
Readactor: Practical Code Randomization Resilient to Memory Disclosure

Stephen Crane∗, Christopher Liebchen†, Andrei Homescu∗, Lucas Davi†,
Per Larsen∗, Ahmad-Reza Sadeghi†, Stefan Brunthaler∗, Michael Franz∗

∗University of California, Irvine.
{sjcrane,ahomescu,perl,s.brunthaler,franz}@uci.edu

†CASED/Technische Universität Darmstadt, Germany.
{lucas.davi,christopher.liebchen,ahmad.sadeghi}@trust.cased.de

Abstract—Code-reuse attacks such as return-oriented pro-
gramming (ROP) pose a severe threat to modern software.
Designing practical and effective defenses against code-reuse
attacks is highly challenging. One line of defense builds upon
fine-grained code diversification to prevent the adversary from
constructing a reliable code-reuse attack. However, all solutions
proposed so far are either vulnerable to memory disclosure or
are impractical for deployment on commodity systems.

In this paper, we address the deficiencies of existing solutions
and present the first practical, fine-grained code randomization
defense, called Readactor, resilient to both static and dynamic
ROP attacks. We distinguish between direct memory disclosure,
where the attacker reads code pages, and indirect memory
disclosure, where attackers use code pointers on data pages
to infer the code layout without reading code pages. Unlike
previous work, Readactor resists both types of memory disclosure.
Moreover, our technique protects both statically and dynamically
generated code. We use a new compiler-based code generation
paradigm that uses hardware features provided by modern CPUs
to enable execute-only memory and hide code pointers from
leakage to the adversary. Finally, our extensive evaluation shows
that our approach is practical—we protect the entire Google
Chromium browser and its V8 JIT compiler—and efficient with
an average SPEC CPU2006 performance overhead of only 6.4%.

I. INTRODUCTION

Design and implementation of practical and resilient de-
fenses against code-reuse attacks is challenging, and many
defenses have been proposed over the last few years. So
far, these defense mechanisms can roughly be classified into
two primary categories: control-flow integrity (CFI) and code
randomization. CFI, when properly implemented [2], prevents
attackers from executing control-flow edges outside a static
control-flow graph (CFG) [3]. However, fine-grained CFI
solutions suffer from performance problems and the precision
of the CFI policy is only as good as that of the underlying CFG.
Obtaining a completely precise CFG is generally not possible,
even with source code. Recent work on control-flow integrity
has therefore focused on coarse-grained solutions that trade
security for performance [17, 25, 50, 67, 69]. Unfortunately,
all of these solutions have been successfully bypassed due to
their imprecise CFI policies [13, 20, 29, 30, 55].

Code randomization (see [40] for an overview), on the
other hand, has suffered a blow from information disclosure,
which breaks the fundamental memory secrecy assumption
of randomization, namely, that the code layout of a running
program is unknown to attackers [61]. We distinguish between
two types of memory disclosure: direct and indirect. In a
direct memory disclosure attack, the adversary reads code
pages directly and mounts a return-oriented programming (ROP)

attack based on the leakage of code pointers embedded in
instructions residing on code pages, as shown in the just-in-
time code-reuse (JIT-ROP) attack [59]. In an indirect memory
disclosure attack, the adversary reads multiple code pointers
that are located on data pages (e.g., stack and heap) to infer the
memory layout of an application (as we show in an experiment
in Section III).

Since randomization is known to be efficient [22, 34],
recently proposed defenses [6, 7] focus on reducing or elimi-
nating memory disclosure. For instance, Oxymoron [6] aims at
hiding direct code and data references in instructions, whereas
Execute-no-Read (XnR) marks all memory pages (except a
sliding window) as non-accessible to prevent memory pages
from being dynamically read and disassembled [7]. However,
information disclosure is surprisingly hard to prevent. As
we explain in Section III, none of these techniques provide
sufficient protection against memory disclosure and can be
bypassed. They are also not sufficiently practical to protect
complex applications such as web browsers that contain just-
in-time compilers. Finally, we note that Szekeres et al. [62]
propose a different approach called Code-Pointer Integrity (CPI)
which separates code pointers from non-control data. Kuznetsov
et al. [39] implement CPI by placing all code pointers in a
secure region which (in 64-bit mode) is hidden by randomizing
its offset in the virtual address space. However, Evans et al. [23]
successfully bypass this CPI implementation using side-channel
attacks enabled by the large size of the secure region.

Goals and contributions. In this paper, we focus on code
randomization. Our goal is to tackle the shortcomings of
existing defenses by closing memory disclosure channels
while using a reasonable granularity of code randomization.
We classify information disclosure sources into direct and
indirect memory leakage. We then present the design and
implementation of Readactor, the first practical fine-grained
code randomization defense that resists both classes of memory
disclosure attacks. Our defense combines novel compiler
transformations with a hardware-based enforcement mechanism
that prevents adversaries from reading any code. Specifically, we
use virtualization support in current, commodity Intel processors
to enforce execute-only pages [35]. This support allows us to
avoid two important shortcomings of prior work [7, 27]: either
requiring a sliding window of readable code or legacy hardware,
respectively. Our main contributions are:

• Comprehensive ROP resilience. Readactor prevents
all existing ROP attacks: conventional ROP [58], ROP
without returns [14], and dynamic ROP [9, 59]. Most
importantly, Readactor improves the state of the art

in JIT-ROP defenses by preventing indirect memory
disclosure through code-pointer hiding.

• Novel techniques. We introduce compiler transfor-
mations that extend execute-only memory to protect
against the new class of indirect information disclosure.
We also present a new way to implement execute-only
memory that leverages hardware-accelerated memory
protections.

• Covering statically & dynamically generated code.
We introduce the first technique that extends coverage
of execute-only memory to secure just-in-time (JIT)
compiled code.

• Realistic and extensive evaluation. We provide a full-
fledged prototype implementation of Readactor that
diversifies applications, and present the results of a
detailed evaluation. We report an average overhead
of 6.4% on compute-intensive benchmarks. Moreover,
our solution scales beyond benchmarks to programs as
complex as Google’s popular Chromium web browser.

II. RETURN-ORIENTED PROGRAMMING

In general, code-reuse attacks execute benign and legitimate
code to perform illegal actions. To do so, the adversary exploits
a memory corruption error (such as a buffer overflow) to transfer
control to existing instruction sequences that are chained
together to perform the malicious behavior.

The most common code-reuse technique is return-oriented
programming (ROP) [53]. The basic idea of ROP is to invoke
short instruction sequences (gadgets, in ROP parlance) one after
another. To successfully launch an attack, the adversary first
needs to identify—using an offline static analysis phase—which
gadgets and library functions satisfy the attack goal. Once all
gadgets are identified, the adversary injects pointers into the
data area of the application, where each pointer references a
gadget.

For a conventional stack-overflow vulnerability, the adver-
sary writes the pointers onto the stack and overwrites the return
address of the vulnerable function with the address of the first
gadget. This can be achieved by overflowing a stack-allocated
buffer and writing a new pointer address to the stack slot
containing the return address.

Once the vulnerable function executes a return instruction,
the control flow is redirected to the first gadget, which itself
ends with a return instruction. Return instructions play an
important role1 as they are responsible for chaining multiple
sequences together. This attack principle has been shown to
be Turing-complete, meaning that the adversary can perform
arbitrary, malicious computations [53].

III. THE THREAT OF MEMORY DISCLOSURE

Simple code randomization such as address space layout
randomization (ASLR) complicates ROP attacks by randomiz-
ing the base addresses of code segments. Hence, the adversary
must guess where the required instruction sequences reside
in memory. Recent research has shown that randomization

1ROP does not necessarily require return instructions, but can leverage
indirect jumps or calls to execute a chain of ROP gadgets [12, 14].

JMP label

CALL Func_A

Code page 1

Readable-writable

Readable-executable

Direct
disclosure

Adversary

Function pointer 2

Return address

Stack / Heap

label:
asm_ins
asm_ins
...

Func_A:
asm_ins
asm_ins
...

Code page 2 Code page 3

Indirect

disclosure

Data pages

Function pointer 1

Code pages

Figure 1: Direct and indirect memory disclosure.

at the level of functions, basic blocks, or individual instruc-
tions enhances security (see [40] for a detailed overview of
fine-grained code randomization) relative to ASLR because
these approaches randomize the internal code structure of an
application.

However, the adversary can sometimes use memory disclo-
sure vulnerabilities to learn the memory layout and randomized
locations of machine code in an application. Using this
information, the adversary can reliably infer the runtime
addresses of instruction sequences and bypass the underlying
code randomization. In general, the adversary can launch direct
and indirect memory disclosure attacks; Figure 1 illustrates
both classes of disclosure.

In a direct memory disclosure attack, the adversary is
able to directly read code pointers from code pages. Such
pointers are typically embedded in direct branch instructions
such as direct jumps and calls. The top of Figure 1 shows how
the adversary can access a single code page (code page 1),
dynamically disassemble it, and identify other code pages
(pages 2 and 3) via direct call and jump instructions. By
performing this recursive disassembly process on-the-fly, the
adversary can directly disclose all gadgets needed to relocate
a ROP attack to match the diversified code [59].

Two protection methods have been proposed to prevent
direct memory disclosure: rewriting inter-page references and
redirecting attempts to read code pages. In the first approach,
direct code references in calls and jumps between code pages
are replaced by indirect branches to prevent the adversary
from following these code pointers [6]. A conceptually simpler
alternative is to prevent read access to code pages that are not
currently executing [7], e.g., code page 2 and 3 in Figure 1.

Unfortunately, obfuscating code pointers between pages
does not prevent indirect memory disclosure attacks, where
the adversary only harvests code pointers stored on the data
pages of the application which are necessarily readable (e.g., the
stack and heap). Examples of such pointers are return addresses
and function pointers on the stack, and code pointers in C++
virtual method tables (vtables). We conducted experiments that
indicate that the adversary can bypass countermeasures that

only hide code pointers in direct calls and jumps. We collected
code addresses from virtual table pointers on the heap, and
disassembled code pages to identify useful gadgets, similar to
the original JIT-ROP attack. We found 144 virtual function
pointers pointing to 74 code pages in IE 8 and showed that it
is possible to construct a JIT-ROP attack from those 74 code
pages [21]. We call this updated attack indirect JIT-ROP to
distinguish it from the original JIT-ROP attack that directly
reads the code layout.

We must also consider whether preventing read access
to code pages suffices to protect against indirect memory
disclosure vulnerabilities. Since code pages are not readable,
the adversary cannot disassemble code to construct an attack.
The adversary still gains information from leaked code pointers,
however, as our experiment on indirect JIT-ROP demonstrates.
By leaking pointers to known code locations, the adversary
is able to infer the contents of code surrounding the pointer
targets. The severity of this threat depends on the type of code
randomization that is deployed in conjunction with non-readable
code pages. For example, if function permutation is used, each
leaked code pointer allows the adversary to correctly infer the
location and the entire content of the function surrounding
the leaked code address, since there is no randomization used
within functions. Thus, the security of making code pages non-
readable depends on the granularity of the code randomization.

