart from the r a t h e r more r a p i d i n i t i a l r e a c t i o n t h e r e was l i t t l e 

d i f f e r e n c e between these two types of calcium hydroxide. Limbux 

was r a t h e r more r e a c t i v e at lower temperatures and had higher u t i l i s a t i o n 

f a c t o r s , except f o r the r a t h e r greater r e a c t i v i t y of the calcium 

hydroxide, i n the presence of oxygen, above 600°C. The r e a c t i v i t y of 

the prepared calcium oxide. Fig. 5.1.2, was s i m i l a r t o t h a t of 

Limbux up t o 350°C, but the r a t e of r e a c t i o n then decreased. Limbux 

began t o dehydrate e x t e n s i v e l y above t h i s temperature, thus p r o v i d i n g 

new a c t i v e lime t o react w i t h the sulphur d i o x i d e and also d i s r u p t i n g 

the surface s u l p h i t e c o a t i n g which had formed. This p r o d u c t i o n o f f r e s h 

surface and breaking-up of the surface c o a t i n g was not as e f f e c t i v e i n 

the calcium oxide sample; t h e r e f o r e , the r a t e of r e a c t i o n dropped u n t i l 

the temperature rose above 500°C. Above t h i s temperature, d i s p r o p -

o r t i o n a t i o n and o x i d a t i o n r e a c t i o n s became important and the volume 

� 

changes caused by these r e a c t i o n s d i s r u p t e d the surface c o a t i n g of 

s u l p h i t e enough t o a l l o w access of the r e a c t i n g gases and an increase 

i n r e a c t i o n r a t e . As the temperature continued t o r i s e , the formation 

of calcium s u l p h i t e came t o an end as i t s decomposition temperature 

was reached; f u r t h e r weight increases, i n the absence of oxygen, were 

due t o o x i d a t i o n of sulphide and any undecomposed s u l p h i t e remaining. 
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I n the absence of oxygen, only about 50% of the calcium oxide had 

reacted before f i n a l decomposition of the products commenced a t about 

900°C. I n the presence of oxygen, a s i m i l a r p r o p o r t i o n of the 

calcium oxide had reacted at 900°C, but because the product was 

e s s e n t i a l l y a l l sulphate, which was s t a b l e a t t h i s temperature, the 

r e a c t i o n continued so t h a t 73% of the calcium oxide had reacted at 

1086°C. I C I quicklime. Fig. 5.1.3, w i t h a s p e c i f i c surface 0.77 m̂ g""̂ , 

2 -1 

c f 4.99 m g f o r calcium oxide, was less r e a c t i v e , but showed a 

s i m i l a r p a t t e r n of r e a c t i v i t y , w i t h a maximum at 450 - 500°C f o l l o w e d 

by a r e d u c t i o n i n r a t e and a second maximum at about 700^C. Though the 

i n i t i a l r e a c t i v i t y of the I C I quicklime was low, the q u a n t i t y of 

sulphur d i o x i d e absorbed by 500°C was about the same as t h a t absorbed 

by the prepared calcium oxide. This somewhat l a t e r higher 

r e a c t i v i t y of the I C I quicklime may have been due t o the dehydration 

of the 6% calcium hydroxide, which was present i n the sample, 

p r o v i d i n g a c t i v e s i t e s f o r the r e a c t i o n w i t h sulphur d i o x i d e . 

5,1.2 I n d u s t r i a l a p p l i c a b i l i t y 

A general comparison of the r e s u l t s obtained f o r the v a r i o u s 

s o l i d absorbents i n d i c a t e d t h a t only calcium oxide or calcium 

hydroxide could be reasonably considered as d e s u l p h u r i s i n g agents 

f o r use below 500°C. The same compounds would s t i l l have considerable 

a c t i v i t y j u s t below 400°C - a temperature at which f l u e gases leave 

47 

the economiser i n e l e c t r i c i t y power p l a n t s , However, i n t h i s 

temperature range, the r e a c t i v i t y of the commercially produced 

quicklime was not so great as t h a t of the commercially produced calcium 

hydroxide. Therefore, on c r i t e r i a of r e a c t i v i t y , the use of Limbux 

would be favoured. 

The general t r e n d w i t h a l l samples was t h a t the r a t e of 

r e a c t i o n was dependent upon the c o n c e n t r a t i o n of sulphur d i o x i d e . 
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but the extent t o which t h i s i n f l u e n c e d the r a t e v a r i e d between samples. 

Isothermal studies have shown t h a t the uptake of sulphur d i o x i d e by 

calcium oxide was f i r s t order w i t h respect t o the c o n c e n t r a t i o n of 

sulphur d i o x i d e at 915°C^^ and a t 870°C^^, but under non-isothermal 

22 

c o n d i t i o n s considerable s c a t t e r i n the r e s u l t s was found o The 

presence of oxygen increased the o x i d a t i o n r e a c t i o n at higher 

temperatures, as i n d i c a t e d by the r a t e curve f o r the oxygen-containing 

gas mixtures becoming markedly above t h a t f o r the equivalent oxygen-

f r e e gas mixture. This g r e a t e r conversion t o sulphate also increased 

the s t a b i l i t y of the s o l i d product, so t h a t measurable weight losses 

d i d not occur u n t i l a higher temperature had been reached. 

For higher temperature desulphurisacion r e a c t i o n s (above 700°C), 

the calcium carbonate-based r e a c t a n t s would appear t o be the most 

s a t i s f a c t o r y , though s t r o n t i u m carbonate was also most r e a c t i v e at 

about 800°C. The high a c t i v i t y of the calcium carbonates was due t o 

the decomposition of the carbonate t o produce very a c t i v e calcium 

oxide which could react r a p i d l y w i t h sulphur d i o x i d e . 

I n general, the u t i l i s a t i o n f a c t o r s f o r the v a r i o u s absorbents 

were not h i g h , w i t h the notable exceptions ( i ) of s t r o n t i u m and 

barium carbonate, where there was e f f e c t i v e l y 100% u t i l i s a t i o n based 

on metal t o sulphur as opposed t o metal t o sulphate r a t i o s , and 

( i i ) i n the presence of oxygen where the greater s t a b i l i t y of the 

sulphate product allowed r e a c t i o n s t o proceed t o a higher temperature 

and f o r longer periods. One of the drawbacks of dry f l u e gas 

d e s u l p h u r i s a t i o h methods has been the r e l a t i v e l y low degree of u t i l i s a t i o n 

o f the s o l i d absorbent, as o u t l i n e d i n Chapter 1, r e l a t e d t o the 

r e l a t i v e l y low g a s / s o l i d contact times and the v a r i a t i o n s i n r a t e s of 

r e a c t i o n w i t h temperature. These fea t u r e s have been c l e a r l y 

i l l u s t r a t e d i n the present s t u d i e s . 
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5.2 P o r o s i t y Changes i n Calcined Limbux 

The greater r e a c t i v i t y of the calcium hydroxide samples at 

temperatures lower than those r e q u i r e d f o r the other s o l i d absorbents 

was r e l a t e d t o the simultaneous formation of calcium oxide. Solid/gas 

r e a c t i o n s , of n e c e s s i t y , are i n f l u e n c e d by the a b i l i t y of the gas 

molecule t o come i n contact w i t h r e a c t i v e s i t e s i n the s o l i d , and, as 

a la y e r of r e a c t i o n product b u i l d s up on the surface o f the s o l i d , 

these r e a c t i v e s i t e s become more i s o l a t e d from the gas unless 

channels of easy access are kept open. These channels are o f t e n 

provided by the pore s t r u c t u r e of the s o l i d . I t was t h e r e f o r e decided 

t o c a r r y out an i n i t i a l study of the p o r o s i t y developed i n f r e s h l y 

c a l c i n e d Limbux and the changes which occurred i n t h i s s t r u c t u r e on 

r e a c t i o n w i t h sulphur d i o x i d e . 

Samples of Limbux were heated i n vacuo, a t a heating r a t e of 

8°C min ^, up t o 510°C and held at t h i s temperature. The t o t a l time 

between the commencement of heating and the end of the c a l c i n a t i o n 

period was two hours. Because of s p u r t i n g problems i t was not p o s s i b l e 

to use the TG balance t o monitor the weight changes d u r i n g t h i s p a r t 

of the process or subsequent treatments. Nitrogen was s l o w l y admitted 

over a period of 10 minutes and the temperature of the sample was 

adjusted t o the r e q u i r e d value. The sulphur d i o x i d e and/or n i t r o g e n 

gas mixture was passed over the specimen f o r a f i x e d time. Then, the 

sample was cooled r a p i d l y , i n a n i t r o g e n atmosphere, by removing the 

furnace. A weighed p o r t i o n was t r a n s f e r r e d to the s o r p t i o n .balance and 

the n i t r o g e n isotherms were determined g r a v i m e t r i c a l l y . The s o r p t i o n 

isotherms a l l had s i m i l a r c h a r a c t e r i s t i c s t o t h a t i l l u s t r a t e d i n 

Fig. 5.2.1. 

The s p e c i f i c surfaces of the samples were c a l c u l a t e d by the 
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Figure 5.2.1 Isotherm o f ca l c i n e d Limbux (500°C i n vacuo) 

a f t e r 5min, i n n i t r o g e n at 500,̂ C 

1.0 

P/P 

o Sorption 

° Desorption 
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Figure 5.2.2 Pore size d i s t r i b u t i o n i n c a l c i n e d Limbux 
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Figure 5.2.3 Pore s i z e d i s t r i b u t i o n i n c a l c i n e d Limbux 
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Figure 5.2.4 pore size d i s t r i b u t i o n i n c a l c i n e d Limbux 
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Table 5.2.1 Surface p r o p e r t i e s of samples of calcium oxide a f t e r 

h eating i n d i f f e r e n t atmospheres 

Heating c o n d i t i o n s 

CaSO^ 

% 

S p e c i f i c 

surface 

2 -1 
m g 

Cumulative 

pore 

volume 

3 -1 
cm g 

Gas 

composition 

volume-% 

Temp. 

OC 

Time 

minutes 

CaSO^ 

% 

S p e c i f i c 

surface 

2 -1 
m g 

Cumulative 

pore 

volume 

3 -1 
cm g 

100 N2 500 5 0 62.2 0.096 

0.5 SO2 + 99.5 N2 500 5 2.8 32.9 0.048 

100 N2 500 60 0 54.7 0.074 

0.5 SO2 + 99.5 N2 500 60 21.2 9.4 0.009 

100 N2 300 5 0 64.5 0.104 

0.5 SO2 + 99.5 N2 300 5 1.2 39.5 0.053 
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Table 5.2.2 D i s t r i b u t i o n of pore volumes i n samples of calcium oxide 

a f t e r heating i n d i f f e r e n t atmospheres. 

Heating condit ions 
Cumulative Percentage 

Maximum 

Gas 

composition 

Temp. 

OC 

1 

1 Time 

1 minutes 

pore volume 

3 -1 
cm g 

of t o t a l 

pore volume 

pore 

radius 

8 

^2 
1 0.083 87 

500 5 

N2 + SO2 0.036 75 

^2 
0.063 85 

500 60 60.8 

"2 ^ 
0-007 83 

N 0.082 80 

300 5 

N2 + SO2 0.039 70 

N 0.065 68 

500 5 

N2 + SO2 0.023 49 

^2 
0.044 59 

500 60 38.7 
N2 + 0.005 60 

0.066 64 
300 5 

N2 . 0.027 51 

0. 026 27 
500 5 

N2 + SO2 

i 

0.011 22 

«2 0.018 * 25 «2 
500 60 24.6 

N2 + SO2 0.003 30 

N 0.02 9 28 
300 5 

N2 + SO2 0.014 27 

(continued) 
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Table 5.2.2 

Heating c o n d i t i o n s 
Cumulative 

pore volume 

3 -1 
cm g 

Percentage 

of t o t a l 

pore volume 

1 

Maximum 

pore 

radius 

8 

Gas 

composition 

Temp-

le 
Time 

minutes 

Cumulative 

pore volume 

3 -1 
cm g 

Percentage 

of t o t a l 

pore volume 

1 

Maximum 

pore 

radius 

8 

N2 

N2 + SO2 

500 5 
0.010 

0.004 

10 

9 

19.45 

N2 

N2 + SO2 

500 60 
0.006 

0.001 

9 

14 
19.45 

N2 

N2 + SO2 

300 5 
0.011 

0.005 

11 

10 

19.45 

Gas compositions: N2 contains 100% N2 

N2 + SO2 contains 99.5 v o K N2 and 0.5 vol-% SO, 
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usual BET method^^ and the p o r o s i t y c h a r a c t e r i s t i c s determined by the 

method o u t l i n e d i n Gregg and Sing (p.162 - 172)^^. 

Pairs of samples were heated f o r s i m i l a r d urations at the same 

temperatures, w i t h or w i t h o u t sulphur d i o x i d e mixed w i t h the n i t r o g e n 

passing over them. They had the pore size d i s t r i b u t i o n curves shown 

i n Fig. 5.2.2 - 5.2.4. The cumulative volume curves f o r a l l the 

samples have been p l o t t e d i n Fig. 5.2,5 and the s p e c i f i c s u r face, 

cumulative pore volumes and p r o p o r t i o n s of calcium s u l p h i t e have 

been l i s t e d i n Table 5.2.1. 

In each case, the r e a c t i o n w i t h sulphur d i o x i d e caused a r e d u c t i o n 

i n s p e c i f i c surface and cumulative pore volume. The pore volume 

d i s t r i b u t i o n curves showed a marked r e d u c t i o n i n the r e l a t i v e numbers of 

smaller pores; i n Table 5.2.2, the r e l a t i v e p r o p o r t i o n s of pores i n 

d i f f e r e n t s i z e ranges have been presented. There were r e l a t i v e l y more 

intermediate s i z e pores (20 - 60 8 r a d i u s ) i n non-sulphited samples 

compared to the s l i g h t l y s u l p h i t e d samples. The more h e a v i l y s u l p h i t e d 

sample had a small t o t a l pore volume c f . Table 5.2.1, which r e f l e c t e d the 

removal of most of the l a r g e r pores as w e l l as the small pores. 

The formation of calcium s u l p h i t e from calcium oxide would cause 

an increase i n volume of 38.8% on a weight f o r weight basis and 197% on 

a molar volume basis. Therefore, the formation of s u l p h i t e i n the pores 

would produce a marked r e d u c t i o n i n volume. The narrowest pores would 

soon be blocked and the intermediate pores reduced i n r a d i u s . 

This would r e s u l t i n the type o f changes i n the d i s t r i b u t i o n of 

pore volume a c t u a l l y found, i . e . an o v e r a l l decrease i n the number 

of intermediate pores. With a small amount of calcium s u l p h i t e , 

fo r m a t i o n , the r e l a t i v e e f f e c t on the l a r g e pores would be s m a l l , 

because the p r o p o r t i o n a l r e d u c t i o n i n radius would not be so great. 

Higher degrees of conversion would a f f e c t the l a r g e pores. The 
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r e a c t i o n of sulphur d i o x i d e w i t h calcium oxide would be l i k e l y t o 

proceed more r a p i d l y at the pore entrances, r a t h e r than i n s i d e the pore, 

as the sulphur d i o x i d e would have easier access t o the region c l o s e s t 

t o t h e pore entrance. T h i s would r e s u l t i n a b u i l d - u p of calcium 

s u l p h i t e w i t h the narrower pore entrances becoming blocked, l e a d i n g 

t o more apparent r e d u c t i o n i n pore volume, even though the whole pore 

was not f i l l e d . 

The new pore volume, a f t e r the f o r m a t i o n of a given q u a n t i t y of 

calcium s u l p h i t e , can be c a l c u l a t e d from the r e l a t i v e d e n s i t i e s and 

the r e s u l t s f o r the samples stu d i e d have been given i n Table 5.2,3. 

