REACTIVITY OF MONOCLONAL ANTIBODIES DIRECTED AGAINST LUNG CANCER ANTIGENS WITH HUMAN LUNG, BREAST AND COLON CANCER CELL LINES

UDO SCHUMACHER*, DHIA MUKTHAR*, THOMAS SCHENKER** * Human Morphology, University of Southampton, Southampton, U.K. ** Division of Oncology, University Hospital Zürich, Zürich, Switzerland.

SUMMARY

A panel of monoclonal antibodies (n=72 including controls) directed against lung cancer antigens was screened immunohistochemically against a panel of seven human lung cancer cell lines (including small cell carcinoma, squamous cell carcinoma, adenocarcinoma and mesothelioma), six human breast cancer cell lines and one human colon cancer cell line. The majority of the antibodies (n=42) reacted also with antigens present on breast and colon cancer cell lines. This cross reactivity especially between lung and breast cancer cell lines is not altogether unexpected since antigens common to breast and lung tissue including their neoplasms such as MUC1 antigen have been described. Our results indicate that epitopes shared by lung and breast cancers are probably more common than previously thought. The relevance for prognosis and therapy of these shared antigens, especially as disease markers in breast cancer, has to be investigated.

KEY WORDS Lung cancer Monoclonal antibodies Reactivity

INTRODUCTION

Some antigens common to lung and breast epithelia can be classified as oncodevelopmental. One of these, the MUC1 antigen, detected during development in lung, mammary gland and other tissues of epithelial origin (Braga *et al.*, 1992), is conserved during evolution (Welsch *et al.*, 1990, Spicer *et al.*, 1991, Pemberton *et al.*, 1992) and the antigen can be recovered from the human broncho-alveolar-lavage (Schumacher *et al.*, 1989).

Since mucin antigens which are expressed in lung and mammary gland have been described, the monoclonal antibody panel (submitted to the panel of the third international association for the study of lung cancer [IASLC] workshop on lung tumour and differentiation antigens) was tested for cross reactivity with human breast cancer cell lines. In addition serving as a further control, a human colon cancer cell line was included in the test panel of cell lines.

Correspondence to: Udo Schumacher, Human Morphology, University of Southampton, Bassett Crescent East, Southampton SO9 3TU, U. K. Tel: (+)44-703-594231; Fax: (+)44-703-594433.

SCHUMACHER ET AL.

MATERIALS AND METHODS

Human breast cancer cell lines (MCF7, BT-549, T47D, HBL100, MDA-MB-157, HS578T) and the human colon cancer cell line HT29 were obtained from the European Cell Culture Collection (Porton Down, Salisbury, Wiltshire, UK) and maintained under the standard culture conditions supplied with the data sheets for each cell line. The human lung cancer cell lines N-417 (derived from small cell carcinoma, variant, kindly provided by Dr. D. N. Carney, Mater Misericordiae Hospital, Dublin, Ireland), SW2 (classic, kindly provided by Dr. S. Bernal, Boston, USA), ZL5 and ZL34 (from mesothelioma, generated in Zürich), U1752 (from squamous cell carcinoma, kindly provided by Dr. J. Berh, Uppsala, Sweden) and A125 (from adenocarcinoma, obtained from American Type Culture Collection, Rockville, Maryland) were cultured in RPMI-1640 medium supplemented with 2 mMol/l L-glutamine and 10% fetal calf serum. The immortalised human bronchial epithelial-derived cell line (BEAS-2B, kindly provided by Dr. C. Harris, Bethesda, Maryland) was cultured in Hams F12 based medium supplemented with 5mg/L insulin, 5mg/L transferrin, 70ug/L hydrocortisone, 0.1mg/L vitamin A, 650ug/L triiodo-L-thyronine, 2mg/L epinephrine, 30mg/L bovine pituitary extract, 50mg/L bovine serum albumin, 5ug/L purified mouse epidermal growth factor, 5uM/L ethanolamine and 50mg/L gentamycin.