IV. ADVERSARY MODEL AND ASSUMPTIONS

Our defense against all known variants of return-oriented
programming attacks builds on the following assumptions and
adversary model:

• The target system provides built-in protection against
code injection attacks. Today, all modern processors
and operating systems support data execution preven-
tion (DEP) to prevent code injection.

• The adversary cannot tamper with our implementation
of Readactor.

• The adversary has no a priori knowledge of the in-
memory code layout. We ensure this through the use
of fine-grained diversification.

• The target program suffers at least from one memory
corruption vulnerability which allows the adversary to
hijack the control-flow.

• The adversary knows the software configuration and
defenses on the target platform, as well as the source
code of the target application.

• The adversary is able to read and analyze any readable
memory location in the target process.

Our adversary model is consistent with prior offensive and
defensive work, particularly the powerful model introduced in
JIT-ROP [59].

We cannot rule out the existence of timing, cache, and
fault side channels that can leak information about the code
layout to attackers. Although information disclosure through
side-channels is outside the scope of this paper we note
that Readactor mitigates recent remote side-channel attacks
against diversified code since they also involve direct memory
disclosure [9, 57].

 Readactor Compiler

Code-data separation

Code diversification

Code-pointer hiding

// my first program

#include <iostream>

int main()

{

 std::cout <<

"Hello World!";

}

Readacted
Application

 Readacted Process

Kernel with Readactor Patch

using Page Table Virtualization (EPT)

Data
page 1

Read-write Execute-only

Data
page n

⠇

Code
page 1

Code
page n

⠇Trampolines

Source
Code

Figure 2: System overview. Our compiler generates diversified
code that can be mapped with execute-only permissions and
inserts trampolines to hide code pointers. We modify the kernel
to use EPT permissions to enable execute-only pages.

V. READACTOR DESIGN

Overview: Readactor protects against both direct and
indirect disclosure (see Section III). To handle attacks based
on direct disclosure, it leverages the virtualization capabilities
in commodity x86 processors to map code pages with execute-
only permissions at all times. Hence, in contrast to previous
related work [7], the adversary cannot read or disassemble a
code page at any time during program execution. To prevent
indirect disclosure attacks, Readactor hides the targets of all
function pointers and return addresses. We hide code pointers
by converting these into direct branches stored in a dedicated
trampoline code area with execute-only permissions. Code-
pointer hiding allows the use of practical and efficient fine-
grained code randomization, while maintaining security against
indirect memory disclosure.

Figure 2 shows the overall architecture of Readactor. Since
our approach benefits from precise control-flow information,
which binary analysis cannot provide, we opt for a compiler-
based solution. Our choice to use a compiler also improves the
efficiency and practicality of our solution. In particular, our
technique scales to complex, real-world software: the Chromium
web browser and its V8 JavaScript engine (see Section X).
However, diversification could instead be done at program load-
time, protecting against theft of the on-disk representation of
the program.

As shown on the left of Figure 2, our compiler converts
unmodified source code into a readacted application. It does
so by (i) separating code and data to eliminate benign read
accesses to code pages, (ii) randomizing the code layout,
and (iii) emitting trampoline code to hide code pointers from
the adversary. The right side of Figure 2 illustrates how our
patched kernel maps all executable code pages with execute-
only permissions at runtime. We do not alter the permissions
of data areas, including the stack and heap. Hence, these are
still readable and writable.

Code-Pointer Hiding: In an ideal fine-grained code ran-
domization scheme, the content and location of every single
instruction is random. Execute-only pages offer sufficient protec-

Function pointer 1

Return address

Stack / Heap

Data pages (readable-writeable)

Function A:
asm_ins
asm_ins
JUMP Trampoline B
Call_Site_B:
...

Code page (execute-only)

Trampoline A

Code page (execute-only)

Trampoline B

Readactor

Trampolines

Data reference to code Code reference to code

Figure 3: Readacted applications replace code pointers in
readable memory with trampoline pointers. The trampoline
layout is not correlated with the function layout. Therefore,
trampoline addresses do not leak information about the code
to which they point.

tion against all forms of memory disclosure at this granularity,
since indirect disclosure of a code address gives the adversary
no information about the location of any other instruction.
However, ideal fine-grained randomization is inefficient and
does not allow code sharing between processes. Hence, practical
protection schemes randomize code at a coarser granularity to
reduce the performance overhead [40]. Efficient use of modern
processor instruction caches requires that frequently executed
instructions are adjacent, e.g., in sequential basic blocks.
Furthermore, randomization schemes such as Oxymoron [6]
that allow code pages to be shared between processes lead to
significantly lower memory usage but randomize at an even
coarser granularity (i.e., page-level randomization).

To relax the requirement of ideal fine-grained code random-
ization, we observe that indirect JIT-ROP relies on disclosing
code pointers in readable memory. The sources of code pointers
in data pages are (i) C++ virtual tables, (ii) function pointers
stored on the stack and heap, (iii) return addresses, (iv) dynamic
linker structures (i.e., the global offset table on Linux), and
(v) C++ exception handling. Our prototype system currently
handles sources (i)-(iv); protecting code pointers related to C++
exceptions is an ongoing effort requiring additional compiler
modifications which we discuss in Section VII-C.

Figure 3 illustrates our high-level technique to hide code
pointers from readable memory pages. Whenever the program
takes the address of a code location to store in readable memory,
we instead store a pointer to a corresponding trampoline.
Function pointers, for example, now point to trampolines
rather than functions. When a call is made via Function

pointer 1 in Figure 3, the execution is redirected to a
Readactor trampoline (Trampoline A), which then branches
directly to Function A.

Because trampolines are located in execute-only memory
and because the trampoline layout is not correlated with
the layout of functions, trampoline addresses do not leak
information about non-trampoline code. Hence, trampolines
protect the original code pages from indirect memory disclosure
(see Section VII-C for details). This combination allows us to
use a more practical fine-grained randomization scheme, e.g.,
function permutation and register randomization, which adds
negligible performance overhead and aligns with current cache
models.

For a more detailed pictorial overview of the design
of Readactor, see Appendix A. In the following sections,

Virtual

Memory

CODE
Page 1

DATA
Page 2

Page

Table

read-
execute

read-write

Guest

Physical

Memory

Page 1

…
Page 2

…

EPT

execute-
only

…
read-write

…

Host

Physical

Memory

Page 1

…
Page 2

…

Figure 4: Relation between virtual, guest physical, and host
physical memory. Page tables and the EPT contain the access
permissions that are enforced during the address translation.

we describe each component of Readactor in detail. First,
we describe how we enable hardware-assisted execute-only
permission on code pages (Section VI). We then present
our augmented compiler that implements fine-grained code
randomization and code-pointer hiding (Section VII). Finally,
in Section VIII we explain how we extended our approach to
also protect just-in-time compiled code.

VI. READACTOR – EXECUTE-ONLY MEMORY

Enforcing execute-only memory for all executable code is
one of the key components of our system. Below we discuss
the challenges of implementing hardware enforced execute-only
memory on the x86 architecture.

A. Extended Page Tables

The x86 architecture provides two hardware mechanisms to
enforce memory protection: segmentation and paging. Segmen-
tation is a legacy feature and is fully supported only in 32-bit
mode. In contrast, paging is used by modern operating systems
to enforce memory protection. While modern x86 CPUs include
a permission to mark memory as non-executable [4, 35], it
used to be impossible to mark memory as executable and non-
readable at the same time. This changed in late 2008 when
Intel introduced a new virtualization feature called Extended
Page Tables (EPTs) [35]. Modern AMD processors contain a
similar feature called Rapid Virtualization Indexing.

Readactor uses EPTs to enforce execute-only page per-
missions in hardware. EPTs add an additional abstraction
layer during the memory translation. Just as standard paging
translates virtual memory addresses to physical addresses, EPTs
translate the physical addresses of a virtual machine (VM)—the
so-called guest physical memory—to real physical addresses
or host physical memory. The access permissions of each
page are enforced during the respective translations. Hence,
the final permission is determined by the intersection of the
permissions of both translations. EPTs conveniently allow us
to enforce (non-)readable, (non-)writable, and (non-)executable
memory permissions independently, thereby enabling efficient
enforcement of execute-only code pages.

Figure 4 shows the role of the page table and the EPT during
the translation from a virtual page to a host physical page. In
this example, the loaded application consists of two pages: a
code page, marked execute-only, and a data page marked as
readable and writable. These page permissions are set by the

compiler and linker. If a code page is labeled with only execute
permission, the operating system sets the page to point to a
page marked execute-only in the EPT. Note that access control
is enforced for each translation step. Hence, a read operation
on the code page is allowed during the translation of the virtual
to the guest physical page. But, when the guest physical page is
translated to the host physical page, an access fault is generated,
because the EPT permission is set to execute-only. Similar to
the access permissions of a standard x86 page table, the EPT
permissions cannot be bypassed by software. However, EPTs
are only available when the operating system is executing as a
virtualized guest. The next section describes how we addressed
this challenge.

B. Hypervisor

Our approach can be used in two different scenarios:
software already operating inside a virtualized environment,
and software executing directly on physical hardware. For the
former case, common in cloud computing environments, the
execute-only interface can be implemented as an extension to
an existing hypervisor [43, 47, 48, 64, 66]. We chose to focus
on the second, non-virtualized scenario for two reasons: First,
while standard virtualization is common for cloud computing,
we want a more general approach that does not require the
use of a conventional hypervisor (and its associated overhead).
Many of the attacks we defend against (including our indirect
JIT-ROP attack in Section III) require some form of scripting
capability [15, 16, 20, 59] and therefore target software like
browsers and document viewers running on non-virtualized end-
user systems. Second, implementing a thin hypervisor allows us
to measure the overhead of our technique with greater precision.

Our hypervisor is designed to transparently transfer the
currently running operating system into a virtual environment
on-the-fly. Our thin hypervisor design is inspired by hypervisor
rootkits that transparently switch an operating system from
executing on physical hardware to executing inside a virtual
environment that hides the rootkit [38, 54]. Unlike rootkits,
however, our hypervisor interfaces with the operating system it
hosts by providing an interface to manage EPT permissions and
to forward EPT access violations to the OS. Our hypervisor
also has the capability to revert the virtualized operating system
back to direct hardware execution without rebooting if needed
for testing or error handling. For performance and security
reasons, we keep our hypervisor as small as possible; it uses
less than 500 lines of C code.

Figure 5 shows how we enable execute-only page permis-
sions by creating two mappings of the host physical memory:
a normal and a readacted mapping. The EPT permissions for
the normal mapping allow the conventional page table to fully
control the effective page permissions. As previously mentioned,
the final permission for a page is the intersection of the page
table permission and the EPT permission. Hence, setting the
EPT permissions to RWX for the normal mapping means that
only the permissions of the regular page table are enforced. We
set the EPT permissions for the readacted mapping to execute-
only so that any read or write access to an address using
this mapping results in an access fault. The operating system
can map virtual memory to physical memory using either of
these mappings. When a block of memory is mapped through
the readacted mapping, execute-only permissions are enforced.