The a c t u a l measured pore volume was much smaller than the c a l c u l a t e d 

pore volume, which would i n d i c a t e t h a t pore b l o c k i n g must have taken 

place. The number of la y e r s o f calcium s u l p h i t e can be estimated 

from the s p e c i f i c surface of the non-sulphited sample, by the method 

o u t l i n e d i n s e c t i o n 5.1 assuming the average area occupied by each 

CaSO^ group was 19.5 8̂ . The apparent coverage. Table 5.2.4, f o r two 

of the samples was low yet the r e d u c t i o n i n s p e c i f i c surface was very 

marked. Again, t h i s would i n d i c a t e a b l o c k i n g of the pores r a t h e r 

than complete f i l l i n g and a comparison of pore w a l l areas w i t h 

t o t a l s p e c i f i c surfaces. Table 5.2.4, showed the same excessive 

r e d u c t i o n . 

Though the changes i n surface p r o p e r t i e s have been explained i n 

terms of the b l o c k i n g of pore entrances, the r e d u c t i o n i n s p e c i f i c 

surfaces and pore volumes could also be i n f l u e n c e d by increased 

s i n t e r i n g e f f e c t s due to the presence of the calcium s u l p h i t e . The 

d i f f e r e n c e s i n s p e c i f i c surfaces and pore volumes shown by the samples 

heated i n n i t r o g e n alone were of the type expected from s i n t e r i n g . 

The l a r g e r changes, i n the presence of sulphur d i o x i d e , seemed more 

probably t o have p r e f e r e n t i a l pore b l o c k i n g as t h e i r major cause 
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Table 5.2.3 Comparison of ac t u a l and c a l c u l a t e d pore volumes f o r 

calcium oxide heated i n various atmospheres 

Temp./Time 

(̂ 'C) (min) 

Measured volumes 
Calculated 

volume 

CS cm-̂ g"̂  

MS/MN CS/MN 

Temp./Time 

(̂ 'C) (min) 

MN 

3 -1 
cm g 

MS 

3 -1 
cm g 

Calculated 

volume 

CS cm-̂ g"̂  

MS/MN CS/MN 

500/ 5 0.096 0.048 0.093 0. 50 0. 97 

500/60 0. 074 0.009 0.050 0.12 0. 67 

300/ 5 0. 104 0.053 0. 095 0.51 0.91 

MN = measured cumulative volume f o r sample heated i n N2 

MS = measured cumulative volume f o r sample heated i n 99.5 vol-% N, 

+ 0.5 v o t % SO2 

CS = ca l c u l a t e d cumulative volume f o r sample heated i n 99.5 vol-% 

N2 + 0.5 vol-% SO2 
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N3 

Gas treatment c o n d i t i o n s S p e c i f i c 

s u r f a c e 

2 -1 
m g 

Pore w a l l 

area 

2 -1 
m g 

Pore w a l l area No. of 

CaSO^ l a y e r s Temp. Time 

min. 

Composition 

S p e c i f i c 

s u r f a c e 

2 -1 
m g 

Pore w a l l 

area 

2 -1 
m g 

S p e c i f i c s u r f a c e 

No. of 

CaSO^ l a y e r s 

500 5 62.2 58.6 0. 94 

500 5 N2 + SO2 32.9 25.2 0.77 0.4 

500 60 
^2 

5A.7 42.0 0.77 

500 60 N2 + SO2 9.4 5.3 0.67 3.8 

300 5 N2 64.5 61.9 0. 96 

300 5 N2 + SO2 39.5 28.7 0.73 0.2 

H 
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ro 
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r a t h e r than s i n t e r i n g , p a r t i c u l a r l y as f i v e minutes a t 300°C or 500°C 

was a short time f o r e x t e n s i v e s i n t e r i n g to take p l a c e . 

5.3 F l u i d i s e d Bed S t u d i e s 

5.3.1 I n t r o d u c t i o n 

A s m a l l number of experiments to i n v e s t i g a t e the f e a s i b i l i t y of 

u s i n g a f l u i d i s e d bed of absorbent to remove sulphur d i o x i d e from a 

sim u l a t e d f l u e gas were c a r r i e d out. 

The use of f l u i d i s e d bed combustion u n i t s and the p o t e n t i a l f o r 

combining d e s u l p h u r i s a t i o n w i t h the combustion has been a s u b j e c t of 

a c t i v e s t u d y ^ ^ ' T h e method has given higher sulphur 

d i o x i d e removal r a t e s than the i n j e c t i o n of the sorbent i n t o a f u r n a c e . 

S t o i c h i o m e t r i c q u a n t i t i e s of lime, l i m e s t o n e , or dolomite have been 

34 

rep o r t e d to remove 70 - 80% of the sulphur d i o x i d e . However, the 

system r e q u i r e s the complete replacement of the c o n v e n t i o n a l f u r n a c e 

and b o i l e r a s s e m b l i e s and could only be i n c o r p o r a t e d i n t o new purpose-

b u i l t p l a n t s . 

One of the r e p o r t e d ^ ^ ^ problems w i t h dry f l u e gas d e s u l p h u r i s a t i o n 

methods has been the poor u t i l i s a t i o n of the sorbent due to the 

formation of a c o a t i n g of s u l p h a t e which prevents f u r t h e r r e a c t i o n 

between the sorbent p a r t i c l e and sulphur d i o x i d e . A c h a r a c t e r i s t i c 

112 

of f l u i d i s e d - b e d systems i s that there i s a t t r i t i o n of the p a r t i c l e s 

and o f t e n t h i s i s something to be avoided, i . e . m a t e r i a l s must be 

chosen on the b a s i s of t h e i r r e s i s t a n c e to a t t r i t i o n . I f the s u l p h a t e 

c o a t i n g was p r e v e n t i n g f u r t h e r r e a c t i o n of the c a l c a r e o u s absorbent 

with sulphur d i o x i d e , the a t t r i t i o n p r ocess might be u s e f u l i n b r e a k i n g 

up or removing the c o a t i n g and i n c r e a s i n g the degree of r e a c t i o n . 

F l u i d i s e d beds should a l s o have more c o n t r o l l a b l e temperatures, which 

might a l l o w d e s u l p h u r i s i n g r e a c t i o n s to occur under optimum c o n d i t i o n s . 
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5.3.2 R e s u l t s and d i s c u s s i o n 

Connnercially a v a i l a b l e limestone from the I . C . I quarry at Tunstead, 

D e r b y s h i r e , was s i e v e d to g i v e samples w i t h r e l a t i v e l y narrow p a r t i c l e -

s i z e ranges, as i n d i c a t e d i n Table 3.3.1. 

Table 5.3.1 P a r t i c l e - s i z e d i s t r i b u t i o n of limestone samples 

P a r t i c l e - s i z e range 

^m 

Percentage of o r i g i n a l 

limestone 

> 1000 21 

850-1000 8 

600-850 14 

105-600 34 

< 105 23 

I t was n e c e s s a r y to have r e l a t i v e l y narrow p a r t i c l e - s i z e ranges 

to ensure t h a t , when the gas flow was s u f f i c i e n t to f l u i d i s e the 

l a r g e r p a r t i c l e s , there was not too g r e a t a l o s s of unreacted f i n e s . 

I t was found t h a t the f r a c t i o n g r e a t e r :than 1 mm i n s i z e could not be 

r e a d i l y f l u i d i s e d w i t h the gas flows a v a i l a b l e . The " l e s s than 

1 0 5 ^ " f r a c t i o n d i d not f l u i d i s e e a s i l y because of " c h a n n e l i n g " , 

i . e . the gas bubbles i n the bed c o a l e s c e d to a l l o w the gas to stream 

through these open channels. T h i s e f f e c t was enhanced by the tendency 

of the f i n e p a r t i c l e s to form s p h e r i c a l aggregates, o f t e n 1 mm or more 

i n diameter. I t was thought that moisture sorbed on the s u r f a c e of the 

f i n e p a r t i c l e s may have been cau s i n g them to bind together, but the 

same phenomena occurred w i t h samples heated to 300°C before f l u i d i s a t i o n 

was attempted. The 105 - 600 >mi s i z e f r a c t i o n was used i n subsequent 

runs i n the presence of sulphur d i o x i d e as i t was l i k e l y to c o n t a i n 

the most r e a c t i v e , s m a l l e s t p a r t i c l e s , of the s i z e ranges which were 

r e a d i l y f l u i d i s a b l e . 
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Runs were c a r r i e d out at v a r i o u s temperatures between 210°C and 

300°C w i t h some gas mixtures c o n t a i n i n g water vapour and o t h e r s without. 

The r e s u l t s . Table 5.3.2, were not v e r y encouraging w i t h only s m a l l 

degrees of sulphur d i o x i d e uptake. Problems were encountered i n keeping 

the temperature of the f l u i d i s e d bed r e a s o n a b l y c o n s t a n t over a period 

of time. The monitoring of the v a r i a t i o n s i n sulphur d i o x i d e 

c o n c e n t r a t i o n i n the exhaust gases was not v e r y s a t i s f a c t o r y . The 

gas a n a l y s e r could o n l y accept a p r o p o r t i o n of the t o t a l gas flow and 

because of the n e c e s s i t y to regenerate the reagent, only i n t e r m i t t e n t 

gas flows could be passed through i t . The consequent s w i t c h i n g and 

p r o p o r t i o n i n g of the gas streams made i t d i f f i c u l t to measure the 

gas volumes a c t u a l l y p a s s i n g through the a n a l y s e r . 

S i n c e the i n i t i a l r e s u l t s i n d i c a t e d t h a t the method was not 

v e r y promising and, because the f a c i l i t i e s were not a v a i l a b l e to 

c o n s t r u c t a more complex system (which would operate at higher temperatures 

and w i t h more c o n t r o l of the v a r i a b l e s ) , the planned work on t h i s 

a spect of d e s u l p h u r i s a t i o n p r o c e s s e s was abandoned. 

Other work^^"^ which had been performed on s i m i l a r systems 

suggested t h a t p a r t i c l e s i z e s of l e s s than 100yum were r e q u i r e d to 

a c h i e v e d e s u l p h u r i s a t i o n . I n g e n e r a l , the s m a l l e r the p a r t i c l e s i z e 

the l a r g e r the f l u i d i s e d bed has to be as gas v e l o c i t i e s have to be 
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reduced to prevent e x c e s s i v e e l u t r i t i o n . The r e s u l t i n g c a l c u l a t i o n s 

showed t h a t f o r a,200 MW p l a n t e i t h e r one 54 m diameter f l u i d i s e d bed 

or twenty 12 m diameter f l u i d i s e d beds would be r e q u i r e d (the l a r g e s t 

o p e r a t i n g f l u i d i s e d bed was 17 m d i a m e t e r ) . I n s t a l l a t i o n s of t h i s 

order of s i z e a t t ached to f u r n a c e s or f l u e gas systems d i d not seem a 

p r a c t i c a b l e p o s s i b i l i t y . 
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Table 5.3.2 Absorption of sulphur d i o x i d e , from simulated f l u e gas, 

by limestone i n a f l u i d i s e d bed 

Presence of 

water vapour 

Temperature Time of r e a c t i o n 

minutes 

Percentage SO2 

absorbed 

Present 210 55 17.0 

Present 230 27 5.4 

Absent 230 60 3.6 

P r e s e n t 235 30 10.6 

Present 245 85 8.2 

Present 250 33 7.5 

Present 260 50 8.7 

P r e s e n t 290 85 10.3 

Absent 2 95 27 5.9 

Gas composition e i t h e r ( i ) 83.2% N 2 ; 9.1% O2; 7.4% H2O; 0.30% SO2 

or ( i i ) 89.7% N2; 10% 0^; 0.30% SO2 

( A l l volume-%) 

Temperature readings v a r i e d by - 10°C 

S i z e range of limestone was 105 - 600 yjm 
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CHAPTER SEC 

THE USE OF ALKALINE EARTH- METAL CCMPOUNDS FOR INDUSTRIAL FLUE GAS 

DESULPHURISATION PROCESSES 

6.1 Recent Trends i n F l u e Gas D e s u l p h u r i s a t i o n 

I n the past seven y e a r s there has been a v e r y r a p i d i n c r e a s e i n 

the number and s i z e of f l u e gas d e s u l p h u r i s a t i o n systems i n s t a l l e d 

throughout the world. The expansion has been p a r t i c u l a r l y marked 

i n the U.S.A. and Japan, but more European c o u n t r i e s a r e now 

i n v e s t i g a t i n g methods of reducing sulphur d i o x i d e e m i s s i o n s . I n 

B r i t a i n t h e r e appears to be l i t t l e p u b l i c p r e s s u r e to change the 

present p o l i c y of u s i n g t a l l - s t a c k s and implementing the 1956 C l e a n 

A i r Act i n urban a r e a s . The problems i n B r i t a i n a r e somewhat l e s s 

than i n many i n d u s t r i a l c o u n t r i e s due to the combined e f f e c t s of the 

r e l a t i v e l y low sulphur content of the c o a l , u s u a l l y l e s s than 2% 

sulphur and o f t e n 1.5 - 1.6% sulphur ( c f many American c o a l s w i t h over 

4% s u l p h u r ) and the windy c l i m a t e , which reduces the p o s s i b i l i t y of 

build-up of high c o n c e n t r a t i o n s of sulphur d i o x i d e a t ground l e v e l ^ ^ ^ . 

A review^^ of f l u e gas d e s u l p h u r i s a t i o n methods p u b l i s h e d i n 1969 

s t a t e d t h a t s e v e r a l methods were being t e s t e d i n Japan and the l a r g e s t 

u n i t had an e q u i v a l e n t c a p a c i t y of 2 MW. ( I t i s convenient to 

d e s c r i b e the c a p a c i t y of f l u e gas systems i n terms of the output from 

an e l e c t r i c a l power s t a t i o n which would give the same volume of gas, 

i . e . 1 MW i s e q u i v a l e n t to approximately 3000 normal c u b i c metres 

f l u e gas per hour.) By 1971^^^y 18 p l a n t s had f l u e gas d e s u l p h u r i s a t i o n 

systems i n s t a l l e d and a 1976 review^^^ l i s t e d over three hundred 

i n s t a l l e d systems w i t h a t o t a l e q u i v a l e n t c a p a c i t y of approximately 

20,000 MW. About h a l f t h i s c a p a c i t y was i n e l e c t r i c i t y power s t a t i o n s 

and the remainder i n i n d u s t r i a l b o i l e r s or chemical works; 103 of the 

u n i t s used a l k a l i n e e a r t h metal compounds and accounted f o r over 70% 
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of the output c a p a c i t y . I t has been f o r e c a s t t h a t i n the U.S.A. 

spending o u t s i d e the e l e c t r i c i t y supply i n d u s t r y on f l u e gas 

9 

d e s u l p h u r i s a t i o n methods w i l l be $3 x 10 between 1976 and 1986 and 

that by 1980, 30,000 - 40,000 MW of e l e c t r i c i t y g e n e r a t i o n c a p a c i t y 

w i l l be u s i n g f l u e gas d e s u l p h u r i s a t i o n techniques and about 80% of 

these w i l l be based on c a l c i u m or magnesium compounds. 