For the immunofluorescence assay the breast and colon cancer cell lines were grown to confluence on coverslips and briefly fixed in cold methanol. The cells were incubated with the antibody panel (Table 1) including the positive and negative control reagents and the anti mouse or rat FITC-labelled antibodies were used for visualisation. The fluorescence intensity was evaluated semi-quantitatively: - = no fluorescence, (+) = very weak fluorescence, + = weak fluorescence, + = modest fluorescence, ++ = intense fluorescence, +++ = very intense fluorescence. The intensity measurements of the lung cancer cell lines were obtained by FACS; the results of the FACS analyses were transformed into the above scale.

RESULTS

The details of the results of this study are summarised in Table 2 and can be classified into four groups: 1) those antibodies which did not react with any of the cell lines (n = 14, including the negative controls), 2) those which reacted with breast and colon cancer cell lines only (n = 11), 3) those which reacted with lung cancer cell lines only (n = 17) and 4) those which reacted with breast, colon and lung cancer cell lines (n = 30). Amongst groups two to four the numbers of reactive antibodies and the intensity of fluorescence varied considerably. In some cases antibodies reacted only with one cell line (e. g. the antibody number 16 reacted with the cell line T47D only), while other antibodies showed a broader reactivity (antibody number 50 reacted with all the cell lines except two breast cancer cell lines MDA-MB-157 and HBL 100). Differences in fluorescence intensity were detected not only between the different cell line BT 549 showed strong reactivity with antibodies number 35 & 36). In other cases some antibodies reacted with all cells of a particular cell line (Fig. 1) while other antibodies reacted only with some cells of that cell line (Fig. 2).

No	Name	Isotype	Submitter	Antigen	Publications
1	44-3A6	IgG1	Radosevich	40kd cell surface	<i>Tumor Biol.</i> , 9 (2–3), 116–22 (1988) and 11 (4), 181–188 (1990)
2	EMD6087	IgG1	E. Merck	45 + 85kd gp	Cancer Res., 46 , 6369–6373 (1986)
3	EMD5590	IgG2a	E.Merck	EGF receptor	Arch. Biochem. Biophys., 252 , 549–560 (1987)
4	ITK2	IgG1	Kawase	NCAM	Cancer Immunol. Immunother., 33 , 165–170 (1991)
5	KM195	IgG1	Hanai	n/a	
6	RS7-3G11	IgG1	Stein	EGP-1/GA733-1	Antibody, Immunoconjugates and Radiopharm., 4 , 703-712(1991), Mol. cell. Biol., 13 , 1507–1515 (1993), see also No. 7.
7	RS5-4H6	IgG1	Stein	>300kd, mucinlike	<i>Cancer Res.</i> , 50 , 1330-1336 (1990) and <i>Hybridoma</i> , 7 , 555–567 (1988)
8	A42	IgG2b	Mattes	57kd gp	J. Exp. Med., 164, 1581–1599 (1986)
9	MR54	IgG2a	Mattes	n/a	n/a
10	MT179	IgG1	Mattes	n/a	Cancer Res., 47 , 6741–6750 (1987)
11	MU78	IgG2b	Mattes	2-5kd	J. Histochem. Cytochem., 33 , 1095–1102 (1985)
12	MW207	IgG1	Mattes	n/a	see No 10
13	MX35	IgG1	Mattes	n/a	see No 10
14	MAB735	IgG2a	Behring-werk	e embryonic NCAM	<i>Proc. Natl. Acad. Sci.</i> <i>U.S.A.</i> , 82 , 1194–1198 (1985) and <i>J. Pathol.</i> , 159 , 23–28 (1989)
15	RCK-107	IgG1	Broers	keratin 14	Am. J. Pathol., 138 , 751–763 (1991)
16	RCK-105	IgG1	Broers	keratin 7	see No 15 and <i>Experi-</i> mental Cell Res., 170 , 235–249 (1987)
17	RNL-2	IgG1	Broers	25 + 45kd, intracell.	Cancer, 67, 619–633 (1991)
18	RNL-3	IgG1	Broers	25 + 45kd, intracell.	see No 17
19	RNL-1	IgG1	Broers	NCAM	see No 17

Table 1. List of antibodies used in the present study

SCHUMACHER ET AL.