Data
Pages

Code
Pages

MMU

Hypervisor

Operating
System

Processor

Access

Violations

Code
Pages

Data
Pages

Normal
mapping

Readacted
mapping

Readacted App Legacy App

Execute-onlyReadable-writable

Readable-executable

Figure 5: Readactor uses a thin hypervisor to enable the
extended page tables feature of modern x86 processors. Virtual
memory addresses of protected applications (top left) are
translated to physical memory using a readacted mapping to
allow execute-only permissions whereas legacy applications
(top right) use a normal mapping to preserve compatibility. The
hypervisor informs the operating systems of access violations.

When the normal mapping is used, executable memory is also
readable.

Our use of extended page tables is fully compatible with
legacy applications. Legacy applications can execute without
any modification when Readactor is active, because the normal
mapping is used by default. Readactor also supports code
sharing between legacy and readacted applications. Legacy
applications accessing readacted libraries will receive an
execute-only mapping of the library, thus securing the library
from disclosure. Readacted applications that require a legacy,
un-readacted library can load it normally, but the legacy library
will still be vulnerable to information disclosure.

C. Operating System

To simplify implementation and testing, our prototype
uses the Linux kernel. However, our fundamental approach is
operating system agnostic and can be ported to other operating
systems. We keep our patches to the Linux kernel as small
as possible (the patch contains 82 lines of code and simply
supports the mapping of execute-only pages). Our patch changes
how the Linux kernel writes page table entries. When a
readacted application requests execute-only memory, we set
the guest physical address to point to the readacted mapping
rather than the normal mapping.

VII. READACTOR – COMPILER INSTRUMENTATION

To support the Readactor protections, we modified the
LLVM compiler infrastructure [41] to (i) generate diversified
code, (ii) prevent benign code from reading data residing in
code pages, and (iii) prevent the adversary from exploiting
code pointers to perform indirect disclosure attacks.

Legacy Application Readacted Application

LOAD!reg1!⟵jump_table

JUMP!MEM[reg1!+!index]

addr_case1

addr_case2

addr_case3

jump_table:

LOAD!reg1!⟵jump_table

JUMP!reg1!+!index

JUMP!addr_case1

JUMP!addr_case2

JUMP!addr_case3

jump_table:

Code page (readable-executable) Code page (execute-only)

Direct disclosure
possible Adversary

Read access
prevented by
Readactor

Figure 6: We rewrite switch-case tables to be executable
instructions, rather than data embedded in executable code.

A. Fine-grained Code Diversification

Our compiler supports several fine-grained code random-
ization techniques: function permutation, basic-block insertion,
NOP (no-operation) insertion, instruction schedule random-
ization, equivalent instruction substitution, register allocation
randomization, and callee-saved register save slot reordering.
The last technique randomizes the stack locations that a
function uses to save and restore register values that it must
preserve during its execution. In our prototype implementation
of Readactor, we use function permutation [37], register
allocation randomization, and callee-saved register save slot
reordering [49]. We selected these transformations because
they permute the code layout effectively, have low performance
impact, and make the dataflow between gadgets unpredictable.

Our prototype implementation performs fine-grained code
randomization at compile-time. With additional implementation
effort, we can make the compiler emit binaries that randomize
themselves at load-time [8, 44, 65]. Self-randomizing binaries
eliminate the need to generate and distribute multiple distinct
binaries, which improves the practicality of diversity. However,
the security properties of compile-time and load-time solutions
are largely similar. Hence, we focus on how to randomize pro-
grams and how to protect the code from disclosure irrespective
of when randomization happens.

B. Code and Data Separation

To increase efficiency, compilers sometimes intersperse code
and data. Since Readactor enforces execute-only permissions
for code pages, we must prevent the compiler from embedding
data in the code it generates. That is, we must generate Harvard-
architecture compatible code. If we do not strictly separate code
and data, we run the risk of raising false alarms as a result of
benign attempts to read data from code pages.

We found that the LLVM compiler only emits data in the
executable .text section of x86 binaries when optimizing a
switch-case statement. LLVM emits the basic block address
corresponding to each switch-case in a table after the current
function. As shown in the left part of Figure 6, the switch
statement is then implemented as a load from this table and
an indirect branch to the loaded address.

Our compiler translates switch statements to a table of
direct branches rather than a list of code pointers that an
attacker can read. Each direct branch targets the first basic
block corresponding to a switch-case. The switch statement
is then generated as an indirect branch into the sequence
of direct branches rather than an indirect load and branch
sequence. This entirely avoids emitting the switch-case pointers
as data, thereby making LLVM generate x86 code compatible
with execute-only permissions. Figure 6 shows how code
pointers (addr_case1. . .addr_case3) are converted to
direct jumps in an example switch-case statement. We quantify
the impact of this compiler transformation in Section X.

While examining x86 binaries on Linux, we noticed that
contemporary linkers include both the readable ELF header
data and executable code on the first page of the mapped ELF
file. Hence, we created a patch for both the BFD and Gold
linkers to start the executable code on a separate page from
the readable ELF headers and to adjust the page permissions
appropriately. This separation allows the ELF loader to map
the headers as readable while mapping the first code page as
execute-only.

C. Code-Pointer Hiding

Making code non-readable prevents the original JIT-ROP
attack but not indirect JIT-ROP. In the latter attack, an attacker
combines pointer harvesting with partial a priori knowledge of
the code layout, e.g., the layout of individual code pages or
functions (cf. Section III). To thwart indirect JIT-ROP, we hide
code pointers so they are no longer stored in readable memory
pages.

We protect against the sources of indirect code disclosure
identified in Section V by adding a level of indirection to code
pointers. The two steps in code-pointer hiding are (i) creating
trampolines for each instruction reachable through an indirect
branch and (ii) replacing all code pointers in readable memory
with trampoline pointers. We use two kinds of trampolines:
jump trampolines and call trampolines, to protect function
addresses and call sites respectively.

We generate a jump trampoline for each function that has
its address taken. Figure 7 shows how we replace a vtable and
function pointer with pointers to jump trampolines. For example,
when a call is made through funcPtr_trampoline, execution is
redirected to the original target of the call: Function_B.

The call trampolines that hide return addresses on the stack
are shown in Figure 8. Normally, a call to Method_A will
push the address of the following instruction (call_site_1) onto
the stack. The Readactor compiler moves the call into a call
trampoline such that the return address that is pushed onto
the stack points to the call trampoline rather than the calling
function. When the callee returns to the call trampoline, a direct
branch transfers execution back to the original caller. Like jump
trampolines, call trampolines cannot be read by attackers and
therefore do not leak information about the function layout.

A final source of indirect code leakage is related to C++
exception handling. When an exception occurs, the C++ runtime
library must unwind the stack, which is the process of walking
back up the call chain and destroying locally allocated objects
until an appropriate exception handler is found. Modern C++

Legacy Application Readacted Application

Data page (read-write)

Indirect disclosure possible Adversary

vTable:
vTable pointer
…

C++ object:
Function pointer
…

Method_A:
asm_ins
asm_ins

Function_B:
asm_ins
asm_ins

Code page (read-execute) Data page (read-write)

vTable:
vTable_trampoline
…

C++ object:
funcPtr_trampoline
…

Method_A:
asm_ins
asm_ins

Function_B:
asm_ins
asm_ins

Diversified

Code page (execute-only)

Trampolines:
JUMP Method_A
JUMP …
JUMP Function_B

Read access prevented
by Readactor

Data reference to code

Code reference to code

Figure 7: Hiding code pointers stored in the heap and in C++ vtables. Without Readactor, pointers to functions and methods may
leak (left). With Readactor, only pointers to jump trampolines may leak and the layouts of functions and jump trampolines are
randomized (right).

Legacy Application Readacted Application

Stack page (read-write)

Indirect disclosure possible Adversary

Read access prevented
by Readactor

Return_addr_1

Return_addr_2

CALL Method_A
call_site_1:

CALL Function_B
call_site_2:

Code page (read-execute) Stack page (read-write)

Ret_trampoline_1

Ret_trampoline_2

JUMP Function_B_tramp
call_site_2:

JUMP Method_A_tramp
call_site_1:

Diversified

Code page (execute-only)

Trampolines:

CALL Method_A
JUMP call_site_1
CALL Function_B
JUMP call_site_2

Data reference to code

Code reference to code

Figure 8: Hiding return addresses stored on the machine stack. Without Readactor, each activation frame on the stack leaks the
location of a function (left). With Readactor, calls go through call trampolines so the return addresses pushed on the stack can
only leak trampoline locations – not return sites (right).

compilers implement efficient exception handling by generating
an exception handling (EH) table that informs the unwinding
routine of the stack contents. These data tables are stored in
readable memory during execution and contain the range of
code addresses for each function and the information to unwind
each stack frame. During stack unwinding, the C++ runtime
library locates the exception handling entry for each return
address encountered on the stack. Since our call trampolines
push the address of a trampoline onto the stack rather than the
real return address, the runtime will try to locate the address
of the call trampoline in the exception handling tables. Hence,
we need to replace the real function bounds in the EH table
with the bounds of the trampolines for that function.

Our prototype compiler implementation does not rewrite the
EH table to refer to trampolines; however, doing so is merely a
matter of engineering effort. No aspect of our approach prevents
us from correctly supporting C++ exception handling. We
found that disabling C++ exception handling was not a critical

limitation in practice, since many C++ projects, including
Chromium, choose not to use C++ exceptions for performance
or compatibility reasons.

Handwritten assembly routines are occasionally used to
optimize performance critical program sections where standard
C/C++ code is insufficient. To prevent this assembly code from
leaking code pointers to the stack, we can rewrite it to use
trampolines at all call sites. Additionally, we can guarantee
that no code pointers are stored into readable memory from
assembly code. Our current implementation does not perform
such analysis and rewriting of handwritten assembly code but
again, doing so would involve no additional research.

While code pointers are hidden from adversaries, trampoline
pointers are stored in readable memory as shown on the right-
hand sides of Figures 7 and 8. Therefore, we must carefully
consider whether leaked trampoline pointers are useful to
adversaries. If the layout of trampolines is correlated with
the function layout, knowing the trampoline pointers informs

Function

Compilation

Generated

Code Exec.

Function

Optimization

Generated

Code Exec.
Garbage Collection

Modify Code Execute Code Modify Code Modify Code

Readable-writableExecute-only

…

Execute Code

Readacted
JIT Compiler

Figure 9: Timeline of the execution of a JIT-compiled program. Execution switches between the JIT compiler and generated code.

adversaries of the code layout. To ensure there is no correlation
between the layout of trampolines and functions, we permute
the list of trampolines. We also insert dummy entries into
the list of trampolines that consist of privileged instructions.
Hence, any attempts to guess the contents of the trampoline
list by executing them in a row will eventually trigger an
exception [19].

Each trampoline entry contains a direct jump that consists of
an opcode and an immediate operand encoding the destination
of the jump. Because we permute the order of functions,
the value of the immediate operand is randomized as a side
effect. This makes the contents of trampolines unpredictable to
attackers and prevents use of any unintended gadgets contained
in the immediate operands of direct jumps.

