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Abstract

Linguistic knowledge is of great benefit to scene text

recognition. However, how to effectively model linguistic

rules in end-to-end deep networks remains a research chal-

lenge. In this paper, we argue that the limited capacity

of language models comes from: 1) implicitly language

modeling; 2) unidirectional feature representation; and 3)

language model with noise input. Correspondingly, we pro-

pose an autonomous, bidirectional and iterative ABINet for

scene text recognition. Firstly, the autonomous suggests to

block gradient flow between vision and language models

to enforce explicitly language modeling. Secondly, a novel

bidirectional cloze network (BCN) as the language model

is proposed based on bidirectional feature representation.

Thirdly, we propose an execution manner of iterative correc-

tion for language model which can effectively alleviate the

impact of noise input. Additionally, based on the ensemble

of iterative predictions, we propose a self-training method

which can learn from unlabeled images effectively. Extensive

experiments indicate that ABINet has superiority on low-

quality images and achieves state-of-the-art results on sev-

eral mainstream benchmarks. Besides, the ABINet trained

with ensemble self-training shows promising improvement

in realizing human-level recognition. Code is available at

https://github.com/FangShancheng/ABINet.

1. Introduction

Possessing the capability of reading text from scene im-

ages is indispensable to artificial intelligence [24, 41, 45].

To this end, early attempts regard characters as meaningless

symbols and recognize the symbols by classification mod-

els [42, 15, 46]. However, when confronted with challenging

environments such as occlusion, blur, noise, etc., it becomes

faint due to out of visual discrimination. Fortunately, as

text carries rich linguistic information, characters can be

reasoned according to the context. Therefore, a bunch of

*The corresponding author

methods [16, 14, 29, 48] turn their attention to language

modeling and achieve undoubted improvement.

However, how to effectively model the linguistic behavior

in human reading is still an open problem. From the observa-

tions of psychology, we can make three assumptions about

human reading that language modeling is autonomous, bidi-

rectional and iterative: 1) as both deaf-mute and blind people

could have fully functional vision and language separately,

we use the term autonomous to interpret the independence of

learning between vision and language. The autonomous also

implies a good interaction between vision and language that

independently learned language knowledge could contribute

to the recognition of characters in vision. 2) The action of

reasoning character context behaves like cloze task since

illegible characters can be viewed as blanks. Thus, predic-

tion can be made using the cues of legible characters on the

left side and right side of the illegible characters simultane-

ously, which is corresponding to the bidirectional. 3) The

iterative describes that under the challenging environments,

humans adopt a progressive strategy to improve prediction

confidence by iteratively correcting the recognized results.

Firstly, applying the autonomous principle to scene

text recognition (STR) means that recognition models

should be decoupled into vision model (VM) and language

model (LM), and the sub-models could be served as func-

tional units independently and learned separately. Recent

attention-based methods typically design LMs based on

RNNs or Transformer [39], where the linguistic rules are

learned implicitly within a coupled model [19, 36, 33]

(Fig. 1a). Nevertheless, whether and how well the LMs

learn character relationship is unknowable. Besides, this

kind of methods is infeasible to capture rich prior knowledge

by directly pre-training LM from large-scale unlabeled text.

Secondly, compared with the unidirectional LMs [38],

LMs with bidirectional principle capture twice the amount

of information. A straightforward way to construct a bidirec-

tional model is to merge a left-to-right model and a right-to-

left model [28, 5], either in probability-level [44, 36] or in

feature-level [52] (Fig. 1e). However, they are strictly less

powerful as their language features are unidirectional repre-
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sentation in fact. Also, the ensemble models mean twice as

expensive both in computations and parameters. A recent

striking work in NLP is BERT [5], which introduces a deep

bidirectional representation learned by masking text tokens.

Directly applying BERT to STR requires masking all the

characters within a text instance, whereas this is extremely

expensive since each time only one character can be masked.

Thirdly, LMs executed with iterative principle can re-

fine the prediction from visual and linguistic cues, which

is not explored in current methods. The canonical way to

perform an LM is auto-regression [44, 3, 47] (Fig. 1d), in

which error recognition is accumulated as noise and taken as

input for the following prediction. To adapt the Transformer

architectures, [25, 52] give up auto-regression and adopt

parallel-prediction (Fig. 1e) to improve efficiency. However,

noise input still exists in parallel-prediction where errors

from VM output directly harm the LM accuracy. In addi-

tion, parallel-prediction in SRN [52] suffers from unaligned-

length problem that SRN is tough to infer correct characters

if text length is wrongly predicted by VM.

