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Abstract 

We describe a new approach to the visual recognition of cursive handwriting. An effort is made to attain human- 

like performance by using a method based on pictorial alignment and on a model of the process of handwriting. 

The alignment approach permits recognition of character instances that appear embedded in connected strings. 

A system embodying this approach has been implemented and tested on five different word sets. The performance 

was stable both across words and across writers. The system exhibited a substantial ability to interpret cursive 

connected strings without recourse to lexical knowledge. 

1 Introduction 

The interpretation of cursive connected handwriting is 

considerably more difficult than the reading of printed 

text. This difficulty may be the reason for the relative 

lack of attention to the problem of reading cursive script 

within the field of computational vision. The present 

article describes progress made toward understanding 

and solving this problem. 

We identify and discuss two main causes of the diffi- 

culties associated with handwriting recognition: uncer- 

tainty of segmentation of words into characters and var- 
iability of character shapes. We then extend a method 

that has been recently proposed for general object rec- 

ognition, the alignment of pictorial descriptions, to 

handwriting recognition. A system based on the align- 

ment of letter prototypes has been implemented and 

tested. Our results may indicate that the achievement 

of human-like performance in reading cursive hand- 

writing is within the reach of the state of the art in com- 

puter vision. 

1.1 Problems Specific to Script Recognition 

The problem of character recognition inherits from gen- 

eral object recognition most of its difficulties (some of 

SU is partially supported by NSF grant IRI-8900267. 

those, such as occlusion, are absent because characters 

are two-dimensional). For printed text, the difficulties 

can be largely overcome by present-day methods. For 

example, a recently developed character recognition 

system [Kahan et al. 1987] achieved better than 97 % 

correct performance on mixtures of six dissimilar fonts. 

Even without reliance on lexical knowledge, the per- 

formance was well over 90 %. 

In comparison, the problem of cursive character rec- 

ognition without recourse to a lexicon appeared so far 

to be forbiddingly difficult. Moreover, only a few 

attempts to attack the considerably simpler problem of 

recognizing handwritten words with a lexicon have been 

made until recently. A survey of the state of the art made 

in 1980 [Suen et al. 1980] contains no reference to a 

system that performs off-line recognition of connected 

handwritten words (most of the systems for cursive 

script recognition are on-line, that is, they rely on 
knowledge of the writing sequence obtained, for exam- 

ple, from a digitizing tablet, and not just on visual data). 

During the last decade, two systems that read cursive 

words have been implemented [Hayes 1980; Srilaari and 

Bozinovic 1987]. These systems depend heavily on lex- 

ical knowledge, presumably because of the difficulties 

associated with reading cursive script. Two major 

sources of difficulty can be identified: ambiguity of seg- 

mentation of words into characters and variability of 
character shapes. 
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1.L1 Segmentation Ambiguity. In cursive connected 
script, ligatures (pieces of contour connecting the char- 
acters) may constitute a substantial portion of the image, 

serving as a pool of contour fragments in which spurious 
letters may be detected. These letters, in turn, give rise 

to unwanted alternative interpretations that may be en- 

tirely plausible as far as the contour is concerned (if 
a lexicon is used, most of the alternatives can be ruled 
out). In other words, it is frequently possible to segment 
a cursive word into characters in a manner different 
from the original intention of the writer ([Eden 1961], 

see figure 1). 
Segmentation is, therefore, ambiguous, especially 

locally, that is, when individual letters or short letter 
sequences are considered. At the entire string level, 
clashes between inconsistent local interpretations facili- 
tate the emergence of a consistent, unambiguous global 

interpretation. For example, a set of local interpretations 
that covers the input string leaving out a substantial 
piece of its contour is likely to be suppressed in favor 
of a more comprehensive cover. 

The problem of segmentation may be regarded as 
consisting of two subproblems: (1) finding the set of 

all potential segmentation points; (2) choosing from this 
set a subset that is, in effect, a guess about the intention 
of the writer. The problem is difficult because a priori 
any point on the contour may turn out to be a segmen- 

tation point. Thus, segmentation does not seem to be 
amenable to a solution by brute-force search. 

In scene interpretation, segmentation (figure-ground 

separation) is also considered a difficult problem 
[Pavlidis 1977]. It is, however, less complex than the 

segmentation of cursive script, since natural objects, 
as opposed to letters, usually cannot be subdivided into 

parts that are, in turn, meaningful objects in the same 
basic category. 

1.1.2 Character shape variability. The second problem 

that must be faced by any handwriting interpretation 
system is high variability of character shapes. This prob- 
lem is especially severe when the text is not intended 

to be read by people unfamiliar with the handwriting 

. / \  
DEAR CLEAR 

1 
??? 

(probably M I N I M U M ,  because of the dotted i's) 

Fig. 1. The interpretation of cursive strings is often ambiguous. 
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Fig. 2. 132 a's taken from the notebook ofP. Claudel, "Le voyage en Italie" (reproduced with permission from Pattern Recognition 11, Duvernoy 

& Charraut, Stability and stationarity of cursive handwriting, Copyright 1979, Pergamon Press plc). 

Fig. 3. Different versions of the handwritten numeral 2. Both the geometry and the topology of the 2's change from sample to sample. 

of the writer. An example may be seen in figure 2, 
reproduced from [Duvernoy and Charraut 1979]. This 
figure shows 132 samples of the letter a, taken from 
a notebook of the French poet, P. Claudel. If any 
regularity is to be found among these samples, it is 
hardly expressible as an isometry. Furthermore, one 
can easily think of examples where even the topology 
of the character changes from one instance to another 
(see the different versions of the numeral 2, some with 
a loop and others without a loop, in figure 3). 

2 A Parallel with Three-Dimensional Object 

Recognition 

2.1 Why Is Object Recognition Difficult 

A similar problem of variability is encountered in the 
recognition of three-dimensional objects: an object's 
appearance may vary considerably depending on its pose 
relative to the observer. Finding regularities in the set 
of views that belong to a single object appears to be 
the only way to approach recognition, short of storing 
templates of all possible views of the object and com- 
paring them with the actual view [Ullman 1986]. For 
simple geometrical shapes, such as triangles, regularity 
may be defined by specifying the set of transformations 

that a view of the shape may undergo. For the family 
of views representing a three-dimensional object, this 
set of allowable transformations cannot be defined easily. 

