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Abstract

The objective of this work is to annotate sign instances

across a broad vocabulary in continuous sign language. We

train a Transformer model to ingest a continuous signing

stream and output a sequence of written tokens on a large-

scale collection of signing footage with weakly-aligned sub-

titles. We show that through this training it acquires the

ability to attend to a large vocabulary of sign instances in

the input sequence, enabling their localisation. Our con-

tributions are as follows: (1) we demonstrate the ability

to leverage large quantities of continuous signing videos

with weakly-aligned subtitles to localise signs in continu-

ous sign language; (2) we employ the learned attention to

automatically generate hundreds of thousands of annota-

tions for a large sign vocabulary; (3) we collect a set of

37K manually verified sign instances across a vocabulary

of 950 sign classes to support our study of sign language

recognition; (4) by training on the newly annotated data

from our method, we outperform the prior state of the art

on the BSL-1K sign language recognition benchmark.

1. Introduction

Sign languages are visual languages that, for deaf

communities, represent the natural means of communica-

tion [43]. Our goal in this paper is to identify and tempo-

rally localise instances of signs among sequences of con-

tinuous sign language. Achieving automatic sign local-

isation enables a diverse range of practical applications:

construction of sign language dictionaries to support lan-

guage learners, indexing of signing content to enable effi-

cient search and “intelligent fast-forward” to topics of inter-

est, automatic sign language dataset construction, “wake-

word” recognition for signers [34] and tools to assist lin-

guistic analysis of large-scale signing corpora.

In recent years, there has been a great deal of progress
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Figure 1. Sign localisation emerges from sequence prediction.

In this work, we show that the ability to localise instances of signs

emerges naturally by training a Transformer model [45] to per-

form a sequence prediction task on hundreds of hours of continu-

ous signing videos with weakly-aligned subtitles.

in temporally localising human actions within video

streams [39, 51] and spotting words in spoken languages

through aural [15] and visual [30, 40] keyword spotting

methods. In both cases, a key driver of progress has been the

availability of large-scale annotated datasets, enabling the

powerful representation learning abilities of convolutional

neural networks to be brought to bear on the task.

By contrast, annotated datasets for sign language are lim-

ited in scale and typically orders of magnitude smaller than

their spoken counterparts [5]. Widely used datasets such

as RWTH-PHOENIX [9, 26] and the CSL dataset [23] pro-

vide continuous sign annotations in the form of glosses1 or

free-form sentences, but lack precise temporal annotations

and are limited in content diversity, vocabulary, and scale.

Large-scale collections of continuous signing videos exist,

but are limited to sparse annotation coverage [2, 36].

In the absence of large-scale annotated training data, in

this work we turn to a readily available and large-scale

source: sign-interpreted TV broadcast footage together with

1Glosses are atomic lexical units used to annotate sign languages.
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subtitles of the corresponding speech in English. We pro-

pose to annotate this data with signs by training a Trans-

former [45] to predict, given input streams of continu-

ous signing, the corresponding subtitles, and then using its

trained attention mechanism to perform alignment from En-

glish words to signs.

This is a very challenging task: first, subtitles are only

weakly aligned to the signing content—a sign may ap-

pear several seconds before or after its corresponding trans-

lated word appears in the subtitles, thus subtitles provide

a relatively imprecise cue about the temporal location of

a sign. Second, sign interpreters produce a translation

of the speech that appears in subtitles, rather than a tran-

scription—words in the subtitle may not correspond di-

rectly to individual signs produced by interpreters, and vice

versa. Third, grammatical structures between sign lan-

guages and spoken languages differ considerably [43], and

consequently the ordering of words in the subtitle is typi-

cally not preserved in the signing.

The core hypothesis motivating this approach is that in

order to solve the sequence prediction task, the attention

mechanism of the Transformer must be capable of localising

sign instances. We demonstrate that by employing recent

sign spotting techniques [2, 31] to coarsely align subtitles,

sequence prediction is rendered tractable. One of the pri-

mary findings of this work is that, when performed at large

scale (across hundreds of hours of continuous signing con-

tent), the ability to localise signs indeed emerges from the

attention patterns of the sequence prediction model (Fig. 1).

We make the following four contributions: (1) by train-

ing on an appropriate sequence prediction task, we show

that the attention mechanism of the Transformer learns to

attend to specific signs, enabling their localisation; (2) we

employ the learned attention to automatically generate hun-

dreds of thousands of annotations for a large sign vocab-

ulary; (3) we collect a set of 37K manually verified sign

instances across a vocabulary of 950 sign classes to sup-

port our study of sign language recognition; (4) by training

on the newly annotated data from our method, we outper-

form the prior state of the art on the BSL-1K sign language

recognition benchmark.