An attacker can use trampoline pointers just as they are
used by legitimate code: to execute the target of the trampoline
pointer without knowledge of the target address. Because we
only create trampolines for functions that have their address
taken and for all return sites, our code mechanism restricts
the attacker to reuse only function-entry gadgets and call-
preceded gadgets. Note that CFI-based defenses constrain
attackers similarly and some CFI implementations use trampo-
line mechanisms similar to ours [63, 67, 69]. Coarse-grained
CFI defenses are vulnerable to gadget stitching attacks where
adversaries construct ROP chains out of the types of gadgets
that are reachable via trampoline pointers [20, 29]. Although
gadget stitching attacks against Readactor will be hard to
construct because the required trampoline pointers may be
non-trivial to leak, we still included protection against such
attacks. We observe that gadget chains (including those that
bypass CFI) pass information from one gadget to another via
stack slots and registers. Because we perform register allocation
randomization and callee-saved register save slot reordering,
the attacker cannot predict how data flows through the gadgets
reachable via trampolines.

Modern processors have deep pipelines and fetch instruc-
tions long before they may be needed. On the one hand,
pipelining can hide the cost of the additional indirection
introduced by trampolines. On the other hand, we must ensure
that our use of trampolines to hide code pointers does not
increase the number of costly branch predictor misses that stall
the processor pipeline until the correct instructions are fetched.
Thanks to the use of a dedicated return-address stack in modern
branch predictor units, targets of function returns are rarely
mispredicted as long as function calls and returns are paired. By
preserving this pairing, we ensure that our trampolines do not
introduce additional branch predictor misses. We evaluate the
performance impact of jump and call trampolines in Section X.

VIII. READACTOR – JIT COMPILER PROTECTION

Web pages embed JavaScript code that must be executed
by the browser. The most effective way to execute JavaScript
(and other so called dynamic languages) is via JIT compilation,
which all major web browsers support. What sets just-in-time
compilers apart from their ahead-of-time counterparts is that
code generation happens dynamically at runtime. Consequently,
our compile-time techniques described in Section VII will
not protect dynamically generated code. To make our defense
practical and comprehensive, we extended our execute-only
memory to support dynamically compiled code. This section
describes how this was achieved for the V8 JavaScript engine
which is part of the Chromium web browser. We believe that
the method we used generalizes to other JIT compilers.

Modern JavaScript engines are tiered, which means that they
contain several JIT compilers. The V8 engine contains three JIT
compilers: a baseline compiler that produces unoptimized code
quickly and two optimizing compilers called CrankShaft and
TurboFan. Having multiple JIT compilers lets the JavaScript
engine focus the optimization effort on the most frequently
executed code. This matters because the time spent on code
optimization adds to the overall running time.

JIT engines cache the generated code to avoid continually
recompiling the same methods. Frequently executed methods
in the code cache are recompiled and replaced with optimized
versions. When the code cache grows beyond a certain size, it
is garbage collected by removing the least recently executed
methods. Since the code cache is continually updated, JIT
compilers typically allocate the code cache on pages with
RWX permissions. This means that, unlike statically generated
code, there is no easy way to eliminate reads and writes
to dynamically generated code without incurring a high
performance impact.

We apply the Readactor approach to dynamically generated
code in two steps. First, we modify the JIT compilers to separate
code and data in their output. Other V8 security extensions [5,
46, 60] require this separation as well to prevent code injection
attacks on the code cache, and Ansel et al. [5] also implement
it. Second, with code and data separated on different pages, we
then identify and modify all operations that require reads and
writes of generated code. The following sections discuss these
two steps in greater detail. Figure 9 shows the permissions of
the code cache over time after we modified the V8 engine. Our
changes to the V8 JavaScript engine adds a total of 1053 new
lines of C++ code across 67 different source files.

A. Separating Code and Data

The unmodified V8 JIT compiler translates one JavaScript
function at a time and places the results in a code cache

map_ptr

Execute-onlyReadable-writable

V8 Code object

code

code header

Readable-writable-executable

return map_ptr

CodeHeader object

return code_hdr_ptr

code

Legacy JIT Code Readacted JIT Code
V8 Code object

Map object

Map object

Figure 10: Transforming V8 Code objects to separate code
and data.

backed by pages with RWX permissions. Each translated
function is represented by a Code object in V8 as shown
on the left side of Figure 10. Each Code object contains
the generated sequence of native machine instructions, a code
header containing information about the machine code, and a
pointer to a Map object common to all V8 JavaScript objects.

To store Code objects on execute-only memory pages, we
move their data contents to separate data pages and make
this data accessible by adding new getter functions to the
Code object. To secure the code header, we move its contents
into a separate CodeHeader object located on page(s) with
RW permissions. We add a getter method to Code objects
that returns a pointer (code_hdr_ptr) to the CodeHeader
object. Similarly, we replace the map pointer (map_ptr) with
a getter that returns the map pointer when invoked. These
changes eliminate all read and write accesses to Code objects
(except during object creation and garbage collection) so they
can now be stored in execute-only memory; a transformed
Code object is shown on the right side of Figure 10.

B. Switching Between Execute-Only and RW Permissions

With this separation between code and data inside Code
objects, we guarantee that no JavaScript code needs to modify
the contents of executable pages. However, the JIT compiler
still needs to change code frequently. As Figure 9 shows,
execution alternates between the compiler and JavaScript
code, and changes to code can only come from the compiler.
Completely eliminating code writes from the compiler would
require a significant refactoring of V8 (due to extensive use
of inline caches, relocations and recompilation, which are
hard to completely eliminate), as well as incur a significant
performance hit. Instead, we observe that the generated code is
either executed or suspended so that it can be updated. During
execution, we map code with execute-only permissions, and
when execution is suspended, we temporarily remap it with
RW permissions. For both performance and security reasons,
we minimize the number of times we re-map pages, as well as
the length of time a page stays accessible. Each time a Code

object becomes writable, it provides a window for the attacker
to inject malicious code into that object.

Song et al. [60] recently demonstrated that an attack during
this window is feasible. They propose a defense based on
process separation, where the JIT compiler is located in a
separate process from the untrusted browser, and only the JIT
process can write to the generated code. This successfully
protects against code injection attacks against the code cache,
but not against disclosure of the generated code. In the untrusted
process, the generated code is mapped as read-only and
executable, but could instead be mapped as execute-only for use
with Readactor. We believe their solution is fully compatible
with and complementary to ours, and can be used to protect
the JIT from code injection.

IX. SECURITY EVALUATION

The main goal of Readactor is to prevent code-reuse attacks
constructed using either direct or indirect disclosure vulnerabil-
ities. Thus, we have analyzed and tested its effectiveness based
on five different variants of code-reuse attacks, namely (i) static
ROP attacks using direct and indirect disclosure, (ii) just-in-
time ROP attacks using direct disclosure, (iii) just-in-time ROP
attacks using indirect disclosure, (iv) ROP attacks on just-in-
time generated code, and (v) return-into-libc attacks. We present
a detailed discussion on each type of code-reuse attack and then
evaluate the effectiveness of Readactor using a sophisticated
proof-of-concept JIT-ROP exploit.

a) Static ROP: To launch a traditional ROP attack [14,
58], the adversary must know the runtime memory layout of
an application and identify ROP gadgets based on an offline
analysis phase. To defeat regular ASLR the adversary needs to
leak a single runtime address through either direct or indirect
disclosure. Afterwards, the addresses of all target gadgets can
be reliably determined.

Since Readactor performs fine-grained randomization using
function permutation, the static adversary can only guess the
addresses of the target gadgets. In other words, the underlying
fine-grained randomization ensures that an adversary can no
longer statically determine the addresses of all gadgets as offsets
from the runtime address of a single leaked function pointer.
In addition, we randomize register allocation and the ordering
of stack locations where registers are saved to ensure that the
adversary cannot predict the runtime effects of gadgets. Using
these fine-grained diversifications, Readactor fully prevents
static ROP attacks.

b) JIT-ROP with direct disclosure: JIT-ROP attacks by-
pass fine-grained code randomization schemes by disassembling
code pages and identifying ROP gadgets dynamically at runtime.
One way to identify a set of useful gadgets for a ROP attack is
to exploit direct references in call and jump instructions [59].
Readactor prevents this attack by marking all code pages as non-
readable, i.e., execute-only. This differs from a recent proposal,
XnR [7], that always leaves a window of one or more pages
readable to the adversary. Readactor prevents all reading and
disassembly of code pages by design.

c) JIT-ROP with indirect disclosure: Preventing JIT-
ROP attacks that rely on direct disclosure is insufficient,
since advanced attacks can exploit indirect disclosure, i.e.,

harvesting code pointers from the program’s heap and stack
(see Section III). Readactor defends against these attacks with
a combination of fine-grained code randomization and code-
pointer hiding. Recall that pointer hiding ensures that the
adversary can access only trampoline addresses but cannot
disclose actual runtime addresses of functions and call sites
(see Section V). Hence, even if trampoline addresses are leaked
and known to the adversary, it is not possible to use arbitrary
gadgets inside a function because the original function addresses
are hidden in execute-only trampoline pages. As discussed in
Section VII-C, code-pointer hiding effectively provides at least
the same protection as coarse-grained CFI, since only valid
address-taken function entries and call-sites can be reused by
an attacker. However, our scheme is strictly more secure, since
the adversary must disclose the address of each trampoline
from the stack or heap before he can reuse the function or call-
site. In addition, we strengthen our protection by employing
fine-grained diversifications to randomize the dataflow of this
limited set of control-flow targets.

Specifically, when exploiting an indirect call (i.e., using
knowledge of a trampoline address corresponding to a function
pointer), the adversary can only redirect execution to the tram-
poline but not to other gadgets located inside the corresponding
function. In other words, we restrict the adversary who has
disclosed a function pointer to whole-function reuse.

On the other hand, disclosing a call trampoline allows
the adversary to redirect execution to a valid call site (e.g.,
call-preceded instruction). However, this still does not allow
the adversary to mount the same ROP attacks that have been
recently launched against coarse-grained CFI schemes [13, 20,
29, 55], because the adversary only knows the trampoline
address and not the actual runtime address of the call site.
Hence, leaking one return address does not help to determine
the runtime addresses of other useful call sites inside the address
space of the application. Furthermore, the adversary is restricted
to only those return trampoline addresses that are leaked from
the program’s stack. Not every return trampoline address will
be present on the stack, only those that are actually used and
executed by the program are potentially available. This reduces
the number of valid call sites that the adversary can target, in
contrast to the recent CFI attacks, where the adversary can
redirect execution to every call site in the address space of the
application without needing any disclosure.

Finally, to further protect call-site gadgets from reuse
through call trampolines, we use two fine-grained diversi-
fications proposed by Pappas et al. [49] to randomize the
dataflow between gadgets: register allocation and stack slot
randomization. Randomizing register allocation causes gadgets
to have varying sets of input and output registers, thus disrupting
how data can flow between gadgets. We also randomly reorder
the stack slots used to preserve registers across calls. The
program’s application binary interface (ABI) specifies a set of
callee-saved registers that functions must save and restore before
returning to their caller. In the function epilogue, the program
restores register values from the stack into the appropriate
registers. By randomizing the storage order of these registers,
we randomize the dataflow of attacker-controlled values from
the stack into registers in function epilogues.

d) ROP on just-in-time generated code: In contrast to
many other recent defenses (e.g., [6, 7, 44]), Readactor also

applies its protection mechanisms to dynamically-generated
code. This coverage is important since many well-known
programs feature scripting facilities with just-in-time (JIT)
code generation (e.g., Internet Explorer, Firefox, Adobe Reader,
and Microsoft Word). Typically, dynamic code is of particular
interest to the adversary, as it is usually mapped as read-write-
executable (RWX).