2.2 Recognition by Prototype Alignment 

One way to approach the problem of visual recognition 
is to search the space of all possible views of all stored 
object-models [Lowe 1986; Ullman 1986]. The purpose 
of visual recognition is to find a model whose match 
with the given object is optimal. If the viewed object 
is denoted by E object models by {Mi} and the set of 
allowable transformations of Mi by {Tg}, then the goal 
of the search is to minimize some measure of distance 
D between the object and a model, that is, to find i, j 
that give minijD(V, T~jMi). 

Some machine vision systems utilize the search para- 
digm directly, usually in conjunction with various heu- 
ristics that reduce the necessary amount of search 
[Goad 1986; Grimson and Lozano-Perez 1987]. Ullman 
[1986] pointed out that it is possible to reduce the size 
of the search space considerably by computing for each 
model a unique transformation that aligns the model 
with the image in some optimal sense. The role of the 
aligning transformation is to normalize the problem in 
such a manner that the search needs to be performed 
over all the models, but not over their different views. 
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The basic idea of the alignment approach is to decom- 
pose the process of recognition into two stages. First, 
the transformations between the viewed object and each 

one of the models are determined. This is the alignment 
stage. Second, the model that minimizes the distance 
measure is found. Thus, the search is for miniD(V, M,), 
where the transformation Tq that produces M" given V 
and Mi is computed in the alignment stage. The search 

is therefore conducted over the set of all models, but 
not over their different views. 

The success of the alignment scheme depends on the 
possibility of computing the aligning transformation 
T 0, given an image and a model Mi. The parameters 
of the transformation can be computed given the (3-D) 
coordinates of three points in the model and the (2-D) 
coordinates of three corresponding points in the image 
(the anchor points; see [Ullman 1986]). This scheme 
can compensate for transformations that include transla- 
tion in the image plane (two parameters), rotation in 
space (three parameters), and scaling (one parameter) 
of model objects, followed by an orthographic imaging 
projection. Intuitively, the three pairs of corresponding 

coordinates supply the six equations that are necessary 
to determine the six parameters of the transformation. 

The computational gain offered by the alignment ap- 
proach may be estimated using a combinatorial search 
formulation of the recognition process, as follows 

[Huttenlocher and Ullman 1987]. In combinatorial 

terms, the goal of recognition may be defined as finding 
the largest pairing of model and image features for 

which there exists a single transformation that maps 
each model feature to its corresponding image feature. 
For i image features and m model features there are 

at most p = i × m pairs of image and model features. 
In principle, any subset of these p pairs could be the 
largest set of matched image and model points, making 
the number of matches that must be examined exponen- 
tial in p. In contrast, if the search is structured as an 

alignment stage followed by a comparison stage, then 
the exponential problem of finding the largest consistent 
matching is reduced to the polynomial--O(pn)--prob - 

lem of finding the best n-tuple of matching image and 
model points (for the three-point alignment n = 3). 

3 Adapting Alignment to Handwriting Recognition 

3.1 Modeling Handwriting Generation Helps 
Recognition 

It is not a priori clear whether an alignment approach 
could be applied to cursive script recognition. One pre- 

requisite is that the information necessary for shape nor- 
malization should be available from the positions of sev- 

eral key points in the handwritten contour. Those points 
would then be used as anchors for computing the align- 
ing transformation between letter prototypes and the 
actual image. Ideally, this transformation would remove 
most of the character shape variability. 

A reason to believe that such key points exist was 
provided by studying the process of human arm move- 
ment [Hogan 1982, 1984; Flash 1983; Flash and Hogan 
1985] and, in particular, of handwriting generation 
[Edelman and Flash 1987]. We will first present a brief 
summary of the generation model, and then point out 
its implication to the recognition problem. 

• Kinematics from shape. The shape of a handwritten 
trajectory determines its kinematics (the dependence 
of position on time). 

• Strokes. Cursive characters are represented and gen- 
erated as concatenations of basic strokes. Although 

different sets of such strokes are conceivable, the 
repertoire appearing in figure 4 can account for the 
diversity of handwritten characters. The shape of a 
stroke is determined by the positons of just three 
control points (the two endpoints and a middle, via, 
point). 

• Dynamic optimization. Stroke trajectories are planned 

with the minimization of a cost function as an objec- 
tive. The form of the cost function reflects the charac- 
teristics of the desired trajectory. For example, smooth 
trajectories are produced if the cost function penalizes 

high value of position derivative with respect to time. 

An empirical investigation [Edelman and Flash 1987] 
indicated that snap (the fourth derivative of position) 
has to be minimized to successfully simulate stroke tra- 
jectories recorded from subjects. Accordingly, the cost 

function is 

C = fof I (d4x-~ Z + I j (1) 

where x(t) and y(t) are the Cartesian coordinates of the 
tip of the pen. The cost function C and an appropriate 
set of boundary conditions (including the constraint of 

passing through the via point) define a variational prob- 
lem, which can be solved, for example, using Pontry- 
agin's maximum principle with equality constraints on 

internal points [Flash and Hogan 1985]. The resulting 
expression for x(t) is 

7 

x(t) = ~a a~ tn + px(t + h)7+ (2) 
n=O 
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' ,k ._ .  j 

Fig. 4. The four basic stroke types--hook, cup, gamma, and oval. All cursive characters can be represented as combinations of strokes belonging 
to this set, with the addition of a straight-line stroke. 

where an and Px depend on the boundary conditions, 
on the positions of the control points, and on the move- 
ment duration tf, with (t - tl)+ defined as follows: 

/ -  h if t _> tl 
(t  tl)+ 

otherwise 

Here h is the time of passage through the via point, 

obtained together with an and Px by solving the mini- 
mization problem. The expression for y(t) is analogous 

to (2). 

Equation (2) corresponds to a familiar result from 
spline theory, stating that a natural spline of degree 
2m - 1 minimizes the L 2 n o r m  of dmx/dt m [de Boor 

and Lynch 1966]. An important difference between 
dynamic optimization and spline interpolation is that 
the former specifies the time at the via point (or knot, 

using spline terminology). An analogous spline prob- 
lem is therefore interpolation with variable knots. As 
opposed to the interpolation with regularly spaced knots, 
which is a problem of linear algebra, the variable-knot 
problem must be approached using the calculus of vari- 

ations [Karlin 1969]. 

