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We address the problem of how efficiently information can be encoded into and read out reliably from a

passive reflective surface that encodes classical data by modulating the amplitude and phase of incident light. We

show that nature imposes no fundamental upper limit to the number of bits that can be read per expended probe

photon and demonstrate the quantum-information-theoretic trade-offs between the photon efficiency (bits per

photon) and the encoding efficiency (bits per pixel) of optical reading. We show that with a coherent-state (ideal

laser) source, an on-off (amplitude-modulation) pixel encoding, and shot-noise-limited direct detection (an overly

optimistic model for commercial CD and DVD drives), the highest photon efficiency achievable in principle is

about 0.5 bits read per transmitted photon. We then show that a coherent-state probe can read unlimited bits per

photon when the receiver is allowed to make joint (inseparable) measurements on the reflected light from a large

block of phase-modulated memory pixels. Finally, we show an example of a spatially entangled nonclassical

light probe and a receiver design—constructible using a single-photon source, beam splitters, and single-photon

detectors—that can in principle read any number of error-free bits of information. The probe is a single photon

prepared in a uniform coherent superposition of multiple orthogonal spatial modes, i.e., a W state. The code

and joint-detection receiver complexity required by a coherent-state transmitter to achieve comparable photon

efficiency performance is shown to be much higher in comparison to that required by the W -state transceiver,

although this advantage rapidly disappears with increasing loss in the system.

DOI: 10.1103/PhysRevA.87.062306 PACS number(s): 42.50.Ex, 03.67.Hk, 42.79.Sz, 42.30.Lr

I. INTRODUCTION

Optical discs, such as compact discs (CDs) and digital

video discs (DVDs), are ubiquitous. The surface of the CD

contains a long spiral track of data, along which there are

flat reflective areas called land and nonreflective bumps (see

Fig. 1), representing binary 1 and binary 0, respectively.

The drive shines a laser at the surface of the CD to read

data. The detector photocurrent tracks the intensity of the

reflected light, which the drive converts into estimates of 1s

and 0s. There is an extensive literature and ongoing research

on evaluation of information-theoretic capacities of optical

storage, error-correcting codes, and techniques to make the

storage and readout more efficient [1,2]. The majority of

that work, however, concentrates on what can be achieved

by optimizing existing technology, as opposed to establishing

what are the true ultimate limits—imposed by the laws of

quantum mechanics—on optical reading of information that

has been encoded into a passive reflecting medium.

Fundamentally, the performance of any optical commu-

nication or imaging system is limited by noise of quantum-

mechanical origin, and optical reading of information is no

exception. In order to delineate the ultimate performance

of optical reading limited only by the laws of physics, an

analysis within a full quantum-mechanical framework must

therefore be done. Some examples of early work relevant to

quantum reading include Shapiro’s number-product vacuum
states for zero-error reading of phase-conjugate-encoded

pixels [3], Acin’s work on optimally distinguishing two unitary

transformations [4], and D’Ariano et al.’s demonstration that

entanglement can improve the precision of estimating an

unknown transformation [5]. In a suite of recent work by

Pirandola and others [6–13], it has been shown that non-

classical light paired with nonstandard detection techniques

can read data more reliably than can a coherent-state (laser)

probe; i.e., at a given transmitted-photon budget the former

can discriminate between a set of reflectivity-phase values for

a pixel with a lower probability of error than the latter.

Lower error probability in discriminating signals from a

modulation constellation does not automatically translate to in-

creased capacity, i.e., the sustained reliable rate of reading that

is achievable with an optimal modulation, code, and receiver.

Attaining the quantum-limited capacity—the Holevo limit
[14,15]—requires joint-detection receivers (JDRs), whenever

the modulation constellation’s quantum states are not mu-

tually orthogonal. JDRs make collective measurements on

the reflected light from many memory pixels—which cannot

be realized by detecting the reflected light from each pixel

individually—followed by optimal joint postprocessing of the

classical measurement outcomes [16]. Recent work on the

capacity of optical reading [7] evaluated achievable rates

that employ JDRs to detect code words constructed from

binary-amplitude pixel modulation. These achievable rates,

however, fall significantly short—in both the capacity and

photon efficiency of optical reading—when amplitude and
phase modulation are taken into account.

In this paper, we address the following fundamental

question: What is the ultimate upper limit to the number of bits

of information that can be reliably read using an optical probe

with a given mean photon-number budget when information is

encoded using a reflective surface that can passively modulate

a combination of the amplitude and phase of the probe light

[17]? We show that there is no upper limit to the number

of bits that can be read reliably per expended photon. We

also show that with a coherent-state source, an on-off pixel

modulation, and ideal direct detection (an overly optimistic

model for commercial CD and DVD drives), the highest photon
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FIG. 1. (Color online) Artist’s impression of the CD drive’s read

laser shining on the surface of an optical disk (picture courtesy of

Science Photo Library).

information efficiency (PIE) achievable is about 0.5 bits per

transmitted photon. We then show that a coherent-state probe

can read boundless bits per transmitted photon when the

receiver is allowed to make joint measurements on the reflected

light from a large block of phase-modulated memory pixels.