Considering the deficiencies of current methods from the

aspects of internal interaction, feature representation and

execution manner, we propose ABINet guided by the princi-

ples of Autonomous, Bidirectional and Iterative. Firstly, we

explore a decoupled method (Fig. 1b) by blocking gradient

flow (BGF) between VM and LM, which enforces LM to

learn linguistic rules explicitly. Besides, both VM and LM

are autonomous units and could be pre-trained from images

and text separately. Secondly, we design a novel bidirec-

tional cloze network (BCN) as the LM, which eliminates the

dilemma of combining two unidirectional models (Fig. 1c).

The BCN is jointly conditioned on both left and right con-

text, by specifying attention masks to control the accessing

of both side characters. Also, accessing across steps is not

allowed to prevent leaking information. Thirdly, we propose

an execution manner of iterative correction for LM (Fig. 1b).

By feeding the outputs of ABINet into LM repeatedly, predic-

tions can be refined progressively and the unaligned-length

problem could be alleviated to a certain extent. Additionally,

treating the iterative predictions as an ensemble, a semi-

supervised method is explored based on self-training, which

exploits a new solution toward human-level recognition.

Contributions of this paper mainly include: 1) we propose

autonomous, bidirectional and iterative principles to guide

the design of LM in STR. Under these principles the LM is

a functional unit, which is required to extract bidirectional

representation and correct prediction iteratively. 2) A novel

BCN is introduced, which estimates the probability distribu-

tion of characters like cloze tasks using bidirectional repre-

sentation. 3) The proposed ABINet achieves state-of-the-art

(SOTA) performance on mainstream benchmarks, and the

ABINet trained with ensemble self-training shows promising

improvement in realizing human-level recognition.
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Figure 1. (a) Coupled language model. (b) Our autonomous lan-

guage model with iterative correction. (c) Our bidirectional struc-

ture. (d) Unidirectional RNN in auto-regression. (e) Ensemble of

two unidirectional Transformers in parallel-prediction.

2. Related Work

2.1. Language-free Methods

Language-free methods generally utilize visual features

without the consideration of relationship between charac-

ters, such as CTC-based [7] and segmentation-based [21]

methods. The CTC-based methods employ CNN to ex-

tract visual features and RNN to model features sequence.

Then the CNN and RNN are trained end-to-end using CTC

loss [34, 11, 37, 12]. The segmentation-based methods ap-

ply FCN to segment characters in pixel-level. Liao et al.

recognize characters by grouping the segmented pixels into

text regions. Wan et al. [40] propose an additional order

segmentation map which transcripts characters in the correct

order. Due to lacking of linguistic information, the language-

free methods cannot resolve the recognition in low-quality

images commendably.

2.2. Language-based Methods

Internal interaction between vision and language. In

some early works, bags of N -grams of text string are pre-

dicted by a CNN which acts as an explicit LM [14, 16, 13].

After that the attention-based methods become popular,

which implicitly models language using more powerful

RNN [19, 36] or Transformer [43, 33]. The attention-based

methods follow encoder-decoder architecture, where the en-

coder processes images and the decoder generates characters

by focusing on relevant information from 1D image fea-

tures [19, 35, 36, 3, 4] or 2D image features [51, 47, 23, 20].

For example, R2AM [19] employs recursive CNN as a fea-

ture extractor and LSTM as a learned LM implicitly mod-

eling language in character-level, which avoids the use of

N -grams. Further, this kind of methods is usually boosted by

integrating a rectification module [36, 54, 50] for irregular

images before feeding the images into networks. Different

from the methods above, our method strives to build a more

powerful LM by explicitly language modeling. In attempting
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Figure 2. A schematic overview of ABINet.

to improve the language expression, some works introduce

multiple losses where an additional loss comes from seman-

tics [29, 25, 52, 6]. Among them, SEED [29] proposes to

use pre-trained FastText model to guide the training of RNN,

which brings extra semantic information. We deviate from

this as our method directly pre-trains LM in unlabeled text,

which is more feasible in practice.