20	MLuC-6	IgG1	Menard	67kd Laminin receptor	Clin. Exp. Metastasis, 10, 379-386 (1992)
21	MAR-4	IgG1	Menard	Integrin	Tumori, 78, 1-4 (1992)
22	MAR-6	IgG1	Menard	6 A Integrin	Int. J. Cancer. 54. 261-
		e		04	267 (1993)
23	MLuC-1	IgG2o.3	Menard	Le ^y hapten	Int. J. Cancer, 51, 225-
				2	231 (1992)
24	MB-2	IgG1	Gerardy-	NCAM	submitted
			Schahn		
25	KD-11	IgG1	Gerardy-	NCAM, C-term.,	submitted
			Schahn	intracellular	
26	MG-5	IgG1	Gerardy-	NCAM, exon 18,	submitted
			Schahn	intracellular	
27	MOC-31	IgG1	De Leij	cluster 2 control,	Br. J. Cancer, 67,
20		1.01	0.1.1	EGP-2/GA733-2	1242–1247 (1993)
28	ME-1	IgG1	Stahel	mesothelial	Int. J. Cancer, 41,
				membrane antigen	218-225(1988) and Am.
					<i>J. Pathol.</i> , 130 , 421–428 (1990)
20	SEN36	InG1	Stabol	NCAM	(1990) Br. I. Cancar 63 Suppl
2)	SENSO	Igor	Stanci	NCAM	XIV 24-28 (1991)
30	SWA11	IoG2a	Stahel	cluster w4 control	Cancer Res 52
50	5 Mini	18024	Staner	CD24	5264-5270 (1992). Int.
					J. Cancer, 53, 521–528
					(1993) and Clin. Exp.
					Immunol., 93, 279-285
					(1993)
31	SEN31	IgG1	Stahel	cluster 5a control	Br. J. Cancer, 63, Suppl.
					XIV, 29-32 and 67-70
					(1991)
32	SEN7	IgG1	Stahel	NCAM	Cancer Res., 53,
				122	2840-2845 (1993)
33	MON-114	IgG1	Van de Ven	n/a	n/a
• 34	MON-150	IgGI	Van de Ven	n/a	n/a
35	KL-0	IgGI	Konno	mucin-like sial.gp	<i>Jpn. J. Clin. Oncol.</i> , 18 , 202, 216 (1088) and
					203-216, (1988) and Chart 06 68 73 (1080)
36	OF 130	IcG1	Hida	13014	Cancer Pas A8
50	OL-150	igor	mua	IJOKU	2544_2549 (1988)
37	FBP146	IoG1	Franklin	folate binding	Am I Pathol (1993)
51	1 DI 1 10	1501	Trankini	protein	submitted
38	FBP343	IgG1	Franklin	folate binding	see No 37
		ç		protein	
39	FBP458	IgG1	Franklin	folate binding	see No 37
				protein	
40	FBP741	IgG1	Franklin	folate binding	see No 37
				protein	
41	ME-2	IgG2b	Stahel	mesothlial mem-	see No 28
122 (2=1)	127/2017			brane protein	
42	2.54	IgG2a	Cole	22.5 + 25kd	Cancer Res., 49, 5719-
				cellsurface	5724 (1989) and Br. J.
					Canc., 04, 15-22 (1991)