The optimization model of handwriting, called MS~ 

(for minimum snap with one via point), has been eval- 
uated experimentally, by simulating handwritten trajec- 
tories recorded from subjects [Edelman and Flash 1987]. 
A statistical evaluation indicated a good agreement be- 

tween recorded and computed values of all kinematic 
characteristics of the trajectories. More important, 
stroke trajectories could be reliably computed from 
rotation and translation invariant geometrical descrip- 
tions: the relative positions of the start, via, and end 
points of the stroke. 

3.1.1 Understanding Handwritten Shape Variability. An 

intuitive constraint on any model of handwriting is that 
similar shapes, such as the 2's appearing in figure 3, 
should be produced by similar motor programs. Within 
the MS1 model, the apparent difference between the two 
2's can be accounted for by the influence of small 
perturbations of control point locations on the trajec- 

tory, as follows. Consider a complex parametric curve 
of the form 

Zo + zlu + . . .  + Zn u 
Z = (3) 

mo + mlu + . . .  + mnu 

where the m~ are real, the zi are complex and u is a 
real parameter [Zwikker 1963]. Clearly, the trajectories 
generated by the MS1 model are of this form (with the 
coefficients of x(t) in (2) and of y(t) in an analogous 

expression being Re(zi) and Im(zi), respectively). For 
such curves, a continuous change of the coefficients 

in (3) may cause the disappearance of an existing loop, 
or the appearance of a new one in place of a cusp 

(Zwikker [1963], p. 74). Now, the transformation from 
the control point locations to the polynomial expres- 
sion for the trajectory is linear, therefore continuous. 

Consequently, continuous perturbations of control 
points may cause variability similar to the observed 
changes in the shape of the character "2." 

Another way to regard this issue is through the formal 
notion of well-posedness. One of the conditions for a 
problem to be well-posed is continuous dependence on 

boundary conditions (e.g. [Torre and Poggio 1986]). 

Computation of the polynomial spline coefficients a, 
and b, given the control points is an instance of 
Hermite-Birkhoff interpolation, a well-posed problem. 
The continuous dependence of its solution on the loca- 
tions of the control points is discussed, for example, 
by Ritter [1969]. 

3.1.2 Control Points as Alignment Anchors. The gener- 
ation model described above suggests that recognition 

by alignment could be applied to cursive script by using 
the control points as anchor points for the alignment 
stage. The analysis of stroke recordings collected from 
subjects [Edelman and Flash 1987] indicates that control 
points (start, end, and via points of the generation 
model) are typically placed along the contour in posi- 
tions that have simple descriptions in visual terms and 
therefore can be recovered from the shape of the char- 
acters. Specifically, they can be defined in terms of the 
local vertical axis orientation, or in terms of salient 
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contour features such as terminators. Since the visual 

saliency of the control points is a prerequisite for their 

use in alignment, this situation is rather fortuitous. Were 

the control points to be found in random places along 

the contour, the integration between the generation 

model and the recognition paradigm would be less 

straightforward. We shall describe now the properties 

of the two major classes of anchor/control points that 

can be distinguished. 

Pr imary Control Points. Control points that corre- 

spond to stroke start and end locations are typically 

situated at the vertical extrema of the contour and the 

line endings (including T-junctions). Their main prop- 

erty is stability with respect to moderate changes in the 

local vertical reference. 

For the purpose of classification, let us define the 

valency of a contour point as the number of distinct 

places in which the contour crosses a small circle 

ascribed around the point. For primary points of valency 

2, the localization of contour extrema is more stable 

if the curvature in the vicinity of the point is sharp 

rather than blunt (see figure 5). Points of valency 1 (i.e., 

• (  
LEFT 

TOP is stable, 

LEFT is not 

OP 

J 

TOP 

LEFT 

Fig. 5. Sharply bending contours allow better localization of control 
(anchor) points. 

endpoints), corresponding to an extreme case of a sharp 

contour, are naturally well localized. T-junctions, having 

valency 3, may be decomposed into an endpoint abut- 

ting a simple contour. 

Note that X-crossings should not be used as anchor 

points because their location can change drastically with 

small deviations of control parameters. Indeed, a cross- 

ing may even disappear entirely, as it often does in a 

3,-like stroke that serves as the ascender or descender 

in letters such as b, d, h, g, or y. The account given 

by the generation model for this phenomenon appeared 

above. 

Secondary Control Points. Although normally the 

middle (via) points of the strokes occupy primary loca- 

tions along the contour, sometimes they may be found 

at the horizontal rather than vertical extrema. An exam- 

ple is provided by the via point of the C -stroke that 

comprises the left part of an a (figure 6). The secon- 

dary importance attributed to a horizontal-extremum 

anchor point is due to its poor localization relative to 

the primary points. This asymmetry stems from the 

tendency of handwritten letters to have sharp tops and 

bottoms and somewhat more rounded left and right 

curves. 

C )  - P R I M A R Y  A N C H O R  P O I N T  

/ ~  - S E C O N D A R Y  A N C H O R  P O I N T  

Fig. 6. Primary and secondary control (anchor) points for a particular 
instance of the letter a. 
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3.2 Practical Issues in Recognition by Alignment 

The process of recognition involves comparison between 

a given shape and a set of exemplars or prototypes 

[Paivio 1978]. If shape variability remains even after 

the viewing conditons have been compensated for, for 

example, by alignment, then the task may be regarded 

as including elements of classification. The variability 

inherent in the writing process clearly makes the task 

of reading a matter of classification. The remainder of 

this section is devoted to three important issues pertain- 

ing to the application of alignment to the problem of 

recognition/classification of handwritten characters. 

The first issue has to do with representation of character 

prorotypes. The second deals with the transformations 

that the prototypes are allowed to undergo (and that are 

to be compensated for by alignment). The third issue 

is that of quantification of the discrepancies that remain 

after the transformations are carried out. 

3.2.1 Stroke Representation. How should stroke proto- 

types be represented? From the computational point of 

view, the issue of representation is important, because 

it can greatly affect how easy it is to do different things 

with it [Marr 1982]. Consequently, if a stroke prototype 

is to be compared to the input image by alignment, a 

simple choice is to store it as a set of points and to carry 

out the comparison pictorially. An alternative is, for 

example, to store the Fourier decomposition of the 

stroke [Persoon and Fu 1977]. In that case, the image 

would have to be transformed too. Moreover, the trans- 

formation necessary for alignment would have to be 

figured out in terms of Fourier components rather than 

image elements such as points or other place tokens 

[Marr 1982]. 