Representation of language features. The character se-

quences in attention-based methods are generally modeled

in left-to-right way [19, 35, 3, 40]. For instance, Textscan-

ner [40] inherits the unidirectional model of attention-based

methods. Differently, they employ an additional position

branch to enhance positional information and mitigate mis-

recogniton in contextless scenarios. To utilize bidirectional

information, methods like [8, 36, 44, 52] use an ensemble

model of two unidirectional models. Specifically, to capture

global semantic context, SRN [52] combines features from

a left-to-right and a right-to-left Transformers for further

prediction. We emphasize that the ensemble bidirectional

model is intrinsically a unidirectional feature representation.

Execution manner of language models. Currently, the

network architectures of LMs are mainly based on RNN and

Transformer [39]. The RNN-based LM is usually executed in

auto-regression [44, 3, 47], which takes the prediction of last

character as input. Typical work such as DAN [44] obtains

the visual features of each character firstly using proposed

convolutional alignment module. After that GRU predicts

each character by taking the prediction embedding of the last

time step and the character feature of the current time step

as input. The Transformer-based methods have superiority

in parallel execution, where the inputs of each time step

are either visual features [25] or character embedding from

the prediction of visual feature [52]. Our method falls into

parallel execution, but we try to alleviate the issue of noise

input existing in parallel language model.

···
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Figure 3. Architecture of vision model.

3. Proposed Method

3.1. Vision Model

The vision model consists of a backbone network and a

position attention module (Fig. 3). Following the previous

methods, ResNet1 [36, 44] and Transformer units [52, 25]

are employed as the feature extraction network and the se-

quence modeling network. For image x we have:

Fb = T (R(x)) ∈ R
H
4
×W

4
×C , (1)

where H,W are the size of x and C is feature dimension.

The module of position attention transcribes visual fea-

tures into character probabilities in parallel, which is based

on the query paradigm [39]:

Fv = softmax(
QKT

√
C

)V. (2)

Concretely, Q ∈ R
T×C is positional encodings [39] of

character orders and T is the length of character sequence.

1There are 5 residual blocks in total and down-sampling is performed

after the 1st and 3nd blocks.
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K = G(Fb) ∈ R
HW
16

×C , where G(·) is implemented by a

mini U-Net2 [32]. V = H(Fb) ∈ R
HW
16

×C , where H(·) is

identity mapping.

3.2. Language Model

3.2.1 Autonomous Strategy

As shown in Fig. 2, the autonomous strategy includes follow-

ing characteristics: 1) the LM is regarded as an independent

model of spelling correction which takes probability vectors

of characters as input and outputs probability distributions

of expected characters. 2) The flow of training gradient is

blocked (BGF) at input vectors. 3) The LM could be trained

separately from unlabeled text data.

Following the strategy of autonomous, the ABINet can

be divided into interpretable units. By taking the probabil-

ity as input, LM could be replaceable (i.e., replaced with

more powerful model directly) and flexible (e.g., executed

iteratively in Section 3.2.3). Besides, an important point

is that BGF enforces model to learn linguistic knowledge

inevitably, which is radically distinguished from implicitly

modeling where what the models exactly learn is unknow-

able. Furthermore, the autonomous strategy allows us to

directly share the advanced progresses in NLP community.

For instance, pre-training the LM can be an effective way to

boost the performance.

3.2.2 Bidirectional Representation

Given a text string y = (y1, . . . , yn) with text

length n and class number c, the conditional probabil-

ity of yi for bidirectional and unidirectional models are

2A network with 4-layer encoder, 64 channels, add fusion and interpo-

lation upsample.

P (yi|yn, . . . , yi+1, yi−1, . . . , y1) and P (yi|yi−1, . . . , y1),
respectively. From the perspective of information the-

ory, available entropy of a bidirectional representation

can be quantified as Hy = (n − 1) log c. How-

ever, for a unidirectional representation the information is
1
n

∑n

i=1 (i− 1) log c = 1
2Hy. Our insight is that previous

methods typically use an ensemble model of two unidirec-

tional models, which essentially are unidirectional represen-

tations. The unidirectional representation basically captures
1
2Hy information, resulting in limited capability of feature

abstraction compared with bidirectional counterpart.

Benefitting from the autonomous design in Section 3.2.1,

off-the-shelf NLP models with the ability of spelling cor-

rection can be transferred. A plausible way is utilizing the

masked language model (MLM) in BERT [5] by replacing

yi with token [MASK]. However, we notice that this is un-

acceptable as MLM should be separately called n times for

each text instance, causing extreme low efficiency. Instead of

masking the input characters, we propose BCN by specifying

the attention masks.