2. Related Work

Our approach relates to prior work on sign language

recognition, translation, spotting, and in particular auto-

matic annotation of sign language data. We present a dis-

cussion of these, followed by a brief overview of Trans-

formers in natural language processing (NLP) and works in

other domains using attention mechanisms for localisation.

Sign language recognition and translation. The com-

puter vision community has a long history of efforts to de-

velop systems for sign language recognition, reaching back

to the 1980s [44]. Initial work focused on hand-crafting

features [19, 44] to model discriminative shape and motion

cues and explored their usage in combination with Hidden-

Markov Models [42, 46]. These works were followed by

approaches that employed pose estimation as a basis for

recognition [32, 33]. The community later transitioned to

employing convolutional neural networks (CNNs) for ap-

pearance modelling [8]. In particular, the I3D architecture,

originally developed for action recognition [12], has proven

to be effective for sign recognition [1, 24, 27, 28, 30]—we

similarly employ this model in our work.

Continuous sign language recognition entails important

challenges compared to isolated sign recognition, including

epenthesis effects and co-articulation [5] as well as the non-

trivial definition of temporal boundaries between signs [6].

Towards dealing with these problems, [14] uses the CTC

loss [21] to infer an alignment between sequence-level an-

notations and visual input and introduces an auxiliary loss

to use the alignments as pseudolabels; while [7] proposes a

graph convolutional network to automatically segment large

sign language video sequences into short sentences, aligned

with their subtitle transcription.

Recent works have applied sequence-to-sequence mod-

els to sign language translation. Camgöz et al. [9] use a two-

stage pipeline that translates a video into gloss sequences

then those into spoken language. Subsequent work [11] re-

places this framework with a Transformer model trained on

frame-level features jointly for recognition and translation,

while [10] combines multiple articulators including face

and upper body pose to train a translation system without

gloss annotations. These approaches [9, 10, 11] have shown

improvements towards translation in the restricted domain

of discourse of the RWTH-PHOENIX-Weather-2014T Ger-

man Sign Language (DGS) dataset [9]. Ko et al. [25] train

a sequence-to-sequence model using keypoint features on

Korean Sign Language translation. Although these meth-

ods show promising results in constrained conditions, open-

vocabulary sign language translation in the wild remains

largely unsolved.

Automatic annotation of sign language data. Sign lan-

guage datasets either offer isolated gloss-level annotations

of single signs, e.g., MSASL [24], WLASL [27], or are

heavily constrained in visual domain and vocabulary, e.g.,

RWTH-PHOENIX [9, 26], KETI [25] (only 105 sentences).

Large-scale continuous sign language datasets, on the other

hand, are not exhaustively annotated [2, 35]. The recent ef-

forts of Albanie et al. [2] scale up the automatic annotation

of sign language data, and construct the BSL-1K dataset

with the help of a visual keyword spotter [30, 41] trained on

lip reading to detect instances of mouthed words as a proxy

for spotting signs. Sign spotting refers to a specialised form

of sign language recognition in which the objective is to

find whether and where a given sign has occurred within

a sequence of signing. It has emerged as an intermediate

step to collect more annotated sign language data. With this

goal, Momeni et al. [31] use dictionary lookups in subti-

tled videos and improve low-shot sign spotting. Other auto-
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 GT (original): “and we were talking about his army days”

 GT (stemmed & filtered to 11K vocab.):   “talk armi days”
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Figure 2. Pipeline: We use an I3D model pretrained on sign classification to extract spatio-temporal visual features by using a sliding

window. We then train a 2-layer Transformer model to predict stemmed subtitles from the input video feature sequence. We use the

learned model’s attention vectors to spot new instances of signs by checking which words in the predicted hypothesis overlap with the

stemmed subtitle. For example, here the tokens “talk” and “armi”, found in the model’s hypothesis, also appear in the subtitle and are

therefore retained, while “know” does not and is hence discarded. The location of a new spotting is determined by the index at which the

corresponding encoder-decoder attention peaks. Note: we omit the sample index, subscript i, shared by all variables (described in Sec. 3).

matic annotation approaches include an automatic pipeline

for active signer detection and sign language diarisation [1].

While these previous methods are context-free, in this work,

we introduce a context-aware approach that can be used

to localise signs automatically. In fact, while we profit

from annotations obtained in prior works using mouthing

cues [2] and dictionaries [31], our approach differs consid-

erably from theirs in method—we define the supervision di-

rectly on subtitles and formulate the problem as a sequence-

to-sequence prediction task. We demonstrate the benefits of

our approach empirically in Sec. 4.