228

43	BrE-3	IgG1	Coulter Immunology	mucin, MUC1	Int. J. Cancer, 52, 624–630 (1992)
44	KM432	IgG1	Hanai		
45	CC49	IgG1	Schlom	mucinlike, TAG-72	<i>Cancer Res.</i> , 48 , 4588–4596 and 4597–03 (1988)
46	B72.3	IgG1	Schlom	mucinlike, TAG-72	see No 45
47	CC83	IgG1	Schlom	mucinlike, TAG-72	see No 45
48	L6	IgG1	Bristol-Myers Squipp	24kd surfaceprotein	<i>Proc. Natl. Acad. Sci.</i> <i>U.S.A.</i> , 89 , 3503–3507 (1992)
49	not submitted				Model Control & C
50	CTM01	IgG1	Celltech Ltd.	MUC 1 gene, mucin	n/a
51	ABL364	IgG1	Sandoz	cluster w6 control	Ann. Oncol., 3 , 319–370 (1992)
52	MOPC21	IgG	Sigma	mouse IgG control	n/a
53	PBS/azide	C	C	neg. control	
54	1.291	IgM	Manderino	n/a	n/a
55	2.304	IgM	Manderino	n/a	n/a
56	A-80	IgM	Manderino	cluster w8 control	n/a
57	KM227	IgM	Hanai	n/a	n/a
58	MG-6	IgM	Koubek	n/a	Folia Haematol., 155 , 913–926 (1988)
59	MLuC-5	IgM	Menard	laminin receptor	see No 20
60	NCC-ST-439	IgM	Shimosato	cluster w7 control	n/a
61	NCC-CO-450	IgM	Shimosato	cluster w7 control	n/a
62	SCCL175	IgM	Ball	115 + 155kd	Cancer Res., 48 , 7319–7322 (1988)
63	KM132	IgM	Hanai	n/a	n/a
64	КМ93	IgM∢	Hanai	sial. glycoprotein	<i>Cancer Res.</i> , 46 , 4438–4443 (1986) and 47 1267–1272 (1987)
65	CD57	ΙσΜ	Serotec	NK cell antigen	n/a
66	TEPC183	IoM	Sigma	mouse IgM control	n/a
67	PBS/azide	19.01	Sigina	neg control	in a
68	KM966	human IoG1	Hanai	n/a	n/a
69	AH41	human IgG3	Boehringer Mannheim	n/a	n/a
70	KUB10	human IgG1	Boehringer Mannheim	n/a	n/a
71	ICR2	rat IgG2a	Wawrzyncak/ Dean	mucin	Histopathol., 16, 573–581 (1990)
72	ICR12	rat IgG2a	Wawrzyncak/ Dean	erbB-2 gene, EGF receptor	Int. J. Cancer, 45, 320-324 (1990)

as provided by the submitter of the antibody n/a = not available

SCHUMACHER ET AL.

Fig. 1a

Fig. 1b

Figure 1. Photomicrographs showing FITC labelled cultured (a) HT29 colon cancer cell line and (b) MCF7 breast cancer cell line after reactivity with the antibody number 5 (KM195). X650. The primary as well as the secondary anti-rat and anti-mouse antibodies were used at 1:50 dilutions and incubated with the cell preparations for 1 hour, both at room temperature.

	BT549	T47D	MCF7	HT29	MDAMB157	HBL100	HS578T	N417	SW2	BEAS2B	ZL5	ZL34	U1752	A125
1	-	-	(+)	(+)	-	-		-	-	-	-	-	-	-
2	-	+ clones	22	-	-	2	2	++++	++++	++++	++++	++++	++++	(+)
3	-	-	-	-	-	-	-	(+)	-	-	++++	++++	++	+
4	+ c.m.	-	-	-	-	1.00	12	++++	++++	-	-	(+)	-	2
5	-	+++	++++	+++	-	+ c.m.	-	-	-		-	-	-	-
6	9 70	-	-	-	-	170	-	-	-	++++	-	-	-	-
7	-	+ clones	+ rim	(+)	-	-	-	-	+	+	-	++	+	+
8	(+30%)	-	-	(+)	-	-	-	-	-	++++	++++	++++	-	++++
9	-	-	-	(+)	a	(#)	-	-	-	+++	-	-	-	-
10	+/++	-	-	(+)	-	-	-	-	-	(+)	-	-	-	-
11	-	-	-	(+)	-	1	-	5	-	++++	++++	++++	(+)	+
12	_	(+)	2	211			2	(+)	-	-				
13	-	-	-	-	-	-	-	++	-	-				
14	-	-	+ grn	-			-	++++	++++	-	-	-		-
15	-	-	-		2	-	-	-	-	-	-	-	-	-
16	-	+	-	-	-	-	-	-	-	-	-	-	-	-
17	-	-	-	7	-	-	-	-	-	-	-	-	-	-
18	-	-	-	-	₽ 	-	.	-	-	-	-	-	1	2
19	80% (+)	-	-	-	-	-	-	++++	++++	-	-	-	-	
20	-	+	-	-	-	-	-	-	++++	++++	-	+	127	+++