Overall, the BCN is a variant of L-layers transformer

decoder. Each layer of BCN is a series of multi-head at-

tention and feed-forward network [39] followed by residual

connection [10] and layer normalization [1], as shown in

Fig. 4. Different from vanilla Transformer, character vectors

are fed into the multi-head attention blocks rather than the

first layer of network. In addition, attention masks in multi-

head attention are designed to prevent from “seeing itself”.

Besides, no self-attention is applied in BCN to avoid leaking

information across time steps. The attention operation inside

multi-head blocks can be formalized as:

Mij =

{

0, i 6= j

−∞, i = j
, (3)

Ki = Vi = P (yi)Wl, (4)

Fmha = softmax(
QKT

√
C

+M)V, (5)

where Q ∈ R
T×C is the positional encodings of character

orders in the first layer and the outputs of the last layer other-

wise. K,V ∈ R
T×C are obtained from character probabil-

ity P (yi) ∈ R
c, and Wl ∈ R

c×C is linear mapping matrix.

M ∈ R
T×T is the matrix of attention masks which prevents

from attending current character. After stacking BCN layers

into deep architecture, the bidirectional representation Fl for

text y is determined.

By specifying the attention masks in cloze fashion, BCN

is able to learn more powerful bidirectional representation

elegantly than the ensemble of unidirectional representa-

tion. Besides, benefitting from Transformer-like architecture,

BCN can perform computation independently and parallelly.

Also, it is more efficient than the ensemble models as only

half of the computations and parameters are needed.
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3.2.3 Iterative Correction

The parallel-prediction of Transformer takes noise inputs

which are typically approximations from visual predic-

tion [52] or visual feature [25]. Concretely, as the example

shown in Fig. 2 under bidirectional representation, the de-

sired condition for P (“O”) is “SH-WING”. However, due to

the blurred and occluded environments, the actual condition

obtained from VM is “SH-VING”, in which “V” becomes

noise and harms the confidence of prediction. It tends to be

more hostile for LM with increased error predictions in VM.

To cope with the problem of noise inputs, we propose

iterative LM (illustrated in Fig. 2). The LM is executed M

times repeatedly with different assignment for y. For the first

iteration, yi=1 is the probability prediction from VM. For the

subsequent iterations, yi≥2 is the probability prediction from

the fusion model (Section 3.3) in last iteration. By this way

the LM is able to correct the vision prediction iteratively.

Another observation is that Transformer-based methods

generally suffer from unaligned-length problem [52], which

denotes that the Transformer is hard to correct the vision

prediction if character number is unaligned with ground truth.

The unaligned-length problem is caused by the inevitable

implementation of padding mask which is fixed for filtering

context outside text length. Our iterative LM can alleviate

this problem as the visual feature and linguistic feature are

fused several times, and thus the predicted text length is also

refined gradually.

3.3. Fusion

Conceptually, vision model trained on image and lan-

guage model trained on text come from different modalities.

To align visual feature and linguistic feature, we simply use

the gated mechanism [52, 53] for final decision:

G = σ([Fv,Fl]Wf ), (6)

Ff = G⊙ Fv + (1−G)⊙ Fl, (7)

where Wf ∈ R
2C×C and G ∈ R

T×C .

3.4. Supervised Training

ABINet is trained end-to-end using the following multi-

task objectives:

L = λvLv +
λl

M

M
∑

i=1

Li
l +

1

M

M
∑

i=1

Li
f , (8)

where Lv, Ll and Lf are the cross entropy losses from Fv,

Fl and Ff , respectively. Specifically, Li
l and Li

f are the

losses at i-th iteration. λv and λl are balanced factors.

3.5. Semi-supervised Ensemble Self-training

To further explore the superiority of our iterative model,

we propose a semi-supervised learning method based on

Algorithm 1 Ensemble Self-training

Require: Labeled images X with labels Y and unlabeled images U

1: Train parameters θ0 of ABINet with (X , Y) using Equation 8.

2: Use θ0 to generate soft pseudo labels V for U

3: Get (U ′, V′) by filtering (U , V) with C < Q (Equation 9)

4: for i = 1, . . . , Nmax do

5: if i == Nupl then

6: Update V using θi
7: Get (U ′, V′) by filtering (U , V) with C < Q (Equation 9)

8: end if

9: Sample Bl = (Xb, Yb) $ (X , Y), Bu = (U ′

b, V′

b) $ (U ′, V′)
10: Update θi with Bl, Bu using Equation 8.