Transformers in NLP. Incorporating an attention mecha-

nism into encoder-decoder architectures led to a revolution

in neural machine translation [4] by reducing dependency

on strong text alignment. Vaswani et al. [45] further ex-

tended this approach by replacing all recurrent and con-

volutional components of a sequence-to-sequence model

with self-attention. Even though such methods implicitly

model source-to-target alignment with attention, their pri-

mary focus is on translation performance, rather than word-

alignment. [20] further studies how to simultaneously opti-

mise for accurate word-alignment without sacrificing trans-

lation performance—we investigate a variant of their ap-

proach in Sec. 4.

Attention mechanisms for localisation. Cross-modal at-

tention has been employed in the literature for various local-

isation problems such as visual grounding in videos [13, 29,

48, 50] or images [17, 49], keyword spotting in audio [38]

or visual speech [30, 41] and audio-visual sound source lo-

calisation [3, 22, 37]. However, to the best of our knowl-

edge, our work is the first to apply these ideas at large-scale

to sign localisation from weakly-aligned subtitles.

3. Sign Localisation with Attention

In this section, we describe how we train a Transformer

model on a weakly-supervised sign language sequence-to-

sequence task and then use the trained model to perform

sign localisation (see Fig. 2 for an overview).

Let XL denote the space of sign language video seg-

ments L, and T denote the space of subtitle sentences. Fur-

ther, let VL = {1, . . . , V } represent the vocabulary (an

enumeration of spoken language tokens that correspond to

signs that can be performed in L) and let S denote a sub-

titled collection of I videos containing continuous signing,

S = {(xi, si) : i ∈ {1, . . . , I}, xi ∈ XL, si ∈ T }. Our

objective is to localise potential occurrences of signs in S .

Transformer training with subtitled videos. To address

this task, we propose to train a sequence-to-sequence model

with attention. Given a video-subtitle pair (xi, si) ∈ S , we

train a Transformer [45] to predict the target text sequence

si = (s1i , s
2
i · · · , s

Tdec

i ) from the source video sequence

xi = (x1
i , x

2
i , · · ·x

Tenc

i ), one token at a time. Specifically,

the Transformer’s encoder transforms xi into an encoded

sequence enc(xi) = (e1i , e
2
i , · · · e

Tenc

i ). The decoder then

attends on the encoded sequence and predicts the output se-

quence ŝi = (ŝ1i , ŝ
2
i , · · · ŝ

Tdec

i ) auto-regressively, factoris-

ing its joint probability into a product of individual condi-

tionals:

p(ŝi|xi) =

Tdec∏

t=1

p(ŝti|ŝ
1
i , ŝ

2
i · · · ŝ

t−1
i , enc(xi)). (1)

Using the target subtitles si as the ground truth output

sequences, we train the model to maximise their log likeli-

hoods by minimising the following loss:

L = −E(xi,si)∈S log p(si|xi) (2)
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Note that we assume access to a sparse collection of

automatic sign annotations, N = {(xk, vk) : k ∈
{1, . . . ,K}, vk ∈ VL, xk ∈ XL, ∃(xi, si) ∈ S s.t. xk ⊆
xi}, using mouthing cues [2] and dictionaries [31]. In prac-

tice, we restrict the Transformer training on a subset of

videos SA ⊆ S , containing at least one of these annotations

within the subtitle timestamps, formally SA = {(xa, sa) :
a ∈ {1, . . . , A}, xa ∈ XL, ∃(xk, sk) ∈ N s.t. xk ⊆ xa}.

This ensures approximate alignment between the source

video and target subtitle. For arbitrary sequences in S this

is not guaranteed due to imperfect synchronisation between

subtitles (corresponding to audio) and sign language inter-

pretation. The goal of our training is therefore to exploit the

knowledge of the unannotated words in the subtitles in SA

in order to discover a new collection of (x, v) sign-video

pairs (that is not included in N ) in the entire set S .

Localising new sign instances with attention. Next, we

describe how we use the Transformer model to look for

new sign instances (see Fig. 2). After inputting the video

sequence xi into the trained model, we use a decoding strat-

egy (e.g., greedy) to predict the output sequence ŝi and

corresponding attention vectors ai = (a1
i , a2i , · · · a

Tdec

i ) ∈
RTdec×Tenc . We iterate over the predicted sequence ŝi and

localise new sign instances only for the tokens predicted

correctly (i.e., appearing in subtitle si); the video location

is determined by the index at which the corresponding at-

tention vector is maximised, to yield sets of (location, sign)

pairs of the form: {(argmaxj∈{1,2···Tenc}
at
i(j), s

t
i) : ŝti =

sti, t ∈ {1, 2 · · ·Tdec}}.