231

Table 2. Details of immunofluorescence reactivity.

	BT549	T47D	MCF7	HT29	MDAMB157	HBL100	HS578T	N417	SW2	BEAS2B	ZL5	ZL34	U1752	A125
21	-	2	-	(+)	-	2	(+)	+++	++	++++	++++	++++	++++	++++
22	-	-	-	-	-	-	-	-	+++	++++	-	++++	+	+
23	7	(+)	+++	++/+++	-	-	-	-	++++	++++				
				s.c.										
24	- /	-	-	-	-		-	++/+++	++++					
25	-	-	-	-	-	(11)	2	(+)	++++	-				
26	-	-	-	-	-	940 (M	-	-	(+)	-				
27	-	(+)	+	-	-	-	*	-	++++	++++	-	-	(+)	-
28	-	-	-	-	-	-	-	-	-	+++	++++	++++	-	-
29	-	-	-	-	-	-	-	++++	++++					
30	-	-	+++	++	-	-	-	++++	++++	++++	(+)	+++	-	-
31	12 °	+++	+	-	-	-	-	-	++++	-	-	-	-	-
32	-	-	-	-	-	-	-	++++	++++	27	-	127	2	-
33	- 1	-	-	-	-	-	-	-	-		-		-	-
34	(+)	-	-	-	-	-	-	-	-	-	-	-	-	-
35	40%+	+++	+++	(+)/++	-		-	-	-	+	-	+++	++	++
	rest (+)							1						
36	40%+	+	+	-	-	11 <u>1</u> 11	-	-	2	++++	-	<u>.</u>	-	- 1
	rest (+)													
37	-	-	-	-	-	-	-	(+)	-	-	1	.	-	-
38	-	(+)	-	-	-	-	-		-	42 42				
39		-	-	-	-	-	-	-	-	-	-	-	-	-

	BT549	T47D	MCF7	HT29	MDAMB157	HBL100	HS578T	N417	SW2	BEAS2B	ZL5	ZL34	U1752	A125
40	-	2	-	2	-	-	2	(+)	-		-	20	2	-
41	40%+ 60% (+)	-	-0	-	¥(-	-		-	++	++++	++++		
42	-	(+)	+	++	-	-	-	+	(+)	++++	+++	++++	++++	++++
43	-	(+)	+ rim	-	-	-	-	-	++++	-	-	-	-	-
44	10%+ 90% (+)	+	+++	some ++/+++	-	-	-	(+)	++++	+	(+)	+++	+++	+++
45	20%+ 80%(+)	+++	up to +++	2	-	-	-	-	-	-	-	-	-	
46	-	-	+	-	-		-	-	-	-	-	-	-	-
47	-	-	+	-	-	-	-	-	-	-	-	-		-
48	-	-	-	-	-	151	+ grn	-	++++	-	++++	++++	-	++++
49	-	-	-	-	-	-	-							
50	80%++ 20%+	+++	+	some +	-		(+)	(+)	++++	++	(+)	+++	+++	++++
51	-	-	+	-	-	-	-	-	++++	++++	-	-	-	+++
52	-	-	-	-	-	-	-	-	-	-	-	-	-	-
53	-	-	-	-	-	-	-	-	-	-	-	-	-	-
54	1	-	++ grn	+ grn	-	-	-	-	-	-	-	-	-	-
55	<u>2</u>	2	14	+	4	-	-	(+)	2	-	-	-	4	-
56	-	-	+			-	4	-	-	-	-	-	4	-
57	-	-	-	-	-	-	-	-	-	++++	-	-	-	(+)

