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ABSTRACT 

Traditional methods of studying neural coding characterize the en­

coding of known stimuli in average neural responses. Organisms 

face nearly the opposite task - decoding short segments of a spike 

train to extract information about an unknown, time-varying stim­

ulus. Here we present strategies for characterizing the neural code 

from the point of view of the organism, culminating in algorithms 

for real-time stimulus reconstruction based on a single sample of 

the spike train. These methods are applied to the design and anal­

ysis of experiments on an identified movement-sensitive neuron in 

the fly visual system. As far as we know this is the first instance in 

which a direct "reading" of the neural code has been accomplished. 

1 Introduction 

Sensory systems receive information at extremely high rates, and much of this infor­

mation must be processed in real time. To understand real-time signal processing 

in biological systems we must understand the representation of this information in 

neural spike trains. \Ve ask several questions in particular: 

• Does a single neuron signal only the occurrence of particular stimulus '"fea­

tures," or can the spike train represent a continuous time-varying input? 

1 Rijksuniversiteit Groningen, Postbus 30.001,9700 RB Groningen The Netherlands 



Reading a Neural Code 37 

• How much information is carried by the spike train of a single neuron? 

• Is the reliability of the encoded signal limited by noise at the sensory input 

or by noise and inefficiencies in the subsequent layers of neural processing? 

• Is the neural code robust to errors in spike timing, or do realistic levels of 

synaptic noise place significant limits on information transmission? 

• Do simple analog computations on the encoded signals correspond to simple 

manipulations of the spike trains? 

Although neural coding has been studied for more than fifty years, clear experimen­

tal answers to these questions have been elusive (Perkel & Bullock, 1968; de Ruyter 

van Steveninck & Bialek, 1988). Here we present a new approach to the characteri­

zation of the neural code which provides explicit and sometimes surprising answers 

to these questions when applied to an identified movement-sensitive neuron in the 

fly visual system. 

We approach the study of spiking neurons from the point of view of the organism, 

which, based only on the spike train, must estimate properties of an unknown time­

varying stimulus. Specifically we try to solve the problem of decoding the spike train 

to recover the stimulus in real time. As far as we know our work is the first instance 

in which it has been possible to "read" the neural code in this literal sense. Once 

we can read the code, we can address the questions posed above. In this paper we 

focus on the code reading algorithm, briefly summarizing the results which follow. 

2 Theoretical background 

The traditional approach to the study of neural coding characterizes the encoding 

process: For an arbitrary stimulus waveform s( r), what can we predict about the 

spike train? This process is completely specified by the conditional probability 

distribution P[{tdls(r)] of the spike arrival times {til conditional on the stimulus 

s( r). In practice one cannot characterize this distribution in its entirety; most 

experiments result in only the lowest moment - the firing rate as function of time 

given the stimulus. 

The classic experiments of Adrian and others established that, for static stimuli, the 

resulting constant firing rate provides a measure of stimulus strength. This concept 

is easily extended to any stimulus waveform which is characterized by constant 

parameters, such as a single frequency or fixed amplitude sine wave. l\'luch of the 

effort in studying the encoding of sensory signals in the nervous system thus reduces 

to probing the relation between these stimulus parameters and the resulting firing 

rate. Generalizations to time-varying firing rates, especially in response to periodic 

signals, have also been explored. 

The firing rate is a continuous function of time which measures the probability 

per unit time that the cell will generate a spike. The rate is thus by definition 

an average quantity; it is not a property of a single spike train. The rate can 

be estimated, in principle, by averaging over a large ensemble of redundant cells, 
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or by averaging responses of a single cell over repeated presentations of the same 

stimulus. This latter approach dominates the experimental study of spiking neurons. 