Implementation details. We represent the input video xi

with features extracted using a pretrained spatio-temporal

convolutional neural network model, applied in a sliding

window manner with a 4-frame stride. In particular, we

train an I3D architecture [12] on an extended set of auto-

matic annotations N that we obtain by combining the meth-

ods of [2] and [31], to spot signs via mouthing cues and sign

language dictionaries, respectively. We train with a single-

sign classification objective and follow the same hyperpa-

rameters (e.g., 16-frame inputs) of the sign language recog-

nition models in [2]. The 1024-dimensional video features

from I3D are used as input to the Transformer encoder.

To construct ground-truth text labels for our Transformer

training, we stem the words in every subtitle under the as-

sumption that variations of a written word could map to the

same sign. We note that the many-to-many mapping be-

tween words and signs is a complex problem, which we do

not explicitly deal with in this work. To establish a tractable

problem, we define a vocabulary of 11,515 stems based on

their frequency and occurrence within the automatic annota-

tions N . This is reduced from an original set of 40K words

appearing in the full set of subtitles S. We further remove

stop words for which there is often no sign correspondence.

This approach resembles glossing sign language data, i.e.,

representing sign sequences with word sequences, without

spoken language grammar.

Following common practice in the sequence-to-sequence

literature [45], we train the model with teacher forcing [47],

i.e. at every decoding step we provide the previous-step’s

ground truth as input to the decoder. During inference we

experiment with three different decoding strategies: auto-

regressive greedy decoding, left-to-right beam search, and

teacher forcing. With greedy decoding, we iterate over the

available sequences and for each one, we select as new

spottings all the words in the predicted hypothesis that ap-

pear in the reference subtitle. For beam search, we iter-

ate over the predictions which overlap with the reference

from the multiple returned hypotheses, and select for each

predicted word the location with maximum attention score.

We show results for another variant of beam search where

we choose the hypothesis with the highest recall in the ap-

pendix (Sec. C.3). With teacher forcing, we do not use

the token predictions of the model, but only the attention

scores, which we associate with the next ground-truth word

in the subtitle at every decoding step. Since we consider all

words in the subtitles, this strategy provides good yield but

no notion of the model’s confidence. In order to obtain a

confidence score we use the following heuristic: For every

sequence, a word found in the subtitle is automatically an-

notated if the attention peak for the corresponding decoding

step is higher than a threshold τ .

When using Transformers with multiple attention heads,

we obtain single attention scores by averaging the attention

vectors of the individual heads. In Sec. 4.3 we discuss re-

sults on combining attention from different decoder layers.

4. Experiments

This section is structured as follows: We first present

the datasets used as well as the various training and evalua-

tion protocols that we follow in our experiments (Sec. 4.1).

Next, we show how we choose our pretrained input video

features (Sec. 4.2). Then, we evaluate our Transformer

models trained with these features and discuss different

strategies for mining new instances to obtain an automat-

ically annotated training set (Sec. 4.3). We show that, when

adding our newly mined training samples, we outperform

the previous state of the art on sign language recognition

(Sec. 4.4). Finally, we provide qualitative results on two

datasets (Sec. 4.5) and discuss limitations (Sec. 4.6).

4.1. Data and evaluation protocols

Datasets. We use BSL-1K [2], a large-scale, subtitled

and sparsely annotated dataset (for a vocabulary of 1,064

signs) of more than 1000 hours of continuous signing from

sign language interpreted BBC television broadcasts. The

programs cover a wide range of genres: from medical

dramas and nature documentaries to cooking shows. In

Sec. 4.5, we show qualitative examples on the RWTH-

PHOENIX [9] dataset, which is significantly smaller in size
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TestRec
2K [2] TestRec

37K

2K inst. / 334 cls. 37K inst. / 950 cls.

per-instance per-class per-instance per-class

Training #ann. top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

M [2]§ 169K 76.6 89.2 54.6 71.8 26.4 41.3 19.4 33.2

D 510K 70.8 84.9 52.7 68.1 60.9 80.3 34.7 53.5

M+D 678K 80.8 92.1 60.5 79.9 62.3 81.3 40.2 60.1

Table 1. A new recognition test set TestRec
37K and an improved

I3D model: We employ the method of [31] to find signs via auto-

matic dictionary spotting (D), significantly expanding the training

and testing data obtained from mouthing cues by [2] (M). We also

significantly expand the test set by manually verifying these new

automatic annotations from the test partition (TestRec
2K vs TestRec

37K ).

By training on the extended M+D data, we obtain state-of-the-

art results, outperforming the previous work of [2] and providing

strong I3D features for the subsequent steps of our method. §The

slight improvement in the performance of [2] over the original re-

sults reported in that work is due to our denser test-time averaging

when applying sliding windows (8-frame vs 1-frame stride).

and from weather broadcasts only, restricting the domain of

discourse.