An example of a pictorial representation of a stroke 

appears in figure 7. Characters such as c that contain 

a single stroke each are called simple. Most of the char- 

acters consist, however, of two strokes. These characters 

are called compound. The reasons behind the simple/ 

compound distinction are discussed below. 

3. 2.2 Compound Characters. In order to be able to deal 

with flexible or articulated objects such as cats or com- 

passes, the original three-point alignment scheme must 

be extended [Ullman 1986]. A possible extension pro- 

posed by Ullman involves the subdivision of the image 

into several regions by triangulation. Each of the tri- 

angular regions then undergoes independent alignment, 

with its vertexes serving as anchor points. In this man- 

ner, the two arms of a compass would be transformed 

independently, permitting it to be recognized irrespec- 

tively of the angle formed by its arms in a given image. 

Analogously, individual strokes that form clearly bipar- 

tite letters such as h or y should be transformed indepen- 

dently, because normally their parameters (e.g., size 

and, to a lesser extent, orientation) are free to vary inde- 

pendently of each other without affecting the identity 

of the entire letter. 

Independent region transformation may not always 

be appropriate for nonrigid object alignment. First, it 

assumes the possibility of dividing the model naturally 

'+o. 

o 

• • 

• o 
o I I  • ° 

D raw-2  

Fig. 7. The pictorial representation of a stroke prototype. This stroke may be, e.g., a part of the letter d. The dots and the circles signify the 
positions of the prototype points. The size of a circle reflects the weight given to its contribution to the prototype-image distance. The squares 
signify "forbidden" regions. Penalty is imposed on the stroke instance if parts of the image contour are found in these regions after the alignment. 
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into nonoverlapping regions (otherwise, the aligning 
transformation would have to be one-to-many). For 

some objects (e.g., a pair of scissors) such division is 

impossible. A second problem has to do with the bound- 
ary conditions along the region borders. In handwriting, 

for example, it is logical to demand that a continuous- 

slope contour that crosses a border should be mapped 

into another continuous-slope contour. The coupling 

between transformations of adjacent regions introduced 
by this constraint can complicate matters considerably. 

A different solution to the problem of compound let- 

ters may be devised by combining stroke detection by 

alignment with letter recognition through a structural 

description. Note that this is different from structural 

recognition with sophisticated part detection [Biederman 
1985], since no a priori segmentation is required and 

the parts need not be generic. Consider again the exam- 

ple of a pair of scissors. A standard structural scheme 

would look for the blades and the handles separately 

(among other reasons, because half a pair of scissors 

is too complicated an object to be detected directly, in 

a bottom-up fashion). The modified alignment method, 
on the other hand, would represent the scissors as con- 

sisting of two halves (with coinciding designated points), 
each of which is detected using model alignment. 

An advantage of this approach is the simplicity of 

the spatial relations that must hold among object parts. 
For example, most compound characters can be divided 

into constituent strokes at cusp points, where the only 

required relation between parts is that of point coinci- 

dence. In addition, the decomposition into parts has 

psychological motivation (reviewed in [Edelman 1988]), 

and their number, in contrast with conventional struc- 

tural descriptions, does not exceed two. 
In practice, the combined stroke-structured approach 

may also have computational advantages. For the letter 

m (which has six natural anchor points) to be aligned 

with its prototype, a six-point correspondence must be 

established in the initial phase of the alignment. Conse- 
quently, if the points are unlabeled, and if all possible 
pairings are to be evaluated, then O(n 6) correspon- 
dences must be tried, where n is the number of candi- 

date anchor points detected in the image. If n = 70 (a 
typical number in our experience), the complexity is 
(~) ~ 1.3 • 10 s. In comparison, if the letter m is rep- 
resented by two strokes having each three anchor points, 
then the complexity is 2 0 + kn 2 = O(n3), or approx- 
imately 1.1 • 105 for n = 70. The lower-order term in 

the above expression reflects the complexity of relation- 
ship verification. It is quadratic, since the number of 

detected strokes is typically linear in n. This term may 

be neglected, because verification of stroke relation- 

ships is less expensive than prototype transformation 

(i.e., k is sufficiently small). An additional advantage 
of the combined method is common to all structural 

approaches: once detected for a given word, stroke in- 
stances may be used in the recognition of several letters, 

resulting in yet larger savings in computation. 

3.3 Transformations 

The success of the alignment scheme depends on the 
possibility of computing the compensating transforma- 

tion, given an image and a model. The choice of an 

appropriate set of allowable transformations for the first 
stage of recognition should be a compromise between 

the structure of the problem at hand and other consider- 

ations such as generality and computability. The struc- 
ture of the problem is important because the role of 

the transformation stage is to cancel out image variabil- 

ity caused by object position, attitude and, for recogni- 

tion of nonrigid objects, deformation. 

The general problem of multiple anchor-point align- 
ment is to find a warping function that agrees exactly 

at the anchor points while satisfying certain constraints 
on the transformation it represents. This problem was 
treated by Bookstein [1978], who studied biological 

shape and shape change using D~rcy Thompson's 

Cartesian grid method. Bookstein developed a method 

of finding an optimal diffeomorphism f :  R z ~ R 2 that 

maps one shape onto another, given a set of correspond- 

ing anchor points (in his terminology, landmarks). 
The optimality condition used by Bookstein states that 

the mappingfshould be as smooth as possible. Specifi- 

cally, it should minimize f [V 2fl2. He suggests as a 

physical model the deformation of a thin elastic sheet 

subjected to point displacements. Functionsfthat pos- 
sess the required minimization property can be shown 

to satisfy the biharmonic equation V z ~ 2f = 0. Grimson 

[19], working on the interpolation of sparse stereo data, 
arrived at an essentially similar optimization problem. 