	BT549	T47D	MCF7	HT29	MDAMB157	HBL100	HS578T	N417	SW2	BEAS2B	ZL5	ZL34	U1752	A125
58		-		-	-	170	-	(+)	-	-				
59	+	-		-	1	+ grn	-	(+)	++++	++++	-	+++	+++	++++
60	-		-	(+)	-	-	-	7.4	-	-	-	-	-	
61	-	-	-	-	-	-	-	-	-		-	-	-	-
62	.	+++	(+)	5% +++	+ s.c.	+	-	++++	+++	(+)	-	+	+++	++++
63	70	7.5	-	-	-		-	(+)	+++	++++	-	+++	++	++++
64	-	7	-	-		-	-	-	5	-				
65	-	-	21	2	2	2	-	++++	+	-				
66	- 1	+	<u>L</u> .	-	-	(+)	-	++++	+/++	+	-	<u>1</u> 45		-
67	-	-	-	-	<u>#</u> }	(<u>1</u> 1)	-		2		-	1 20	8	-
68	-	-	-	-		2211	2	20	2	-	-	-	2	-
69	- 1	-	-	-	2	20	-							
70	- 1	(+)	-	-	-	-	-							
71	+	+	++	-	-	(a):	-	+/++	++++	+++	-	++++	++++	++++
72	2 0	(+)	(#I)	-	¥	-	-	-	(+)	+	+	++++	+++	++++

cell membrane reactivity. c.m.

granular fluorescence. gm

single cells reacted. S.C.

Note: The term clones indicates the reactivity of multiple groups of cells reacting with the antibody; these groups are generally surrounded by non-reacting cells. Single cell reactivity indicates the reactivity of few individual cells reacting with the antibodies, granular fluorescence indicates the reactivity of presumably intracellular granules with the antibodies while the terms rim and cell membranes indicate a reactivity which is confined to the cell membrane and its immediate surroundings such as the extracellular matrix. The differentiation between cell membrane and extracellular membrane reactivity cannot be resolved at the light microscopical level for epithelial cells as the extracellular space is so small.

Figure 2. Photomicrographs of cultured (a) HT29 colon cancer cell line and (c) MC7 breast cancer cell line showing some FITC labelled cells after reactivity with the antibody number 23 (MLuC-1) and the antibody number 54 (1.291) respectively. b) is a phase contrast photomicrograph of the same labelled cells in Fig. (a). X415.

DISCUSSION

The present study has shown that monoclonal antibodies designed for detecting oncodevelopmental antigens expressed in lung cancer can also share epitopes of breast and colon cancer cell lines. Furthermore a heterogeneity of the antibody binding towards the different breast cancer cell lines has been observed indicating a phenotypical diversity of these cell lines. Some of the many cross reactivities of the antibodies with the breast and colon cancer cell lines seem to be of functional interest which might have implications concerning the prognosis of both breast and lung cancer:

1) The antibodies no 24-26 directed against the neuronal cell adhesion molecule (NCAM) immunoreacted only with the two cell lines derived from small cell carcinoma of the lung, while other antibodies with NCAM specificity showed a broader reactivity: antibody 4 reacted with the mesothelioma derived cell line ZL 34 and with the breast cancer cell line BT 549, antibody no 14 with the breast cancer cell line MCF7 and antibody no 19 with the breast cancer cell line BT549. At the moment it is not clear whether these are indeed different epitopes of the NCAM molecule recognised by the different antibodies, or whether they are cross reactivities with epitopes other than NCAM. Since neuroendocrine markers can be expressed by breast cancer (for review see Nesland *et al.*, 1988) NCAM expression on these breast cancer derived cells is likely.