Transformer training and evaluation on TestLoc
7K . To form

the video-subtitle training data pairs, we sample 183K (SA)

out of 685K subtitles from the BSL-1K training set (S), in

which there exists at least 1 automatic annotation (with a

confidence score above 0.7) from the annotations collection

N . N is formed by applying the method of [2] on a large

vocabulary of words beyond 1K to find signs via mouthing

cues and applying the method of [31] to find signs via au-

tomatic dictionary spotting. See appendix (Sec. C.2) for

details on this step. Subtitles originally contain 9.8 words

from the initial 40K words vocabulary on average, which is

reduced to 4.4 words per subtitle from the 11K stems vocab-

ulary after stemming and filtering. Corresponding videos

are tightly extracted according to the subtitle timestamps,

and are on average 3.52 seconds long.

For evaluating the localisation capability of the proposed

method, we use the automatic annotations N in the BSL-1K

test set whose confidence scores are above 0.9, resulting in

7497 subtitle-video pairs with a total of 7661 annotations,

referred to as TestLoc
7K . We measure the localisation accu-

racy for the annotated words in each subtitle and only on the

correct predictions: we consider a correct prediction to be

also correctly localised if its predicted location lies within 8

frames of the annotation time. We also report recall and pre-

cision of the model’s predictions for each sequence by mea-

suring the percentage of words in the subtitle that are pre-

dicted (recall) and the percentage of predicted words which

appear in the subtitle (precision). For all three metrics, we

report the average over all sequences in the test set.

Single-sign recognition benchmark. In order to justify the

value of our automatic annotation approach with the Trans-

former model, we evaluate on the proxy task of single-sign

Loc. Acc. (GD) Loc. Acc. (TF)

Tr. Recall Prec. Att. layer 1/2/3 [avg] Att. layer 1/2/3 [avg]

1L 15.8 36.4 65.9 [65.9] 44.8 [44.8]

2L 16.5 37.2 63.9/57.8 [66.1] 51.1/37.6 [44.5]

3L 16.5 36.9 62.5/60.8/16.4 [65.3] 51.4/38.4/15.7 [46.4]

Table 2. Localisation performance of attention layers. We

evaluate the performance of Transformers on TestLoc
7K for different

number of encoder/decoder layers in the training (different rows).

We report the localisation accuracy for the encoder-decoder atten-

tion scores from every layer, as well as the average over layers, for

both teacher forcing (TF) and greedy decoding (GD) modes.

recognition on trimmed videos by using our localised sign

instances from the training set as labels for classification

training. Similar to [2, 24, 27], we adopt top-1 and top-5

accuracy metrics reported with and without class-balancing.

We use the BSL-1K manually verified recognition test

set with 2K samples [2], which we denote with TestRec
2K , and

significantly extend it to 37K samples as TestRec
37K . We do

this by collecting new annotations from human annotators

using the VIA tool [18] with a verification task as in [2].

This extended test set reduces the bias towards signs with

easily spotted mouthing cues (since we also include dictio-

nary spottings [30]) and spans a larger fraction of the train-

ing vocabulary, i.e. 950 out of 1064 sign classes (vs 334

classes in the original benchmark TestRec
2K of [2]).

4.2. Comparison of video features

We first conduct experiments to determine which I3D

video features are best suited as input to the Transformer

model as described in Sec. 3. In Tab. 1, we demonstrate

the benefits of combining annotations from both mouthing

(M) [2] and dictionary spottings (D) [31]. We show that

our sign classification training using 678K automatic anno-

tations obtains state-of-the-art performance on TestRec
2K , as

well as our new and more challenging test set TestRec
37K . We

therefore use this M+D model for the rest of our experi-

ments. Note that all three models in Tab. 1 (M, D, M+D)

are pretrained on Kinetics [12], followed by video pose dis-

tillation as described in [2]. We observed no improvements

when initialising M+D training from M-only pretraining.

4.3. Mining training examples through attention

Next, we ablate different design choices for the Trans-

former model.

