

Reactivity of Surface Species in Heterogeneous Catalysts Probed by In Situ X-ray Absorption Techniques

Silvia Bordiga,[†] Elena Groppo,[†] Giovanni Agostini,[†] Jeroen A. van Bokhoven,^{‡,§} and Carlo Lamberti^{*,†}

[†]Department of Chemistry and NIS Centre of Excellence, Università di Torino and INSTM Reference Center, Via P. Giuria 7, 10125 Torino, Italy

[‡]ETH Zurich, Institute for Chemical and Bioengineering, HCI E127 8093 Zurich, Switzerland

[§]Laboratory for Catalysis and Sustainable Chemistry (LSK) Swiss Light Source, Paul Scherrer Instituteaul Scherrer Institute, Villigen, Switzerland

CONTENTS

1. Introduction	1737
2. Experimental Methods	1739
2.1. Materials	1739
2.1.1. Metal-Substituted MFI Frameworks	1740
2.1.2. Cu-Substituted Zeolites	1740
2.1.3. Cr/SiO ₂ Phillips catalyst	1740
2.1.4. CuCl ₂ /Al ₂ O ₃	1740
2.1.5. Metal-Supported Catalysts	1740
2.2. Techniques and Experiential Set-ups	1740
2.2.1. X-ray Beam Optimization: Energy Selec-	
tion	1740
2.2.2. X-ray Beam Optimization: Harmonic	
Rejection	1742
2.2.3. X-ray Absorption Spectroscopy: Acquis-	
ition Setups for Standard and Time-	
Resolved Experiments	1743
2.2.4. X-ray Emission Spectroscopy: Acquisi-	
tion Setup	1746
2.2.5. High-Energy Resolution Fluorescence	
Detected (HERFD) XANES and EXAFS	
and Range-Extended EXAFS Spectros-	
сору	1747
2.2.6. In Situ and Operando Cells for Hard and	
Soft XAFS	1749
2.2.7. Experimental Set-Ups for Micrometer-	
Resolved Experiments	1750
2.3. EXAFS and XANES Theory and Data Analysis	1752
2.3.1. Brief Historical Overview	1752
2.3.2. Single-Scattering Approximation	1753
2.3.3. Multiple-Scattering Expansion	1754
2.3.4. Codes for EXAFS Data Analysis	1755
2.3.5. Codes for XANES Data Analysis	1755
2.3.6. Codes for XES Spectra Simulation	1757

2.3.7. Codes for Handling the Huge Numbers	
of Spectra Generated in Time or Space	
Resolved Experiments	1757
2.3.8. Debye-Waller Factors and Disorder	1757
2.3.9. Differential XAFS Approach	1758
2.4. Atomic XAFS or AXAFS	1759
2.4.1. Brief Historical Overview	1759
2.4.2. Physical Principles of AXAFS	1760
2.5. Other Related Techniques	1761
2.5.1. X-ray Magnetic Circular Dichroism	
(XMCD)	1761
2.5.2. Diffraction Anomalous Fine Structure	
(DAFS)	1761
2.5.3. Extended Energy-Loss Fine Structure	
(EXELFS)	1762
2.5.4. Total scattering: the pair distribution	
function (PDF) approach	1762
3. Metal Isomorphous Substitution in Zeolitic	
Frameworks: Ti, Fe, and Ga	1764
3.1. Relevance of Ti-, Fe-, and Ga-Silicalite-1, and	
B-CHA in the Field of Catalysis	1764
3.2. IS-1	1/66
3.2.1. Brief Historical Overview on the Role	
Played by EXAFS and XANES Techni-	
ques in Understanding the Nature of II	1766
SITES IN IS-I	1/66
3.2.2. Template Burning In TS-T: XANES,	
exars, and xes results compared	1766
2.2.2 Effect of the Amount of Incorporated	1700
Hotorostom	1769
$3.2.4$ Modeling of [Ti(Ω Si)] Perfect Sites in	1700
Interaction with Ligands by an Ab Initio	
Periodic Approach: Comparison with	
FXAFS Results	1770
3.2.5 Reactivity of Framework Ti Species	1770
toward H ₂ O ₂ /H ₂ O	1774
3.3. Fe- and Ga-Silicalite	1781
3.3.1. Role of EXAFS in Understanding the	
Effect of Template Burning in Ga- and	
Fe-Substituted Silicalite	1781