6.2 "Dry" F l u e Gas D e s u l p h u r i s a t i o n Systems 

The r e s u l t s i n Chapter 5 showed t h a t a l l the a l k a l i n e e a r t h metal 

compounds were capable of r e a c t i n g w i t h sulphur d i o x i d e , but none 

of them r e a c t e d v e r y r a p i d l y a t any temperature below lOOO^C. Rapid 

r e a c t i o n r a t e s a r e important because the r e s i d e n c e times of gases, and 

suspended s o l i d s , i n i n d u s t r i a l b o i l e r systems a r e r e p o r t e d to be 

about t h r e e seconds. Improvements i n r a t e s of r e a c t i o n could be achieved 

by ( a ) m i l l i n g and/or (b) use of f l u i d i s e d beds. As the s u r f a c e a r e a s 

of the samples used were as high, or probably higher,- than those l i k e l y 

to be a v a i l a b l e i n l a r g e - s c a l e a p p l i c a t i o n s , improvement by i n c r e a s i n g 

r e a c t i v e s u r f a c e s by m i l l i n g was u n l i k e l y to be made. Even though 

separated p a r t i c l e s surrounded by the gas phase would r e a c t more 

r e a d i l y than the s t a t i c bed used i n the TG experiments, i t seems 

u n l i k e l y t h a t the degree of r e a c t i o n could be i n c r e a s e d beyond that 

which has been found a l r e a d y i n i n d u s t r i a l c o n d i t i o n ^ , u n l e s s the 

temperature of r e a c t i o n could be c o n t r o l l e d a t t h a t v a l u e where the 

r a t e was a maximum. For the calcium-based absorbents, t h i s was the 

temperature a t which the hydroxide or carbonate decomposed to form 

c a l c i u m oxide of high r e a c t i v i t y . The temperature of r e a c t i o n could 

be c o n t r o l l e d by the use of a f l u i d i s e d bed introduced i n t o the 

c o r r e c t p a r t of the system. T h i s a l s o would i n c r e a s e e f f e c t i v e l y the 

g a s / s o l i d c ontact time, but, as d i s c u s s e d i n Chapter 5, the use of a 

f l u i d i s e d bed did not seem to be a p r a c t i c a b l e s o l u t i o n . 
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The low u t i l i s a t i o n f a c t o r s f o r dry f l u e gas d e s u l p h u r i s a t i o n 

methods have prevented t h e i r development beyond t e s t - p l a n t s such as 

the one s e t up by the Tennessee V a l l e y A u t h o r i t y and the Environmental 

P r o t e c t i o n Agency i n 1972 because "The main p r o c e s s q u e s t i o n f o r 

power p l a n t s i s whether to introduce the limestone i n t o the b o i l e r 
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or i n t o the scrubber". The apparent advantage of u s i n g a low-

c o s t absorbent which could be introduced i n t o the furnace system w i t h 

minimum of p l a n t a l t e r a t i o n was more than o f f s e t by the i n c r e a s e d 

dust h a n d l i n g problems due to the i n e f f i c i e n c y of the sulphur d i o x i d e 

a b s o r p t i o n p r o c e s s . The a b s o r p t i o n of sulphur t r i o x i d e as w e l l as 

sulphur d i o x i d e meant t h a t the s u r f a c e c o n d u c t i v i t y of the dust was 

reduced^^^ and t h e r e f o r e the e l e c t r o s t a t i c p r e c i p i t a t o r s were no t so 

e f f i c i e n t . Even i f only s t o i c h i o m e t r i c q u a n t i t i e s of limestone were 

i n j e c t e d , the p r e c i p i t a t o r s had to- be i n c r e a s e d i n s i z e by f a c t o r s of 

2 to 3.5. I n c r e a s i n g the temperature a t which the p r e c i p i t a t o r s 

operated from 115°C to 315°C could reduce t h e s i z e to t h a t used b e f o r e 

the sulphur t r i o x i d e was removed. The weight of f l y ash, sulphated and 

unreacted sorbent to be disposed of would be about twice as g r e a t as 

the weight of f l y ash alone. The a c t u a l r a t i o would depend on the 

p r o p o r t i o n of absorbent i n j e c t e d , t h e degree of s u l p h a t i o n and t h e 

degree of subsequent h y d r a t i o n . As w e l l as having to provide i n c r e a s e d 

dust removal equipment, the i n e f f i c i e n c y of the dry a b s o r p t i o n p r o c e s s 

would e n t a i l i n c r e a s e d t r a n s p o r t f a c i l i t i e s i n t o the s i t e . Using the 

example of a 2000 MW CEGB power s t a t i o n burning 1.9% sulphur c o a l , i t 

has been estimated^^"^ t h a t 98 tons/hour of limestone would be 

r e q u i r e d when the s t a t i o n was o p e r a t i n g a t f u l l load. T h i s would g i v e 

a requirement of about 1650 tons/day of limestone f o r an average 

l o a d i n g of 70%, which would e n t a i l a f a i r l y s u b s t a n t i a l i n c r e a s e i n 

space f o r s t o r a g e and d e l i v e r y . As the c o a l requirement would be 

about 14,000 tons/day, i t i s s u r p r i s i n g t h a t t h i s 12% i n c r e a s e was 
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thought to produce so many problems of a c c e s s to B r i t i s h s i t e s ("The 

i n c r e a s e i n r a i l t r a f f i c to the s i t e would r e q u i r e a d d i t i o n a l s i d i n g s , 

the s i t i n g of which proved extremely d i f f i c u l t i n a l l c a s e s and 

t e c h n i c a l l y i m p o s s i b l e i n s e v e r a l . " ) ^ ^ ^ 

6.3 "Wet" F l u e Gas D e s u l p h u r i s a t i o n Systems 

"Wet" scrubbing methods based on lime and/or limestone s l u r r i e s 

have become the dominant p r o c e s s e s i n use i n both the U.S.A. and 

Japan, d e s p i t e e a r l y doubts about t h e s e p r o c e s s e s . The wet p r o c e s s e s 

have much higher d e s u l p h u r i s a t i o n e f f i c i e n c i e s and absorbent u t i l i s a t i o n s 

than the dry p r o c e s s e s , due to f a s t e r and more complete a b s o r p t i o n 

r e a c t i o n s i n s o l u t i o n , and these have proved the c r i t i c a l f a c t o r s i n 

t h e i r acceptance. The Americans have disposed of the sulphated 

product as a wet sludge mixed with the f l y ash whereas many of- the 

Japanese p r o c e s s e s are designed to produce gypsum, CaS0^.2H20, as a 

s a l e a b l e product. 

The throwaway process r e q u i r e s l e s s o p e r a t i o n a l c o n t r o l , p r e -

scrubber clean-up and equipment than other d e s u l p h u r i s a t i o n p r o c e s s e s , 

but produces ve r y l a r g e q u a n t i t i e s of waste. The a r e a of land f o r 

the storage of the waste produced over 20 y e a r s by a 1000 MW s t a t i o n 
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has been estimated to be 1.3 - 1.7 m i l e , i f a depth of ten f e e t 

of sludge i s used. The dewatering of the sludge t o l e v e l s below 

50% has proven v e r y d i f f i c u l t due to the t h i n p l a t e - l i k e c r y s t a l s of 

c a l c i u m s u l p h i t e hemihydrate. Treatment of the sludge with 3% of 

lime causes i t to s e t , as the water i s taken up i n c r y s t a l s t r u c t u r e s , 

due to ( i ) the r e a c t i o n of c a l c i u m oxide w i t h the s o l u b l e sulphate 

i o n s to form gypsum; ( i i ) the formation of i n s o l u b l e sulphoaluminates, 

e.g. e t t r i n g i t e , Al20^.3CaS0^.31H20, or s u l p h o f e r r i t e s , by the r e a c t i o n s 

between c a l c i u m oxide, s u l p h a t e and f l y ash; ( i i i ) the formation of 
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c a l c i u m s i l i c a t e s , e.g. tobermorite, by the r e a c t i o n of c a l c i u m oxide 

w i t h s i l i c a i n the f l y ash. As w e l l as providing a more s a t i s f a c t o r y 

s o l i d l a n d - f i l l , the hardening of the sludge reduces the e f f e c t s of 

water p o l l u t i o n due to escape of s o l u b l e i o n s from the storage ponds. 

The production of a s a l e a b l e product such as gypsum overcomes 

the e x t r a w a s t e - d i s p o s a l problem but i n c r e a s e s the p l a n t complexity 

and o p e r a t i n g c o s t s . I n Japan, an i n c r e a s e of about 30% on c a p i t a l 

c o s t s has been found^^^. The s i z e of the c r e d i t f o r s a l e of the 

product depends upon the market s i z e and, a g a i n i n Japan, the gypsum 

market has reached the l i m i t of what can be s o l d without o v e r - s u p p l y i n g 

the demand and c a u s i n g a c o l l a p s e i n the p r i c e . The r e c l a i m i n g of the 

sulphur and c o n v e r s i o n i n t o a useable product r e q u i r e s the producing 

company to e n t e r the f i e l d of the chemical i n d u s t r y and develop 

s p e c i a l i s e d marketing knowledge, i f maximum r e t u r n on i t s investment 

i s to be a t t a i n e d . The production of a s a l e a b l e product s t i l l 

i n v o l v e s the supply of l a r g e q u a n t i t i e s of sulphur d i o x i d e absorbent, 

u n l e s s a p r o c e s s i s developed i n which the sulphur can be separated 

from the absorbent and t h i s i s then r e c y c l e d . 

The p r o p e r t i e s r e q u i r e d f o r an absorbent s u i t a b l e f o r r e c y c l i n g 

i n c l u d e : ( i ) a b i l i t y to r e a c t r a p i d l y w i t h sulphur d i o x i d e i n the 

temperature range 150 - 1750°C, but p r e f e r a b l y between 150°C ( f l u e gas 

temperature) and 400°C (upper temperature a t which gas l e a v e s 

economiser). The l a t t e r c o n d i t i o n s would a l l o w the s o r p t i o n system to 

be i n c o r p o r a t e d w i t h the minimum upset to the heat e x t r a c t i o n system. 

I f the sulphur t r i o x i d e was a l s o removed the lower temperature could 

be reduced to 120°C as t h i s would g i v e s u f f i c i e n t buoyancy to the plume, 

and the l a c k of sulphur t r i o x i d e would remove a c i d d e p o s i t i o n problems, 

( i i ) The r e g e n e r a t i o n of the absorbent would take p l a c e a t a 

temperature below about 800°C, to keep c o s t s of r e g e n e r a t o r c o n s t r u c t i o n 
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m a t e r i a l s and energy input low. ( i i i ) I f the absorption of sulphur 

d i o x i d e occurred below 400°C, the i d e a l r e g e n e r a t i o n might be by thermal 

decomposition above 400°C or by the use of a cheap r e d u c i n g agent. 

Examination of the thermal s t a b i l i t i e s of the a l k a l i e a r t h metal 

s u l p h i t e s , as d e s c r i b e d i n Chapter 3, i n d i c a t e s t h a t magnesium s u l p h i t e 

decomposes to magnesium oxide below 800°C i n n o n - o x i d i s i n g c o n d i t i o n s , 

though some sulphate i s formed a l s o by d i s p r o p o r t i o n a t i o n . However, 

as the r e s u l t s i n Chapter 4 i n d i c a t e , the r e a c t i v i t y of dry magnesium 

compounds f o r sulphur d i o x i d e i s not high and the r e a c t i o n which 

does take p l a c e , i n the presence of a i r , i n v o l v e s mainly sulphate 
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formation. Magnesium oxide s l u r r i e s have been used commercially ' 

and they produce a mixture of magnesium s u l p h i t e hexahydrate and 

t r i h y d r a t e together with some magnesium sulphate. These are t h e r m a l l y 

decomposed at 650*^C i n the presence of carbon which reduces the 

magnesium sulphate. The p r o p e r t i e s of c a l c i u m s u l p h i t e a r e such t h a t 

i t could be considered f o r a r e g e n e r a t i v e process. I n the absence of 

a i r , c a l c i u m s u l p h i t e p a r t i a l l y decomposes to c a l c i u m oxide above 700°C, 

but most of the decomposition o c c u r s above 900°C because some bf the 

s u l p h i t e d i s p r o p o r t i o n a t e s to a more t h e r m a l l y s t a b l e mixture of s u l p h a t e 

and s u l p h i d e . The s u l p h a t e / s u l p h i d e mixture decomposes at a lower 

temperature than e i t h e r c a l c i u m sulphate or c a l c i u m s u l p h i d e alone. 

The use of calcium hydroxide as a sulphur d i o x i d e absorbent at about 

400*^C would gi v e mainly a s u l p h i t e product, whereas the use of 

c a l c i u m compounds a t h i g h e r temperatures would l e a d to sulphate formation 

due to o x i d a t i o n of the i n i t i a l l y formed s u l p h i t e . The presence of 

sulphate would r e q u i r e the use of a reducing agent i n the r e g e n e r a t i o n 

p r o c e s s , but i t has been suggested^"^^ that p a r t i a l r e d u c t i o n of s u l p h a t e to 

s u l p h i d e , t o produce the 3 to 1 s u l p h a t e to s u l p h i d e r a t i o of a 
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d i s p r o p o r t i o n a t e d c a l c i u m s u l p h i t e , would be s u f f i c i e n t . The s u l p h a t e / 

s u l p h i d e mixture could then be t h e r m a l l y decomposed at about 950°C to 

y i e l d c a l c i u m oxide. Wet scrubbing leads t o e x t e n s i v e c a l c i u m s u l p h i t e 

hemihydrate formation, but the t e c h n i c a l problem which i s encountered 

i s the s e p a r a t i o n of the f i n e c r y s t a l s from the l i q u i d . I f the 

hemihydrate could be s e p a r a t e d , the r e g e n e r a t i o n by mixed thermal and 

reducing decomposition might be p r a c t i c a b l e . U n l i k e magnesium s u l p h i t e 

hexahydrate, the r e l a t i v e amount of water to be d r i v e n o f f i s not 

g r e a t , thus, even though the c a l c i n i n g temperature would be h i g h e r , 

the t o t a l energy output would not n e c e s s a r i l y be higher. The 

thermal s t a b i l i t i e s of s t r o n t i u m and barium s u l p h i t e s do not appear 

favourable f o r decomposition r e a c t i o n s and t h e i r use would a l s o 

e n t a i l h e a l t h and cost problems. 

The advantages of a d e s u l p h u r i s i n g method i n c o r p o r a t i n g the 

r e g e n e r a t i o n of the absorbent a r e t h a t the m a t e r i a l t r a n s p o r t and 

d i s p o s a l problems a r e v e r y much reduced. The q u a n t i t i e s of sulphur 

products a v a i l a b l e from l a r g e s c a l e f l u e gas d e s u l p h u r i s a t i o n a r e 

such t h a t they w i l l have a major e f f e c t i n the market p r i c e f o r whatever 

sulphur compound i s being s o l d . I t would appear, t h e r e f o r e , ' t h a t i n 

g e n e r a l the aim should be to produce elemental * sulphur, which can be 

used as a source of sulphur compounds, or can be c o n v e n i e n t l y s t o r e d , 

i f i t i s not economical to s e l l i t . I n B r i t a i n , about 75,000 tons 
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sulphur per year per 2000 MW c a p a c i t y a r e emitted . For a 90% 

d e s u l p h u r i s a t i o n p r o c e s s , t h i s would mean producing a n n u a l l y about 

67,500 tons sulphur, or 210,000 cons 98% s u l p h u r i c a c i d , or a t l e a s t 

700,000 tons wet sludge. The storage requirements f o r the sulphur a r e 

only about one-tenth those f o r wet sludge. The weight of a dry 

throwaway absorbent w i l l be s i m i l a r to the product from the wet p r o c e s s 
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because the lower e f f i c i e n c y of the dry process w i l l r e q u i r e more 

absorbent to be used. The disadvantages of the r e c o v e r a b l e absorbent 

p r o c e s s e s a r e that t e c h n i c a l l y they a r e much more complex, c a p i t a l 

c o s t s are h i g h e r , running c o s t s a r e l i k e l y to be h i g h e r , p a r t i c u l a r l y 

due to t h e i r i n c r e a s e d energy demand. However, the throwaway p r o c e s s e s 

have "hidden" energy c o s t s i n t h a t the sorbent must be mined or 

manufactured and t r a n s p o r t e d to the s i t e , and the sludge must be 

t r a n s p o r t e d away from the s i t e and, p o s s i b l y , subsequently t r e a t e d . 

A comparison of the advantages and disadvantages of the v a r i o u s 

d e s u l p h u r i s a t i o n p r o c e s s e s d i s c u s s e d i s given i n Table 6.1. 