Which attention layer for sign-video alignment? Sim-

ilarly to [20], we conduct an investigation into which de-

coder layer gives attention scores that are more useful for

localising signs. We train three models, with 1, 2 and 3 en-

coder and decoder layers and report the localisation accu-

racy when using the attention from each layer separately, or

an average of all layers. The results on TestLoc
7K in Tab. 2 sug-

gest that averaging the attention scores over all layers gives
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the best localisation when using greedy auto-regressive de-

coding, while using the attention scores from the first de-

coder layer works best with teacher forcing. We note that

this finding stands in contrast to those of [20] which con-

cluded that the penultimate layer works better for word

alignment in a machine translation task. We conjecture that

the difference results from the different nature of the two

domains, i.e., video versus text inputs. In terms of preci-

sion and recall, all three models perform similarly with rates

at 37% and 16%, respectively. We continue with a 2-layer

Transformer model for the rest of the experiments and given

the observations in Tab. 2, we use the layer-averaged atten-

tion with greedy decoding and the first layer attention with

teacher forcing.

Incorporating sparse annotations. As explained in Sec. 3,

we make use of the available sparse annotations N to re-

strict the training subtitles to those with at least 1 annota-

tion. When removing this constraint, the model does not

train as well, and reaches a recall of only 6.8% (vs 16.5%).

Here, we also report some of our findings by employing

three additional strategies to improve the Transformer train-

ing using the sparse annotations N . In all three cases, we

observe no or minor gains (on TestLoc
7K), at the cost of a more

complex method and the need for annotations. Therefore,

we do not integrate them in our final model and provide de-

tailed results in appendix (Sec. C.2).

Alignment loss on sparse annotations: We investigate

whether the sparse annotations N could be used for super-

vising the sign-video alignment explicitly (similar to [20]

in NLP). To this end, we define an additional loss that oper-

ates on the encoder-decoder attention to enforce a high re-

sponse whenever there is known location information. We

achieve this via an additional L2 loss term between a 1D

gaussian centered around the annotated time frame and the

corresponding attention vector. While the localisation per-

formance with teacher-forcing increases (58.7% vs 51.1%),

it still remains lower compared to the corresponding greedy

decoding result and we observe no significant gains for

other metrics measured on the predictions.

Curriculum learning with sparse annotations: To pro-

vide warmup for the model training, we start by tempo-

rally trimmed video inputs around known sign locations N .

We gradually increase the number of annotations from 1 to

3, before we fully input the subtitle duration to the Trans-

former. We only observe minor improvements: 16.0% vs

15.8% recall with the 1-layer architecture.

Subtitle alignment through active signer detection and

sparse annotations: To overcome the alignment noise

present in the data, we apply an algorithm that combines

a pose-based active signer detection [1] and the knowledge

of sparse annotations N . Specifically, we apply temporal

shifts to subtitles such that their temporal midpoint aligns

with the average time of any annotated signs they contain.

We then apply affine transformations to the subtitles with-

out annotations such that they fill the regions between those

#subtitles #ann. #ann. top-1 top-1

Spotting mode unannot. 11K 1K per-inst per-cls

TF (≥ .2) 114K 290K 97K 22.2 4.7

TF (≥ .1) 408K 1.7M 545K 37.3 13.4

TF (≥ .05) 457K 2.3M 754K 38.7 14.4

TF (≥ .05) (align. loss) 457K 2.3M 757K 38.8 14.6

BS (10 best) 109K 329K 166K 49.6 22.7

GD (no subtitle filtering) 480K 1.4M 910K 50.6 22.6

GD (align. loss) 53K 188K 108K 53.6 24.8

GD 53K 188K 107K 53.9 24.7

Table 3. Automatically annotating the training data: We show

the yield obtained from various decoding strategies in terms of

number of additional annotations (left). Training models only

with these annotations, we evaluate the recognition accuracy on

TestRec
37K . Greedy decoding (GD) obtains better results than teacher

forcing (TF) even when not filtering the predictions against the

ground-truth subtitles. Neither including 10 best predictions from

beam search (BS) nor using the model trained with the alignment

loss influences the recognition evaluation significantly.

with annotations, subject to the hard constraint that the ex-

pansions do not overlap periods of inactive signing. This

approach increases the amount of training subtitles with an-

notations to 230K; however, training with this new set does

not improve recall (15.4% vs 16.5% with 2-layers).

Which decoding mechanism? To form a new annotated set

for sign recognition training, we apply the trained Trans-

former models on the whole 685K training video-subtitle

pairs of the BSL-1K dataset. In Tab. 3 we summarise and

compare the yield of new training samples mined with the

different decoding strategies we discussed in Sec. 3. We

report the number of previously unannotated subtitles, for

which the attention mechanism is able to localise signs, to

demonstrate the benefits of our approach. We also report the

amount of new annotations for both the full 11K vocabulary

and the 1064-subset which is used for the proxy recognition

evaluation. We observe that a significant number of new

automatic sign annotations are obtained with our approach.

To compare the different decoding strategies, we train

recognition models on the resulting training sets contain-

ing the new annotations and evaluate them on the proxy

sign recognition task. Note that for faster training, we

learn a 4-layer MLP architecture on top of the pre-extracted

I3D video features (architecture and optimisation details are

given in the appendix, see Sec. D).