We show one structured design for such a JDR that can attain an

unbounded PIE with a coherent-state transmitter, which is not

possible using any conventional optical transceiver. Finally,

we show an example of a spatially entangled nonclassical

optical probe and an explicit receiver design—constructible

using a single-photon source, beam splitters, and single-photon

detectors—that in principle can read any number of error-free
bits of information using a single transmitted photon. The

probe is a single photon in a uniform superposition of multiple

spatial modes, viz., a W state.

II. CAPACITY OF OPTICAL READING

The setup we consider is shown in Fig. 2. Each memory

pixel is a reflective surface that can modulate the incident

optical mode(s) by a power attenuation factor ηm ∈ [0,1]

and/or a (carrier) phase shift θm ∈ (0,2π ]. A K-mode trans-

mitter interrogates each memory pixel. Each pixel acts like a

beam splitter, such that the kth return mode from the mth

pixel is given by â
(m,k)
R = √

ηmejθm â
(m,k)
S +

√
1 − ηmâ

(m,k)
E ,

where the {â(m,k)
S } are the transmitter (signal) modes and

the environment modes, {â(m,k)
E }, are taken to be in their

FIG. 2. (Color online) Schematic of an optical memory that uses

passive linear-optic reflective encoding. M memory pixels are shown.

Each pixel can modulate the spatial mode of the incident probe light

by a power attenuation ηm ∈ [0,1] and/or a (carrier) phase shift θm ∈
(0,2π ].

respective vacuum states, implying no excess noise. We

impose a mean photon-number constraint on the transmitter,
∑K

k=1〈â
(m,k)†
S â

(m,k)
S 〉 � NS photons per pixel. In what follows

we address the following two canonical questions:

(1) Capacity—How many bits of information can be

reliably encoded and read per memory pixel, C(NS) bits/pixel,

as a function of the average photon number spent to interrogate

a pixel, NS , when there are no constraints on the length of

the code, the transmitter state, and the receiver measurement?

The PIE is the number of bits read per signal photon, given

by C(NS)/NS bits/photon. As is true for most capacities,

reading data at a rate R < C(NS) bits/pixel at a probability

of word error P (M)
e → 0, may require coding over M → ∞

many pixels and employing a JDR over infinitely many pixels.

(2) Error exponent—What is the minimum number of

pixels M required (length of code and JDR) to attain a certain

PIE, such that P (M)
e � ǫ?

For both of the preceding performance metrics, we would

also like to know by how much can nonclassical states of

light and/or nonstandard optical receivers (including JDRs)

outperform a coherent-state probe and the standard optical

receivers (homodyne, heterodyne, and direct detection).

At this point, readers who are familiar with the Holevo

capacity of bosonic channels [18], might see the correspon-

dence between the above problem and the problem of finding

the capacity Ccomm(NS) (bits/use) of a single-mode pure-loss

bosonic channel when NS photons are transmitted, on average,

per channel use. It is well known that the Holevo capac-

ity for that channel—Ccomm(NS) = g(ηNS) bits/use, where

g(x) = (1 + x) log2(1 + x) − x log2(x) and η is the channel’s

transmissivity—can be achieved using coherent-state modu-

lation and a joint-detection receiver. It is easy to see that

the capacity of optical reading, C(NS) � Ccomm(NS), because

the light reflected from M memory pixels can be regarded

as an M-mode code word. It is not obvious, however, that

equality holds, i.e., C(NS) = Ccomm(NS), nor is it clear that a

coherent-state probe can attain the reading capacity. It turns out

that C(NS) = g(ηNS), where η is now the average reflectivity

of the encoded pixels, is only possible for lossless optical

reading, viz., phase-only encoding with η = 1. Furthermore,

even in the lossless case, C(NS) = g(NS) cannot be achieved

with coherent states [17,19]. Thus, despite the similarities of

optical communication and optical reading, the latter problem

is more constrained than the former, because its modulation

and coding happen passively at the pixels, with the transmitter

being ignorant of the information to be modulated on the

probe light. In communication—for which the information to

be modulated and coded is available to the transmitter—the

spate of recent work on Holevo capacity-achieving codes

[20,21] and joint-detection receivers [16,22–24] has yet

to yield an efficient Holevo-capacity-achieving code and a

structured optical design for its JDR. Surprisingly, we exhibit

an explicit capacity-achieving system for lossless optical

reading.

To focus on the fundamental aspects of the capacity

and error-exponent questions, we assume that there is no

return-path loss of the probe light (except for any loss due

to amplitude modulation by the memory pixels); no excess

noise (such as noise due to detector imperfections or a

thermal background); and a diffraction-limited transceiver
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FIG. 3. (Color online) Photon information efficiency of optical

reading (bits read per photon) vs the encoding efficiency (bits encoded

per pixel) for various transmitter and receiver strategies. The gray-

shaded area shows the Shannon limit of the performance achievable

using an ideal laser-light probe, on-off amplitude encoding, and an

ideal direct detection receiver—an overly optimistic model for how

conventional optical drives read data from disks.

with spatially resolved pixels. There is a fundamental trade-off

between optical reading’s photon efficiency (bits read per

photon) and its encoding efficiency (bits encoded per pixel).