11: end for

self-training [49] with the ensemble of iterative predictions.

The basic idea of self-training is first to generate pseudo

labels by model itself, and then re-train the model using

additional pseudo labels. Therefore, the key problem lies in

constructing high-quality pseudo labels.

To filter the noise pseudo labels we propose the following

methods: 1) minimum confidence of characters within a

text instance is chosen as the text certainty. 2) Iterative

predictions of each character are viewed as an ensemble to

smooth the impact of noise labels. Therefore, we define the

filtering function as follows:







C = min
1≤t≤T

eE[logP (yt)]

P (yt) = max
1≤m≤M

Pm(yt)
, (9)

where C is the minimum certainty of a text instance, Pm(yt)
is probability distribution of t-th character at m-th iteration.

The training procedure is depicted in Algorithm 1, where Q

is threshold. Bl, Bu are training batches from labeled and

unlabeled data. Nmax is the maximum number of training

step and Nupl is the step number for updating pseudo labels.

4. Experiment

4.1. Datasets and Implementation Details

Experiments are conducted following the setup of [52]

in the purpose of fair comparison. Concretely, the training

datasets are two synthetic datasets MJSynth (MJ) [13, 15]

and SynthText (ST) [9]. Six standard benchmarks include

ICDAR 2013 (IC13) [18], ICDAR 2015 (IC15) [17], IIIT 5K-

Words (IIIT) [27], Street View Text (SVT) [42], Street View

Text-Perspective (SVTP) [30] and CUTE80 (CUTE) [31]

are as the testing datasets. Details of these datasets can be

found in the previous works [52]. In addition, Uber-Text [55]

removing the labels is used as unlabeled dataset to evaluate

the semi-supervised method.

The model dimension C is set to 512 throughout. There

are 4 layers in BCN with 8 attention heads each layer. Bal-

anced factors λv, λl are set to 1, 1 respectively. Images are

directly resized to 32× 128 with data augmentation such as

geometry transformation (i.e., rotation, affine and perspec-

tive), image quality deterioration and color jitter, etc. We use
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Table 1. Ablation study of VM. Attn is the attention method and

Trm Layer is the layer number of Transformer. SV, MV1, MV2 and

LV are four VMs in different configurations.
Model

Attn
Trm IC13 SVT IIIT

Avg
Params Time3

Name Layer IC15 SVTP CUTE (×106) (ms)

SV
parallel 2

94.2 89.6 93.7
88.8 19.6 12.5

(small) 80.6 82.3 85.1

MV1 position 2
93.6 89.3 94.2

89.0 20.4 14.9
(middle) 80.8 83.1 85.4

MV2 parallel 3
94.5 89.5 94.3

89.4 22.8 14.8
(middle) 81.1 83.7 86.8

LV
position 3

94.9 90.4 94.6
89.8 23.5 16.7

(large) 81.7 84.2 86.5

Table 2. Ablation study of autonomous strategy. PVM is pre-

training VM on MJ and ST in supervised way. PLMin is pre-

training LM using text on MJ and ST in self-supervised way.

PLMout is pre-training LM on WikiText-103 [26] in self-supervised

way. AGF means allowing gradient flow between VM and LM.

PVM PLMin PLMout AGF
IC13 SVT IIIT

Avg
IC15 SVTP CUTE

- - - -
96.7 93.4 95.7

91.7
84.5 86.8 86.8

✓ - - -
97.0 93.0 96.3

92.3
85.0 88.5 89.2

- ✓ - -
97.1 93.8 95.5

91.6
83.6 88.1 86.8

✓ ✓ - -
97.2 93.5 96.3

92.3
84.9 89.0 88.5

✓ - ✓ -
97.0 93.7 96.5

92.5
85.3 88.5 89.6

✓ - - ✓
96.7 92.6 95.7

91.4
83.3 86.5 88.5

4 NVIDIA 1080Ti GPUs to train our models with batch size

384. ADAM optimizer is adopted with the initial learning

rate 1e−4, which is decayed to 1e−5 after 6 epochs.