We observe that greedy decoding with the simple filter-

ing mechanism (checking against ground truth) gives best

downstream recognition performance on TestRec
37K . Teacher

forcing, beam search and no filtering all yield larger but

noisier training sets that result in lower performance. How-

ever, we note that the “no subtitle filtering” experiment as-

sumes no access to ground-truth subtitles during annotation

mining and uses all the predictions, while providing com-

petitive recognition performance (50.6% vs 53.9%).
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per-instance per-class

Training #ann. top-1 top-5 top-1 top-5

A 107K 54.0±0.08 67.9±0.10 24.8±0.10 35.5±0.20

M [2]† 169K 40.8±0.17 62.2±0.07 21.7±0.19 38.5±0.29

M+A 276K 58.5±0.17 75.5±0.02 30.4±0.04 45.9±0.26

D [31]† 510K 62.1±0.24 80.8±0.10 35.1±0.38 54.3±0.11

D+A 276K 64.2±0.08 81.7±0.07 36.0±0.26 54.0±0.32

M+D 678K 63.5±0.28 82.1±0.04 37.2±0.12 56.4±0.17

M+D+A 786K 65.0±0.14 82.6±0.02 37.9±0.07 56.3±0.02

Table 4. Sign recognition on BSL-1K TestRec
37K : We evaluate

our 4-layer MLP classification models trained on video feature

inputs for 1064-sign recognition for various training label sets:

mouthing (M), dictionary (D), and our proposed attention (A)

spottings. We obtain state-of-the-art results, by consistently im-

proving over previous works when including our attention locali-

sations. †The results are obtained from our MLP trained with the

annotations from [2] and our application of [31].

4.4. Comparison with other automatic annotations

In this section, we train for sign recognition on BSL-

1K [2] on various label sets, comparing different auto-

matic annotation methods and showing that our new sign

instances are complementary when added to training data,

achieving state of the art. As in the previous experiments,

we use the MLP architecture on frozen I3D features to com-

pare the different annotation sets. This time we perform 3

trainings per model with different random seeds and report

the average and standard deviation.

Tab. 4 summarises the results on TestRec
37K . We first note

that the MLP performance of M+D annotations matches

and slightly outperforms that of I3D from Tab. 1 (63.5%

vs 62.3%), validating the suitability of MLP for efficiently

comparing annotation set quality. When compared to

the visual keyword spotting through mouthing (M) [2],

our automatic attention localisations (A) show significant

improvements. Furthermore, we observe consistent im-

provements when combining our new annotations with ei-

ther the mouthing (M+A) or dictionary (D+A) annotations.

Combining all available annotations (M+D+A), we achieve

state-of-the-art performance (65%) outperforming previous

work of [2] (M: 40.8%), as well as a new much stronger

baseline (D: 62.1%) that we establish in this work, which

uses the new annotations obtained using sign language dic-

tionaries for sign spotting [31]. Our final recognition model

can be interpreted as distilling information from multiple

sources (mouthing, dictionary, attention), each of which has

access to a large training set.

We also evaluate the performance of our MLP trained on

M+D+A annotations on the BSL-1K sign spotting bench-

mark proposed by [2], following their protocol, and achieve

a score of 0.174 mAP, outperforming the previous state-of-

the-art performance of 0.170 mAP [31] and 0.159 mAP [2].

4.5. Qualitative analysis

We demonstrate the potential of our Transformer model

to localise sign instances through its attention mechanism.

dad
talk

dad

GT: “morgen früh bildet sich über der nordsee ein neues tief das von 

norden für kräftigen regen sorgt” 

Pred: “der nordsee morgen norden regen”

GT: “und am mittwoch dann noch reste dieser schauer und gewitter 

über dem osten und über dem süden” 

Pred: “noch schauer und gewitter osten”

A
tt

en
ti
o
n
 s

co
re talk

morgennordsee norden regen

nordsee

der
morgen

norden

regen

Time frames

gewitter

noch
osten

und

schauer

noch schauer osten

Figure 3. Qualitative analysis on the RWTH-PHOENIX: We

show example sign localisation results on the test set of RWTH-

PHOENIX 2014T. For each video clip, we show the ground-truth

sentence as well as the predicted words from the Transformer

model of [11] which overlap with the target sentence. We plot

attention scores over time frames for these predicted words and

show the frame index at which the corresponding attention vector

is maximised for a subset of the correctly predicted words.