This trade-off—for a variety of transmitter, encoding, and

receiver techniques—is summarized in Fig. 3. High photon

efficiency (hence, low encoding efficiency) is attained for a

low-brightness transmitter (low NS), whereas attaining high

encoding efficiency (hence, low photon efficiency) requires

a bright transmitter (high NS). The gray-shaded area in

Fig. 3 corresponds to the best performance achievable using

conventional techniques. The derivations of these trade-off

curves are explained below. We focus on the high photon

efficiency (low photon flux) regime in this paper. It is here

that the advantage of joint detection is the most pronounced.

We defer consideration of the high encoding efficiency regime

to the sequel [19] of the present work; it will be a long version

of Ref. [17]. Finally, we also limit our scope in this paper to a

single-mode transmitter, i.e., K = 1.

We begin by considering an idealized model for the

standard CD or DVD drive, i.e., a laser-light probe, on-

FIG. 4. (Color online) (a) The induced binary channel for a

coherent-state probe, on-off pixel encoding, and shot-noise-limited

direct detection. (b) The optimal fraction of “on” pixels p∗ that

maximizes the number of bits read per pixel C(NS), when mean

photon number NS is used to interrogate each memory pixel.

FIG. 5. (Color online) Photon information efficiency (PIE) vs the

mean photon number NS used to interrogate each memory pixel. CS

denotes coherent state. is the minimum number of pixels needed to

achieve 5 bpp at Pe = 10−3.

off amplitude modulation, and a direct-detection receiver.

Interrogation and detection of each pixel induces a binary

asymmetric channel, as shown in Fig. 4(a). The Shannon

capacity [25] of this channel is given by

C(NS) = max
p∈(0,1)

I (X; Y ) (1)

= max
p∈(0,1)

[H (Y ) − H (Y |X)] (2)

= max
p∈(0,1)

[H (p(1 − e−NS )) − pH (e−NS )], (3)

where H (x) = −x log2(x) − (1 − x) log2(1 − x) is the binary

entropy function. The optimal value of p that maximizes the

mutual information I (X; Y ) is the fraction of “on” pixels

in a capacity-achieving code, which is readily computed

to be

p∗(NS) =
1

(1 − e−NS )[1 + 2H (e−NS )/(1−e−NS )]
. (4)

Figure 4(b) shows that p∗(NS) → 0.5 for NS ≫ 1. This is

the regime in which a standard CD drive operates, wherein

optimal codes have equal fractions of on and off pixels. On

the other hand, p∗(NS) → 1/e ≈ 0.368 for NS ≪ 1. The solid

blue line in Fig. 5 plots the PIE, C(NS)/NS , as a function of NS

for on-off pixel modulation, a coherent-state probe, and direct

detection. The PIE caps off, C(NS)/NS → 1/e ln(2) ≈ 0.53

bits per photon (bpp) for NS ≪ 1. Thus, even with the optimal

code (code words infinitely many pixels long), using on-off

modulation, an ideal laser transmitter, and an ideal direct-

detection receiver, no more than about 0.5 bits can be read per

transmitted photon.

Let us now consider the binary phase-shift keyed (BPSK)

modulation. Each memory pixel is a perfectly reflective pixel

but some are etched λ/2 deeper into the surface of the disk,

where λ is the center wavelength of the (quasimonochromatic)

probe light. A coherent-state probe |
√

NS〉 sent to interrogate

the mth pixel gets reflected as |
√

NS〉 or | −
√

NS〉 depend-

ing upon whether that pixel’s phase is θm = 0 or π . The

conventional receiver to discriminate the states {|
√

NS〉,| −
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FIG. 6. (Color online) A binary symmetric channel is induced

when a coherent-state probe |
√

NS〉 interrogates each memory pixel,

and the reflected light is detected by either a conventional homodyne

receiver with a threshold detector or by the Dolinar receiver—

a receiver that can attain the minimum probability of error for

discriminating between two coherent states.

√
NS〉} uses homodyne detection, which results in a Gaussian-

distributed measurement outcome β, with mean ±
√

NS and

variance 1/4. The minimum error-probability postdetection

processor is the threshold test, β � 0 ⇒ θ = 0 and β < 0 ⇒
θ = π , which induces a binary symmetric channel (BSC)

with crossover probability qhom = erfc(
√

2NS)/2 (see Fig. 6),

whose capacity is given by C(NS) = 1 − H (qhom) bits/pixel

and is achieved for an equal prior (p∗ = 1/2) for the two

phase values. The minimum achievable error probability for

discriminating a single copy of the two equally likely coherent

states {|
√

NS〉,| −
√

NS〉} is given by the Helstrom limit [26],

Pe, min = [1 −
√

1 − e−4NS ]/2. This minimum probability of

error can in principle be achieved exactly using the Dolinar

receiver [27,28], which is a structured optical receiver design

that uses a local time-varying optical feedback and high-speed

ideal single-photon detection. The Dolinar receiver used with

BPSK modulation induces a BSC with crossover probability

qmin = Pe, min, and capacity C(NS) = 1 − H (qmin) bits/pixel.