We have experimented with his solution to this problem, 
which used the method of gradient projection, and 
found it too computationally expensive to be useful in 

the transformation stage of recognition by alignment. 
In some cases, however, modeling the aligning transfor- 
mation as a general diffeomorphism seems inevitable. 
One example is the recognition of deformable objects 
[Foster 1975; Chen and Penna 1986]. 
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If the problem is to recognize a rigid object whose 

image is formed by an orthographic projection from 
3-D into 2-D (as in [Huttenlocher and Ullman 1987]), 

then the transformation should include six parameters: 

two for position, three for 3-D orientation and one for 
scaling. Huttenlocher and Ullman [1987] chose to repre- 

sent the transformation as a composition of translation, 

rotation and scaling. For the special case of flat objects 

the result of these transformations can be conveniently 

represented as an affine mapping: 

x ' = a x  + b y  + m  

y'  = cx + dy + n (4) 

The six parameters of this transformation may be com- 
puted from the correspondence of three pairs of anchor 

points detected in the image and in the model. 

If orthographic projection is assumed, and if the 
characters are written on a flat surface, then the aligning 

transformation must be at least as powerful as (4) to 

be able to compensate for viewing conditions. On the 
other hand, according to the MS1 model of character 

generation, it is possible that transformation (4) could 

compensate for character variability, because its six 

parameters match the six degrees of freedom of stroke 
shapes (corresponding to the position of the three con- 

trol points). 

Formally, a stroke trajectory described by M S  1 pos- 

sesses sixteen rather than six degrees of freedom (see 

equation (2)). On the other hand, these sixteen param- 
eters specify more than just the shape of the stroke-- 
the time course of the generation (writing) process is 

determined too, in such a manner as to match real 
stroke trajectories produced by subjects. Thus, a sixteen- 

parameter model is needed to achieve parametric simi- 

larity between real and simulated strokes, whereas just 

six parameters suffice for geometric similarity. In other 
words, to model the shape of any instance of a stroke 

of a certain type, it is sufficient to apply the affme trans- 

form determined by control point correspondence to 
the image of the prototypicat stroke of that type. 

Note that the claim that an affine transformation plus 
a small set of prototypes suffice to describe stroke 
shapes is empirical rather than mathematical. To test 

the validity of this assumption we have matched stroke 

shapes recorded from subjects to affine transformations 
of prototypical strokes. We found that the affine trans- 
form indeed compensates adequately for character vari- 

abilityJ Figure 8, for example, illustrates how well 
strokes obtained from a c-like prototype by an affine 

transform match instances of that type that appear 

embedded in cursive strings taken from four subjects. 
A similar example for a different stroke type appears 

in figure 9. 

Given the coordinates of three points in the image 
and three corresponding points in a model, the param- 

eters of the affine transformation that would bring the 

two sets of points into a perfect register may be found 

by solving two systems of linear equations, one for a, 

b, and m, and the other for c, d, and n parameters: 

x2 Y2 1 = x~ 

x3 Y3 1 x~ 

x2 Y2 1 d = y; 

x3 Y3 1 n y~ 

or, in matrix form, PA x = X and PAy = Y. The two sys- 

tems are nonsingular and have unique solutions .,Ix = 

P-~Xand Ay = P-1Yifdet(P) ¢ O, that is, if the three 

anchor points of the model (xl, Yl), (x2, Y2), and (x3, Y3) 
are not collinear (in order for the two systems to be 

well-conditioned, near collinearity of the anchor points 
should also be avoided). 

For some prototypes, more than three anchor points 

may be needed to perform an adequate alignment. In 
that case the two systems are overdetermined, but affine 

transformation can still be used. Instead of the inverse 

p-1 of P, the pseudoinverse P+ [Ben-Israel and Greville 

1974] may be employed to compute the affine param- 
eters. The alignment then is not perfect, but it is optimal 

in a least-squares sense (the sum of the squares of dis- 

tances between pairs of corresponding points is mini- 

mized). If the matrix pVp is of full rank, then P+ = 

(pTp)-apT, otherwise a different method of computing 

P+, such as singular value decompositon [Ben-Israel 

and Greville 1974] must be used. 

Affine alignment of prototypes with just two anchor 

points (such as simple straight strokes) leads to under- 

determined linear systems. One alternative then is to 

obtain a minimum norm solution using a generalized 
inverse. Another possibility is to use four parameters: 

rotation, scale, and translation, that are sufficient in 

this case to obtain perfect alignment. 
Even if the alignment is perfect, some values of the 

computed affine parameters may be considered implaus- 

ible. This may happen, for example, when the transfor- 
mation maps a rounded letter such as an o into an 
eccentric slanted ellipse, and the result is too distorted 
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Fig. 8. Compensating for handwritten shape variability by an affine 
transform (see text). Here, the system looked for instances of the c-like 
stroke in four examples of the word cliche, written by four different 
subjects. The detected instances are marked by the dotted lines. The 
shaded areas correspond to the "forbidden" regions (see figure 7). 
Note that there is no objective way to determine whether a c-like 
stroke should be found in the input. It is easy to see, however, that 
out of the entire variety of c-like strokes that seem to be present in 
these images (20 instances) only one was missed (the borderline case 
that is a part of the h in (b)). The control points in the image were 
detected automatically in all cases. 

to be accounted for either by personal writing style or 

by viewing slant. In order to attach less weight to corre- 

spondences that bring about such excessive distortion, 

and to save post-alignment distance computation time 

(by discarding implausible matches), one needs a method 

of estimating the distortion caused by a given affine 

transformation. 

A possible method for estimating this distortion is 

computing a norm of the matrix A that represents the 

homogeneous part of (4) (clearly, the translation com- 

ponent is irrelevant). We use for this purpose the 

2-norm subordinate to the Euclidean vector 2-norm 

Ilxll -- ~ .  x, where (') designates inner product: 

Ilall = max l lx l l~ l l l~ [ I .  The expression for Ilall in 
terms of the elements of A is obtained by the Lagrange 

multiplier method. Stroke instances that yield excep- 

tionally large values of Ilhll are omitted from further 

consideration. 

3.4 Metrics 

To perform the comparison between the image and a 

transformed prototype shape, a distance function on 

shapes must be defined. The choice of the distance 

function (specifically, its complexity) largely dictates 

the structure of the entire recognition process. 

At one end of the complexity scale are distance func- 

tions that are sufficiently powerful to capture invafiance 

under admissible transformations (or deformations). 