Measurements of firing rate rely on some form of redundancy - either the spatial 

redundancy of identical cells or the temporal redundancy of repeated stimuli. It is 

simply not clear that such redundancy exists in real sensory systems under natural 

stimulus conditions. In the absence of redundancy a characterization of neural 

responses in terms of firing rate is oflittle relevance to the signal processing problems 

faced by the organism. To say that "information is coded in firing rates" is of no 

use unless one can explain how the organism could estimate these firing rates by 

observing the spike trains of its own neurons. 

We believe that none of the existing approaches2 to neural coding addresses the basic 

problem of real-time signal processing with neural spike trains: The organism must 

extract information about continuously varying stimulus waveforms using only the 

discrete sequences of spikes. Real-time signal processing with neural spike trains 

thus involves some sort of interpolation between the spikes that allows the organism 

to estimate a continuous function of time. 

The most basic problem of real-time signal processing is to decode the spike train and 

recover an estimate of the stimulus waveform itself. Clearly if we can accomplish 

this task then we can begin to understand how spike trains can be manipulated to 

perform more complex computations; we can also address the quantitative issues 

outlined in the Introduction. Because of the need to interpolate between spikes, 

such decoding is not a simple matter of inverting the conventional stimulus-response 

(rate) relations. In fact it is not obvious a priori that true decoding is even possible. 

One approach to the decoding problem is to construct models of the encoding 

process, and proceed analytically to develop algorithms for decoding within the 

context of the model (Bialek & Zee, 1990). Using the results of this approach we 

can predict that linear filtering will, under some conditions, be an effective decoding 

algorithm, and we can determine the form of the filter itself. In this paper we have 

a more limited goal, namely to see if the class of decoding algorithms identified 

by Bialek and Zee is applicable to a real neuron. To this end we will treat the 

structure of the decoding filter as unknown, and find the "best" filter under given 

experimental conditions. 

We imagine building a set of (generally non-linear) filters {Fn} which operate on 

the spike train to produce an estimate of the stimulus. If the spikes arrive at times 

{td, we write our estimate of the signal as a generalized convolution, 

(1) 

i i,j 

2Higher moments of the conditional probability P[{t i}ls(r)], such as the inter-spike interval 

distribution (Perkel & Bullock, 1968) are also average properties, not properties of single spike 

trains, and hence may not be relevant to real-time signal processing. White-noise methods (Mar­

marelis & Marmarelis, 1978) result in models which predict the time-varying firing rate in response 

to arbitrary input waveforms and thus suffer the same limitations as other rate-based approaches. 
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How good are the reconstructions? We separate systematic and random errors by 

introducing a frequency dependent gain g(w) such that (ls(w)l) = g(w) (lsut(w)l). 
The resulting gain is approximately unity through a reasonable bandwidth. Further, 

the distribution of deviations between the stimulus and reconstruction is approx­

irr.ately Gaussian. The absence of systematic errors suggests that non-linearities 

in the reconstruction filter are unlikely to help. Indeed, the contribution from the 

st.. ~ond order term in Eq. (1) to the reconstructions is negligible. 
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Figure 2: Spectral density of displacement noise from our reconstruction (upper 

curve). By multiplying the displacement noise level by a bandwidth, we obtain the 

square of the angular resolution of HI for a step displacement. For a reasonable 

bandwidth the resolution is much less than the photoreceptor spacing, 1.350 -

"hyperacuity." Also shown is the limit to the resolution of small displacements set 

by noise in the photoreceptor array (lower curve). 

We identify the noise at frequency w as the difference between the stimulus and 

the normalized reconstruction, n(w) = s(w) - g(w )Sed (w). \Ve then compute the 

dpectral density (noise power per unit bandwidth) of the displacement noise (Fig 2). 

The noise level achieved in HI is astonishing; with a one second integration time an 

observer of the spike train in HI could judge the amplitude of a low frequency dither 

to 0.01° - more than one hundred times less than the photoreceptor spacing! If the 

fiY'f neural circuitry is noiseless, the fundamental limits to displacement resolution 
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stimulus, 

J dw . (s(w) Lj e- iwtj ) 

Fl(T) = _e-1wr • 

27r (Li,j eiW(t.-t j ») 
(2) 

The averages ( .. . ) are with respect to an ensemble of stimuli S ( T). 