2) The antibody no 72 directed against a mucin antigen cross reacted with all lung cancer cell lines except the mesothelioma derived cell line ZL5 and with the breast cancer derived cell lines BT549, T47D and MCF7. Common expression of mucin antigens in normal and pathological conditions of lung and breast tissue is well known (Welsch *et al.*, 1990, Spicer *et al.*, 1991, Pemberton *et al.*, 1992) and this reactivity is therefore not unexpected.

3) The mesothelioma specific antibody no 41 showed its strongest reactivity with the mesothelioma derived cell lines ZL5 and ZL34; in addition it reacted with the immortalised human bronchial-derived cell line BEAS-2B and the breast cancer cell line BT549, the nature of this binding pattern being obscure at present.

4) The distribution of cell surface receptors which react with the extracellular matrix differs. In addition to reactivity with various lung cancer derived cell lines, laminin receptor immunoreactivity was detected on the breast derived cell lines T47D (antibody no 20) and BT549 and HBL100 (antibody no 59). The immunoreactivity of this receptor seems to be more widespread than that for beta-1-integrin antibodies detected in HS578T and HT29 (antibody 21). Alpha-6-integrin was detected on lung derived cell lines only (antibody no 22). The biological implications of these findings are not clear at present, but the interaction of these receptors with their ligand(s) in the extracellular matrix seems to play a crucial role within the metastatic cascade (Hart and Saini, 1992).

Our findings therefore indicate that several antigens thought to be lung cancer specific can also be expressed on breast and colon cancer cell lines. Any claims towards specificity of many of those antibodies therefore have to be treated with great care.

REFERENCES

Braga, V.M.A., Pemberton, L.F., Duhig, T., Gendler, S.J. (1992). Spatial and temporal expression of an epithelial mucin, Muc-1, during mouse development. *Development*, 115, 427–437.
Hart, I.R., Saini, A. (1992). Biology of tumour metastasis. *Lancet*, 339, 1453–1461.

- Nesland, J.L., Holm, R., Johannesen, J.V., Gould, V.E. (1988). Neuroendocrine differentiation in breast lesions. *Path. Res. Pract.*, 183, 214–221.
- Pemberton, L., Taylor-Papadimitriou, J., Gendler, S.J. (1992). Antibodies to the cytoplasmic domain of the MUC1 mucin show conservation throughout mammals. *Biochem. Biophys. Res. Comm.*, 185, 167–175.
- Schumacher, U., Barth, J., Petermann, W., Welsch, U., Patton, St. (1987). Detection of high molecular weight glycoproteins in the broncho-alveolar lavage fluid by gel electrophoresis. Am. Rev. Respir. Dis., 135, A505.
- Spicer, A. P., Parry, G., Patton, S., Gendler, S. J. (1991). Molecular cloning and analysis of the mouse homologue of the tumor-associated mucin, MUC1, reveals conservation of potential Oglycosylation sites, transmembrane, and cytoplasmic domains and a loss of minisatellite-like polymorphism. J. Biol. Chem., 266, 15099–15109.
- Welsch, U., Schumacher, U., Buchheim, W., Schinko, I., Jenness, P., Patton, S. (1990). Histochemical and biochemical observations on milk-fat-globule membranes from several mammalian species. *Acta histochem.* Suppl. XL, 59–64.

The Scientific **World Journal**

Gastroenterology Research and Practice

Journal of Diabetes Research

Disease Markers

Immunology Research

Submit your manuscripts at http://www.hindawi.com

BioMed **Research International**

Journal of Ophthalmology

Computational and Mathematical Methods in Medicine

Behavioural Neurology

Research and Treatment

Oxidative Medicine and Cellular Longevity

Stem Cells International