Hence, several exploits use a technique called JIT-
spraying [11]. In this attack, the adversary writes a script
(e.g., JavaScript) that emits shellcode as unintended instruction
sequences into the address space of an application. A well-
known example is the XOR instruction that can be exploited to
hide shellcode bytes as an immediate value. Google’s V8 JIT
engine mitigates this specific instantiation of JIT-spraying by
XOR’ing random values with the immediate values. However,
another way to exploit JIT-compiled code (RWX) memory
is to disclose its address, overwrite the existing code with
shellcode, and execute it. The adversary sprays a large number
of shellcode copies abusing the JIT compiler. After the shellcode
has been emitted, the adversary simply needs to exploit a
vulnerability and redirect execution to the shellcode through
memory corruption.

Readactor prevents this classic JIT-spraying attack as well
as any attack that attempts to identify useful code in the JIT-
compiled code area through direct memory disclosure. We
achieve this by marking the JIT code area as execute-only
and use V8’s built-in coarse-grained randomization (similar to
ASLR). Hence, the adversary can neither search for injected
shellcode nor find other useful ROP code sequences. On the
other hand, given V8’s coarse-grained randomization, it is still
possible for the adversary to guess the address of the injected
shellcode. To tackle guessing attacks, we are currently working
on integrating fine-grained randomization inside V8 (inspired
by the ideas used in librando [33]).

We also tested whether indirect disclosure of JIT-compiled
code is feasible. Our experiments revealed that V8’s JIT code
cache contains several code pointers referencing JIT-compiled
code. Hence, the adversary could exploit these pointers to infer
the code layout of the JIT memory area. To protect against
such attacks, these code pointers need to be indirected through
execute-only trampolines (our standard jump trampolines). We
can store these trampolines in a separate execute-only area away
from the actual code. To add support for code-pointer hiding,
we would need to modify both the JITted code entry points from
the JavaScript runtime and all JavaScript-to-JavaScript function
calls to call trampolines instead. This work is an engineering
effort that is currently ongoing, as it requires porting our LLVM
compiler changes over to the V8 JIT.

e) Return-into-libc: Most of the papers dealing with
code-reuse attacks do not provide a security analysis of classic
return-into-libc attacks [45], i.e., attacks that only invoke entire
functions rather than short ROP code sequences. In general,
it is very hard to prevent return-into-libc attacks, since they
target legitimate addresses, such as exported library functions.
In Readactor, we limit the attack surface for return-into-libc
attacks.

To launch a return-into-libc attack, the adversary needs to
identify code pointers to functions of interest, e.g., system
or mprotect on Linux. Typically, this is done by disclosing

the function address from a known position within either code
or data sections. We prevent disclosure from code because
Readactor maps code pages as execute-only. On the other
hand, code pointers in data sections, e.g. pointers in the import
address table (IAT) in Windows or the global offset table
(GOT) in Linux which are used for shared library calls, can
be exploited in an indirect disclosure attack. Since Readactor
hides code pointers in trampolines and also performs function
permutation, the adversary cannot exploit a IAT/GOT entry to
determine the address of a function of interest in a readacted
library. However, if the function of interest is imported by
the program then the adversary can exploit the GOT entry
containing the corresponding trampoline addresses to directly
invoke the function.

In summary, Readactor provides a high degree of protection
against code reuse attacks of all kinds, while being practical
and efficient at the same time, as we demonstrate in the next
subsection. First, we describe our protection against proof-of-
concept exploit targeting the JavaScript JIT.

f) Proof-of-concept exploit: To demonstrate the ef-
fectiveness of our protection, we introduced an artificial
vulnerability into V8 that allows an attacker to read and write
arbitrary memory. This vulnerability is similar to a vulnerability
in V82 that was used during the 2014 Pwnium contest to
get arbitrary code execution in the Chrome browser. In an
unprotected version of V8, the exploitation of the introduced
vulnerability is straightforward. From JavaScript code, we
first disclose the address of a function that resides in the
JIT-compiled code memory. Next, we use our capability to
write arbitrary memory to overwrite the function with our
shellcode. This is possible because the JIT-compiled code
memory is mapped as RWX in the unprotected version of
V8. Finally, we call the overwritten function, which executes
our shellcode instead of the original function. This attack fails
under Readactor because the attacker can no longer write
shellcode to the JIT-compiled code memory, since we set all
JIT-compiled code pages execute-only. Further, we prevent
any JIT-ROP like attack that first discloses the content of JIT-
compiled code memory, because that memory is not readable.
We tested this by using a modified version of the attack that
reads and discloses the contents of a code object. Readactor
successfully prevented this disclosure by terminating execution
of the JavaScript program when it attempted to read the code.

X. PERFORMANCE EVALUATION

We rigorously evaluated the performance impact of Readac-
tor on both the SPEC CPU2006 benchmark suite and a
large real-world application, the Chromium browser. We also
evaluated our changes to the V8 JavaScript engine using
standard JavaScript benchmarks.

1) SPEC CPU2006: The SPEC CPU2006 benchmark suite
contains CPU-intensive programs which are ideal to test the
worst-case overhead of our compiler transformations and
hypervisor. To fully understand the impact of each of the
components that make up the Readactor system, we measured
and report their performance impact independently.

We performed all evaluations using Ubuntu 14.04 with
Linux kernel version 3.13.0. We primarily evaluated SPEC

2CVE-2014-1705

on an Intel Core i5-2400 desktop CPU running at 3.1 GHz
with dynamic voltage and frequency scaling (Turbo Boost)
enabled. We also independently verified this evaluation using
an Intel Xeon E5-2660 server CPU running at 2.20 GHz with
Turbo Boost disabled, and observed identical trends and nearly
identical performance (within one percent on all averages). We
summarize our SPEC measurements in Figure 11. Overall, we
found that Readactor, with all protections enabled, incurs an
average performance overhead of just 6.4% for SPEC CPU2006.

a) Code-Data Separation: First we evaluated the perfor-
mance overhead of separating code from data by rewriting how
the compiler emits switch tables in code (see Section VII-B).
We found the impact of transforming switch table data into
executable code to be less than half of a percent on average,
with a maximum overhead of 1.1%. This overhead is minimal
because we maintain good cache locality by keeping the switch
table close to its use. In addition, modern processors can
prefetch instructions past direct jumps, which means these
jumps have a low performance impact. We omit this experiment
from Figure 11 for clarity, since it showed such minimal
overheads.

b) Code-Pointer Hiding: We then evaluated full code
pointer protection, with hiding of both function pointers and
return addresses enabled. We found that code-pointer hiding
resulted in a performance slowdown of 4.1% on average over
all benchmarks (Pointer Hiding in Figure 11). This protection
introduces two extra direct jumps for each method call and one
direct jump when de-referencing function pointers. On closer
inspection using hardware performance counters, we observed
that these jumps back and forth from the regular code section to
the trampolines slightly increased the instruction-cache pressure,
resulting in more instruction-cache misses.

We hypothesized that the bulk of code-pointer hiding
overhead was due to call trampolines, which are far more
common than function pointers. To verify this, we disabled
return address hiding while keeping function pointer protection
enabled. We found that function pointer protection by itself
incurred an average overhead of only 0.2% on SPEC, with
no benchmark exceeding 2%. Thus, most of the overhead
for code-pointer hiding is caused by the frequent use of call
trampolines. This effect is amplified in benchmarks which make
many function calls, such as xalancbmk.

c) Hypervisor: To understand the performance impact of
the hypervisor layer, including the additional EPT translation
overhead, we ran SPEC under our hypervisor without any
execute-only page protections or code-pointer hiding enabled
(Hypervisor in Figure 11). We observed that the virtualization
overhead was 1.1% on average. Since we allow the virtual
processor full control of all hardware and registers, this
overhead is mainly caused by the extra memory translation
overhead from translating guest physical addresses to host
physical addresses through the EPT. Even though we use
an identity mapping from guest physical to host physical
addresses, the processor must still walk through the whole
EPT whenever translating a new memory address. The larger
overhead observed for the mcf benchmark supports this theory,
as it has a higher and more stable memory footprint (845Mib)
than the other benchmarks [31]. This results in more swapping
in and out of the cache, which in turn triggers more EPT
address translations.

milc namd
dealII

soplex lbm
sphinx3

perlbench
bzip2 gcc mcf

gobmk
hmmer

sjeng

libquantum
h264ref

astar

xalancbmk

Geo Mean
0

10

20

30

40
Pe

rfo
rm

an
ce

 S
lo

wd
ow

n
(%

) Pointer Hiding
Hypervisor
Hypervisor XO
Hypervisor XO + Hiding
Full Readactor

Figure 11: Performance overhead for SPEC CPU2006 with Readactor enabled relative to an unprotected baseline build.

After compiling SPEC with separation of code and data and
marking code pages as execute-only during linking, we ran the
benchmarks under the hypervisor, enforcing execute-only page
permissions (Hypervisor XO in Figure 11). This configuration
incurred a performance slowdown of 2.5%, somewhat higher
than the overhead of the hypervisor itself. Much of this overhead
difference is due to the separation of code and data, which
de-optimizes execution slightly. We attribute the rest of this
difference to measurement variance, since the hypervisor itself
should not add any significant overhead when enforcing execute-
only pages versus legacy readable and executable pages. In
either case the processor must still translate all addresses
through the EPT when the hypervisor is enabled.

d) Full Readactor: Enabling code-pointer hiding along
with page protections provided by the hypervisor resulted in
a slowdown of 5.8% (Hypervisor XO + Hiding in Figure 11).
This overhead is approximately the sum of the overheads of
both components of the system, the execute-only hypervisor
enforcement and pointer hiding. This confirms our hypothesis
that each component of the Readactor system is orthogonal
with respect to performance.

With the addition of our fine-grained diversity scheme
(function, register, and callee-saved register slot permutation)
we now have all components of Readactor in place. For the
final integration benchmark we built and ran SPEC using three
different random seeds to capture the effects of different code
layouts. Altogether we observed that the full Readactor system
incurred a geometric mean performance overhead of 6.4% (Full
Readactor in Figure 11). This shows the overhead of applying
our full protection scheme to a realistic worst-case scenario of
CPU-intensive code, which bounds the overhead of our system
in practice.

2) Chromium Browser: To test the performance impact of
our protections on complex, real-world software, we compiled
and tested the Chromium browser, which is the open-source
variant of Google’s Chrome browser. Chromium is a highly
complex application, consisting of over 16 million lines of
code [10]. We were able to easily apply all our protections
to Chromium with the few minor changes described below.
Overall, we found that the perceived performance impact on
web browsing with the protected Chromium, as measured by
Chromium’s internal UI smoothness benchmark, was 4.0%,
which is in line with the average slowdown we observed for

SPEC.