The magenta (dark gray) and red (gray) plots in Fig. 5

show the PIE for BPSK encoding with the homodyne and

Dolinar receivers, which cap off at 4/π ln(2) ≈ 1.84 bpp and

2/ ln(2) ≈ 2.89 bpp, respectively, for NS ≪ 1.

For a single {0,π} binary phase-modulated pixel, of all

(multimode) transmitter states with mean photon number

NS , the one that minimizes the probability of error is the

single-mode (K = 1) single-rail encoded qubit state, |ψ〉S =√
1 − NS |0〉 +

√
NS |1〉, which attains zero probability of er-

ror for NS � 1/2, and Pe, min ,QS = [1 −
√

1 − [1 − 2NS]2]/2,

for NS < 1/2 [12]. Capacity is again given by the BSC

capacity formula, C(NS) = 1 − H (Pe, min ,QS) bits/pixel (see

the red (gray)–dashed plot in Fig. 5). The resulting PIE

caps off at 2/ ln(2) = 2.89 bpp for NS ≪ 1. Note that

the BPSK pixel modulation format achieves the minimum

possible probability of error over all transmitters and re-

ceivers acting on reflection from single pixels and hence

achieves higher capacity (and PIE) than what can be ob-

tained via amplitude modulation alone [7]. Notwithstanding,

the PIEs of all the cases considered above cap off below

3 bpp.

The classical information-carrying (Holevo) capacity of

a quantum signaling alphabet was found by Holevo,

Schumacher, and Westmoreland [14,15]. The Holevo capacity

of the pure-loss (vacuum-noise) optical channel with a mean

received photon number per mode NS is g(NS) bits/mode

[18]. This capacity is achievable using a coherent-state code

with symbols |α〉 chosen in an independent, identically

distributed (i.i.d.) manner from the isotropic Gaussian dis-

tribution, p(α) = e−|α|2/NS /πNS . Hence, for communicating

classical data on a pure-loss optical channel, nonclassical

transmitter states cannot achieve any higher capacity than

coherent states. From the capacity theorem converse in

Ref. [18]—treating the reflected light from the memory pixels

as a modulated code word—and monotonicity of the g(·)
function, the capacity of optical reading must satisfy the

upper bound, C(NS) � g(NS), for all single-mode probe states

(K = 1). However, the reading problem has less encoding

freedom than the communication transmitter, because its

modulation must be passive (nonamplifying) at the pixels. That

is why C(NS) = g(NS) bits/pixel is not achievable for optical

reading using a coherent-state transmitter [19]. However, we

have shown that C(NS) = g(NS) bits/pixel is achievable using

a nonclassical transmitter [17,19] and a sequential-decoding

quantum joint-detection receiver [23].

The black-dashed line in Fig. 5 shows the PIE of the Holevo

bound g(NS)/NS . Note that unlike all the capacity results

for on-off and binary-phase modulation with explicit pixel-

by-pixel detection schemes considered above, the Holevo

bound has no upper limit to the number of bits that can

be read per expended photon. However, as the desired PIE

increases, the mean photon number NS used to interrogate

each pixel must be lower, resulting in a lower data rate C(NS)

(bits/pixel) read. Even though coherent states do not achieve

the Holevo bound on reading capacity, a coherent-state probe

can nevertheless approach g(NS) in the high-PIE (NS ≪ 1)

regime when employed in conjunction phase modulation

and the optimal JDR that makes a collective measurement

over-return modes from many pixels, as we now show. The

blue (gray)–dashed plots in Fig. 5 are the Holevo-limit PIEs of

Q-ary phase-shift-keying (PSK) constellations used to encode

the data for Q = 2,4,8,16,32. Because the PSK Holevo

limit for any Q is an achievable rate [15], it is a lower

bound to the reading capacity, i.e., C(NS) � CPSK−Holevo(NS),

where

CPSK−Holevo(NS) = max
Q�2

−
Q

∑

q=1

yq(NS) log2 yq(NS),

with {yq(NS)}, 1 � q � Q, being the probability

distribution,

yq(NS)

=
1

Q

Q
∑

k=1

e
−NS [1−cos( 2πk

Q
)] cos

[

NS sin

(

2πk

Q

)

−
2πkq

Q

]

.

For Q = 2 (BPSK modulation), the Holevo capacity is

given by CBPSK(NS) = H ((1 + e−2NS )/2) bits/pixel. Its PIE

is shown by the dark blue (gray)–dashed plot in Fig. 5, where

it is seen to approach the Holevo limit g(NS)/NS at low NS .

Thus, the gap between the PIE of BPSK modulation used with

an optimal single-symbol receiver (solid red [gray] plot) and
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FIG. 7. (Color online) The Green Machine JDR. Each vertical

column of + and − signs is a reflection from M binary-phase-coded

memory pixels—a coherent-state BPSK code word from the

Hadamard code with M pulses of mean photon number NS each.

Each of the M code words transforms into exactly one coherent

state of mean photon number MNS at one distinct output port of

the optical circuit of (M/2) log2(M) beam splitters. Under ideal

conditions, a click at one of the M single-photon detectors identifies

the reflected code word with no error, whereas a no-click leads to

an erasure outcome, which induces the M-ary symmetric erasure

channel shown in Fig. 8.

the Holevo limit of BPSK (dashed blue [gray] plot) can and

must be bridged using a JDR.