4.2. Ablation Study

4.2.1 Vision Model

Firstly, we discuss the performance of VM from two aspects:

feature extraction and sequence modeling. Experiment re-

sults are recorded in Tab. 1. The parallel attention is a

popular attention method [25, 52], and the proposed position

attention has a more powerful representation of key/value

vectors. From the statistics we can conclude: 1) simply up-

grading the VM will result in great gains in accuracy but

at the cost of parameter and speed. 2) To upgrade the VM,

we can use the position attention in feature extraction and a

deeper transformer in sequence modeling.

4.2.2 Language Model

Autonomous Strategy. To analyze the autonomous mod-

els, we adopt the LV and BCN as VM and LM respectively.

From the results in Tab. 2 we can observe: 1) pre-training

VM is useful which boosts the accuracy about 0.6%-0.7%
on average; 2) the benefit of pre-training LM on the training

3Inference time is estimated using NVIDIA Tesla V100 by averaging 3

different trials.

Table 3. Ablation study of bidirectional representation.

Vision Language
IC13 SVT IIIT

Avg
Params Time

IC15 SVTP CUTE (×106) (ms)

SRN-U
96.0 90.3 94.9

90.2 32.8 19.1
81.9 86.0 85.4

SV SRN
96.3 90.9 95.0

90.6 45.4 24.2
82.6 86.4 87.5

BCN
96.7 91.7 95.3

91.0 32.8 19.5
83.1 86.2 88.9

SRN-U
96.0 91.2 96.2

91.5 36.7 22.1
84.0 86.8 87.8

LV SRN
96.8 92.3 96.3

91.9 49.3 26.9
84.2 87.9 88.2

BCN
97.0 93.0 96.3

92.3 36.7 22
85.0 88.5 89.2

Table 4. Top-5 accuracy of LMs in text spelling correction.
Language Model Character Accuracy Word Accuracy

SRN 78.3 27.6

BCN 82.8 41.9

datasets (i.e., MJ and ST) is negligible; 3) while pre-training

LM from an additional unlabeled dataset (e.g., WikiText-

103) is helpful even when the base model is in high accuracy.

The above observations suggest that it is useful for STR to

pre-train both VM and LM. Pre-training LM on additional

unlabeled datasets is more effective than on training datasets

since the limited text diversity and biased data distribution

are unable to facilitate the learning of a well-performed LM.

Also, pre-training LM on unlabeled datasets is cheap since

additional data is available easily.

Besides, by allowing gradient flow (AGF) between VM

and LM, the performance decreases 0.9% on average (Tab. 2.

We also notice that the training loss of AGF reduces sharply

to a lower value. This indicates that overfitting occurs in

LM as the VM helps to cheat in training, which might also

happen in implicitly language modeling. Therefore it is

crucial to enforce LM to learn independently by BGF. We

note that SRN [52] uses argmax operation after VM, which

is intrinsically a special case of BGF since argmax is non-

differentiable. Another advantage is that the autonomous

strategy makes the models a better interpretability, since we

can have a deep insight into the performance of LM (e.g.,

Tab. 4), which is infeasible in implicitly language modeling.

Bidirectional Representation. As the BCN is a variant of

Transformer, we compare BCN with its counterpart SRN.

The Transformer-based SRN [52] shows superior perfor-

mance which is an ensemble of unidirectional representation.

For fair comparison, experiments are conducted with the

same conditions except the networks. We use SV and LV as

the VMs to validate the effectiveness at different accuracy

levels. As depicted in Tab. 3, though BCN has similar pa-

rameters and inference speed as the unidirectional version of

SRN (SRN-U), it achieves competitive advantage in accuracy

under different VMs. Besides, compared with the bidirec-

tional SRN in ensemble, BCN shows better performance

especially on challenging datasets such as IC15 and CUTE.

Also, ABINet equipped with BCN is about 20%-25% faster
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Figure 5. Visualization of top-5 probability in BCN.

Table 5. Ablation study of iterative correction.

Model
Iteration IC13 SVT IIIT

Avg
Params Time

Number IC15 SVTP CUTE (×106) (ms)

SV 1
96.7 91.7 95.3

91.0 32.8 19.5
83.1 86.2 88.9

+ 2
97.2 91.8 95.4

91.2 32.8 24.5
83.3 86.4 89.2

BCN 3
97.1 93.0 95.4

91.4 32.8 31.6
83.4 86.7 89.6

LV 1
97.0 93.0 96.3

92.3 36.7 22
85.0 88.5 89.2

+ 2
97.1 93.4 96.3

92.4 36.7 27.3
85.2 88.7 89.6

BCN 3
97.3 94.0 96.4

92.6 36.7 33.9
85.5 89.1 89.2

than SRN, which is practical for large-scale tasks.