Powerful distance functions obviate the need for a nor- 

malization stage, such as alignment. Recognition meth- 

ods that represent objects by feature vectors [Duda and 

Hart 1973] may be regarded as using such distance func- 

tions. Feature spaces with hundreds of dimensions are 

sometimes used. 2 

At the other end of the scale one finds simple methods 

such as template matching. The price of simplicity in 

this case is in the need for normalization prior to com- 

parison. This is acceptable, as long as the source of 

shape variability is known and can be compensated for 

by an alignment-like process (as it turns out to be the 

case in handwriting). 

I f  it were possible to presegment the image and to 

distinguish the contours belonging to the object to be 

recognized from those of other objects and the back- 

ground, then a function that complies with the three 

metric axioms (non-negativity, symmetry, and triangle 

inequality) could be employed in the comparison stage 

of recognition. An example of such a function for point 
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F/g. 9. Looking for instances of the/-like stroke in four examples of the word invade, written by four different subjects. All 21 of the undisputed 

instances were correctly detected. 
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sets is the Hausdorff metric (e.g., [Serra 1982]). The 

Hausdorff metric contains two components: an image 

to model distance contribution and a model to image 

one. To compute the first component, one must decide 

which part of the image corresponds to a single stroke. 

To avoid the problems associated with segmentation we 

have used an asymmetric model-to-image, distance. 

For compound characters, close model-to-image fit 

of the individual components does not suffice to make 

the entire character acceptable (see figure 10). We apply 

two kinds of goodness-of-fit criteria for compound char- 

acters after the individual strokes have been recognized. 

The first relies on affine-invariant geometrical features 

such as ratios of distances along parallel lines. An ex- 

ample is the approximate equality constraint on the 

heights of the two components of a w. The second cri- 

terion has to do with the affine transformations per- 

formed on the components. The homogeneous parts of 

these transformations must be close for the entire char- 

acter to be considered acceptable. The measure of 

closeness is supplied by a matrix metric. Suppose that 

the transformation matrixes of two stroke instances are 

{2} 

Ca} (4} 

Fig. 10. Which of the four examples here would be judged as an instance 

of an a? It is not enough that the constituent strokes of a compound 

character are connected. The connection must be at the right place 

in each of the strokes, and their relative size and orientation must 

agree. Panels (1), (2), and (3) illustrate the possible problems, and 

(4) shows an admissible configuration of the two strokes. 

A1 and A2. If the distance IIAI - A2II is too large, the 

compound character formed by the two strokes is 

rejected. 
For some letters it is desirable to penalize different 

components of the transformation distance by different 

amounts. For example, in a d the relative scale of the 

two strokes is less important than the difference in the 

rotations they have been subjected to, while in a w the 

opposite is true. To impose differential penalties, the 

matrix that defines the homogeneous part of the trans- 

formation is decomposed into a product of matrices, 

corresponding to the elementary transformations (i.e., 

scaling and rotation) that are to be discerned. We use 

singular value decompositon for this purpose [Ben- 

Israel and Greville 1974]. 

3. 5 Summary of the Method 

The main stages of the recognition process are as 

follows: 

• Anchor point extraction. This is performed by tracing 

the image contours. 

• Stroke detection. Strokes are recognized by prototype 

alignment, using affine transformations computed 

from anchor-point correspondences. 

• Letter hypothesization. Potential instances of each of 

the 26 letters are detected. Every instance at this stage 

has a score that reflects its closeness to the part of 

the contour with which it is aligned, 

• Interpretation. At this stage a best-first search is used 

to assemble the interpretation string out of the set 

of all detected letter instances. 

We have implemented a complete word recognition 

system based on control point alignment. The next sec- 

tion describes it in some detail. We also describe several 

choices and techniques that are not an integral part of 

the basic scheme, but were found useful in the practical 

implementation. 

4 Implementation 

4.1 Extracting Alignment Tokens 

In the first stage, the system traces the word contour 
to extract the primary and secondary tokens (anchor 

points) on which the subsequent stroke alignment is 

based. The tracing starts from the leftmost black pixel 

and proceeds by steps. In each step the continuation 
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points are found by collecting all the black points that 

lie along the perimeter of a square centered at the cur- 

rent point (we set the size of the square at approximately 

twice the width of the contour, but any value between 

1.0 and 5.0 times the width appears to work well). The 

continuation point that yields the lowest trace curvature 

is then selected. The tracing tends therefore to proceed 

straight wherever possible. When a continuation point is 

selected, the entire current square is "painted" (marked 

by l's in an array congruent with the original image). 

Painted points are not allowed to provide continuation. 

The coordinates of the centers of the squares are 

saved at each step. They constitute the coarse represen- 

tation of the contour that is the output of the tracing. 

Only the local order of points matters: no attempt is 

made to reproduce the original writing sequence. 

Two events can interrupt the tracing process. The first 

corresponds to a large value of the turn angle, defined 

in terms of three contiguous sample points. The second 

event is signaled by an empty continuation point set. 

Thus, the tracing stops when it falls off a termination 

of the contour, or makes too sharp a turn, or runs into 

an already painted area (as may happen at an intersec- 

tion). When this happens, a new starting point is sought. 

If none is found (i.e., the entire contour of the word 

has been painted) the tracing process terminates, return- 

ing the set of contour pieces--lists of sample points. 

Pieces of contour returned by the tracer are further 

processed in order to extract primary and secondary 

tokens: contour extrema in the vertical and the horizon- 

tal directions. First, the local orientations of the contour 

(stored in the sample point data structure) are smoothed 

by a convolution with a Gaussian mask. Consecutive 

members of the smoothed orientation list are then exam- 

ined to detect the required extrema. A positive to nega- 

tive zero-crossing signifies, for example, a maximum in 

the vertical direction (top), a transition from c~ > ~r/2 

to a a < 7r/2--a local leftmost point (left), and so on. 

Symbolic labels are assigned to the tokens in order 

to reduce the amount of search in the alignment stage. 

The classification is according to the type of the ex- 

tremum: each token is labeled as top, bottom, left, or 

right. In addition, the tokens have property lists that 

include the following information: 

1. Writing zone. Possible values of this slot are upper, 
middle, and lower (the zone is determined by a 

method described by Bo~inovid and Srihari [1985]). 

2. Sub-zone. Middle-zone tokens are further classified 

into upper-middle and lower-middle ones. 

3. Close tokens. This slot points to a list of tokens that 

are within a threshold distance from the present 

token. 