6.4 Economics of F l u e Gas D e s u l p h u r i s a t i o n Systems 

Comparison of the a c t u a l c o s t s of f l u e gas d e s u l p h u r i s a t i o n 

p r o c e s s e s with the estimated c o s t s shows t h a t the i n i t i a l e s t i m a t e s 

were o v e r - o p t i m i s t i c as the f o l l o w i n g examples i l l u s t r a t e . The 70 MW 

125 

Paddy*s Run P l a n t , of L o u i s v i l l e Gas and E l e c t r i c , was estimated i n 

1972 to cost $22/kw f o r a lime scrubber system. T h i s e s t i m a t e was 

l a t e r i n c r e a s e d to $28.6/kw and when i n s t a l l a t i o n was completed, i n 

1973, the a c t u a l c o s t was $57/kw^^^. S i m i l a r l y , the 176 MW Commonwealth 

Edison W i l l County No. 1 u n i t was estimated i n 1972 to cost $49/kw ; 

125 

t h i s was l a t e r updated to $72/kw , and the f i n a l c o s t when completed, 

i n l a t e 1972, was $95/kw pl u s $13/kw f o r the sludge treatment system 

g i v i n g an o v e r a l l c o st of $108/kw^^^'^^^. The running c o s t s of the 

p l a n t s were a l s o higher than estimated. Using W i l l County No. 1, a g a i n , 

as an example, the running c o s t e s t i m a t e was 0.27 cent/kWh ( a t the time 

of the $72/kw c a p i t a l e s t i m a t e ) , whereas, a f t e r two years of o p e r a t i o n , 

the estimated cost f o r a 60% load f a c t o r was 0.73 cent/kWh. I n f a c t , 

the u n i t was only working i n t e r m i t t e n t l y during t h e s e f i r s t two y e a r s 

and the a c t u a l o p e r a t i n g cost was 1.02 cent/kWh. Almost 30% of the 

o p e r a t i n g c o s t s were taken up by sludge d i s p o s a l . 
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Table 6.1 Conparison of "dry" and "wet" f l u e gas d e s u l p h u r i s a t i o n cechods 

FLUE GAS DESULPfflJRISATION 

"DKY" METHODS 

General 

�^JET' METHODS 

General 

AdvantaRes Disadvantages 

Cheap "Slow" r e a c t i o n 

Convenient leading t o 

MiniimiD furnace ( i ) low absorbent 

pl a n t a l t e r a t i o n u t i l i s a t i o n t h e r e f o r e u t i l i s a t i o n 

higher t r a n s p o r t costs Reduced dust 

( i i ) l e v desulphur- problem 

i s a t i o n e f f i c i e n c y 

( i i i ) increased dust 

removal problems 

( i v ) l a r g e r e l e c t r o -

s t a t i c p r e c i p i t a t o r a 

Dust di s p o s a l problems 

Advantages Disadvantages 

High desulphur- Extensive e x t r a 

L s a t i o n e f f i c i e n c y p l a n t l e a d i n g t o 

Higher absorbent higher c a p i t a l 

costs 

RECYCLING OF ABSORBENT PRODUCT 

1 
RECOVERY "THROW 

1 
AWAY" PROCESSES 

Advantages Disadvantages Advantages Disadvantages Advantages Disadvantages 

Reduced More complex L i t t l e waste More complex Can be used Large waste 

tr a n s p o r t p l a n t d i s p o s a l p l a n t on small d i s p o s a l 

costs Higher oper- u n t i l market Higher oper- p l a n t s problems 

Less di s p o s a l a t i n g and saturated a t i n g and Operator 

problems running costs C r e d i t from running costs s k i l l s less 

sales New technology 

and marketing 

Not a p p l i c a b l e 

t o small u n i t s 
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118 
A survey p u b l i s h e d i n 1977 of the a c t u a l i n s t a l l e d c o s t s of 

45 f l u e gas d e s u l p h u r i s a t i o n systems i n the U.S.A. shows a range 

from $24.4/kw, f o r a limestone s l u r r y s c r u b b i n g system which only 

t r e a t s h a l f of the emitted f l u e gas, to $129/kw f o r a scrubbing system 

based on sodium s u l p h i t e . The average c o s t was $79/kw. These c o s t s 

did not always i n c l u d e f u r t h e r p a r t i c u l a t e c o n t r o l systems which could 

add $20 m i l l i o n to the c o s t , i . e . $20/kw f o r a 1000 MW p l a n t . T h i s 

127 

l a t t e r f i g u r e corresponds w i t h other e s t i m a t e s f o r e l e c t r o s t a t i c 

p r e c i p i t a t o r s of $15 - 25/kw. 

The d i f f e r e n c e s between e a r l y estimated c o s t s , which were made 

before the problems of i n s t a l l a t i o n of f u l l - s c a l e p l a n t s were r e a l i s e d , 

and the a c t u a l i n s t a l l e d c o s t s r e f l e c t the s i z e of the problems 

126 127 128 
encountered. A number of authors ' ' have commented on the 

a c t u a l d i f f i c u l t i e s i n commissioning p l a n t s i n the U.S.A. and i t has 

128 

been reported t h a t a t the end of 1975 only about 25% of the p l a n t s 

were o p e r a t i n g s a t i s f a c t o r i l y . However, when the Japanese e x p e r i e n c e 

i s examined, i t i s found t h a t the m a j o r i t y of the p l a n t s i n s t a l l e d , 

even though o f t e n t e c h n i c a l l y more complex than those i n the U.S.A., 

had fewer commissioning problems and most were o p e r a t i n g s a t i s f a c t o r i l y " ^ " ^ ^ . 

As the same types of p r o c e s s , mainly based on wet lim e / l i m e s t o n e s c r u b b i n g , 

were being used i n both c o u n t r i e s the d i f f e r e n c e s a r e s u r p r i s i n g , 

because the same chemical and t e c h n i c a l p r i n c i p l e s must apply. The 

d i f f e r e n c e i n the s o c i a l and l e g a l c l i m a t e i n the two c o u n t r i e s i s 

such t h a t a company, i n Japan, which does not comply wi t h the sulphur 

d i o x i d e l i m i t s can be c l o s e d down almost immediately, whereas, i n the 

U.S.A., the Environmental P r o t e c t i o n Agency has to show t h a t i t s 

l i m i t s are a c h i e v a b l e and the l e g a l enforcement of the r e g u l a t i o n s may 

take s e v e r a l y e a r s , during which time the company can continue to operate. 
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Because of the wide v a r i a t i o n i n c a p i t a l c o s t s , which depend upon 

both the pr o c e s s chosen and the s i t e i n v o l v e d , average v a l u e s f o r 

these c o s t s a r e of l i t t l e h e l p i n p r e d i c t i n g what the c o s t s at a 

p a r t i c u l a r s i t e w i l l be. I n g e n e r a l , the c o s t of f l u e gas d e s u l p h u r i s a t i o n 

appears to add 20 - 30% to the c o s t of generat i n g e l e c t r i c i t y whether 

117 126 129 
a throw-away or s a l e a b l e process i s used ' . I t has been argued 

t h a t continuous r e d u c t i o n i n sulphur d i o x i d e e m i s s i o n l e v e l s i s 

u n n e c e s s a r i l y expensive as the ground l e v e l s only o c c a s i o n a l l y r e a c h 

high v a l u e s . The extent of sulphur d i o x i d e removal f a c i l i t i e s which 

needed to be added to a p l a n t could be much reduced, i f only p a r t i a l 

removal was r e q u i r e d as d i c t a t e d by m e t e o r o l o g i c a l c o n d i t i o n s . The 

U.S.A. c o s t i n g s quoted p r e v i o u s l y i n d i c a t e the massive savings p o s s i b l e 

when only a p o r t i o n of the f l u e gas i s d e s u l p h u r i s e d - cost was on l y 

about a t h i r d of the average and a f i f t h of the most expensive system. 

The change to i n t e r m i t t e n t c o n t r o l would r e q u i r e the i n s t a l l a t i o n of 

a r e a l - t i m e sulphur d i o x i d e and m e t e o r o l o g i c a l monitoring system, to 

provide the information f o r when d e s u l p h u r i s a t i o n should take p l a c e , 

and t h i s would i n c r e a s e both the c a p i t a l and running c o s t s of the 

i n t e r m i t t e n t f l u e gas d e s u l p h u r i s a t i o n p r o c e s s . 

As the pr e v e n t i o n of sulphur d i o x i d e e n t e r i n g the atmosphere 

means t h a t sulphur compounds must be t r a n s f e r r e d to e i t h e r the land 

or water systems, a l l t h a t may have been achieved i s to convert one 

form of p o l l u t i o n i n t o another form. The atmosphere has the 

advantage as a d i s p e r s a l medium that i t i s u s u a l l y capable of d i s p e r s i n g 

the sulphur d i o x i d e widely thus keeping the l e v e l s low. The 

i n t r o d u c t i o n of an i n t e r m i t t e n t d e s u l p h u r i s a t i o n system would continue 

to make use of the atmospheric d i l u t i o n e f f e c t and reduce the 

concentrated land or water d i s p o s a l problems. 
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CHAPTER SEVEN 

CONCLUSIONS 

The i n v e s t i g a t i o n s c a r r i e d out have been presented i n some 

d e t a i l i n previous chapters of t h i s t h e s i s and the conclusions reached 

are brought together i n the f o l l o w i n g pages. 

The s t r u c t u r e s of calcium, s t r o n t i u m and barium s u l p h i t e s appear 

t o be s i m i l a r , being orthorhombic and c l o s e l y r e l a t e d t o the s t r u c t u r e 

of calcium s u l p h i t e hemihydrate. The changes i n u n i t c e l l dimensions 

on passing from calcium s u l p h i t e t o s t r o n t i u m s u l p h i t e t o barium 

s u l p h i t e are of the order t o be expected, based on the changes i n 

octahedral i o n i c r a d i i of the elements concerned. 

The thermal s t a b i l i t i e s of the a l k a l i n e e a r t h metal s u l p h i t e s 

were shown t o vary w i t h changes i n the gaseous atmospheres surrounding 

the samples. The dehydration of the hydrated magnesium and calcium 

s u l p h i t e s enhanced the r e a c t i v i t y of the r e s u l t i n g anhydrous s u l p h i t e s . 

I n n o n - o x i d i s i n g atmospheres there was competition between (a) 

re a c t i o n s leading t o oxide f o r m a t i o n and (b) d i s p r o p o r t i o n a t i o n 

r e a c t i o n s , l eading to the f o r m a t i o n o f a mixture of sulphate and 

sulphide. However, there were also a number of other side r e a c t i o n s 

o c c u r r i n g i n some cases, e.g. for m a t i o n of magnesium t h i o s u l p h a t e . 

The r e l a t i v e importance of the d i s p r o p o r t i o n a t i o n r e a c t i o n became 

greater as the atomic number of the c a t i o n increased. The temperature 

range over which d i s p r o p o r t i o n a t i o n took place was s i m i l a r f o r a l l the 

a l k a l i n e e a r t h metal s u l p h i t e s , but the thermal s t a b i l i t y w i t h respect 

t o decomposition t o oxide increased w i t h atomic number; t h e r e f o r e ^ 

the r e l a t i v e p o s i t i o n of the two r e a c t i o n temperature ranges changed 

from (a) decomposition t o oxide being below the d i s p r o p o r t i o n a t i o n 

temperature range f o r magnesium s u l p h i t e to (b) the decomposition t o 
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oxide range being l a r g e l y above the d i s p r o p o r t i o n a t i o n range f o r 

barium s u l p h i t e . A mechanism, based on the arrangement of the species 

i n the c r y s t a l l a t t i c e s of the o r i g i n a l s u l p h i t e s , was proposed which 

suggested how the possible phases, found i n the d i f f e r e n t r e a c t i o n s , 

could be formed. 

I n the presence of atmospheres c o n t a i n i n g o x i d i s i n g agents 

(oxygen or sulphur d i o x i d e ) a d d i t i o n a l r e a c t i o n s were found.. The 

s u l p h i t e could be o x i d i s e d t o sulphate as could the sulphide formed 

by d i s p r o p o r t i o n a t i o n . One r e s u l t was t o r a i s e the temperature f o r 

the f i n a l decomposition to oxide, because of the greater thermal 

s t a b i l i t y of the sulphate compared t o e i t h e r the s u l p h i t e or the 

sulphate and sulphide mixture formed by d i s p r o p o r t i o n a t i o n . 

The r e a c t i v i t y w i t h sulphur d i o x i d e was studied f o r a number 

of a l k a l i n e e a r t h metal compounds, i n c l u d i n g n a t u r a l l y r o c c u r r i n g forms 

such as limestone and dolomite as w e l l as l a r g e - s c a l e manufactured 

i n d u s t r i a l products such as Limbux and quicklime. A l l the substances 

used reacted to some extent w i t h sulphur d i o x i d e , but magnesium 

carbonate had a p a r t i c u l a r l y low r e a c t i v i t y due to the low thermal 

s t a b i l i t y of magnesium s u l p h i t e . None of the r a t e s of r e a c t i o n were 

high when c o n s i d e r a t i o n of the short residence times l i k e l y t o be 

found i n b o i l e r systems i s taken i n t o account. The greatest 

r e a c t i v i t y amongst the calcium-based compounds was shown when the 

carbonate, or hydroxide, decomposed to form f r e s h , h i g h l y a c t i v e 

calcium oxide. Reaction r a t e s below AOO°C were only appreciable 

w i t h calcium hydroxide, and t o a lesser extent calcium oxide. The 

presence of oxygen increased the degree of u t i l i s a t i o n of the 

absorbent but d i d not appreciably a f f e c t the r a t e of sulphur d i o x i d e 

uptake. This increase i n u t i l i s a t i o n arose from the o x i d a t i o n of 

s u l p h i t e t o produce the more t h e r m a l l y s t a b l e sulphate, which. 
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because i t decomposed at a higher temperature, allowed more time f o r ' 

r e a c t i o n t o occur. Gas s o r p t i o n measurements, made on f r e s h l y prepared 

calcium oxide samples, which had been reacted w i t h sulphur d i o x i d e , 

i n d i c a t e d t h a t a surface l a y e r of calcium s u l p h i t e was formed, which 

blocked the entrances t o the narrower pores g i v i n g a r a p i d decrease 

i n s p e c i f i c surface as the r e a c t i o n proceeded. 

The use of f l u i d i s e d beds to desulphurise f l u e gases d i d not 

seem to be a p r a c t i c a b l e p r o p o s i t i o n using a l k a l i n e e a r t h metal 

compounds of greater than 100 micron p a r t i c l e s i z e due t o the poor 

r e a c t i v i t y of these compounds at low temperatures. 

The development of a re-usable absorbent method f o r f l u e gas 

d e s u l p h u r i s a t i o n depends upon a r e a c t i v e absorbent forming a product 

which i s t h e r m a l l y unstable at not too high a temperature (approximately 

1000°C) e i t h e r alone or i n the presence of some r e l a t i v e l y cheap 

chemical r e a c t a n t . For dry d e s u l p h u r i s a t i o n methods only calcium 

compounds could p o s s i b l y f i t these requirements and a reductant such 

as hydrogen or carbon monoxide would be r e q u i r e d f o r regeneration t o 

the oxide, because any calcium s u l p h i t e formed a t lower temperatures 

would be converted l a r g e l y t o calcium sulphate and sulphide a t higher 

temperatures. I f wet methods based on s l u r r i e s of absorbent were 

used, magnesium compounds would appear to have b e t t e r regeneration 

c h a r a c t e r i s t i c s than calcium compounds as a gr e a t e r p r o p o r t i o n of the 

s u l p h i t e could be t h e r m a l l y decomposed without the use of a reducing 

agent. 

The economics of the various d e s u l p h u r i s a t i o n processes are 

dominated by the balance between c a p i t a l cost o f the equipment i n s t a l l e d 

and the cost of absorbent and disp o s a l of the products of 

d e s u l p h u r i s a t i o n . L i k e l y c r e d i t s f o r r e s a l e of any product appear 
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minimal, i f l a r g e - s c a l e d e s u l p h u r i s a t i o n i s intro d u c e d , because of 

the l i m i t e d market capacity f o r a saleable product. Simple throwaway 

processes have the lowest c a p i t a l c o s t s , but d i s p o s a l costs may 

become hi g h as may costs of buying l a r g e q u a n t i t i e s of absorbent. 