Section 3.2.1 has argued that the LMs can be viewed as

independent units to estimate the probability distribution of

spelling correction, and thus we conduct experiments from

this view. The training set is the text from MJ and ST. To

simulate spelling errors, the testing set is 20000 items which

are chosen randomly, where we add or remove a character

for 20% text, replace a character for 60% text and keep the

rest of the text unchangeable. From the results in Tab. 4, we

can see BCN outperforms SRN by 4.5% character accuracy

and 14.3% word accuracy, which indicates that BCN has a

more powerful ability in character-level language modeling.

To better understand how BCN works inside ABINet, we

visualize the top-5 probability in Fig. 5, which takes “today”

as an example. On the one hand, as “today” is a string

with semantic information, taking “-oday” and “tod-y” as

inputs, BCN can predict “t” and “a” with high confidence and

contribute to final fusion predictions. On the other hand, as

error characters “l” and “o” are noise for the rest predictions,

BCN becomes less confident and has little impact to final

predictions. Besides, if there are multiple error characters,

it is hard for BCN to restore correct text due to lacking of

enough context.

Iterative Correction. We apply SV and LV again with

BCN to demonstrate the performance of iterative correction

from different levels. Experiment results are given in Tab. 5,

where the iteration numbers are set to 1, 2 and 3 both in

training and testing. As can be seen from the results, iterating

the BCN 3 times can respectively boost the accuracy by

0.4%, 0.3% on average. Specifically, there are little gains on

IIIT which is a relatively easy dataset with clear character

appearance. However, when it comes to other harder datasets

Figure 6. Accuracy of iterating BCN in training and testing.

earning earni g 
earnin  earning

available availall  .   
availabl   available

betty betin 
betiy  betty

school sehdol 
scnool school

bookstore booksstre 
booksttre bookstore

jeanswear isanswear 
iaanswear jeanswear

belgium belyjum 
belyium belgium

christmas  chyustmaa 
chrustmaa christmas

Figure 7. Successful examples using iterative correction. Text

strings are ground truth, vision prediction, fusion prediction without

iterative correction and with iterative correction respectively from

left to right and top to bottom.

such as IC15, SVT and SVTP, the iterative correction steadily

increases the accuracy and achieves up to 1.3% and 1.0%
improvement on SVT for SV and LV respectively. It is

also noted that the inference time increases linearly with the

iteration number.

We further explore the difference of iteration between

training and testing. The fluctuation of average accuracy in

Fig. 6 suggests that: 1) directly applying iterative correction

in testing also works well; 2) while iterating in training is

beneficial since it provides additional training samples for

LM; 3) the accuracy reaches a saturated state when iterating

the model more than 3 times, and therefore a big iteration

number is unnecessary.

To have a comprehensive cognition about iterative cor-

rection, we visualize the intermediate predictions in Fig. 7.

Typically, the vision predictions can be revised approaching

to ground truth while remain errors in some cases. After

multiple iterations, the predictions can be corrected finally.

Besides, we also observe that iterative correction is able to

alleviate the unaligned-length problem, as shown in the last

column in Fig. 7.

From the ablation study we can conclude: 1) the bidirec-

tional BCN is a powerful LM which can effectively improve

the performance both in accuracy and speed. 2) By further

equipping BCN with iterative correction, the noise input

problem can be alleviated, which is recommended to deal

with challenging examples such as low-quality images at the

expense of incremental computations.

4.3. Comparisons with State-of-the-Arts

Generally, it is not an easy job to fairly compare with

other methods directly using the reported statistics [2], as

differences might exist in backbone (i.e., CNN structure and
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Table 6. Accuracy comparison with other methods.