The first explicit code-JDR pair for a BPSK alphabet that

achieves superadditive capacity (i.e., higher capacity than

what is achievable with the optimal single-symbol receiver

for BPSK) was found by one of us recently in the context

of communication [16], but that construct—which we now

describe—also applies to optical reading. The Green Machine

JDR for BPSK-modulated pixels and a coherent-state probe is

depicted in Fig. 7. It uses a (2m,2m,2m−1) binary Hadamard

code to encode the binary phases on M = 2m pixels. The

receiver comprises an interferometer made of (M/2) log2(M)

50:50 beam splitters arranged in a format—first envisioned by

R. R. Green as a classical decoding circuit for Hadamard codes

[29]—that interferometrically mixes the modulated light from

the M pixels, transforming the BPSK Hadamard code word,

through log2(M) stages of the Green Machine, into a spatial

pulse-position-modulation (PPM) code. A coherent-state pulse

with mean photon number MNS appears at one of the M

outputs, depending upon which of the M-pixel Hadamard

code words the probe light interrogates. The output is detected

by an array of M signal-shot-noise-limited single-photon

detectors. This probe-code-JDR combination induces an M-

input, M + 1–output superchannel, shown in Fig. 8, whose

FIG. 8. The M-input, M + 1–output channel induced by the

coherent-state probe, binary-phase Hadamard coded memory, and

the Green Machine JDR.

capacity (in bits/pixel) is given by

CBPSK−Hadamard−JDR(NS)

= max
M�2

I (X; Y )

M
= max

M�2

log2(M)(1 − e−MNS )

M

=
1

ln(2)

{

NS ln

(

1

NS

)

− NS ln

[

ln

(

1

NS

)]

+ · · ·
}

, (5)

when NS ≪ 1. Here, the PIE-maximizing value of the code

size M as a function of NS is given by M∗ ≈ −5/2NS ln(NS),

for NS ≪ 1. This PIE is plotted as the solid black line in

Fig. 5. Unlike all the structured probe-receiver cases we have

considered so far—in which the optical receiver measured the

reflected light from each pixel individually—the PIE attained

by the BPSK Hadamard code and the Green Machine JDR

increases without bound as NS → 0. Note that this PIE is

optimal to the leading-order term of the Holevo bound (both

the unrestricted-modulation Holevo bound and the coherent-

state-probe BPSK-encoding Holevo capacity) for NS ≪ 1:

C(NS) =
1

ln(2)

[

NS ln

(

1

NS

)

+ NS + · · ·
]

bits/pixel. (6)

One can increase the photon efficiency slightly by using the

(2m − 1,2m,2m−1) Hadamard code, thereby using one less

(M = 2m − 1) pixel and retaining a local-oscillator reference

at the transmitter for use as a local input into the Green

Machine. Note that the achievable capacity in Eq. (5) and all

the coherent-state structured-receiver capacities given above

are Shannon capacities of the respective discrete memoryless

channels induced by the choice of the probe-code-receiver

combination. Hence, in order to achieve error-free reading

at a rate close to these capacities (in bits/pixel), a suitable

Shannon-capacity-approaching outer code—such as a Reed

Solomon code—will be required.

Now, let us keep the same BPSK modulation and Hadamard

code but consider using a spatially entangled nonclassical

probe state, the W state, instead of a coherent state. This probe

sends exactly one photon in a coherent superposition of M

spatial modes,

|WM〉 ≡
|10 . . . 0〉 + |01 . . . 0〉 + . . . + |00 . . . 1〉

√
M

, (7)
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FIG. 9. (Color online) The W -state transmitter, generating the

M = 8 mode W state, interrogates M binary-Hadamard phase-coded

pixels. The wave function of the single photon evolves through the

receiver stages, eventually coalescing into the single-photon Fock

state |1〉 at one of the M outputs of the receiver, depending upon which

one of the M Hadamard code words the transmitter state interrogated.

to interrogate M memory pixels, where M is taken to be even.

It can be prepared using a single-photon source (generating

a one-photon Fock state |1〉) split via an array of 50:50

beam splitters as shown in Fig. 9. Recently, it was shown

how to perform fast heralded generation of the W state,

and other complicated mode-shaped single photon states, by

indirectly tailoring the mode of the single photon via amplitude

modulation of the classical pump field driving a spontaneous

parametric downconversion process [30]. Reflection of the W

state by the Hadamard-phase-coded pixels causes the + signs

in the W -state superposition corresponding to the pixels with

θ = π to flip to − signs. Let the memory-modulated state

for code word m be |W (m)
M 〉, for 1 � m � M . Because any

pair of code words from the Hadamard code differ in exactly

M/2 positions, the {|W (m)
M 〉} are mutually orthogonal quantum

states; i.e., 〈W (m1)
M |W (m2)