Since our protection system interferes with conventional
stack walking, we had to disable debugging components of
Chromium that use stack walking. We found that the optimized
memory allocator used in Chromium, TCMalloc, uses stack
tracing to provide detailed memory profiling information
to developers. We disabled this functionality, which is not
needed for normal execution. We also observed that Chromium
gathers stack traces at tracing points during execution, again
for debugging. Conveniently, we could disable this stack
tracing with a single-line source code change. With these
minor modifications we could compile and test the current
development version3 of Chromium with our LLVM-based
Readactor compiler.

To understand the perceived performance impact dur-
ing normal web browsing we benchmarked page scrolling
smoothness with Chromium’s internal performance testing
framework. We ran the scrolling smoothness benchmark from
the Chromium source tree on the Top 25 sites selected by
Google as representatives of popular websites. This list includes
13 of the Alexa USA Top 25 sites including Google properties
such as Google search, GMail and Youtube, Facebook, and news
websites such as CNN and Yahoo. The Chromium scrolling
benchmark quantifies perceived smoothness by computing the
mean time to render each frame while automatically scrolling
down the page. We report the average slowdown as time per
frame averaged over 3 runs of the benchmark suite to account
for random variance.

Overall, we found that the slowdown in rendering speed
for our full Readactor system was about 4.0%, averaged over
3 different diversified builds of Chromium. This overhead is
slightly lower than what we found for SPEC, which is natural
considering that browser rendering is not as CPU-intensive
as the SPEC benchmarks. However, browser smoothness and
responsiveness are critical factors for daily web browsing, rather
than raw computing performance.

We also evaluated the performance impact of our techniques
on Chromium using the extensive Dromaeo benchmark suite
to give a worst-case estimate for browser performance. This
suite, composed of 55 individual benchmarks, includes standard

3Chromium sources checked out on 2014-11-04.

Crypto
DeltaBlue

EarleyBoyer

NavierStokes
RayTrace

RegExp
Richards

Splay

Geo Mean

0

10

20

30

40
Pe

rfo
rm

an
ce

 S
lo

wd
ow

n
(%

) Modified
Modified + Readactor

Figure 12: Performance of modified V8 running under Readac-
tor, relative to a vanilla build and to a modified build running
natively.

JavaScript benchmarks such as the Sunspider and V8 JavaScript
benchmarks, as well as benchmarks that exercise DOM and
CSS processing. Dromaeo is comprehensive, and hence, ideal to
evaluate the overall impact of our protections on performance-
critical browser components.

We found that execute-only code protection alone, without
code-pointer hiding, introduced a 2.8% overall performance
slowdown on Dromaeo. Combining the hypervisor execute-
only code pages along with code-pointer hiding resulted in a
12% performance slowdown. We attribute this higher overhead
to increased instruction cache pressure caused by our call
pointer protection. However, Dromaeo represents a worst-case
performance test, and rendering smoothness on real websites
is a far more important factor in browsing.

3) V8 JavaScript JIT: We evaluated the performance impact
of our changes to the V8 JavaScript engine, as well as the
overhead of running the JIT compiler under Readactor. To
get a more accurate sample, we benchmarked the V8 engine
alone, outside of the browser. Figure 12 shows the results of
our evaluation. We see small to negligible overhead for most
benchmarks, with the exception of two benchmarks which put
significant pressure on the memory allocator: EarleyBoyer and
Splay. Both benchmarks allocate large numbers of temporary
objects and trigger frequent garbage collection cycles, which
become much more expensive due to our repeated re-mapping
of pages. For another benchmark—Richards—we observe a
very small speedup of 1%, which we attribute to measurement
noise. Overall, the performance penalty of our changes comes to
6.2% when running natively and 7.8% with Readactor enabled.

We also added our V8 JIT compiler patches to the full
Chromium browser to evaluate their impact on the whole
browsing experience. We observed a higher impact on scrolling
smoothness, with an average time per frame slowdown of
13.8% versus 4.0% without the JIT compiler patches. This extra
slowdown is due to the overhead of separating JIT generated
data from code to allow the JIT to map generated code pages
as execute-only.

XI. RELATED WORK

Most code-reuse exploit mitigation approaches are based
on either program randomization or some form of integrity
checking. In contrast, Readactor combines a probabilistic
defense against ROP (code layout randomization) with integrity
checks (execute-only page permissions) against disclosure
to comprehensively thwart code-reuse attacks. We discuss
probabilistic and integrity-checking defenses separately. We
summarize the main difference between our approach and
closely related work, namely Oxymoron [6], XnR [7], and
HideM [27] in Table I. Readactor is the only defense that
provides protection against all known variants of ROP attacks
(traditional ROP, direct and indirect JIT-ROP), while performing
efficiently and protecting JIT-compiled code.

A. Code Randomization Defenses

Cohen was first to explore program protection using
diversity [18]. Forrest et al. [24] later demonstrated stack-
layout randomization against stack smashing. Address space
layout permutation (ASLP) [37] randomizes the code layout at
function granularity; adversaries must therefore disclose more
than one code pointer to bypass ASLP. Binary Stirring [65]
permutes both functions and basic blocks within functions, and
Instruction Layout Randomization (ILR) [32] randomizes the
code layout at the instruction level. Larsen et al. [40] compare
these and additional approaches to automatic software diversity.

Unfortunately, these defenses remain vulnerable to mem-
ory disclosure attacks. The appearance of JIT-ROP attacks
convincingly demonstrated that probabilistic defenses cannot
tacitly assume that attackers cannot leak code memory layout
at runtime [59]. Blind ROP [9], another way to bypass fine-
grained code randomization, further underscores the threat of
memory disclosure.

In response to JIT-ROP, Backes and Nürnberger proposed
Oxymoron [6] which randomizes the code layout at a granularity
of 4KB memory pages. This preserves the ability to share
code pages between multiple protected applications running on
a single system. Oxymoron seeks to make code references
in direct calls and jumps that span code page boundaries
opaque to attackers. Internally, Oxymoron uses segmentation
and redirects inter-page calls and jumps through a dedicated
hidden table. This prevents direct memory disclosure, i.e., it
prevents the recursive-disassembly step in the original JIT-ROP
attack. Unfortunately, Oxymoron can be bypassed via indirect
memory disclosure attacks as we have described in Section III.
In contrast to Readactor, Oxymoron does not protect JIT-
compiled code. Readactor offers more comprehensive protection
against both direct and indirect code disclosure and protects
JIT-compiled code against direct disclosure.

Another defense against JIT-ROP, Execute-no-Read (XnR)
by Backes et al. [7], is conceptually similar to Readactor as it
is also based on execute-only pages. However, it only emulates
execute-only pages in software by keeping a sliding window
of n pages as both readable and executable, while all other
pages are marked as non-present. XnR does not fully protect
against direct memory disclosure because pages in execution are
readable. Hence, the adversary can disclose function addresses
(see Section III), and force XnR to map a target page as readable
by calling the target function through an embedded script. This

Property Note Oxymoron [6] XnR [7] HideM [27] Readactor execute-only Full Readactor

Prevents disclosure of:
References to other code pages X X

Code pages X X X X

Return addresses X

Jump table pointers X X X X X

C++ vtable and function pointers X

Security:
ROP [58] X X X X X

JIT-ROP [59] X X X X X

Blind ROP [9] Direct Memory Disclosure X X X X

Indirect JIT-ROP (Section III) Indirect Memory Disclosure X

Coverage:
Static compiled code X X X X X

JIT compiled code X

Efficiency:
Avg. Runtime SPEC CPU2006 2.5% 2.2% 1.5% 2.5% 6.4%
Max. Runtime SPEC CPU2006 11% 15% 6.5% 8.8% 26%
Avg. Runtime V8 Benchmarks 7.8%

Table I: Comparison of randomizing defenses against attacks combining memory disclosure and ROP such as JIT-ROP. Readactor
offers best-in-class security and is the only mechanism that covers both statically and dynamically compiled code.

can be repeated until the disclosed code base is large enough
to perform a JIT-ROP attack. In Readactor, such an attack is
not possible by design, because code pages are always execute-
only. Further, it remains unclear how well XnR can protect
against indirect memory disclosure. First, it only assumes a code
randomization scheme without implementing and evaluating
one. Second, as we have discussed in detail in Section V,
defending against indirect code disclosure with randomization
alone (i.e., without code-pointer hiding) requires XnR to use a
very fine-grained and unpractical code randomization scheme.
Moreover, in contrast to XnR, we evaluate Readactor against
complex software such as the Google Chromium web-browser
and also extend our protections to JIT-compiled code.

HideM by Gionta et al. [27] also implements execute-only
pages. Rather than supporting execute-only pages by unmapping
code pages when they are not actively executing, HideM uses
split translation lookaside buffers (TLBs) to direct instruction
fetches and data reads to different physical memory locations.
HideM allows instruction fetches of code but prevents data
accesses except whitelisted reads of embedded constants. This is
the same technique PaX [51] used to implement W⊕X memory
before processors supported RX memory natively. However,
the split TLB technique does not work on recent x86 hardware
because most processors released after 2008 contain unified
second-level TLBs.

Giuffrida et al. [28] evaluated a comprehensive, compiler-
based software diversifier that allows live re-randomization
of a micro-kernel. Frequent re-randomization may render
any knowledge gleaned through memory disclosure useless.
However, the entire JIT-ROP attack can run in as little as 2.3
seconds while re-randomization at 2 second intervals add an
overhead of about 20%. Moreover, it remains unknown how
well this approach scales to complex applications containing
JIT compilers and modern operating systems with monolithic
kernels.

Whereas Oxymoron, XnR, and HideM seek to hide the
code layout, Opaque CFI (O-CFI) [44] is designed to tolerate
certain kinds of memory disclosure. Similar to Readactor, O-
CFI combines code randomization and integrity checks. It

tolerates code layout disclosure by bounding the target of
each indirect control flow transfer. Since the code layout is
randomized at load time, the bounds for each indirect jump are
randomized too. The bounds are stored in a small table which is
protected from disclosure using x86 segmentation. O-CFI uses
binary rewriting and stores two copies of the program code in
memory to detect disassembly errors. Hence, it requires more
program memory than Readactor. In contrast, the trampolines
added by Readactor require very little extra memory. Apart from
the fact that O-CFI requires precise binary static analysis as it
aims to statically resolve return addresses, indirect jumps, and
calls, the adversary may be able to disassemble the code, and
reconstruct (parts of) the control-flow graph at runtime. Hence,
the adversary could dynamically disclose how the control-flow
is bounded.

Davi et al. [21] also propose a defense mechanism, Iso-
meron, that tolerates full disclosure of the code layout. To
do so, Isomeron keeps two isomers (clones) of all functions
in memory; one isomer retains the original program layout
while the other is diversified. On each function call, Isomeron
randomly determines whether the return instruction should
switch execution to the other isomer or keep executing code
in the current isomer. Upon each function return, the result
of the random trial is retrieved, and if a decision to switch
was made, an offset (the distance between the calling function
f and its isomer f ′) is added to the return address. Since
the attacker does not know which return addresses will have
an offset added and which will not, return addresses injected
during a ROP attack will no longer be used as is and instead,
the ROP attack becomes unreliable due to the possible addition
of offsets to the injected gadget addresses. Since Isomeron is
implemented as dynamic binary instrumentation framework its
runtime and memory overheads are substantially greater than
those of Readactor.