Figure 11 shows the primary tokens extracted from 

an image of the word ornate. Approximately 50 primary 

tokens were found. There were about half as many sec- 

ondary tokens (not shown). At those places where the 

curvature of the contour around a vertical extremum 

is small, the localization of the tokens is poor (see the 

previous section). To tolerate this imprecise localiza- 

tion, the system is programmed to return two additional 

tokens, one on each side of the true one. 

4.2 Finding Character Hypotheses 

Having extracted and classified the tokens, the system 

proceeds to the detection of individual characters. In- 

stances of each of the 26 characters (and a special 

character "&" that designates the ligatures) are detected 

in turn. 

Correspondence and Alignment. The first step in 

character detection is looking up its prototypes in a 

special table (multiple entries correspond to different 

versions of the same character, such as the left and the 

right-facing r). An entry includes the names of the char- 

acter's components and the name of the character expert: 

the function that is invoked to determine whether a par- 

ticular combination of components is legal and to score 

the result if it is. 

With several exceptions, the components of com- 

pound characters are simple strokes. The exceptions 

are a, b, d, g, p, and q which may include the letter 

o, and m which may include an n. After the system has 

the entire definition in terms of strokes, the prototypes 

of these are looked up in the prototype table. If instances 

of a stroke have already been detected for the current 

input word, they are reused. Otherwise, the strokes are 

found using alignment, and the result is remembered, 

to be used in the detection of a subsequent compound 

character. 

To compute the aligning transformation, the system 

must establish correspondence between the set of proto- 

type tokens and a subset of the tokens extracted from the 

image. The evaluation of potential matches is expensive: 

it involves computing and applying the aligning trans- 

formation and estimating the degree of fit of the result. 

When token classification is used, the number of 

plausible correspondences is considerably smaller than 
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Fig. 11. Primary tokens extracted from the image of the word ornate. The printed representations of the tokens (m the panel labeled "Interac- 

tion") include type (token), identify (a unique symbol), class (line, end, o r  bend), coordinates, contour slope, extremum type (T for a top, 
f o r  a bottom), zone (D for upper and appropriately placed, commas for upper-middle and lower-middle), and valency- (see text) .  

the worst case. A collection of experts, one per proto- 

type, filters the correspondences, retaining only the 

plausible ones. The rules employed by the experts are 

divided into general and prototype-specific ones. An 

example of a general rule states that top and bottom 

tokens do not match. Another example is a rule that 

is specific to the letter c, stating that the token that is 

matched to its top should be above the token that is 

matched to its bottom? 

Once the correspondence is established, the system 

computes the affine transformation that aligns the proto- 

type with the image. Most of the prototypes have three 

anchor points, and some have two. The appropriate 

methods for computing the transformations, described 

in the previous section, are used in each case. 

Evaluating the Match• The central assumption of the 

alignment method is that the entire contour of the proto- 

type matches the image, once the corresponding anchor 

points have been brought into register by the aligning 

transformation. The goodness of the match is now com- 

puted by applying a prototype-to-image distance func- 

tion, as described in the previous section. 

For strokes and simple characters, the asymmetric 

nearest-neighbor function is applied by default. Other 

functions are available and may be selected through a 

menu. The nearest-neighbor distance is the most impor- 

tant but not the only component of a stroke's score: 

three additional factors are taken into account. The fu'st 

is the amount of distortion undergone by the stroke's 

prototype. The distortion here is defined as I]A - kill, 
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where A is the homogeneous part of the affine transfor- 

mation applied to the prototype, and k is the average 

scaling factor, computed independently. 

The second additional factor is prototype-specific. 

For an i it includes, for example, a bonus that depends 

on the location of the dot (if found) relative to the tip 

of the letter, for an 1--a penalty proportional to the dis- 

tance between its bottom and the lower border of the 

middle zone. 

The third factor penalizes intrusion of image contour 

into forbidden zones that are also prototype-specific. 

For example, the top part of a c must have a clearance 

above and to the right of it, in order to reduce the score 

of a c that is embedded in a larger letter such as d. 

The role of compound character experts mentioned 

above is to test combinations of strokes for legal con- 

figurations, and to evaluate the goodness of such con- 

figurations, using the method described in the previous 

section. The tests for legality rely mostly on computa- 

tionally inexpensive, local operations, such as detect- 

ing coincidence or proximity of two tokens. For a small 

number of characters the tests involve, in addition, 

simple spatial relations (e.g., in a t the crossbar must 

at least be close to the vertical stroke). 

The basis for the computation of a compound char- 

acter's score is the mean of the scores of its two com- 

ponents. A penalty that depends on affine-invariant 

geometric measurements, and on the distance between 

the components' transformation matrices, is imposed on 

the basic score. The penalty computation is character- 

specific and is part of the character expert. 

Both simple and compound character instances are 

represented by structures that include the following in- 

formation (see figure 12): 
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Fig. 12. An instance of the letter a, detected in a cursive string. Note the description of the Instance in the right panel. 
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- -  Location: x and y coordinates of  the character's 

centroid 

- -  Score 

- -  Tokens used in the alignment 

- -  The leftmost and the rightmost x coordinates of  the 

interval occupied by the instance 

- -  Version: most characters have more than one legal 

version or configuration 

- -  Prototype: the transformed prototype (for compound 

characters, prototypes) that represents this instance 

- -  Coverage: a list of  tokens that are accounted for by 

this instance (i.e., are close enough to one of  the 

points of the transformed prototype). A numerical 

coverage index is also stored. It is formed by assign- 

ing each covered token a contribution according to 

its type and location. 

In this stage of  the recognition process, more tokens 

are generated than justified by the image (for example, 

at a junction there are usually several tokens). All these 

tokens are kept, making the system more robust at the 

expense of an increase in the computation load. Conse- 

quently, several overlapping instances of the same char- 

acter are frequently detected. Now, for every character, 

the set of all detected instances is filtered, to discard 

those that are clearly superfluous. The filtering is based 

on the concept of domination. A character instance is 

said to dominate another one if it has a higher score 

and the overlap between the two is sufficiently large. 

The domination relation induces a partial order on the 

instance set. In the resulting partially ordered set, only 

those instances at least one of whose dominators is not 

in turn dominated may be safely discarded. The filtering 

is repeated in this manner, until no change happens. 