Fig. 4 shows qualitative examples of localising multiple

signs, by plotting attention scores over video time frames

for predicted words that occur in corresponding subtitles of

the BSL-1K test set (TestLoc
7K). We observe close alignment

with the automatic annotations N . One potential limitation

of this approach for localisation is that the attention vector

does not peak only at the corresponding sign location, but

also on other signs suggesting that the predictions use con-

text (e.g., “smell” and “sweet” in Fig. 4, top-left).

We also investigate whether this localisation ability ex-

tends to other datasets. In particular, we reproduce the

translation method of Camgöz et al. [11] on RWTH-

PHOENIX 2014T [9] and similarly to [9], we visualise the

attention score plots for predicted words in Fig. 3. We are

unable to compute the localisation accuracy as sign annota-

tion times are not available for RWTH-PHOENIX 2014T;

however, we observe correct signs when indexing the frame

at which the corresponding attention vector is maximised.

This suggests that alignment emerges from the attention

mechanism also for a full translation system.

4.6. Discussion

From our investigations in this work, we believe there

are important and challenging problems to be solved before

achieving large-vocabulary sign language translation from

videos to spoken language. First, significantly expanding

the coverage of the vocabulary of both languages is neces-

sary, and the current state of the art only covers about 3K
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dad
talk

dad

GT: (original) “It smells sweet here absolutely smells sweet here” 

GT: (stemmed) “smell sweet absolut smell sweet”  

Pred: “smell sweet”

GT: (original) “Mr Griffin, I didn’t expect to see you” 

GT: (stemmed) “mr expect see”  

Pred: “see expect test”

GT: (original) “When I lived in a city, winter I could see had no purpose” 

GT: (stemmed) “live citi winter could see purpos”  

Pred: “live citi winter”

GT: (original) “But my concern would be fish and chips we all love it” 

GT: (stemmed) “concern would fish chip love”  

Pred: “chip fish”

GT: (original) “I never use less than five different types of fish” 

GT: (stemmed) “never use five differ type fish” 

Pred: “never use fish”

GT: (original) “Yeah absolutely, and we were talking about his army days” 

GT: (stemmed) “absolut talk armi days”  

Pred: “talk armi know”

A
tt

en
ti
on

 s
co
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smell sweet

smell

sweet

see expect

expect

see

wintercity

Time frames

citi
winter

chip fish

fish
chip

fishnever

fish
never

talk army

armi
talk

Figure 4. Qualitative analysis on BSL-1K: We show example sign localisation results on the BSL-1K test set (TestLoc
7K ). For each video

clip, we show the original subtitle, the ground-truth stemmed and filtered to 11K vocabulary version, and the prediction of our Transformer

model. We plot attention scores over time frames for the predicted words which overlap with the subtitle and for which we have annotated

sign times in N (shown by vertical dashed lines). We highlight the frame at which the corresponding attention vector is maximised.

spoken language and 1K sign language vocabularies [11].

In preliminary experiments, we found that a direct applica-

tion of [11] to translation on the significantly broader vo-

cabulary of 40K contained within the subtitles of BSL-1K

failed to converge to meaningful results (for more details

see appendix, Sec. C.1). In this work, we have extended

to an 11K spoken language vocabulary, but the NLP litera-

ture typically works with much larger vocabularies (e.g. a

few hundred thousand words [16]). Our attempts to move to

40K words did not obtain sufficient-quality results. Second,

the alignment between text and video is far from perfect in

large-scale sign language datasets which inserts significant

amount of noise in training. Our automatic alignment at-

tempts in this work did not obtain improvements. Relying

on sparse annotations for approximate alignments limits the

amount of data. Third, most of the works, including ours,

focus on interpreted data, which has certain biases. In fact,

the act of interpreting can cause a simplification in signing

style and vocabulary, and even lead to a reduction in speed

for comprehension [5]. Datasets of native signers should be

built to train strong, robust models that generalise at scale

and in the wild. Given these observations, we believe that

future work that specifically targets translation systems will

benefit from addressing these challenges. We refer to the

appendix (Sec. A) for a discussion of broader impact.

5. Conclusions

We have presented an approach to localise signs in con-

tinuous sign language videos with weakly-supervised subti-

tles by leveraging the attention mechanism of a Transformer

model trained on a video-to-text sequence prediction task.

We find that state-of-the-art translation models have very

low recall on a large-vocabulary dataset, but a satisfactory

localisation accuracy through attention that allows us to an-

notate sign timings. We automatically annotate hundreds of

thousands of new signing instances through our learned at-

tention and validate their quality by using them to train a

sign language recognition model that surpasses the state of

the art on the BSL-1K benchmark as well as a more robust

sign language benchmark which is 18 times larger. Future

work can leverage our automatic annotations and recogni-

tion model for large-vocabulary sign language translation.
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