Lastly, our work is related to a randomization approach
specifically targeting JIT-compiled code called librando [33].
It deploys two randomization techniques: NOP insertion and
constant blinding. In fact, as we mentioned before, Readactor
can benefit from librando to enforce code randomization on

JIT-code beyond the coarse-grained randomization offered by
the Google V8 engine. However, librando only targets JIT-code
and not static code. Further, it provides no protection against
direct disclosure attacks, and may slow down code by as much
as 3.5x.

B. Integrity-checking Defenses

After DEP, Control-flow integrity (CFI) [1, 3] is the most
prominent type of integrity-based defense. CFI constrains the
indirect branches in a binary such that they can only reach a
statically identified set of targets. Since CFI does not rely on
randomization, it cannot be bypassed using memory disclosure
attacks. However, it turns out that precise enforcement of
control-flow properties invariably comes at the price of high
performance overheads on commodity hardware. In addition,
it is challenging (if not impossible) to always resolve valid
branch addresses for indirect jumps and calls.

As a result, researchers have traded off security for perfor-
mance by relaxing the precision of the integrity checks. CFI
for COTS binaries [69] relies on static binary rewriting to
identify all potential targets for indirect branches (including
returns) and instruments all branches to go through a validation
routine. CFI for COTS binaries merely ensures that branch
targets are either call-preceded or target an address-taken basic
block. Similar policies are enforced by Microsoft’s security
tool called EMET [42], which builds upon ROPGuard [25].

Compact control-flow integrity and randomization (CCFIR)
is another coarse-grained CFI approach based on static binary
rewriting. CCFIR collects all indirect branch targets into a
springboard section and ensures that all indirect branches target
a springboard entry. Our code-pointer hiding technique has
similarities with the use of trampolines in CCFIR but the
purposes differ. The springboard is part of the CFI enforcement
mechanism whereas our trampolines are used to prevent indirect
memory closure. Although the layout of springboard entries
is randomized to prevent traditional ROP attacks, CCFIR does
not include countermeasures against JIT-ROP.

A number of approaches have near-zero overheads because
they use existing hardware features to constrain the control-
flow before potentially dangerous system calls. In particular,
x86 processors contain a last branch record (LBR) register
which kBouncer [50], and ROPecker [17] use to inspect a
small window of recently executed indirect branches.

Since CFI does not randomize the code layout, attackers
can inspect the code layout ahead of time and carefully choose
gadgets that adhere to a coarse-grained CFI policy [13, 29, 30].

SafeDispatch [36] and forward-edge CFI [39] are two
compiler-based implementations of fine-grained forward CFI,
which is CFI applied to indirect calls. The former prevents
virtual table hijacking by instrumenting all virtual method call
sites to check that the target is a valid method for the calling
object. It offers low runtime overhead (2.1%) but only protects
virtual method calls. Forward CFI is a set of similar techniques
which protect both virtual method calls and calls through
function pointers. It maintains tables to store trusted code
pointers and halt program execution whenever the target of an
indirect branch is not found in one of these tables. Even though
both techniques add only minimal performance overhead,

these approaches do not protect against attacks that use ret-
terminated gadgets. Moreover, as no code randomization is
applied, the adversary can easily invoke critical functions
in complex programs that are also legitimately used by the
program.

A number of recent CFI approaches focus on analyz-
ing and protecting vtables in binaries created from C++
code [26, 52, 68]. Although these approaches do not require
source code access, the CFI policy is not as fine-grained as their
compiler-based counterparts. A novel attack technique for C++
applications, counterfeit object-oriented programming (COOP),
undermines the protection of these binary instrumentation-
based defenses by invoking a chain of virtual methods through
legitimate call sites to induce malicious program behavior [56].

Code-Pointer Integrity (CPI) was identified as an alternative
to CFI by Szekeres et al. [62] and was first implemented
by Kuznetsov et al. [39]. CPI prevents the first step of control-
flow hijacking during which the adversary overwrites a code
pointer. In contrast, CFI verifies code pointers after they may
have been overwritten. CPI protects control data such as code
pointers, pointers to code pointers, etc. by separating them from
non-sensitive data. The results of a static analysis are used to
partition the memory space into a normal area and a safe region.
Code pointers and other sensitive control data are stored in the
safe region. The safe region also includes meta-data such as
the sizes of buffers. Loads and stores that may affect sensitive
control data are instrumented and checked using meta-data
stored in the safe region. By ensuring that accesses to potentially
dangerous objects, e.g., buffers, cannot overwrite control data,
CPI provides spatial safety for code pointers. In 32-bit mode,
CPI uses x86 segmentation to restrict access to the safe region,
the same is not possible in 64-bit mode so the safe region is
merely hidden from attackers whenever segmentation is not
fully supported. Evans et al. [23] demonstrated that (in 64-bit
mode) the size of the safe region is (in some implementations)
so large that an attacker can use a corrupted data pointer to
locate it and thereby bypass the CPI enforcement mechanism
using an extension of the side-channel attack by Siebert et
al. [57]. Unlike our approach, it remains to be seen whether
CPI can be extended to protect dynamically generated code
without degrading the JIT compilation latency and performance.

Recently, a new CFI solution has been proposed by Niu
and Tan that also applies CFI to JIT-compiled code [46]. Their
RockJIT framework enforces fine-grained CFI policies for
static code and coarse-grained CFI policies for JIT-compiled
code. Similarly to how we double-map physical host pages
in the guest physical space, RockJIT maps the physical pages
containing JIT-compiled code twice in virtual memory: once as
readable and executable, and once as a readable and writable
for the JIT compiler to modify—a shadow code heap accessible
only to the JIT. This protects JIT-compiled code from code
injection and tampering attacks, in addition to the protections
provided by CFI enforcement. However, since only coarse-
grained CFI is applied, the adversary can still leverage memory
disclosure attacks to identify valid gadgets in JIT-compiled
code and redirect execution to critical call sites in static code
(i.e., calls that legitimately invoke a dangerous API function
or a system call) to induce malicious program behavior.

XII. CONCLUSION

Numerous papers demonstrate that code randomization
is a practical and efficient mitigation against code-reuse
attacks. However, memory leakage poses a threat to all these
probabilistic defenses. Without resistance to such leaks, code
randomization loses much of its appeal. This motivates our
efforts to construct a code randomization defense that is not
only practical but also resilient to all recent bypasses.

We built a fully-fledged prototype system, Readactor, to
prevent attackers from disclosing the code layout directly by
reading code pages and indirectly by harvesting code pointers
from the data areas of a program. We prevent direct disclosure
by implementing hardware-enforced execute-only memory and
prevent indirect disclosure through code-pointer hiding.

Our careful and detailed evaluation verifies the security
properties of our approach and shows that it scales beyond
simple benchmarks to complex, real-world software such as
Google’s Chromium web browser and its V8 JavaScript engine.
Compared to prior JIT-ROP mitigations, Readactor provides
comprehensive and efficient protection against direct disclosure,
is the first defense to address indirect disclosure, and is also the
first technique to provide uniform protection for both statically
and dynamically compiled code.

We hope that forthcoming defenses will focus on countering
return-into-libc and future variants of code reuse by building on
our foundation of memory-leakage resilient software diversity.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers, Mathias
Payer, Robert Turner, and Mark Murphy for their detailed
and constructive feedback.

This material is based upon work partially supported by the
Defense Advanced Research Projects Agency (DARPA) under
contracts D11PC20024 and N660001-1-2-4014 and by gifts
from Oracle and Mozilla.

Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of the Defense Advanced
Research Projects Agency (DARPA), its Contracting Agents,
the National Science Foundation, or any other agency of the
U.S. Government.

This work has been co-funded by the German Science
Foundation as part of project S2 within the CRC 1119
CROSSING and the European Union’s Seventh Framework
Programme under grant agreement No. 609611, PRACTICE
project.

REFERENCES

[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow integrity.
In ACM SIGSAC Conference on Computer and Communications Security,
CCS, 2005.

[2] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. A theory of secure
control flow. In 7th International Conference on Formal Engineering

Methods, ICFEM, 2005.
[3] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow integrity

principles, implementations, and applications. ACM Transactions on

Information System Security, 13, 2009.

[4] AMD. Intel 64 and IA-32 architectures software developer’s manual -
Chapter 15 Secure Virtual Machine nested paging.
http://developer.amd.com/resources/documentation-articles/developer-
guides-manuals, 2012.

[5] J. Ansel, P. Marchenko, Ú. Erlingsson, E. Taylor, B. Chen, D. L. Schuff,
D. Sehr, C. Biffle, and B. Yee. Language-independent sandboxing of just-
in-time compilation and self-modifying code. In 32nd ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI,
2011.

[6] M. Backes and S. Nürnberger. Oxymoron: Making fine-grained memory
randomization practical by allowing code sharing. In 23rd USENIX

Security Symposium, 2014.
[7] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and J. Pewny.

You can run but you can’t read: Preventing disclosure exploits in
executable code. In ACM SIGSAC Conference on Computer and

Communications Security, CCS, 2014.
[8] S. Bhatkar and D. C. DuVarney. Efficient techniques for comprehensive

protection from memory error exploits. In 14th USENIX Security

Symposium, 2005.
[9] A. Bittau, A. Belay, A. J. Mashtizadeh, D. Mazières, and D. Boneh.

Hacking blind. In 35th IEEE Symposium on Security and Privacy, S&P,
2014.

[10] Black Duck Software, Inc. Chromium project on open hub. https:
//www.openhub.net/p/chrome, 2014.

[11] D. Blazakis. Interpreter exploitation: Pointer inference and JIT spraying.
BlackHat DC, 2010.

[12] T. K. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented
programming: a new class of code-reuse attack. In 6th ACM Symposium

on Information, Computer and Communications Security, ASIACCS,
2011.

[13] N. Carlini and D. Wagner. ROP is still dangerous: Breaking modern
defenses. In 23rd USENIX Security Symposium, 2014.

[14] S. Checkoway, L. Davi, A. Dmitrienko, A. Sadeghi, H. Shacham, and
M. Winandy. Return-oriented programming without returns. In ACM

SIGSAC Conference on Computer and Communications Security, CCS,
2010.

[15] X. Chen and D. Caselden. CVE-2013-3346/5065 technical analy-
sis. http://www.fireeye.com/blog/technical/cyber-exploits/2013/12/cve-
2013-33465065-technical-analysis.html, 2013.

[16] X. Chen, D. Caselden, and M. Scott. The dual use exploit: CVE-
2013-3906 used in both targeted attacks and crimeware campaigns.
http://www.fireeye.com/blog/technical/cyber-exploits/2013/11/the-
dual-use-exploit-cve-2013-3906-used-in-both-targeted-attacks-and-
crimeware-campaigns.html, 2013.

[17] Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng. ROPecker: A
generic and practical approach for defending against ROP attacks. In
21st Annual Network and Distributed System Security Symposium, NDSS,
2014.

[18] F. B. Cohen. Operating system protection through program evolution.
Computers & Security, 12, 1993.

[19] S. Crane, P. Larsen, S. Brunthaler, and M. Franz. Booby trapping software.
In New Security Paradigms Workshop, NSPW, 2013.