Re-usable absorbent processes and saleable by-product processes 

have higher c a p i t a l costs and running costs may be h i g h , depending upon 

the process complexity. I t appears t h a t a l l f u l l - s c a l e d e s u l p h u r i s a t i o n 

processes are r e l a t i v e l y c o s t l y , and a l l processes based on a l k a l i n e 

e a r t h metal compounds are l i k e l y t o lead t o d i s p o s a l of product 

problems of one type or another. 
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1 y> 2 4 S . 4 4 3 10 0 ,0 0 . 3 

2 3 2 1.3.7 10 .1 5 3 10 ,0 7 . 5 
.» 2 2 j . 6 V \ 3 1 3 11 22 ,3 1 6 . 0 

4 .S 2 1 9 . 4 1 / . 6 2 .> 11 10 . 1 1 0 . 4 
5 J 2 0 . 0 0 . 2 3 3 11 0 .0 5.1 

6 3 2 1 7 , 4 1 5 . 5 4 3 11 0 .0 0.1 
7 . ) 2 3 0 . 9 3A.M 1 �/ 12 3 .2 5 . 3 
8 .'> 2 7 . 5 1 1 . 7 2 12 1 1 ,5 1 4 . 7 

1 3 3 5 2 . ' : 4 5 . 5 3 12 *; ,0 9 . 3 

2 3 3 31 . 6 2 9 . 0 1 .1 13 7 .9 7.1 

3 3 / . 0 1 7 . 7 0 4 1 21 J 2 3 . 0 
4 T 

.> 3 41 . 4 3<J.9 0 2 47 ,9 22 .1 

S .'» 3 '�^.9 4 6 . 6 0 4 3 46 »o 4 3 . 3 
6 3 3 0 . 0 ^ . 0 ft 4 4 ^07 2 201 .1 
7 5 3 11 .ft 1 2 . 6 0 4 5 19 [a 1 3 . 2 
1 . J . 4 1ft. 0 2i>,2 0 4 6 53 .3 2 5 . 0 
2 j 4 6 7 . 3 69 ^ 0 0 i 

H 
7 0 .0 0 . 0 

3 3 4 0 . 0 ^ � 2 0 4 « 71 .8 7 2 . 0 
4 4 3 3 . 7 0 I 

-� 
9 25 . 0 2 4 . 0 

S 3 4 1/ .ft 1 9 . 0 0 4 10 92 .9 8 i . 3 
4 1 o . 7 1^ .3 0 4 11 0 . 0 6 . 4 

7 4 0.4 4 , 0 0 4 12 29 .1 3 5 . 5 

1 3 5 ^ � ^ 7 2 4 0 139 � 1 3 0 . 3 
2 3 5 50.1 2< .̂1 4 4 0 1.) .5 3 . 6 

3 
� T 5 0 . 0 ^ . 4 6 4 0 �̂ 4 ,2 8 7 . 9 

4 3 ^ ^ . 2 4 4 . 2 1 ^ 1 6o ,7 61 .1 
S 5 '* 0 . o 3 5 . 6 2 4 1 19 ,9 1 7 . 6 

A 3 5 1 ^.9 1 ' i .6 3 1 70, 8 63 .1 
7 3 5 1 7 . 2 2 5 . S 4 4 1 0, 0 1 . 8 
1 0 5 3 . 4 4 8 . 5 3 4 1 20, 3 1 7 . 0 
2 6 1̂ ^ . 4 1 6 . 9 6 1 u , 0 1 2 . 9 
3 0 . 0 5 . 6 7 1 1o, 1 1 4 . 0 
4 3 6 0 . 0 3 , 4 1 4 2 25 . 2 2 3 . 8 
S V 6 1 1 . a 1 2 . 5 7 2 5v . 1 30 .1 
6 ;̂  7 . 2 6 . 5 3 4 2 20 , 3 1-5.5 
7 6 i i9.1 3^i.O 4 2 40 . 1 41 . 9 

1 , > i 5 9 . 2 5 6 . 9 5 4 2 0, 0 4 . y 

2 ..1 7 22 .1 6 4 2 0. 0 1 2 . 4 
3 ."i 7 4 1 . 6 7 4 2 0. 0 6.1 
4 7 1'^.2 1 6 . 0 1 4 3 6ft, 4 6 5 . 9 
S /> 7 1 9 . 4 1 6 . 8 2 4 3 10 . 8 6 . 3 
A . f 7 0 . 0 1 .2 3 4 3 1 0 3 . 9 91 . 6 
1 3 2 3 . 3 1^ .5 4 ^ 3 0 . 0 ' ' .0 
2 .i a 5 2 . 9 5 6 . 9 3 4 3 50 . 1 4 3 . 2 
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H K L F O B S F C A L C H K L F C A L C 

6 3 1 3 , 6 1 S , 7 7 5 1 0 . 0 V . 8 

7 4 3 U . 3 1 3 . 3 1 5 2 4 3 . 6 5 3 . 6 

1 4 4 J , 0 U � 3 2 5 2 6 . 4 ^.0 
2 4 4 , 0 5 , 5 3 5 2 2 2.1 1 7 . 3 

;̂  4 4 u . 9 1 2 . 5 4 5 2 1 7 . 4 1 5 . 2 

4 4 4 .Ci 4 8 , 9 5 5 2 3 1 . 4 2 5 . 2 

5 4 4 13 , 9 11 . 5 6 5 2 5 . 6 2 . 4 

6 4 4 6 5 
*^ 

, o 6 9 , 2 7 5 2 3 j . 4 3 4 . 9 

1 4 5 3 : . ,1 21 . 3 1 5 3 1 5 . 0 2 6 . 5 

2 4 5 0 , 0 1 0 , 6 2 :> 3 3 j . O 2 4 . 7 

4 5 31 ,2 7 6 . 6 4 5 3 0 . 0 1 - 5 . 0 

4 5 1 7 2 1 / 1 5 5 3 51 . 4 41 . 5 

5 ^ 5 2 3 , 4 2 3 7 6 5 3 4 V . 1 4 6 . 9 

6 4 5 1 2 , 3 1 2 1 1 4 3 9 . 2 3 7 . 7 

1 4 6 11 7 6 1 2 5 4 V . 9 3 o . 0 

2 4 6 5/:',, 5 6 2 , 2 3 5 4 0 . 0 1 . 0 

^ 4 6 41 0 3 4 , 5 4 5 4 1 . : . 4 3 . 3 

4 6 3 3 , 0 2 2 . 4 5 5 4 1 7 . 3 1 ^ . 5 

5 4 6 0 , 0 0 . 1 6 5 4 2 1 . 3 2 2 . 3 

6 4 6 30 1 3 4 7 7 5 4 6.3 2 . 0 

1 7 33, 6 2^, 0 1 5 5 2 Z.1 ' ^ 3 

2 4 7 0 0 4 9 2 .S 5 5 3 . 0 4 9 . 3 

3 7 1 2 3 3 1 1 ^ ,*> 3 5 5 0 . 0 3 . 3 

4 4 7 0 0 2 2 4 3 5 5 2 . 6 4 6 . 3 

5 4 7 1 5 , 3 1 . 0 5 5 5 1 4.1 2 2 , 1 

6 4 7 0 . 0 3 ,») 6 5 5 U . 3 1 4 . 2 

1 4 3 1 1 , 7 1 0 . 3 1 6 4 .J.3 5 2 . 7 

2 4 3 0 . 0 1 2 . 0 2 5 6 1 . M 7 . 1 

3 4 8 9 , 9 1 0 . 3 3 5 6 1 2 . 5 

4 4 3 0 0 5 . 3 4 5 6 6 . 0 
5 4 8 0 . 0 2 . 7 5 5 6 1 5 . 3 1 J . 6 
6 4 3 4 5 . 2 5 / ' 4 6 5 6 1 0 . 4 1 2 . 9 

1 4 9 3 5 . 2 2 3 .9 1 5 7 3 J . 3 3 9 . 5 

2 4 9 0 . 0 3 . 3 ? 5 7 3 7 . 4 3 6 . 3 

3 4 9 0 . 0 4 , 6 3 5 7 31 . 3 3 2 . 5 
4 4 9 0 . 0 5 .1 4 5 7 2 4 . 4 2 5 . 5 

5 4 Q 11 . 2 1 1 . 2 S 5 7 I V . 9 1 3 . 1 

1 4 1 0 0 , 0 1 0 6 5 7 4.9 7 

2 ^ 1 0 21 1 6 1 7 . 1 1 r> 3 31 . 4 2 4 . 7 

3 4 1 0 9 . 3 1 0 , 9 
2 5 3 3 0 . 2 2 6 . 0 

t* 4 1 0 3 5 ^ 9 3 7 . 2 3 5 3 . 0 . 0 4 . 3 
1 4 11 2 9 . 5 2 3 4 4 5 8 1 3 . 0 1 3 . 9 

2 4 11 0 . 0 4 3 «) 8 7 . 2 2 , 3 

3 4 11 51 ,1 5 5 0 . 1 5 9 1 2 . 2 2 0 . 6 
1 4 1 2 9 ,1 1 J , 2 2 5 9 2 9 . 3 2 3 . 1 

2 4 1 2 11 ,6 1 0 6 3 5 9 0 . 0 5 . 1 
2 5 0 3 7 -> 3 5 1 4 5 0 3 3 . 0 3 5 . 9 

4 S 0 1 7 1 6 , 4 1 5 1 0 1 9 . 4 2 3 . 4 

6 .S 0 1/ 0 1 5 , 2 2 5 1 0 1 2 . 6 1 2 . 6 

A 5 0 3 2 . 3 3 o 1 3 5 1 0 0 . 0 1 .1 
1 5 1 2 6 6 3 3 , 9 1 5 11 0 . 0 0 . 9 

2 s 1 -> . 2 4 7 2 5 11 1 5 . 1 1 4 . 9 
3 5 1 T A 

c 1 

, 6 31 6 1 .S 1 2 . 0 ��*.8 
4 5 1 4 1 6 3 2 5 1 2 7 . 6 1 1 . 7 
5 5 1 21 , 7 1 2 7 0 6 1 2 3 . 5 w.s 
6 5 1 2 0 . 5 1 0 , 7 0 6 2 3 5 . 5 4 9 . 3 



H < L F O B S F C A L C H < L F U 3 S F C A L C 

0 o 3 2 5 . 7 1 ' \ 3 3 y 2 11 1 1 . 9 

0 0 4 ft � 5 2 3 . 8 4 7 2 1 3 . 6 1 ' � . o 

0 6 5 ^ 3 . 2 3 3 . 9 5 7 2 0 . 0 

ft 6 0 , 0 1 . 9 7 2 s.o 5 . 0 

;> £) 0 5 . . 3 6 ^ . ft 1 7 3 S 2 . 4 5 6 . 3 

0 ^. 2 1 2 . S 2 / 3 0 . 0 ' ' . 7 

6 0 a . 3 11 . 7 3 7 3 2 ^ , 1 3 : ; . 2 

1 6 1 0 . 0 rt. S ^ 3 1 6 . 9 1 3 . 8 

? 6 1 1 7 4 . S 7 3 2 3 . 0 I f . . ^ 

3 L 1 0 . 0 1 2 . /S / 3 0 . 0 9 . 5 

4 6 1 6 . ' , , 2 6 2 . ft 1 4 1 ' » . 9 

S (') 1 2 . ; . 2 2 0 , 4 2 4 4 f t . 2 41 . 6 

6 ft 1 0 0 , >i 3 
�» 4 9 . 9 m. 5 

7 ft 1 0 6 4 7 4 2 f t , 5 2 5 . 1 

1 (3 2 6 9 6 ^ S c 7 4 1 . 0 

7, ft 2 2 1 0 1 7 5 2 ' . . 6 

ft 2 1 V. 7 1 ^ . ^ ? 7 S r>. 4 f>.ft 

4 2 0 �1 
3 3 

- T S O.v) 0 . 3 

S ' ft 2 
- J - . 

' - J . ��) 6 o ! 6 4 
- f 
I 5 1 9 . 1 2 i : . 3 

6 ft 2 4 2 , 5 S -» 
5 1 6 .«» 1 1 . 7 

1 6 3 >*', 4 3:? 5 2 a 0 0 . 0 4 . " 

2 ft 3 7 '̂ '̂  S 4 0 

^ 6 3 0 . 0 0 6 0 6 2 . 0 

4 ft 3 1 3 ^ 0 - 1 1 5 4 . 7 

5 6 3 2 0 , .3 1 7 1 1 I ' . a 

(S ft 3 4 <y 7 2 1 o.n 1.4 

7 6 3 1 1 , 4 1 1 2 3 ^ 1 6 7 . a 6 3 . rt 

1 ft 4 0 3'^ 1 4 1 1 � . 0 i ' . O 

6 4 7 �i . 2 5 -> 1 0 . 0 

6 4 1 / 9 2 1 2 4 . 7 

4 ft 4 
-> �» 

C � 1 «> 3'V , 7 0 \> 2 ^ . 7 

*> ft 4 v> . ft 1 7 . 1 1 .3 l . 7 1 7 . 7 

(S i j 4 1:! 1 2 , 6 2 2 0 . 0 1 0 . 3 

1 6 5 o , 7 1 ) , 5 3 ft 2 3 7 . 9 

2 5 i i . 0 7 o , t> u �> 2 1 . 1 1 . 3 

ft 5 . 2 . 5 s 1 2 '..."^ 1 . 2 

4 ^> 5 5 j , ^ S i , 7 0 3 . 7 2 1 . H 

ft 5 -t . 4 U , 3 1 3 2 < . . 9 2 0 . 

6 ft 5 . 0 1 0 , 3 2 3 0 . 0 5 . 8 

0 7 2 5 . 0 2V . 4 3 � > 3 " 1 . 1 8 5 . 4 

ft ' J >? , 6 L 3 v. . 5 6.4 

ft ft 9 1.) 11 > �% 
3 1 ^ . 2 1 0 . 1 

ft 1) 1 0 
-i 

�1 . ̂  1 5 . 7 <S 3 I . ' . A 1 5 . 6 

0 ft 11 . 2 3/* , ft ft 4 o 'l . 3 6 3 . 3 

ft ft 1 2 1 7 . o � J . �» 1 4 (.. 0 1 . 6 

2 7 0 4ft , 0 4 4 , 0 7 4 ~ ' � 4L'.4 

4 
� * 

0 4., � 4 0 . 2 3 4 2 G . O 2 5 . 9 

^ 0 3 h . 0 2 6 . 2 4 4 i : . . - 5 1 0 . i 
1 �/ 1 . 2 2 ^ . 2 s 4 4 . 3 4 . 6 

2 / 1 I . 5 1 6 . 2 0 5 U . 5 21 . / 

/ 1 i . 1 1 3 . 7 1 S '.- . 0 3 . 9 

4 -9 1 3 J . 0 3 2 u ? 5 1 3 . 3 1 6 . 3 
-» 