Methods
Labeled Unlabeled Regular Text Irregular Text

Datasets Datasets IC13 SVT IIIT IC15 SVTP CUTE
S

O
T

A
m

et
h

o
d

s
2019 Lyu et al. [25] (Parallel) MJ+ST - 92.7 90.1 94.0 76.3 82.3 86.8

2019 Liao et al. [22] (SAM) MJ+ST - 95.3 90.6 93.9 77.3 82.2 87.8

2020 Qiao et al. [29] (SE-ASTER) MJ+ST - 92.8 89.6 93.8 80.0 81.4 83.6

2020 Wan et al. [40] (Textscanner) MJ+ST - 92.9 90.1 93.9 79.4 84.3 83.3

2020 Wang et al. [44] (DAN) MJ+ST - 93.9 89.2 94.3 74.5 80.0 84.4

2020 Yue et al. [53] (RobustScanner) MJ+ST - 94.8 88.1 95.3 77.1 79.5 90.3

2020 Yu et al. [52] (SRN) MJ+ST - 95.5 91.5 94.8 82.7 85.1 87.8

O
u

rs

SRN-SV (Reproduced) MJ+ST - 96.3 90.9 95.0 82.6 86.4 87.5

ABINet-SV MJ+ST - 96.8 93.2 95.4 84.0 87.0 88.9

SRN-LV (Reproduced) MJ+ST - 96.8 92.3 96.3 84.2 87.9 88.2

ABINet-LV MJ+ST - 97.4 93.5 96.2 86.0 89.3 89.2

ABINet-LVst MJ+ST Uber-Text 97.3 94.9 96.8 87.4 90.1 93.4

ABINet-LVest MJ+ST Uber-Text 97.7 95.5 97.2 86.9 89.9 94.1

oscar

anaheim museumcrush

special epidor

mandarin

little

Figure 8. Hard examples successfully recognized by ABINet-LVest.

parameters), data processing (i.e., images rectification and

data augmentation) and training tricks, etc. To strictly per-

form fair comparison, we reproduce the SOTA algorithm

SRN which shares the same experiment configuration with

ABINet, as presented in Tab. 6. The two reimplemented

SRN-SV and SRN-LV are slightly different from the re-

ported model by replacing VMs, removing the side-effect

of multi-scales training, applying decayed learning rate, etc.

Note that SRN-SV performs somewhat better than SRN due

to the above tricks. As can be seen from the comparison, our

ABINet-SV outperforms SRN-SV with 0.5%, 2.3%, 0.4%,

1.4%, 0.6%, 1.4% on IC13, SVT, IIIT, IC15, SVTP and

CUTE datasets respectively. Also, the ABINet-LV with a

more strong VM achieve an improvement of 0.6%, 1.2%,

1.8%, 1.4%, 1.0% on IC13, SVT, IC15, SVTP and CUTE

benchmarks over its counterpart.

Compared with recent SOTA works that are trained on MJ

and ST, ABINet also shows impressive performance (Tab. 6).

Especially, ABINet has prominent superiority on SVT, SVTP

and IC15 as these datasets contain a large amount of low-

quality images such as noise and blurred images, which the

VM is not able to confidently recognize. Besides, we also

find that images with unusual-font and irregular text can be

successfully recognized as the linguistic information acts

as an important complement to visual feature. Therefore

ABINet can obtain second best result on CUTE even without

image rectification.

4.4. Semi-Supervised Training

To further push the boundary of accurate reading, we

explore a semi-supervised method which utilizes MJ and

ST as the labeled datasets and Uber-Text as the unlabeled

dataset. The threshold Q in Section 3.5 is set to 0.9, and the

batch size of Bl and Bu are 256 and 128 respectively. Exper-

iment results in Tab. 6 show that the proposed self-training

method ABINet-LVst can easily outperform ABINet-LV

on all benchmark datasets. Besides, the ensemble self-

training ABINet-LVest shows a more stable performance

by improving the efficiency of data utilization. Observing

the boosted results we find that hard examples with scarce

fonts and blurred appearance can also be recognized fre-

quently (Fig. 8), which suggests that exploring the semi-

/unsupervised learning methods is a promising direction for

scene text recognition.

5. Conclusion

In this paper, we propose ABINet which explores effec-

tive approaches for utilizing linguistic knowledge in scene

text recognition. The ABINet is 1) autonomous that im-

proves the ability of language model by enforcing learning

explicitly; 2) bidirectional that learns text representation

by jointly conditioning on character context at both sides;

and 3) iterative that corrects the prediction progressively to

alleviate the impact of noise input. Based on the ABINet

we further propose an ensemble self-training method for

semi-supervised learning. Experiment results on standard

benchmarks demonstrate the superiority of ABINet espe-

cially on low-quality images. In addition, we also claim

that exploiting unlabeled data is possible and promising for

achieving human-level recognition.
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