Received: April 3, 2011 Published: February 28, 2013

3.3.2. Role of EXAFS in the Debate Concerning the Nuclearity of Extraframework Fe	
Species in Zeolites	1782
Learnt from XANES	1784
3.3.4. Reactivity of Extraframework Fe Species	
Hosted in the MFI Channels toward N_2O	
and NO	1784
Applied to the Characterization of Fe-	
Zeolites	1786
3.4. B-CHA	1787
3.4.1. Template Burning in B-SSZ-13 an exam-	1707
3.4.2. Reactivity of B-SSZ-13 toward NH ₂	1788
3.5. Other Metal Isomorphous Substitutions	1788
A. Cation-Exchanged Zeolites: The Copper Case	
Study	1788
4.1. Preparation of Cu ⁻ -Exchanged Zeolites Ex-	1789
4.2. Cu ⁺ -ZSM-5	1790
4.2.1. XANES Characterization of Intrazeolitic	
Cuprous Carbonyl Complexes in Cu ⁺ -	1700
25M-5 4.2.2 EXAES Determination of the Structure of	1790
$Cu^+(CO)_n$ Complexes	1791
4.3. Cu ⁺ -MOR	1792
4.3.1. XANES and EXAFS Study of $Cu^+(CO)_n$	
Complexes Hosted in Cu ⁺ -MOR: Com-	1702
4.4. Reactivity toward NO: In Situ $Cu^+ \rightarrow Cu^{2+}$	1/92
Oxidation in Cu ⁺ -ZSM-5 and Cu ⁺ -MOR	1793
4.4.1. Temperature Dependent NO Reaction	
in Cu ⁺ -ZSM-5	1793
4.4.2. Temperature-Dependent NO Reaction	1794
4.5. Bent mono-(μ -oxo)dicupric and bis(μ -oxo)-	
dicopper Biomimetic Inorganic Models for	
NO Decomposition and Methane Oxidation	1705
5 Structure and Reactivity of Metallorganic Frame-	1/95
works Probed by In Situ XAFS and XES	1795
5.1. Adsorption of CO on Cu^{2+} Sites in $Cu_3(BTC)_2$	
or HKUST-1	1796
5.2. Adsorption of O_2 on Cr^2 Sites in $Cr_3(BIC)_2$	1797
5.2.2. XES Study	1797
5.3. Adsorption of NO, CO, and N_2 on Ni^{2+} sites	
in Ni-CPO-27	1798
5. Cr/SiO ₂ Phillips Catalyst: In Situ Ethylene Poly-	1001
6.1. Relevance of the Catalyst and Still Open	1001
Questions	1801
6.2. XAFS Applied on the Phillips Catalyst	1802
6.2.1. A 4 wt % Cr/SiO ₂ Sample: XAFS in	1002
$622 \text{ A} 0.5 \text{ wt} \% \text{ Cr/SiO}_{2} \text{ Sample} \text{ XAFS in}$	1605
Fluorescence Mode	1806
6.3. SEXAFS Applied on the Phillips Catalyst:	
Bridging the Gap between Heterogeneous	1007
6.3.1. Brief Overview on SEXAES Applied to	1807
Catalysis	1807

	Review
6.3.2. SEXAFS Applied to a Planar Model of	f
the Phillips Catalyst	1808
7. Space-Resolved X-rays Experiments	1809
7.1. Brief Introduction to X-ray Space-Resolved	l
Studies in Catalysis	1810
7.2. Cu/ZnO Case Study	1810
8. Time-Resolved XAFS on Catalyst at Work	:
OPERANDO Experiments	1810
8.1. Brief Introduction to Time-Resolved Studies	5
in Catalysis	1810
8.2. CuCl ₂ /Al ₂ O ₃ Case Study	1811
8.2.1. Industrial Relevance of the $CuCl_2/Al_2O_3$	3
System	1811
8.2.2. Preliminary in Situ XAFS Experiments	1811
8.2.3. Operando Experiments	1812
9. XAS and XES Studies on Supported Meta	i
Nanoparticles	1814
9.1. XAFS Applied to Supported Metal Nano-	-
particles: A Brief Overview	1814
9.2. Preparation of Pd-Supported Catalysts Fol-	-
lowed by EXAFS, from the Impregnation to	,
the Reduction Steps	. 1815
9.3. Catalytic Reactions over Supported Metal	ł
Nanoparticles Involving Hydrogen: Applica-	
tion of $\Delta XANES$	1816
9.3.1. Relationship between Reaction Rates	1016
and Types of Surface Metal-Hydrides	1816
9.3.2. AXANES, How It Works	1817
9.3.3. Temperature-Dependent Hydrogen	1010
Coverage on Pt Surfaces	1819
9.3.4. Influence of Hydrogen on Hydrogenol-	. 1010
ysis. A key study for $\Delta A A B$	1019

J.A. Determination of the co adsorption sites on	
Pt nanoparticles Combining Experimental in	
Situ High-Energy-Resolution Fluorescence-	
Detected (HERFD), XAS and RIXS Maps	1820
9.5. Correlation between AXAFS and IR Spec-	
troscopy of Adsorbed CO on a Set of Pt	
Supported Catalysts	1821
10. Conclusions and Perspectives	1822
Author Information	1823
Corresponding Author	1823
Notes	1823
Biographies	1823
Acknowledgments	1825

1. INTRODUCTION

Acronym List

References

Starting from the late seventies, the progressively increased availability of synchrotron light sources allowed the execution of experiments requiring a high X-ray flux in a continuous interval.¹⁻⁶ Among them, X-ray absorption spectroscopy (XAS, also known as X-ray absorption fine-structure, XAFS),7-12 in both near (XANES) and post (EXAFS) edge regions, has become a powerful characterization technique in all the fields of materials science, $^{12-35}$ and in particular in cataly-sis. $^{13,16,22,23,25,30,31,36-40}$ After a slow start in the 1980s, mainly because of the difficulties in performing in situ experiments at the synchrotrons, the progressive development of more sophisticated and better performing experimental set-ups that allow the catalyst's state to be monitored under reactive

1825

1825