M 〉 = δm1,m2
. Therefore, it is possible, in

principle, to discriminate these M modulated states with zero

probability of error. An explicit receiver that accomplishes

this zero-error discrimination is shown in Fig. 9. The wave

function of the single photon evolves through the log2(M)

receiver stages, eventually coalescing into the single-photon

Fock state |1〉 at one of the M outputs of the beam-splitter

circuit, depending upon which one of the M Hadamard code

words the transmitter state interrogated. A single-photon Fock

state |1〉 generates a click with probability 1 when detected by

an ideal single-photon detector (unlike a coherent state |β〉,
which generates a click with probability 1 − e−|β|2 under ideal

conditions). Therefore, the W -state transceiver reads log2(M)

bits of information error-free—i.e., without any further outer

coding—using just one transmitted photon, with no upper limit

on M . Clearly, NS = 1/M . Therefore, capacity is given by

CW -state(NS) = NS log2

(

1

NS

)

bits/pixel. (8)

This capacity has the same low-NS leading-order term as

the Holevo limit and the coherent-state Green Machine JDR.

The PIE for the W state is exactly log2(1/NS) bpp, i.e., a

FIG. 10. (Color online) An M = 64 example of W -state

probability-amplitude evolution during the encoding and decoding

phases of optical reading. The vertical axis denotes the amplitude

and binary phase of the photon wave function. Positive (upward from

0) denotes 0 phase and negative (downward from 0) denotes π phase.

The green (gray) vertical bars depict the 38th of the BPSK Hadamard

code words, hm, 1 � m � 64, using the above sign convention for 0

and π phases. A single-photon Fock state |1〉 is shown to go through

the log2(M) = 8 stages of the encoding circuit, shown in Fig. 9, to

form the equal-superposition W state |W64〉, which undergoes phase

modulation at the memory pixels (green [gray] bars). The modulated

W state is shown to go through the eight stages of the optical receiver

circuit, also shown in Fig. 9, eventually forming a single-photon Fock

state |1〉 (with an unimportant phase) at the correct (38th) output

port, which is then detected without error by an ideal single-photon

detector.

straight line when plotted versus NS on a logarithmic scale

(see the green [gray] line in Fig. 5). Figure 10 shows an

M = 64 example of the single photon’s probability-amplitude

evolution during the encoding and decoding phases of optical

reading using a W state.

III. ERROR EXPONENT OF QUANTUM READING

All the results obtained in Sec. II are Holevo or Shannon

capacities. Thus, achieving a reliable rate of reading—i.e.,

reading information such that the probability of code-word

error P (M)
e � ǫ for some low-enough threshold ǫ—at any

given rate R < C(NS) bits/pixel would require an optimal

outer code for all the Shannon-capacity structured-receiver

cases considered and would require an optimal code as well

as an optimal JDR for the Holevo-capacity results. The

W -state example does not require an outer code, because of

its zero-error receiver.

Reading capacity gives a crucial information-theoretic per-

spective, namely, the fundamental limit on achievable rates at

which data can be read. However, capacity alone only specifies

the maximum achievable rate. It provides no information about

the coding and receiver complexity required to read data
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reliably at any achievable rate. Hence, a stronger form of the

channel coding theorem has been pursued to determine the

behavior of the minimum code-word-error probability, P (M)
e ,

as a function of the code-word length (number of pixels) M

and the data rate R (bits/pixel), for all rates R < C—both

for classical channels (where C is the channel’s Shannon

capacity) [31,32] as well for quantum channels (where C is the

channel’s Holevo capacity) [33,34]. We define the reliability

function or the error exponent for optical reading as [31]

E(R) ≡ lim sup
M→∞

− ln
[

P
opt
e (R,M)

]

M
, ∀R < C(NS), (9)

where P
opt
e (R,M) is the average word-error probability for

the optimal block code of M pixels and rate R. The error

exponent describes how quickly the error probability decays

as a function of M , and hence serves to indicate how difficult

it may be to achieve a certain level of reliability in reading

at a given rate below the capacity. Although it is difficult to

exactly evaluate E(R), its classical lower bound is available

due to Gallager [32]. This lower bound to the error exponent

is known as the random-coding lower bound and has been

used to estimate the code-word length required to achieve

a prescribed error probability for various communication

settings. Burnashev and Holevo found the random-coding

bound and the expurgated bound for sending classical data

on quantum channels, both being lower bounds to E(R) for a

pure-state alphabet [33], and later generalized the expurgated

bound to a mixed-state alphabet [35]. The best-known lower

bound to the quantum channel’s reliability function E(R) was

reported by Hayashi [36]. For classical channels, there exists

an upper bound (the sphere-packing bound) which coincides

with E(R) for high rates, i.e., for rates R close to the Shannon

capacity, C, and thus gives the exact expression for E(R).

Until very recently, no useful upper bound for E(R) had been

known for the quantum case. That changed, however, when

Dalai reported the sphere-packing bound on the error exponent

for sending classical data over a quantum channel [34]. Dalai’s

upper bound to E(R) for the quantum channel coincides with

the random-coding lower bound at high rates, thereby yielding

the true value of E(R) in this region. More work needs to be

done in the low-rate regime, in order to fully determine the

error exponent E(R) for a quantum channel for all rates R

below the Holevo capacity.