2. Minimize X2 with respect to purely causal functions. This may be done an­

alytically, or numerically by expanding F 1 ( T) in a complete set of functions 

which vanish at negative times, then minimizing X2 by varying the coefficients 

of the expansion. In this method we must explicitly introduce a delay time 

which measures the lag between the true stimulus and our reconstruction. 

We use the filter generated from the first method (which is the best possible linear 

filter) to check the filter generated by the second method. Fig. 1 illustrates recon­

structions using these two methods. The filters themselves are also shown in the 

figure; we see that both methods give essentially the same answer. 
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Figure 1: First order reconstruction se,,( T) using method 1 (solid line). The 

st.imulus is shown here as a dotted line for comparison. The reconstruction shown 

is for a segment of the spike train which was not used in the filter calculations. The 

spike train is shown at the bottom of the figure, where the negative spikes are from 

the "other eye" (cf. footnote 3). Both stimulus and reconstruction are smoothed 

with a 5 msec half-wid th Gaussian filter. The filters calculating using both methods 

are shown on the right. 
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We define the optimal filter to be that which minimizes X2 = f dtls(t) - sest(t)12 , 

where s(t) is the true stimulus, and the integration is over the duration of the 

experiment. 

To insure that the filters we calculate allow real-time decoding, we require that the 

filters be causal, for example FI(T < 0) = O. But the occurrence of a spike at 

t' conveys information about the stimulus at a time t < t', so we must delay our 

estimate of the stimulus by some time Tdelay > t' - t. In general we gain more 

information by increasing the delay, so we face a tradeoff: Longer waiting times 

allow us to gain more information but introduce longer reaction times to important 

stimuli. This tradeoff is exactly the tradeoff faced by the organism in reacting to 

external stimuli based on noisy and incomplete information. 

3 Movelnent detection in the blowfly visual system 

We apply our methods in experiments on a single wide field, movement-sensitive 

neuron (H 1) in the visual system of the blowfly Calliphora erythrocephela. Flies 

and other insects exhibit visually guided flight; during chasing behavior course 

corrections can occur on time scales as short as 30 msec (Land & Collett, 1974). H1 

appears to be an obligatory link in this control loop, encoding wide field horizontal 

movements (Hausen, 1984). Given that the maximum firing rate in H1 is 100-

200 Hz, behavioral decisions must be based on the information carried by just a few 

spikes from this neuron. Further, the horizontal motion detection system consists 

of only a handful of neurons, so the fly has no opportunity to compute average 

responses (or firing rates). 

In the experiments described here, the fly is looking at a rigidly moving random pat­

tern (de Ruyter van Steveninck, 1986). The pattern is presented on an oscilloscope, 

and moved horizontally every 500 J-lsec in discrete steps chosen from an ensemble 

which approximates Gaussian white noise. This time scale is short enough that we 

can consider the resulting stimulus waveform s(t) to be the instantaneous angular 

velocity. We record the spike arrival times {til extracellularly from the H1 neuron.3 

4 First order reconstructions 

To reconstruct the stimulus waveform requires that we find the filter FI which 

minimizes X2. We do this in two different ways: 