[20] L. Davi, A. Sadeghi, D. Lehmann, and F. Monrose. Stitching the gadgets:
On the ineffectiveness of coarse-grained control-flow integrity protection.
In 23rd USENIX Security Symposium, 2014.

[21] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Monrose.
Isomeron: Code randomization resilient to (just-in-time) return-oriented
programming. In 22nd Annual Network and Distributed System Security

Symposium, NDSS, 2015.
[22] L. V. Davi, A. Dmitrienko, S. Nürnberger, and A. Sadeghi. Gadge me if

you can: secure and efficient ad-hoc instruction-level randomization for
x86 and ARM. In 8th ACM Symposium on Information, Computer and

Communications Security, ASIACCS, 2013.
[23] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar, T. Tang, H. Shrobe,

S. Sidiroglou-Douskos, M. Rinard, and H. Okhravi. Missing the point:
On the effectiveness of code pointer integrity. In 36th IEEE Symposium

on Security and Privacy, S&P, 2015.
[24] S. Forrest, A. Somayaji, and D. H. Ackley. Building diverse computer

systems. In The 6th Workshop on Hot Topics in Operating Systems,
HotOS-VI, 1997.

[25] I. Fratric. ROPGuard: Runtime prevention of return-oriented programming
attacks.
http://www.ieee.hr/_download/repository/Ivan_Fratric.pdf, 2012.

[26] R. Gawlik and T. Holz. Towards automated integrity protection of C++
virtual function tables in binary programs. In 30th Annual Computer

Security Applications Conference, ACSAC, 2014.
[27] J. Gionta, W. Enck, and P. Ning. HideM: Protecting the contents of

userspace memory in the face of disclosure vulnerabilities. In 5th ACM

Conference on Data and Application Security and Privacy, CODASPY,
2015.

[28] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. Enhanced operating
system security through efficient and fine-grained address space random-
ization. In 21st USENIX Security Symposium, 2012.

[29] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out of
control: Overcoming control-flow integrity. In 35th IEEE Symposium on

Security and Privacy, S&P, 2014.
[30] E. Göktas, E. Athanasopoulos, M. Polychronakis, H. Bos, and G. Por-

tokalidis. Size does matter: Why using gadget-chain length to prevent
code-reuse attacks is hard. In 23rd USENIX Security Symposium, 2014.

[31] J. L. Henning. SPEC CPU2006 memory footprint. SIGARCH Computer

Architecture News, 35, 2007.
[32] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson. ILR:

where’d my gadgets go? In 33rd IEEE Symposium on Security and

Privacy, S&P, 2012.
[33] A. Homescu, S. Brunthaler, P. Larsen, and M. Franz. Librando:

transparent code randomization for just-in-time compilers. In ACM

SIGSAC Conference on Computer and Communications Security, CCS,
2013.

[34] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz.
Profile-guided automatic software diversity. In IEEE/ACM International

Symposium on Code Generation and Optimization, CGO, 2013.
[35] Intel. Intel 64 and IA-32 architectures software developer’s manual -

Chapter 28 VMX support for address translation.
http://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-software-developer-manual-
325462.pdf.

[36] D. Jang, Z. Tatlock, and S. Lerner. SafeDispatch: Securing C++ virtual
calls from memory corruption attacks. In 21st Annual Network and

Distributed System Security Symposium, NDSS, 2014.
[37] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. Address space layout

permutation (ASLP): towards fine-grained randomization of commodity
software. In 22nd Annual Computer Security Applications Conference,
ACSAC, 2006.

[38] S. T. King, P. M. Chen, Y. Wang, C. Verbowski, H. J. Wang, and J. R.
Lorch. Subvirt: Implementing malware with virtual machines. In 27th

IEEE Symposium on Security and Privacy, S&P, 2006.
[39] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song.

Code-pointer integrity. In 11th USENIX Symposium on Operating Systems

Design and Implementation, OSDI, 2014.
[40] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. SoK: Automated

software diversity. In 35th IEEE Symposium on Security and Privacy,
S&P, 2014.

[41] C. Lattner and V. S. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In IEEE/ACM International

Symposium on Code Generation and Optimization, CGO, 2004.
[42] Microsoft. Enhanced Mitigation Experience Toolkit.

https://www.microsoft.com/emet, 2015.
[43] Microsoft. Hyper-V.

http://www.microsoft.com/hyper-v, 2015.
[44] V. Mohan, P. Larsen, S. Brunthaler, K. Hamlen, and M. Franz. Opaque

control-flow integrity. In 22nd Annual Network and Distributed System

Security Symposium, NDSS, 2015.
[45] Nergal. The advanced return-into-lib(c) exploits: PaX case study. Phrack

Magazine, 11, 2001.
[46] B. Niu and G. Tan. RockJIT: Securing just-in-time compilation using

modular control-flow integrity. In ACM SIGSAC Conference on Computer

and Communications Security, CCS, 2014.
[47] Open Virtualization Alliance. KVM - kernel based virtual machine.

http://www.linux-kvm.org.
[48] Oracle Corporation. VirtualBox.

http://www.virtualbox.org.
[49] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the

gadgets: Hindering return-oriented programming using in-place code
randomization. In 33rd IEEE Symposium on Security and Privacy, S&P,
2012.

[50] V. Pappas, M. Polychronakis, and A. D. Keromytis. Transparent ROP
exploit mitigation using indirect branch tracing. In 22nd USENIX Security

Symposium, 2013.
[51] PaX Team. Homepage of The PaX Team, 2001. http://pax.grsecurity.net.
[52] A. Prakash, X. Hu, and H. Yin. vfGuard: Strict protection for virtual

function calls in COTS C++ binaries. In 22nd Annual Network and

Distributed System Security Symposium, NDSS, 2015.
[53] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-oriented

programming: Systems, languages, and applications. ACM Transactions

on Information System Security, 15, 2012.
[54] J. Rutkowska and A. Tereshkin. IsGameOver() anyone? In BlackHat

USA, 2007.
[55] F. Schuster, T. Tendyck, J. Pewny, A. Maaß, M. Steegmanns, M. Contag,

and T. Holz. Evaluating the effectiveness of current anti-ROP defenses.
In 17th International Symposium on Research in Attacks, Intrusions and

Defenses, RAID, 2014.
[56] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz.

Counterfeit object-oriented programming: On the difficulty of preventing
code reuse attacks in C++ applications. In 36th IEEE Symposium on

Security and Privacy, S&P, 2015.
[57] J. Seibert, H. Okhravi, and E. Söderström. Information leaks without

memory disclosures: Remote side channel attacks on diversified code. In
ACM SIGSAC Conference on Computer and Communications Security,
CCS, 2014.

[58] H. Shacham. The geometry of innocent flesh on the bone: return-into-libc
without function calls (on the x86). In ACM SIGSAC Conference on

Computer and Communications Security, CCS, 2007.
[59] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and

A. Sadeghi. Just-in-time code reuse: On the effectiveness of fine-grained
address space layout randomization. In 34th IEEE Symposium on Security

and Privacy, S&P, 2013.
[60] C. Song, C. Zhang, T. Wang, W. Lee, and D. Melski. Exploiting and

protecting dynamic code generation. In 22nd Annual Network and

Distributed System Security Symposium, NDSS, 2015.
[61] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and

T. Walter. Breaking the memory secrecy assumption. In 2nd European

Workshop on System Security, EUROSEC, 2009.
[62] L. Szekeres, M. Payer, T. Wei, and D. Song. SoK: Eternal war in memory.

In 34th IEEE Symposium on Security and Privacy, S&P, 2013.
[63] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,

L. Lozano, and G. Pike. Enforcing forward-edge control-flow integrity
in GCC & LLVM. In 23rd USENIX Security Symposium, 2014.

[64] VMware, Inc. VMware ESX.
http://www.vmware.com/products/esxi-and-esx/overview.

[65] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary stirring: self-
randomizing instruction addresses of legacy x86 binary code. In ACM

SIGSAC Conference on Computer and Communications Security, CCS,
2012.

[66] Xen Project. Xen.
http://www.xenproject.org.

[67] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song,
and W. Zou. Practical control flow integrity and randomization for binary
executables. In 34th IEEE Symposium on Security and Privacy, S&P,
2013.

[68] C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. Song. VTint: Defending
virtual function tables’ integrity. In 22nd Annual Network and Distributed

System Security Symposium, NDSS, 2015.
[69] M. Zhang and R. Sekar. Control flow integrity for COTS binaries. In

22nd USENIX Security Symposium, 2013.

APPENDIX

Figure A provides a detailed overview of Readactor.

Readacted ProcessReadacted Application

 Readactor Compiler

 Trampolines

Source

Code 1010100110

1011100100

1001000100

0110110101

0011011110

0001010111

0010010100

Code-data separation

Function order
Register allocation

Code diversification

Trampolines

Code-pointer hiding

X

X

Data
RW

Application Loader

Hardware
Memory

Virtualization

EPT

1 2

3 4

Operating System

Thin Hypervisor

X-only enabled

0

RWX

Stack

…

Return Address

(pointer to

trampoline)
Trampolines

CALL func
jump to call site

Code

JUMP func_tramp
<instructions>
…

A

6

7 read
B

Detect memory
read violation

B

5

Adversary

Figure A: Overview of Readactor. Components marked in gray are part of Readactor.

System Components:

0 Enabling execute-only support: We load a thin hypervisor
to activate memory virtualization and to setup the Extended
Page Table (EPT). The EPT contains two identity mappings
to the physical memory, a normal mapping and a readacted
mapping. The readacted mapping is used by the modified
operating system to set page permissions to execute-only.

1 Compilation: The compiler takes the source code of an
arbitrary program and creates a binary. The compiler (i) strictly
separates code and data, (ii) applies code diversification in the
form of function permutation, register allocation randomization
and save slot reordering, and (iii) implements code-pointer
hiding, by creating a trampoline, as jmp <dst> instruction
for every code pointer (e.g., return address destinations).

2 Binary: The output binary contains different sections for
code, trampolines and data. The linker marks appropriate access
permissions for each section.

3 Loader: The loader reads the size and permissions bits
of each section and allocates the respective memory regions,
protecting them with the requested permissions (4).

5 Code-pointer hiding: In order to hide code pointers during
runtime, calls are substituted with a jmp instruction to the
corresponding trampoline. The trampoline will then call the

original function, which pushes a return address on the stack.
However, the return address (6) will not point into the
code section, but to the trampoline section. As described in
Section IX, disclosing trampoline pointers will not provide any
knowledge to the adversary about the layout or content of the
code section. Once the called function returns to the trampoline,
control flow is returned to the original call site through another
jmp instruction (7). We similarly protect function pointers
with jmp trampolines (not shown).

Attack Scenarios:

A Reading data memory: Data regions remain readable and
writable. Hence, the adversary can disclose and modify code
pointers. However, the disclosed code pointers do not provide
any information about the applied code randomization and
can therefore not be used to create a ROP gadget chain (cf.
Section IX).

B Reading code memory: Code regions are set to execute-only.
Any attempt to read these regions causes an EPT exception
which is forwarded to the operating system. An application that
causes an execute-only exception by attempting to read or write
a code region is immediately killed by the operating system.
Since the execute-only permission is enforced in hardware it
cannot be bypassed by software.