1 1 , 4 4'> ^3 3 > > 1 J . O l o . O 

=̂1 / 1 , 2 1 o . 0 4 i t <i K . 6 1 9 . 5 

1 V 2 2 4 . 2 2 4 . 2 ft 6 4 5 . - i 

? / 2 2 7 2 o , i) ft 7 0 . 0 0 . 5 



H L P u i s F C A L C H K L F O O S F C A L C 

0 a 7 c . 4 5 « , 7 5 1 0 1 1 3 . 2 1 » . 4 

0 ,i 9 2 ^ . 2 0 1 0 2 0 . 0 1 . 7 

0 <"i 1 0 -H ' . 1 2 0 . 8 1 1 0 2 39 . 9 5 9 . 0 

2 ' J 0 2 9 . 3 3 0 . S 3 1 0 
7 9 . 3 1 3 . 4 

U «; 0 0 . 0 0 . 2 4 1 0 2 0 . 3 2 . 4 

1 '> 1 0 . 0 1 ^ . 9 0 1 0 .3 0 . 0 

2 0 1 3o.3 3 i . 2 1 1 0 3 2 3 . 9 3 3 . 8 

3 0 1 0 . 0 2 , 9 2 1 0 .3 2 7 . 5 2 6 . 6 

1 41 . 4 � 3 V . 5 3 1 3 3 0 . 0 0 . 7 

5 <> 1 1 5 . 3 1 « . 2 4 1 0 3 1 9 . 7 2 2 , 4 

1 o 2 5 5 . 8 5 2 . 6 0 1 0 4 0 . 0 6 . 3 

2 o 2 0 . 0 2 . 2 1 1 0 4 21 . 7 l c S . 2 

^ 2 0 . 0 1 . 3 2 1 0 4 31 . 0 3 S . 5 

4 9 2 0 . 0 1 . 2 3 1 0 4 I S . 3 1 3 . 8 

5 0 2 26.0 0 1 0 5 1 7 . 1 1 1 . 5 

1 9 3 2 0 , 3 2 * ^ . 4 1 1 0 5 8 . 1 3 . 6 

2 <f 3 0 . 0 ' 1 . 3 2 1 0 5 51 .1 4>1 .8 

9 3 1 9 . 9 2 ^ . 1 0 1 0 6 2 2 . 3 2 5 . 5 

4 3 1 6 . 4 1 4 . 0 0 1 0 7 2 7 . 5 21 .1 

5 9 3 1 9 . 1 1 4 . 6 2 11 0 2 7 . 6 2 3 . 2 

1 9 4 1 . 1 . 2 V . 8 4 11 0 U . 5 1 ' . 6 

2 .0 4 1 2 . 6 1 t > . 8 1 n 1 31 . 3 3 0 . 6 

3 0 4 9 . 2 5 . 8 2 11 1 0 . 0 2 . 5 

4 9 4 6 . 3 ^ . 4 1 11 2 9 . 7 i . 3 

1 o 5 0 . 0 1 0 . O 1 11 3 1 1 . 7 6 . 3 

2 9 5 1 4 . 6 2 5 . 7 2 11 3 7 . 3 

3 9 5 0 . 0 / . 3 1 11 4 6 . 9 6 . 3 

4 9 5 2 5 . o 2 5 . 9 2 1 i 4 3 o . 1 3 3 . 1 

2 1 0 0 ^ .3 .1 2^-..1 2 i ; ? 0 2 6 . 3 3 2 . 3 

4 1 0 0 3 3 . 9 4 0 . 8 0 1 ? 1 3 5 . 4 2 7 . 5 

0 1 0 1 0 . 0 7 . 2 1 1 2 1 9 . 5 9 . 6 

1 1 0 1 1 1 . 6 1<^.5 2 1.^ 1 1 1 . 0 l i . 1 

2 1 0 1 5 2 . 0 4/.3 0 i ; ? 2 0 . 0 � 1 . 6 

3 1 0 1 0 . 0 ^ . l 1 1 ^ 3 1 3 . 4 2 3 . 1 

1 0 1 ^ 3 . 6 3 2 . 9 0 1. : 3 4 0 . 9 3 3 . 4 
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THERMOGRAVIMETRIC STUDIES OF ALKALINE 

EARTH METAL SULPHITES 

By D,R. Glasson and P. O'Neill 

John Graymore Chemistry L a b o r a t o r i e s , 

Plymouth P o l y t e c h n i c , Plymouth PL4 8AA, 

England, 

Formation, thermal s t a b i l i t y and o x i d a t i o n of magnesium, calcium, 
s t r o n t i u m and barium s u l p h i t e s have been i n v e s t i g a t e d and compared w i t h 
other metal s u l p h i t e s . 

The a l k a l i n e earth metal s u l p h i t e s are produced e i t h e r by 
p r e c i p i t a t i o n from s o l u t i o n (by double decomposition of the metal s a l t 
w i t h sodium s u l p h i t e ) or by r e a c t i o n of the metal oxide, hydroxide or 
carbonate v;ith sulphur d i o x i d e , as i n the i n d u s t r i a l removal of sulphur 
d i o x i d e from f l u e gases. The hydrated forms are dehydrated completely 
i n a i r or i£ vacuo at temperatures below 400 C, At higher temperatures, 
atmospheric o x i d a t i o n to sulphate becomes appreciable; s t a b i l i t y t o 
o x i d a t i o n becomes greater vjich i n c r e a s i n g atomic weight of the metal. 
In vacuo above 500 C, there i s some d i s p r o p o r t i o n a t i o n to sulphate and 
sul p h i d e , e.g., 4CaS0-j = 3CaS0^ 4* CaS, and some decomposition to oxide 
occurs w i t h s t a b i l i t y again i n c r e a s i n g w i t h the atomic weight of the 
metal. Thus, SrSO^ only decomposes to oxide appreciably at temperatures 
above 900 C _in vacuo and 1100 C i n n i t r o g e n , w h i l e BaSO„ i s s t a b l e up 
to 1000 C i n t h i s respect, but ifc d i s p r o p o r t i o n a t e s . This behaviour 
of decomposition and/or d i s p r o p o r t i o n a c i o n i s s i m i l a r to t h a t of the 
heavy metal s u l p h i t e s such as those of zi n c and lead. 

T y p i c a l thermograms are shown i n Fig . 1 and 2. Thus, the TG 
curve i n Fig. 1 f o r CaSO^,kU^O i n d i c a t e s t h a t dehydration occurs 
i n vacuo mainly betv;een 200 and 400 C, whi l e most of the CaSO 
decomposes t o lime between 550 and 750 C, being accompanied by some 
d i s p r o p o r t i o n a t i o n . There i s greater s t a b i l i t y i n n i t r o g e n atmospheres, 
most of the decomposition of the CaS0„ t a k i n g place at temperatures 
between SSO*̂  and 1070*^C. S i m i l a r l y , Che DTA curves i n Fig. 2 show 
endothermic peaks corresponding to these dehydrations and losses of SO2. 
In a i r , dehydration i s followed immediately by o x i d a t i o n which gives 
an exothermic peak at 460 C. Decomposition of the sulphate begins at 
about 930°C. 

The thermal s t a b i l i t y of the CaSO ,iH 0 i s r e f l e c t e d i n the 
changes i n surface area, caused by the dehydration, decomposition 
and d i s p r o p o r t i o n a t i o n processes. ,In Fig. 3, s p e c i f i c surfaces, S_, of the 
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Fig. 1. . Weight changes on h e a t i n g CaS02}H20 at 6°C min ^ 
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Fig. 3. Surface area changes on heating CaSO^pJH^O, 

600°C 

products are shown for separate samples calcined f o r 2 h. isothermally 
at a series of temperatures i i i vacuo (a) and i n a i r (b) . The maxima i n 
at 400 C i n the curves for the calcinations i n vacuo corresponds t o the 
complete dehydration of the samples from batches A and B, Batch A 
contains only CaSO»,iH 0, but B contains a molecular r a t i o of 
3CaS0 ,jH20 : lCaS0^,2H 0 and thus gives an a d d i t i o n a l peak at 250°C, 
for the dehydration of the sulphate. The maximum f o r batch B i s 
increased considerably at 400 C compared w i t h batch A by the c r y s t a l 
transformation y 6-CaSO^(anhydrite) , known to^increase S_ from our 
previous research at temperatures about 350-400 C. Hence, the 
dehydration of CaS02,jH20 (batch A) i n a i r gives a maximum at 350 C, 
with being increased somewhat by the onset of oxidation of the CaSO^ 
to CaSO, at the y ̂  B-CaSÔ  t r a n s i t i o n temperature. Direct oxidation 
to anhydrite i s more extensive at the higher temperatures, when there 
is less of surface caused by s i n t e r i n g . There i s also extensive s i n t e r i n g 
in vacuo at the higher temperatures (600*^0) when much of the CaSO^ 
decomposes to lime; the s i n t e r i n g i s accelerated probably by the small 
amounts of lower-melting CaS formed i n the dispr o p o r t i o n a t i on of some 
of the s u l p h i t e . 
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Further i n v e s t i g a t i o n s have been made of the thermal s t a b i l i t y of 

magnesium, calcium, s t r o n t i u m and barium s u l p h i t e s u s i n g hot-stage 

microscopy to i d e n t i f y the temperatures f o r the decomposition and 

d i s p r o p o r t i o n a t i o n reactions, and to observe the fo r m a t i o n of the 

products, e s p e c i a l l y n u c l e a t i o n and the changes i n c r y s t a l morphology 

and s i z e . 

Thermograms p r e v i o u s l y presented f o r CaS03,|H20 ̂ 1) i n d i c a t e d t h a t 

dehydration i n vacuo occurred mainly between 200 and 400 C, w h i l e 

most of the CaS03 decomposed to lime between 550*^-750°C,being 

accompanied by some d i s p r o p o r t i o n a t i o n . This i s f u r t h e r i l l u s t r a t e d by 

comparing ihe weight losses f o r separate samples c a l c i n e d f o r 2 h 

i s o t h e r m a l l y at a s e r i e s of temperatures, c f . Kig. 1(a) and ( c ) . 

The thermal s t a b i l i t y i s r e f l e c t e d also i n the changes i n surface area 

caused by the dehydration, s u l p h i t e decomposition and d i s p r o p o r t i o n a t i o n 

processes. Thus, the s p e c i f i c s u r f ace, £,of the produces ( F i g . 1(b) 

reaches a maximum a t 400 C, corresponding to complete d e h y d r a t i o n . . 

The average c r y s t a l l i t e sizes ( e q u i v a l e n t s p h e r i c a l dismeters) of the 

products have been c a l c u l a t e d from Ŝ  and the X-ray d e n s i t i e s (determined 

as 2,55, 2.40 and 3.34 f o r CaS03,{H20, CaS03 and CaO r e s p e c t i v e l y ) , and 

the f r a c t i o n a l increases i n the numbers of c r y s t a l l i t e s have been 

deduced (cube of the size r a t i o of the i n i t i a l r e a c t a n t and the product) 

( 2 ) ; these are compared i n F i g , 1 ( d ) , where each i n i t i a l c r y s t a l o f 

CaS03,5H20 s p l i t s i n t o about 1150 c r y s t a l l i t e s of CaS03 on complete 

dehydration i n vacuo at 400*^C. This corresponds to a r e d u c t i o n i n s i z e 

from about 1.7 pm to 0.3 pm. Decomposition and d i s p r o p o r t i o n a t i o n o f the 

CaSOa, v i z . ( i ) CaSO-^ = CaO + SO2 and ( i i ) 4CaS03 = 3CaS04 + CaS, i s 

accompanied by s i n t e r i n g , probably caused by small amounts of the 

lower-melting CaS a c t i n g as a m i n e r a l i s e r . Therefore, the produce a t 

600 C (mainly lime) has an average c r y s t a l l i t e size o f as much as 

3.A pm. These changes are confirmed by electron-microscopy, using a 

P h i l i p s EM300 microscope w i t h hot-stage attachment w i t h a temperature 

range of up to 1000°C 

S i m i l a r s t u d i e s have been made o f the thermal behaviour o f magnesium, 

s t r o n t i u m and barium s u l p h i t e s . 
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Abstract 

The r e a c t i v i t y of calcareous m a t e r i a l s used as absorbents f o r 

d e s u l p h u r i s i n g i n d u s t r i a l f l u e gases depends mainly on t h e i r a l k a l i n i c y 

and surface a c t i v i t y . Dynamic thermogravimetric s t u d i e s i n d i c a t e t h a t 

only quicklime or hydrated l i i i i e can be considered reasonably as 

i n d u s t r i a l d e s u l p h u r i s i n g agents f o r use below 500°C, such as r e q u i r e d 

i n e l e c t r i c i t y power p l a n t s where the f l u e gases leave the economisers 

a t j u s t below 400°C. For higher-temperature d e s u l p h u r i s a t i o n , above 

700*^0, calcium-carbonate based re a c t a n t s appear to be the most s a t i s f a c t o r y 

I n p r a c t i c e , r e a c t i o n temperatures need to be such t h a t the maximum 

r a t e of sulphur d i o x i d e absorption by both hydrated and carbonated limes 

occurs as they decompose to q u i c k l i m e s . This minimises blockage of 

pores i n the absorbents caused by s i n t e r i n g and r e a c t i o n w i t h sulphur 

d i o x i d e t o form calcium s u l p h i t e . 

Gas s o r p t i o n s t u d i e s provide q u a n t i t a t i v e i n f o r m a t i o n r e g a r d i n g 

v a r i a t i o n s i n surface area and p o r o s i t y of the absorbents d u r i n g 

d e s u l p h u r i s a t i o n processes. 



I n t r o d u c t i o n 

The r e a c t i v i t y of sulphur d i o x i d e absorbents, such as lime and r e l a t e d 

m a t e r i a l s , depends mainly on t h e i r a l k a l i n i t y and s u r f a c e a c t i v i t y . 

C o m m e r c i a l l y - a v a i l a b l e m i l l e d limestone and dolomite a r e g e n e r a l l y above 

micron c r y s t a l l i t e s i z e ( i . e . , s p e c i f i c s u r f a c e below 2m^g ) y . 

; and can be reduced to 0,1 yri s i z e ( c a . 20 m^g ^) o n l y by 

s p e c i a l i s e d m i l l i n g (1). More expensive p r e c i p i t a t e d c a l c i u m carbonate 

i s a v a i l a b l e down to 0.1 \im s i z e as i s commercial hydrated lime (Limbux) 

a t more reasonable c o s t . 

The. p o r o s i t y of lime obtained on decomposition of limestone (900-1000°C) 

has been i n v e s t i g a t e d by Anderson and Vernon ( 2 ) . S i n c e v e r y l i t t l e 

change occurs i n e x t e r n a l dimension, the lime produced i s h i g h l y porous 

and has an apparent d e n s i t y of 1.5-1.6 gem ^ compared w i t h 3.3 gem ^ when 

i t i s completely fused and 2.7 gem ^ f o r the o r i g i n a l limestone. A lime 

l i k e t h i s w i t h low d e n s i t y has a c o m p a r a t i v e l y high s p e c i f i c s u r f a c e , a 

sponge-like s t r u c t u r e ( as shown by s c a n n i n g - e l e c t r o n micrographs comparing 

limes of d e n s i t i e s 1.7 and 2.A gem ^ ) . 

The uptake of s u l p h u r d i o x i d e by lime g e n e r a l l y produces CaSOa a t lower 

temperatures (below 300°C) and CaSOn a t h i g h e r temperatures (300-1000*^0. 

The voidage i n lime of apparent d e n s i t y 1.52 i s about 55% of the t o t a l 

volume. The X-ray d e n s i t i e s of CaSOa and CaS0i+ are 2.41 ( p r e s e n t work) 

and 2.96 (A.S.T.M. v a l u e ) , so t h at voidage i s only s u f f i c i e n t to accommodate 

SO2 uptakes of 61% and 69% of t h e o r e t i c a l r e s p e c t i v e l y , without e x t e r n a l 

expansion being r e q u i r e d ; thus c o n s i d e r a b l e l o s s of p o r o s i t y i s expected 

i n p r a c t i c e . The uptake of SO2 by h y d r a t e d lime g i v e s volume i n c r e a s e s 

of 50% and 39% i n forming CaSOa and CaSOu r e s p e c t i v e l y . For l i m e s t o n e , 

corresponding i n c r e a s e s of 35% and 25% a r e g i v e n . 

I n m i l l e d l i m e s t o n e , the c l o s e s t p o s s i b l e packing of p a r t i c l e s (assumed 

approx. s p h e r i c a l ) w i t h i n the aggregates would s t i l l only leave a t o t a l 

voidage j u s t s u f f i c i e n t to accommodate complete c o n v e r s i o n to CaSOa. The 

p a r t i c l e s of m i l l e d CaCO^ have c o m p a r a t i v e l y l i t t l e p o r o s i t y , but a f t e r 

i n t e n s i v e m i l l i n g p o r o s i t y can be developed by uptake of water vapour ( 3 ) . 

P r e c i p i t a t e d c a l c i u m carbonates (S^ = 1 to 20 m^g ^) v a r y i n f e a t u r e s from 

h i g h l y - c r y s t a l l i n e w i t h open s u r f a c e s to almost e x c l u s i v e l y microporous 

s t r u c t u r e s ( 3 - 6 ) . 

I n the p r e s e n t work, v a r i a t i o n s i n s u r f a c e a r e a and p o r o s i t y of c a l c a r e o u s 

absorbents d u r i n g d e s u l p h u r i s a t i o n of gases have been compared. 



E x p e r i m e n t a l 

M a t e r i a l s 

For absorbents, i n i t i a l l y hydrated lime» "Limbux", s p e c i f i c s u r f a c e , 

3 - 1 ^ 
S = 14,2 m g , was obtained from I . C . I , and carbonated l i m e , p r e c i p i t a t e d 

c a l c i u m carbonate, " C a l o f o r t U'*, S = 18.9 m^g ^, was obt a i n e d from S t u r g e s . 