1. Disregard the constraint that the filter be causal. In this case we can write 

an explicit formula for the optimal filter in terms of the spike trains and the 

3 There is one further caveat to the experiment. The firing rate in HI is increased for back-to­

front motion and is decreased for front-to-back motion; the dynamic range is much greater in the 

excitatory direction. The fiy, however, achieves high sensitivity in both directions by combining 

information from both eyes. Because front-to-back motion in one eye corresponds to back-to-front 

motion in the other eye, we can simulate the two eye case while recording from only one HI cell 

by using an antisymmetric stimulus waveform. We combine the information coded in the spike 

trains corresponding to the two "polarities" of the stimulus to obtain the information available 

from both HI neurons. 
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are set by noise in the photoreceptor array. We have calculated these limits in the 

case where the displacements are small, which is true in our experiments at high 

frequencies. In comparing these limits with the results in HI it is crucial that the 

photoreceptor signal and noise characteristics (de Ruyter van Steveninck, 1986) are 

measured under the same conditions as the HI experiments analyzed here. It is 

clear from Fig. 2 that HI approaches the theoretical limit to its performance. We 

emphasize that the noise spectrum in Fig. 2 is not a hypothetical measure of neural 

performance. Rather it is the real noise level achieved in our reconstructions. As 

far as we know this is the first instance in which the equivalent spectral noise level 

of a spiking neuron has been measured. 

To explore the tradeoff between the quality and delay of the reconstruction we 

measure the cross-correlation of the smoothed stimulus with the reconstructions 

calculated using method 2 above for delays of 10-70 msec. For a delay of 10 msec 

the reconstruction carries essentially no information; this is expected since a de­

lay of 10 msec is close to the intrinsic delay for phototransduction. As the delay 

is increased the reconstructions improve, and this improvement saturates for de­

lays greater than 40 msec, close to the behavioral reaction time of 30 msec - the 

structure of the code is well matched to the behavioral decision task facing the 

organism. 

5 Conclusions 

Learning how to read the neural code has allowed us to quantify the information 

carried in the spike train independent of assumptions regarding the structure of 

the code. In addition, our analysis gives some hopefully more general insights into 

neural coding and computation: 

1. The continuously varying movement signal encoded in the firing of H1 can be re­

constructed by an astonishingly simple linear filter. If neurons summed their inputs 

and marked the crossing of thresholds (as in many popular models), such recon­

structions would be impossible; the threshold crossings are massively ambiguous 

indicators of the signal waveform. We have carried out similar studies on a stan­

dard model neuron (the FitzHugh-Nagumo model), and find results similar to those 

in the HI experiments. From the model neuron studies it appears that the linear 

representation of signals in spike trains is a general property of neurons, at least in 

a limited regime of their dynamics. In the near future we hope to investigate this 

statement in other sensory systems. 

2. The reconstruction is dominated by a "window" of - 4 0 msec during which 

at most a few spikes are fired. Because so few spikes are important, it does not 

make sense to talk about the "firing rate" - estimating the rate vs. time from 

observations of the spike train is at least as hard as estimating the stimulus itself! 

3. The quality of the reconstructions can be improved by accepting longer delays, but 

this improvement saturates at - 30 - 40 msec, in good agreement with behavioral 

decision times. 
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4. Having decoded the neural signal we obtain a meaningful estimate of the noise 

level in the system and the information content of the code. H1 accomplishes a real­

time version of hyper acuity, corresponding to a noise level near the limits imposed 

by the quality of the sensory input. It appears that this system is close to achieving 

optimal real-time signal processing. 

5. From measurements of the fault tolerance of the code we can place requirements 

on the noise levels in neural circuits using the information coded in H1. One of the 

standard objections to discussions of "spike timing" as a mechanism of coding is 

that there are no biologically plausible mechanisms which can make precise mea­

surements of spike arrival times. We have tested the required timing precision by 

introducing timing errors into the spike train and characterizing the resulting recon­

structions. Remarkably the code is "fault tolerant," the reconstructions degrading 

only slightly when we add timing errors of several msec. 

Finally, we wish to emphasize our own surprise that it is so simple to recover time 

dependent signals from neural spike trains. The filters we have constructed are not 

very complicated, and they are linear. These results suggest that the representation 

of time-dependent sensory data in the nervous system is much simpler than we migh t 

have expected. We suggest that, correspondingly, simpler models of sensory signal 

processing may be appropriate. 
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