In order to compare the error-exponent performance of

various transceivers we proposed in Sec. II, let us choose a

PIE goal of 5 bpp and probability of word-error threshold

ǫ = 10−3.

A. Coherent-state probe: optimal code, optimal JDR

We now estimate the number of pixels M required to

achieve 5 bpp with P M
e = 10−3 using a coherent-state

transmitter and the optimum code-JDR pair. We evaluate

the Burnashev-Holevo lower bound to the error exponent,

ELB(NS,R) � E(NS,R), for the states {|
√

NS〉,| −
√

NS〉},
for which 〈−

√
NS |

√
NS〉 = e−2NS (Sec. 4 of Ref. [33]).

Figure 11 shows contours of constant MUB ≡
− ln ǫ/ELB(NS,R) in the PIE (R/NS) vs NS plane for

ǫ = 10−3. At R/NS = 5 bpp, we find that MUB = 4800.

Therefore, in order to attain 5 bpp at P (M)
e � 10−3, the

FIG. 11. (Color online) Contours of constant MUB ≡
− ln(ǫ)/ELB(NS,R)—the upper bound to the number of pixels

required to achieve 5 bpp with a 10−3 word-error probability found

from the Burnashev-Holevo random-coding bound for a pure-state

quantum channel—plotted in the PIE (R/NS) vs NS plane. A

coherent-state probe interrogating a binary-phase coded memory

and an optimal JDR are assumed.

minimum number of pixels required satisfies M � 4800.

Given that the rate is about 2/3 of capacity at the point

where 5 bpp is barely reached (see the dashed magenta [gray]

lines in Fig. 11), the random-coding bound is likely to be a

fairly good estimate of the actual number of pixels required

for an optimal code-JDR pair. A tighter upper bound and

a tight lower bound on M may be obtainable by using the

recent results on the second-order asymptotic analysis of the

quantum relative entropy [37,38].

B. Coherent-state probe: Hadamard code, Green Machine JDR

The probability of word error for this probe-code-JDR

combination is given by the probability of erasure multiplied

by the probability the erasure is mapped to an incorrect code

word, P (M)
e = (M − 1)e−MNS /M . It follows that the PIE obeys

C(NS)/NS = log2(M)
(

1 − e−MNS
)

/MNS bpp, from which it

is easy to deduce that achieving 5 bpp at P (M)
e � 10−3 will

require M ≈ 235 pixels. This pixel number is many orders

of magnitude higher than what is required by the optimal

code-JDR pair.

C. W -state probe: Hadamard code, JDR

The W -state transmitter, along with a Hadamard binary-

phase code and the JDR shown in Fig. 9, can read log2 M

bits using one transmitted photon at P (M)
e = 0. Therefore, to

achieve 5 bpp, at P (M)
e � 10−3, an M = 32 pixel memory

suffices. This demonstrates the huge error-exponent benefit

enjoyed by a quantum (spatially entangled) transmitter in

comparison with the coherent-state probe—even when the as-

yet-unknown optimal JDR for a capacity-achieving coherent-

state code may become available.
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IV. CONCLUSIONS AND DISCUSSION

We showed that using a coherent-state probe, on-off

amplitude modulation, and signal-shot-noise-limited direct

detection (a highly optimistic model for conventional CD

and DVD drives), one cannot read any more than about

0.5 bits per transmitted photon. We then showed that a

coherent-state transmitter, in conjunction with a binary-phase-

shift-keyed encoding, can read an unlimited number of bits

reliably per expended photon, if nonstandard joint-detection

measurements are allowed at the receiver. This capacity

performance of coherent states approaches the Holevo bound

to capacity in the high-photon-information-efficiency low-

photon-flux regime. However, with a coherent-state source

and binary phase encoding, if the receiver is constrained to

detect the reflected light from each memory pixel one at a

time followed by classical signal processing—all conventional

optical receivers fall in this category—then the highest photon

efficiency achievable caps off at about 2.89 bits per photon.

Thus, joint detection receivers are needed to bridge the gap

to the Holevo capacity, which allows for unbounded photon

efficiency for optical reading. We exhibited one example of

a BPSK code-JDR pair that can bridge part of that gap and

attain an unbounded PIE. However, this example has a poor

error-exponent performance. In particular, in order to attain

5 bpp at a word-error probability P M
e � 10−3, it requires

coding over M ≈ 235 memory pixels, unlike the M ≈ 4800

pixels required by the unknown optimal code-JDR pair to attain

5 bpp and P M
e � 10−3 with a coherent-state probe and BPSK

modulation. Finally, we showed that a nonclassical W -state

probe can read log2(M) bits of data using a single photon in an

M-mode spatially entangled uniform-superposition state. That

performance is realized with a BPSK Hadamard code and a

structured interferometric receiver which uses a linear-optical

circuit of beam splitters and single-photon detectors. It attains

5 bpp and P M
e = 0 with just M = 32 pixels, demonstrating

the huge error-exponent advantage afforded by a quantum

transmitter state.

That the W -state transmitter can read any number of bits

of information using just one photon should come as no

surprise. Consider the thought experiment shown in Fig. 12.