As a standard f o r X-ray i d e n t i f i c a t i o n purposes and volume or d e n s i t y 

d e t e r m i n a t i o n s , c a l c i u m s u l p h i t e hemihydrate was prepared by p r e c i p i t a t i o n 

from s o l u t i o n s o f M-CaCla and M-NazSOa. The c r y s t a l s o f CaS03,iH20 had 

l a t t i c e c o n s t a n t s of a = 6.45 A, b = 9.78 A, £ =10.66. A, g i v i n g an X-ray 

d e n s i t y , D = 2.55 (powder data) i n good agreement w i t h s i n g l e c r y s t a l d a t a 

X 

a = 6.49 A, b = 9.81 A, £ = 10.66 A. The he.mihydrate was dehydrated i n 

vacuo a t 400°C f o r 2 h g i v i n g CdSO^ w i t h £ = 6.^5'A, b̂  = ^ - - " ^ i A , 

£=|0.()6A, D = 2.41 (powder d a t a ) . 

For dynamic thermogravimetric s t u d i e s , the f o l l o w i n g absorbents were 

used ( T a b l e I ) . 

T a b l e I 

Absorbents used i n dynamic thermogravimetric s t u d i e s 

Absorbent 

CaO 

Cab 

Ca(0H)2 

Cd(0H)2 

CaCOa 

CaCOa 

MgCOa 

CaCOa, 

MgCOg 

SrCOa 

BaCOa 

Source � 

C a l c i n e d CaCOa, B.D.H. 

925° C, 3 h i n a i r . 

Quicklime, I . C . I . 

B.D.H. 

I . C . I . "Limbux" 

B.D.H. 

Ca r b o n i f e r o u s l i m e -

stone, I . C . I . 

Tunsted Quarry 

N a t u r a l magnesite 

Dolomite, S t e e t l e y 

B.D.H. 

B.D.H. 

S p e c i f i c S u r f a c e , m^g 

5.0 

0.8 

4.9 

14.2 

0.7 

0.5 

0.6 

0,4 

0.8 

4.7 

- 1 



Procedure 

5g-samples of hydraced lime ("Limbux", s p e c i f i c s u r f a c e S = 1A.2 

and carbonated lime ( " C a l o f o r c U", = 18.9 m^g were r e a c t e d w i t h 

s u l p h u r d i o x i d e f o r 2 h i n combustion tubes a t a s e r i e s of f i x e d 

temperatures from 200-1100*^C. The gas was passed through at c o n s t a n t 

streaming r a t e s (5 I h ^) and was moistened beforehand by p a s s i n g i t through 

vatex^Cf^Oz on wet charges i n d u s t r i a l l y . Blank experiments were performed 

u s i n g n i t r o g e n i n p l a c e of sulphur d i o x i d e . 

The s p e c i f i c s u r f a c e s of the cooled samples were determined g r a v i m e t r i c a l l y 

by the B.E.T. method (7) from n i t r o g e n s o r p t i o n isotherms a t -183°C re c o r d e d 

on an e l e c t r i c a l s o r p t i o n balance ( 8 ) , ( 9 ) . The average c r y s t a l l i t e s i z e s 

( e q u i v a l e n t s p h e r i c a l d i a m e t e r s ) were deduced from the s p e c i f i c s u r f a c e s and 

X-ray d e n s i t i e s . The i n i t i a l samples and the products were X-rayed f o r 

phase i d e n t i f i c a t i o n and a n a l y s e d t h e r m a l l y and v o l u m e t r i c a l l y f o r w a t e r 

content, a l k a l i n i t y and sulphur compounds. 

I n the dynamic thermogravimetric s t u d i e s , DIG, u s i n g a mass-flow b a l a n c e , 

the atmospheres were (a) 2 v o l - % SO2 i n N2, (b) 0.8 vol-%S02 i n N2, 

( c ) 0.8 v o l - % SO2 + 8.2 v o l - % O2 i n N2 and (d) N2 a l o n e , w i t h h e a t i n g r a t e s 

of 5°C min * and flow r a t e s of 1 Imin \ These methods gi v e ( i ) a comparison^, 

of the r e l a t i v e r e a c t i o n r a t e s a t d i f f e r e n t temperatures on the same sample 

and ( i i ) i n d i c a t i o n of the r e a c t i o n s d u r i n g the p e r i o d i n which a c o l d p a r t i c l e 

was r a i s e d i n temperature to t h a t of the hot gas i n t o which i t was i n j e c t e d , 

as i n an i n d u s t r i a l dry f l u e gas d e s u l p h u r i s a t i o n . Simultaneous DTA and TG 

measurements d i d not provide much more u s e f u l i n f o r m a t i o n , s i n c e the s u l p h u r 

d i o x i d e r e a c t i o n r a t e s were o f t e n i n s u f f i c i e n t to give a marked temperature d i f -

f e r e n c e between the sample and r e f e r e n c e m a t e r i a l . The r e l a t i v e e f f e c t i v e n e s s 

of the above absorbents i n r e a c t i n g w i t h s u l p h u r d i o x i d e could be r a p i d l y seen 

by comparing the v a r i a t i o n i n r e a c t i o n r a t e s w i t h temperature and gas composition 

f o r each s o l i d r e a c t a n t . T h i s i n d i c a t e d that only c a l c i u m oxide or c a l c i u m 

hydroxide could be reasonably c o n s i d e r e d as i n d u s t r i a l d e s u l p h u r i s i n g agents 

f o r use below SOO^C. 

The g r e a t e r r e a c t i v i t y of the c a l c i u m hydroxide samples at temperatures lower 

than those r e q u i r e d f o r the other absorbents was r e l a t e d to the simultaneous 

formation of a c t i v a t e d c a l c i u m oxide, e s p e c i a l l y a t temperatures above about 

400°C, c f . a l s o F i g . 2 and e a r l i e r r e s e a r c h ( 9 ) . A c c o r d i n g l y , f u r t h e r 



samples of the same batch of Limbux were decomposed to q u i c k l i m e by c a l c i n i n g 

i n vacuo a t 500°C ( h e a t i n g r a t e S^C min ^, before h o l d i n g a t t h i s temperature 

f o r a t o t a l time of 2 h ) . Then the products were heated i n streams of 

n i t r o g e n , w i t h or without sulphur d i o x i d e , a t f i x e d temperatures f o r d i f f e r e n t 

l e n g t h s of time. A f t e r c o o l i n g i n n i t r o g e n , s u r f a c e a r e a s and changes i n 

p o r o s i t y c h a r a c t e r i s t i c s caused by s i n t e r i n g and r e a c t i o n w i t h sulphur d i o x i d e 

were determined from n i t r o g e n s o r p t i o n isotherms a t -196°C recorded g r a v i -

m e t r i c a l l y . 

R e s u l t s 

V a r i a t i o n s i n s p e c i f i c s u r f a c e when samples of C a l o f o r t U and Limbux r e a c t 

w i t h wet sulphur d i o x i d e a t d i f f e r e n t temperatures are presented i n F i g . 1 

and 2 where they are compared w i t h the c a l c i n a t i o n s i n wet n i t r o g e n . 

Decompositions of Ca(0H)2 and CaCOa were p r a c t i c a l l y complete w i t h i n 2 h 

- i n wet n i t r o g e n a t cempteratures above 500° and 700°C r e s p e c t i v e l y . The 

s p e c i f i c s u r f a c e s of the q u i c k l i m e s produced from the hydroxide were g e n e r a l l y 

s i m i l a r to those obtained i n a i r , but the l i m e s from the CaCOs had much lower 

s p e c i f i c s u r f a c e s than those produced by c a l c i n a t i o n of e i t h e r p r e c i p i t a t e d 

c a l c i u m carbonate or c a l c i u m o x a l a t e i n a i r ( 1 0 ) , Although the CaCOs does 

not t h e r m a l l y decompose below 500°C, n e v e r t h e l e s s i t r e a c t s w i t h the SO2, 

g i v i n g products of composition shown i n Table I X . 

Table I I 

R e a c t i v i t y of CaCOs ( C a l o f o r t U) w i t h SO2 

Temperature Products 

200°C 91.0% CaCOs, 9.0% CaSOajHzO 

300° 86.4% CaC03,13.6% CaS03,jH20 

400° 81.2% CaC03,18.8% CaSOa 

500° 47.5% CaC03,52.5% CaS03* 

* tending to d i s p r o p o r t i o n a t e to CaS04 and CaS 

F i g . 3 — 7 show a t y p i c a l s o r p t i o n i s o t h e r m and changes i n pore volume 

d i s t r i b u t i o n and cumulative pore volume f o r samples of Limbux, Ca(0H)2, 

c a l c i n e d a t 500°C i n vacuo and then t r e a t e d w i t h SO2 a t 300° and 500°C. 

D i s c u s s i o n 

D e s u l p h u r i s a t i o n of wet f l u e gases 

The r e a c t i o n between CaCOs and SO2 ( F i g . 1 and Table I I ) a t lower temperatures, 



up to about 500°C, i s CaCOa + SOj = CaSOa + CO2, i . e . , o f type S o l i d A + 

Gas I = S o l i d B + Gas I I . The products tend to s p l i t away from the r e m a i n i n g 

CaCOa, so t h a t high s u r f a c e a r e a s are m a i n t a i n e d . However, a t h i g h e r 

temperatures where CaCOa can decompose to CaO, t h e r e i s c o n s i d e r a b l e l o s s o f 

s u r f a c e , probably caused by e x t e n s i v e s i n t e r i n g of the products w i t h u l t i m a t e 

l o s s of p o r o s i t y . R e a c t i o n of .SO2 w i t h the hydrated lime caused l o s s o f � 

s u r f a c e s a t a l l temperatures ( F i g , 2) w i t h c o n s i d e r a b l e agglomeration ("caking") 

of the samples above 500^C, when much of the CaSOa d i s p r o p o r t i o n a t e d to CaSOt* 

and CaS. I f a c c e s s i b l e , the l a t t e r c o u l d r e g e n e r a t e CaO by h y d r o l y s i s ( w i t h 

the moisture p r e s e n t ) , so t h a t u l t i m a t e l y a l l of theCaO should c o n v e r t to CaSOi*. 

I n p r a c t i c e , r e a c t i o n temperatures a r e such t h a t the maximum r a t e o f SO2 

abs o r p t i o n by both carbonated and hydrated l i m e s o c c u r s as they decompose to 

q u i c k l i m e s . 

D e s u l p h u r i s a t i o n o f dry f l u e gases 

Changes i n p o r o s i t y (11) during uptake o f SO2 a r e i l l u s t r a t e d i n more d e t a i l 

i n F i g . 3 - � 7. F i g . 3 i s a t y p i c a l n i t r o g e n s o r p t i o n isotherm, showing 

h y s t e r e s i s a t r e l a t i v e p r e s s u r e s above about 0,5. F i g . 4 — 7 show the 

changes i n pore volume d i s t r i b u t i o n and cum u l a t i v e pore volume f o r samples 

of Limbux, Ca(0H)2, c a l c i n e d a t 500^C i n vacuo and then t r e a t e d w i t h s u l p h u r 

d i o x i d e a t 300°C or 500°C. As i s c l e a r l y seen, the c o n v e r s i o n to CaSOa 

caused a marked d e c r e a s e i n the s m a l l e r p o r e s . The p r o p o r t i o n of s u r f a c e 

a r e a due to pores a l s o d e c r e a s e s as the amount of SO2 uptake i n c r e a s e s , " a 

f e a t u r e which would f o l l o w from the p r e f e r e n t i a l f i l l i n g o f the s m a l l e r p o r e s , 

of. Table I I I , f o r samples r e a c t e d w i t h SO2 a t 500^C. 

- 6 -



Table I I I . Changes i n s u r f a c e a r e a s of samples of c a l c i u m oxide a f t e r h e a t i n g i n 

>;arious atmospheres. 

Sample 

Compo-

Heating c o n d i t i o n s 

S p e c i f i c 

s u r f a c e 

Pore Wall Pore a r e a No. of 

s i t i o n Gas 

composition 

Temperature Time 

minutes 

S p e c i f i c 

s u r f a c e a r e a 

2 - 1 

S p e c i f i c 

s u r f a c e 

s u l p h i t e 

l a y e r s 

CaO N2 

500- 5 

62.2 58.6 0.94 

CaO+ 

2.8% 

CaSOa 

N2+S02 32.9 25.2 0.77 0.4 

CaO N2 

500 60 

54.7 42.0 0.77 

CaO+ 

21.2% 

CaSOa 

N2+S02 
� 

9.4 5.3 0.67 3.8 

CaO N2 

300 5 � 

64.5 61.9 0.96 

CaO+ 

1.4% 

CaSOa 

N2+S0jt. 

-

39.5 28.7 0.73 0.2 

Gas compositions;- N2 c o n t a i n s only n i t r o g e n . 

N2+SO2 c o n t a i n s 99.5 v o l . % N2+ 0.5 v o l . % SO2 



T h i s i s confirmed by c a l c u l a t i n g the percentage change i n volume on c o n v e r s i o n 

to CaSOs and comparing t h i s w i t h the a c t u a l d e c r e a s e i n p o r o s i t y . I t i s 

found t h a t the measured p o r o s i t y i s l e s s than the c a l c u l a t e d p o r o s i t y f o r the 

Samples, ��'i'able I V , which i n d i c a t e s t h a t , p o r e s a r e b e i n g blocked. The number 

of l a y e r s of CaS03 w£»s estimat e d from the s p e c i f i c s u r f a c e of the n o n - s u l p h i t e d 

sample, assuming that, the average a r e a occupied by each CaSOs group was 19.5 A^. 

T h i s gave apparent coverages of 0.2, O.A and 3.8 s u l p h i t e l a y e r s f o r the 3 sample 

i n Table I I I and F i g . 4 — 7. The low. coverages of 0.2 and 0.4 i n T a b l e I I I 

ar e accompanied, however, by marked r e d u c t i o n s i n s p e c i f i c s u r f a c e i n d i c a t i n g 

b l o c k i n g of the pores r a t h e r than complete f i l l i n g ; a comparison of pore w a l l 

a r e a w i t h t o t a l s p e c i f i c s u r f a c e a l s o shows e x c e s s i v e r e d u c t i o n . At t h e s e 

temperatures, r e d u c t i o n i n s p e c i f i c s u r f a c e and pore volumes due to s i n t e r i n g 

a r e c o m p a r a t i v e l y s m a l l , as e x e m p l i f i e d by "blank'* experiments i n which the 

q u i c k l i m e i s heated i n n i t r o g e n alone f o r s i m i l a r l e n g t h s of time, c f , CaO 

samples i n T a b l e I I I . T h i s pore b l o c k i n g i s analogous to t h a t found e a r l i e r 

i n the r e c a t b o n a t i o n of c a l c i n e d l i m e s t o n e , where not more than 80% of the 

carbon d i o x i d e i n i t i a l l y evolved can be r e p l a c e d i n the q u i c k l i m e ( 1 2 ) . 

Comparison o f a c t u a l and t h e o r e t i c a l pore volumes 

f o r samples a f t e r r e a c t i o n w i t h 90a 

Sample Measured pore volume 

C a l c u l a t e d pore volume 

CaSOa 0-516 

21-2J? Ca903 � 0*176 

1*4% CaSOa 0*561 

-.8 
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d Umc density 1 7 g cm , 6 lime density 2 4 g cm 

" i g . l . Stereoscan micrographs of internal surfaces of lime , 



V a r i a t i o n s i n surface ajrea of ̂ 'Bbsorbents during 

desulphurisation or gases 
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C a l c i n a t i o n Teii5)pyature 

800°C. 



