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1. INTRODUCTION

Starting from the late seventies, the progressively increased
availability of synchrotron light sources allowed the execution
of experiments requiring a high X-ray flux in a continuous
interval.1−6 Among them, X-ray absorption spectroscopy (XAS,
also known as X-ray absorption fine-structure, XAFS),7−12 in
both near (XANES) and post (EXAFS) edge regions, has
become a powerful characterization technique in all the fields of
materials science,12−35 and in particular in cataly-
sis.13,16,22,23,25,30,31,36−40 After a slow start in the 1980s, mainly
because of the difficulties in performing in situ experiments at
the synchrotrons, the progressive development of more
sophisticated and better performing experimental set-ups that
allow the catalyst’s state to be monitored under reactive
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