A perfectly reflective mirror encodes information using M

well-resolved angular orientations, such that a well-collimated

FIG. 12. (Color online) M angular positions of a perfectly

reflective mirror can encode log2 M bits of information that can be

read error free, in principle, by a well-collimated single-photon Fock

state source and an array of unity-detection-efficiency single-photon

detectors.

single-photon beam, reflected by the mirror, is detected via an

array of single-photon detectors, one matched to each of the

mirror’s angular positions. Like the W -state transceiver, this

arrangement reads log2(M) bits of information using one probe

photon. These angular well-resolved orthogonal modes can be

replaced by any set of M orthogonal space-time-polarization

modes of light that the target (memory) can excite using the

incident single-photon state. For the W -state example, the

orthogonal modes that the spatially entangled photon excites

are a set of spatially overlapping mutually orthogonal spatial

modes corresponding to the binary Hadamard code words.

This is quite similar to the mutually orthogonal chip wave

forms of a spread-spectrum code-division multiple-access

(CDMA) system.

Before concluding, it is in order to comment briefly on

the effect that loss has on optical reading. In a practical

setting, loss would be incurred at various points in the reading

setup: at the transmitter that generates the probe light, in

the transmission to the memory pixel, in absorption and

scattering of the probe light at the pixel, in collecting the

reflected light at the receiver, and in the subunity quantum

efficiency of the single-photon detector. It turns out that

the capacities of all the coherent-state systems we have

considered in this paper degrade gracefully with loss; i.e.,

these capacities have the same formulas as given in the paper

for no loss with the average number of transmitted photons

NS replaced by the average number of detected photons κNS ,

where 1 − κ ∈ (0,1] is the end-to-end loss. Furthermore, the

number of pixels M needed to get a desired number of

bits per detected photon for a given word-error probability

does not change from what we found for the lossless case

for bits per transmitted photon. For example, consider the

binary-phase Hadamard code and a coherent-state probe, with

the Green Machine JDR. The resulting word-error probability

in the lossy scenario is P (M)
e = (M − 1)e−κMNS /M ≈ e−κMNS

for M ≫ 1. So, P (M)
e = 10−3 requires κMNS ≈ 7 photons,

and since PIE ≈ log2(M)/κMNS bits per detected photon

(bpdp), attaining 5 bpdp requires M ≈ 25×7 = 235 pixels.

The single-shot W -state transceiver is able to attain P (M)
e = 0

for the binary-phase Hadamard code and PIE = log2(M) bpp

using one photon in the lossless case, thereby attaining 5 bpp

using M = 25 = 32 pixels. However, the performance of

the W -state transceiver degrades rapidly with loss, smoothly

transitioning to that of the coherent-state and Green Machine

JDR for high loss. The W state has an erasure probability

equal to 1 − κ . Assuming we send K copies of the W state

towards the same set of Hadamard-coded pixels, and that we

randomly assign a code word to every erasure, we are left

with a word-error probability P (M)
e = (M − 1)(1 − κ)K/M ≈

e−κK , for M ≫ 1, K ≫ 1. PIE in bits per detected photons

is then PIE ≈ log2(M)/κK . Thus, to get to 5 bpdp with

P (M)
e = 10−3 when κ ≪ 1 we need M ≈ 235 pixels, just as we

have for the coherent-state probe. For a single-shot W -state

transmission, attaining P (M)
e = 10−3 requires κ � 0.999, an

extraordinarily demanding task considering that single-photon

detectors with 99.9% quantum efficiency have yet to be built

and there are many other sources of loss in the optical reading

setup.

Finally, an interesting thing to note is that our W -state

system is a special case of the Aaronson-Arkhipov (AA)
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boson-sampling model [39], which inputs ∼
√

M single pho-

tons in independent spatial modes into an M-mode passive

linear-optic circuit implementing a unitary mode transforma-

tion âout = U âin, followed by ideal photon counting at that

transformation’s M output ports. The AA model was shown

to be able to efficiently solve a sampling problem—that of

sampling from a probability distribution comprised of the

permanents of a set of matrices derived from U—a problem

believed to be classically hard. The AA model, however, is not

known to subsume universal quantum computation. A recent

paper reported evidence supporting the proposition that a lossy

AA system, or an AA system with mode mismatch in the

linear-optic mode transformation, is likely to be classically

hard to simulate and might thereby retain some quantum

power [40]. This leads us to speculate that a multiphoton

multimode transmitter could be more resilient to loss than

the W state, and hence outperform coherent states in optical

reading even in the presence of loss.

Reference [19] will address the capacity of optical reading

at all values of the probe photon number constraint NS . There

we will show that not only do quantum probes achieve a

higher error exponent, they can get a fundamentally higher

capacity in the high spectral-efficiency (NS ≫ 1) regime. In

[19] we will also consider the capacity of assisted reading,

i.e., when the transmitter retains idler modes {â(m,k)
I } at

the transmitter that are entangled with the signal modes

{â(m,k)
S } which were sent towards the pixel and joint detection

is performed over the retained and returned modes. This

arrangement is then the optical-reading version of quantum

illumination, which has been previously studied for target

detection [41] and eavesdropping-immune communication

[42]. The ultimate capacity and error-exponent performance

of multimode transmitters remain subjects of ongoing work.
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