Pig« 5. T y p i c a l s o r p t i o n isotherm o f a calcajreous absorbent 
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p/p 

o S o r p t i o n . 

o D e s o r p t i o n 



F i g . 4. Pore s i z e d i s t r i b u t i o n i n c a l c i n e d Limbux 
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F i g . 5> Pore s i z e d i s t r i b u t i o n i n c a l c i n e d Limbux 
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o At 500 C i n f o r 5min 
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g j g , 6, Pore s i z e d i s t r i b u t i o n i n c a l c i n e d Limbux 
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P i g . 7. Cumulative voliimes and pore r a d i i of Quicklime absorbents 

o CaO i n a t 300°C f o r 5min 

A CaO i n a t 500°C f o r 5min 

Qj0.04 

50 — o 

Pore r a d i u s (A) 
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p r i v a t e coiP.municat ion 

F Q R O S i r i 0 ? aJICKT.r.:^S A ' I D K/TPrLATSD LILIES 

By L . C . Ande r son a n d D . R . G l a s s o n 

( 1 ) Q u i c k l i m e s 

On d e c o m p o s i t i o n , l i m e s t o n e l o s e s more t h a n 4C5^ o f i t s v / e i g h t 

as c a r b o n d i o x i d e . S ince v e r y l i t t l e change o c c u r s i n e x t e r n a l d i m e n s i o n , 

t h e l i m e p r o d u c e d i s h i g h l y p o r o u s and has an a p p a r e n t d e n s i t y o f 1*5— 

1*6 gan"^ compared v / i t h 5 ' 3 gcm"^ v/hen i t i s c o m p l e t e l y f u s e d a n d 2?7 

gcm"^ f o r t h e o r i g i n a l ILmes tone^ A l i m e v / i t h t h i s l o w d e n s i t y has a 

h i g h s p e c i f i c s u r f a c e , a s p o n g e - l i k e s t r u c t u r e a n d r e a c t s a l m o s t e x p l o r . i v c l y 

v . l t h v / a t e r . C o n t i n u e d h e a t i n g o f the l i m e a f t e r f o n n a t i o n l e a d s t o 

s i n t e r i n g a n d a g g r e g a t i o n o f t h e c r y s t a l s c o m . p r i s i n g t h e l i m e lumpo 

I n consequence t h e lump s h r i n k s , b e c o m i n g p r o g r e s s i v e l y dense r o r h a r d -

b u m e d , l e s s p o r o u s and l e s s r e a c t i v e t o ^\-ater. T h i s e f f e c t i s i l l u s t r a t e d 

b y c o m i m r i n g t h e s c a n n i n g - e l e c t r o n - m i c r o s c o p e p i c t u r e s o f t he s u r f a c e s 

o f two samples o f l i m e , one v d t h a d e n s i t y o f 1*7 gcm"^ and t h e o t h e r 

2 . 4 gcm"^ ( ^ ' i g . ^ ( E L ) ( t " ) ) . '^^^ aznount o f s i n t e r i n g o f l i n e v/Viich 

o c c u r s i s a f u n c t i o n o f b o t h t i j n e a n d t e m p e r a t u r e o f h e a t i n g a f t e r 

f o r m a t i o n , v / i t h t h e l a t t e r p a r a m e t e r p r e d o m i n a t i n g o Some s i n t e i l n g o f 

the o u t e r l i m e l a y e r may o c c u r even v / h i l e a l i m e s t o n e lamp i s decomi:)03ing, 

s i n c e t h e s u r f a c e o f the lump may be a t a h i g h t e m p e r a t u r e and c o n s e q u e n t l y 

t h e r e i s an a p p a r e n t d e n s i t y g r a d i e n t v / i t h i n a f r e s h l y - d e c o m p o s e d lump 

o f l i m e f r o m the o u t s i d e i n v / a r d s , A ochem.at ic i l l u s t r 3 . t i o n o f t h e 

changes i n a p p a r e n t d e n s i t y d u i d n g the d e c o m p o s i t i o n o f a l i m e s t o n e lump 

a n d d u r i n g subsequen t h e a t i n g o f t h e l i m e i s shc^vn i n F i g - 3 . The r ^ t e 

o f s i n t e r i n g o f l i : n e i s dependen t a l s o on the p r e s e n c e o f i r ; p u r i t i e s such 

as i r o n , a l u m i n a and s i l i c a , w t i i c h p r o m o t e l i q u i d f o r m a t i o n a t t h e s u r f a c e s 

o f t l i e c a l c i u m o x i d e c r y s t a l s d u r i n g the l i m e - b u r n i n g p r o c e s s . ^ 

Because i t s i n t e r n a l s u r f a c e s a r e l a r g e i n r e l a t i o n t o i t s 

e x t e r n a l s u r f a c e , r e a c t i v e l o w - d e n s i t i ^ c o m m e r c i a l l i m e m-ay have a 

s p e c i f i c s u r f a c e as h i g h as 2 m ^ g " ^ , compared v / i t h 0 - 5 m^g"^ f o r i n a c t i v e 

l i m e o f h i g h e r d e n s i t y . However , the p o r o s i t y o f t l i e s e l i m e s i s a l m o s t 

e n t i r e l y due t o m-acroporcs, i , e , above 100 A . , s i n c e oxygen a d s o r p t i o n 

i s o t h e r m s show l i t t l e o r no h y s t e r e s i s o v e r r e l a t i v e p r e s s u r e r a n g e s 

c o r r e s p o n d i n g t o meso- o r m i c r o - p o r o s i t y ^ , i . e . a b o u t 10—100 A a n d 

b e l o w a b o u t 10 A p o r e r a d i u s r e s p e c t i v i i l y , c f . F i g . 5 f o r q u i c k l i m e 

o f s p . s u i - f a c e , S = 2 - 0 m^g~^ e q u i v a l e n t t o an average c r y s t a l l i t e 

s i : : e o f a b o u t 1 /im« 

More r e a c t i v e l i m e s s p e c i a . l l y p r e p a r e d a t lov.-er t e m p e r a t u r e s 

( f r o m Ca(0H)2)'* a r e much l e s s . s i n t e r e d end have sp* s u r f a c e s o f up 

t o a b o u t 100 m'^g"^, as shown i n T a b l e 1 . 
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I: 

lifT.o densily 1 7 g / c m ' ; b lime density 2-4 g/cm> 

y i t ^ . l . S t c r o o s c a n microgrophs of internal s u r f a c e s of l ime 
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F i g . 2 , C h n n y c s in j p p n r e n t rinntity: n Hnrino lipir'-tonQ d'.-

c o i n p o s i i i o n ; b during a f ior -hp . i i ing of l ime 



F i g . 3and U. Adsorption of 0^ at -183^C on CaO ca lc ined at 900°C/500° and 700°C 

900 C 

0-2 0*U 0-6 0-8 0 0-2 

Re la t ive pressure, p/p 

0-k 0-6 0.8 I ' O 



F i g . 5. A d s o r p t i o n cV O2 a t c n CaO c a l c i n e d a t 400*^0 i n v a c u o 
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100 

rng O2 

a d s o r b e d 

p e r g 

CaO 
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0-2 0*4: 0 - 6 0 - 8 
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T a b l e 1. 

S u r f a c e a r e a s o f Q u i c k l i m e s and h / d r a t e d l i m e s 

( f r o m n i t r o g e n and oxygen a d s o r p t i o n i so t he rms a t - 1 8 3 ° C ) 

C a l c i n a t i o n 

t e m p e r a t u r e ( C) 

3 5 0 ° i n vacuo 

Sp. s u r f a c e o f GaO ( m * g " ^ ) 

1 0 1 � 4 

Sp. s u r f a c e 

\. 
o f Oa(CH 

4 0 0 " 8 5 - 5 8 7 . 3 

4 5 0 ° . . 7 1 - 1 . 7 2 . 7 

450*"̂  i n a i r 2 8 - 0 — 

5 0 0 ° - 1 8 . 6 1 8 - 8 2 3 . 3 2 4 - 2 

5 5 0 ° , , 1 5 - 8 16*0 2 0 - 5 2 1 - 2 

6 0 0 ° 13 -7 1 4 - 3 1 8 - 4 1 8 - 8 

7 0 0 ° >> 2 : i -4 1 1 - 8 15o9 1 6 . 1 

8 0 0 ° . , 

9 0 0 ° -

5 .8 

1 » 9 

6 . 3 

2 . 0 

9 -0 

� ^ 6 . 6 

8o8 

9 0 0 ° , , 1-3 1 .5 5 .3 5o3 

C a l c i n a t i o n t i m e s 5 h , e x c e p t a t 350 i n vacuo -.vhere 1 5 - h v/as r e q u i r e d 

f o r a l m o s t c o m p l e t e d e c o m p o s i t i o n o f Ca(0H)3 t o CaD« 

w 6 0 

Q: 2 0 

O 1-5 2 0 2 5 3 0 

L I M E APPARENT D E N S I T Y , g /CC 

R e l a t i o n s h i p h o t w o c n l ime react iv i ty ( I C ! test ) and 

apparent dens i ty 



I 'hese more r e a c t i v e l i m e s g i v e o>r ,̂'-gen a d s o r p t i o n i s o t h e n n s shovang 

p r o g r e s s i v e l y g i - e a t e r h y s t e r e s i s v / i t h l ov / e r c r . l c i n a t i o n t e m p e r a t u r e a n d 

l a r g e r s u r f a c e a r e a , c f . F i g . 4 a n d 5. S i n c e t h e h y s t e r e s i s l o o p s 

p r a c t i c a l l y c l o s e a t t he r e l a t i v e p r e s s u r e s fif a b o u t 0*5—0'4- , t h e r e i s 

d e v e l o p m e n t o f m e s o - p o r o s i t y ( p o r e s 10—100 A r a d i u s ) , b u t ver^*- l i t t l e 

m i c r o - p o r o s i t y ( p o r e s be lov / 10 A r a d i u s ) » 

( 2 ^ H v d r a t e d lin-.es 

The r a t e o f r e a c t i o n o f IL-ne v / i t h v / a t e r depends aTiong o t h e i -

f a c t o r s on t h e a r e a o f c a l c i a ^ i o x i d e 5 : u r f a c e a v a i l a b l e t o v / a t e r m o l e c u l e s . 

I n t he case o f a h i g h l y - p o r c u s , l o v . - d e n s i t y l i i n e , n o t o n l y t h e e x t e r n a l 

s u r f a c e a r e a o f t h e lump b u t a l s o t h e i n t e m a l s u r f a c e s a r e r e a d i l y 

A c c e s s i b l e t o v. 'ater m o l e c u l e s . The r a t e o f r e a c t i o n i s t h e n a f u n c t i o n 

o f t he t o t a l s p e c i f i c s u r f a c e o f the l i n i e . F i g u r e 5 i l l u s t r a t e s t h e 

r e l a t i , ^ o n s h i p be tv /een l i m e a p p a r e n t d e n s i t y a.s d o t e i T i i i n e d b y m e r c u r y 

d i s p l a c e ; n e n t and !l.it.ae r e a c t i v i t y t o v ra t e r mcaoured b j t o u r t e s t * T h i s 

i n v o l v e s t h e s l a k i n g o f 255 g o f ].ime v r i t h 700 cm^ o f \7a ter a t 20*^0 

a n d r e p o r t i n g t he t e m p e r a t u r e r i s e a f t e r 2 n i i n . The r a t e o f r e a c t i o n 

o f a. g i v e n l i m e v / i t h ^vatsr i s o f t e n accepdicd as n ^Measure o f t h e a b i l i t y 

o f t h e l i m e t o for^.T an e a r l y b a s i c s l a g i n t r ie b a s i c oxygen s t e e L i i a k i n g 

p r o c e s s . Vie a r e c u r r e n t l y s u p p l y i n g l i i r iC f o r t h i s use t o a r e a c t i v i t y 

s p e c i f i c a t i o n i n t e r ^ o f the I . C , l o i e s t r e q u i r i n g a niinAinam t e m p e r a t u r e 

r i s e i n 2 m i n o f 4 0 ° C a t t h e t i m e o f d e s p a t c h f r o m t h e I . G . I , works J" 

V/hen h y d r a t e d v / i t h l i q u i d ' .7ater, the most a c t i v e l i m e s ( S = c a . 

100 m^g"^ ) dec rease c o n s i d e r a b l y i n s u r f a c e a r e a , e , g * , 93 t o 40 m ^ g " ^ , 

i n 1/4 h d u r i n g h y d r a t i o n , b e f o r e l o s i n g more s u r f a c e on a g e i n g . ^ I n 

c o n t r a s t , t h o s e l i j a e s o f l ov / e r a c t i v i t y ( S be lov / a b o u t 10 m^g"^ ) i n c r e a s e 

t h e i r s u r f a c e a r e a s on " w e t " h y d r a t i o n , e ^ g , , 5*9 t o 2 6 ' 4 m^g"^ i n h 

d u r i n g h y d r a t i o n . L imes o f i n t e r m e d i a t e a c t i v i t y shcrii c o i r r p a r a t i v e l y 

l i t t l e change i n s u r f a c e a r e a on " w e t " h y d r - a t i o n . T h u s , the l i i n e c a l c i n e d 

a t 600*^C ( T a b l e l ) v d t h S = 1 3 - 7 m^g"^ f o r m s Ca(0H)2 v / i t h S = 14*4 m^g"^ 

a f t e r b e i n g i n c o n t a c t v / i t h l i q u i d v . u t e r a t room t e m p e r a t u r e f o r 18 h . 

S i m i l a r b e h a v i o u r i s shov/n on " d r y " h y d r a t i o n v / i t h w a t e r v a p o u r ? ' ® 

T h u s , h i g h l y - a c t i v e l i m e , S = 93 m^g ^ dec reases i n s u r f a c e gurea t o a b o u t 

40 , 55 and 28 ra^g"^ d u r i n g h y d r a t i o n v<l th v ;a te r v a p o u r a t r e l a t i v e p r e s s u r e s 

o f 0 - 2 5 , 0 - 5 0 a n d 0 ' 9 5 . Les s a c t i v e l im .es , v / i t h S b e l o w a b o u t 20 m ^ g " ^ , 

show i n c r e a s e s i n s u r f a c e on h y d r a t i o n v / i t h v / a t e r v a p o u r neeir s . V o p . 

( r e l a t i v e p r e s s u r e , 0 " 9 5 ) , c f . T a b l e 1 , The l e a s t a c t i v e o f t h e h y d r a t e d 

p r o d u c t s ( S a b o u t 5 m^g"^ ) shov/ n o a p p r e c i a b l e meso- o r m i c r o - p o r o s i t y , 

b u t t h e more a c t i v e Ca(0H)3 samples ( S above a b o u t 10 ra^g"^) show some 

p o r o s i t y ; o x y g e n a d s o r p t i o n i s o t h e r m s i n d i c a t e m a i n l y m e s o - p o r o s i t y , . 



i ^ j g . 7 , Adr>o ro t i on o f 0^ a t - 185^0 on G a f O H ' j a f r o m 

CaO c a l c i n e d a t 500 and 700 C. 
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mg O2 
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p e r g 
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500 0 

10 U 

0 '2 0 . 4 0*6 

R e l a t i v e p r e s s u r e , p / p 

0'>8 



F i f 7 . B . A d s o r p t i o n o f Oo a t - 1 ^ 5 ° C on Gg.(OH)? froa 
n̂ n c.-^-lrnn^r^ ;̂  i : POO^G. 

1 , 

mg O2 

a d s o r b e d 

p e r g 

Ca(0H)2 3 

0 . 2 0 . 4 � 0 . 6 

R e l a t i v e p r e s s u r e , p / p 



F i ; / , . 9 . A d s o r p t i o n o f O3 a t - 1 8 3 C, on L imbux , 

Ca(OH) 

25 

21, ' �'̂ �g Os 

a d s o r b e d 

p e r g o f 

Ca(OH)a 

20 

15 

10 L 

0 .2 0 . 4 0 . 6 0 . 8 1.0 



o f . F i g . 7 and 8 . By c o m p a r i s o n , r . i i r d l a r type o f p o r o s i t y i s shov.Ti b y 

c o m m e r c i a l h y d r a t e d l i n e , L i m b u x , ( F i g . 9 ) J v/here S = 14-2 a n d 14*4 m^g"^ 

Vi-om i so the r^ns o f n i t r o g e n end o f oxygen r e s p e c t i v e l y . The mos t a c t i v e 

of.^ t h e h y d i - a t e d p r o d u c t s ( S a b o u t 40 m^g"^ ) s t i l l has p r a c t i c a l l y no 

m i c r o - p o r o s i t y o 
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