The system's representation of the input after instances 

of  all the characters have been detected and filtered is 

shown in figure 13. The instances are stored in a list, 
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Finished Prepar ing  char, lct :¢r hvpoth¢¢¢¢. 

(Look 13 nlnutel 39 seconds,) 
Recognlzeda "~ate" ($ - 51.3), 

Hext 4 cand|datesl 
"o~rte" (S - 5 L , L 6 )  

"ornate" (S - 51.e8) 
"oe~otl m (S = 51,85) 
"orrat." ($ - 51:04) 

Best l e x l c a l  choice| "ornate'. 
Finished S t r i n g  r t c o g n t t l o n  ~ h c u r l x t l c ) .  

(took 15 Mlnutfs 18 seconds,) 
-> 

I n t e r a c t i o n  

Fig. 13. All the letter instances detected in a string. The lower panel contains a representation of the list of instances, each placed at its proper 
x coordinate. The y coordinate is proportional to the logarithm of the corresponding instance's score. 

The R] Machine's c ~ o l e  |d|e 18 Mnute~ 
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sorted by the x coordinate. A graphic representation 

may be seen in the lower panel of figure 13, where a 
letter designating each instance appears at its correct 

x coordinate. The y coordinate is proportional to the 
logarithm of the instance's score. The dotted line across 

the panel represents the cutoff score that can be varied 

to sieve out weak instances. 

4.3 Choosing the Best-String Interpretation 

The output of the letter recognition stage may consist 

of as many as 80 letter hypotheses for a 6-letter word 
(see figure 14). Among all these, the string recognition 

module must find the one that best fits the image. In 

addition, the next best 100 or so candidates are found 

(these are used by the lexical post-processor, described 

below). All candidates must be valid strings in the fol- 

lowing sense: their constituent letters should preserve 

the original order along the x axis and should not over- 
lap in space. This is a problem of constrained combina- 

torial optimization, aggravated by the need to find more 

than just the best result. 
The problem may be solved by searching the space 

of all possible ordered subsets of the set L of the 

detected instances. The size of this space is 0 ,  where 

n = I L l .  If only those subsets of L whose length is be- 

tween 3 and 6 are considered, the size is reduced to 

E~=3(~. ) = O(n6). The above validity requirement fur- 

ther reduces this figure. The remaining complexity is, 
however, sufficiently high to preclude the application 

of exhaustive search. 
Our first attempt to solve the optimization problem 

was by a relaxation process. This process used "lateral 

9raw-7 
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r ' n  ~13 ee r~ b 

e YSP o n 

u k ~)Z n 

-> H e u r i s t i c  

Strzng r¢cogn~: too (h~urr~t 1c2,,,, 
Reeogelized.- "~dey~t" ($ = ,~B2), 
Next 4 candldaLe,. ~ 

"adop~t ~ (S = . 9 7 ~ )  

"a l  l ap t "  ($ = .8757) 
"adnpst" (S = .892~) 

Best  l e x i e a l  d ~ i c e :  *adapt ' ,  
14ord w1~J~ ~axJ~n votes~ "ad~pt ' .  
F~t~$hed Strrng r~co~nl~:ron {heurzs~e), 

(look i| Mr.~JLes 4g seconds,) 

In teract ion 

S h i f t ,  C o n t r o l ,  H e r a - S h i f t ,  o r  Su:  ~e r  

[Sun 24 Rpr 9:19:55] edelnan CL-USER: User Input + RI:>irlna>out.dat 0 

Fig. 14. A particularly difficult example of the combinatorial nature of the interpretation problem. Without using the lexicon, the best outcome 

was adeyst. This makes sense if one scrutinizes the image while trying to disregard the solution imposed by the lexicon. The result involving 

the lexicon was adapt, as it should be. 



320 Edelman, Ullman, and Flash 

inhibition" among character instances in an iterative 

fashion. The hope was that after a number of iterations 

the instances that constituted a high-scoring, consistent 

solution would be strengthened at the expense of the 

weaker, conflicting instances. 

In order to encourage the emergence of consistent 

solutions, the inhibition exerted by one instance upon 

another decreased with the distance between the two. 

It was highest when the characters actually overlapped. 

The scores of individual instances were taken into ac- 

count by making the inhibition asymmetric (weaker in- 

stances did not inhibit stronger ones). An important role 

was attached to the notion of character inclusion (such 

as that of an a within a d). The "included" or domi- 

nated characters did not inhibit their dominators. 

The lateral inhibition mechanism may be regarded 

a single-layer special case of an interactive activation 

network [McClelland and Rumelhart 1981]. As such, 

it could be extended in a straightforward manner to use 

lexical knowledge. However, our attempts to find a 

combination of parameters leading to an acceptable per- 

formance have failed, apparently for the following tea- 

sons. First, the domination rules that guide character- 

level inhibition properties that emerge at the next higher 

level: in groups of characters. In order to accommodate 

coalitions of characters into the scheme, all potential 

coalitions must be considered. This leads one back to 

the original combinatorial problem. 

A second obstacle is due to the transitivity problem. 

Consider three character instances cl, c2, and c3. Sup- 

pose that cl dominates c: but not c3, and that c2 in turn 

dominates c3. The survivors of the lateral inhibition in 

this case should be cl and c3. However, in many cases 

it turns out that c2 suppresses c3 (drives it below the 

extinction threshold) before c~ can prevent it by sup- 

pressing c2. 

When the inadequacy of the lateral-inhibition approach 

in the present context became apparent, we replaced 

in a by a best-first heuristic search. In the best-first 

approach the tree-structured state space is searched by 

expanding at each step the most promising node among 

all those situated along the current expansion frontier 

(see figure 15). The search algorithm employed by the 

system is a variant of A* [Pearl 1984]. We called it 

f f f f 
1 2 3 4 

seor¢l([4 } = miaz seorel(f i) 

O expanded node 

O current expansion frontier 

EXPAND 

Fig. 15. Algorithm A*, applied to the search for an optimal instance combination. At each iteration, the best candidate at the current search 

frontier (marked) is expanded and evaluated. 
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BCS for Best-Candidate Strings. It uses a heap [Aho 

et al. 1974] ordered by string score to hold the partial 

strings that belong to the current expansion frontier. 

This permits insertion and deletion of frontier set ele- 

ments in time proportional to the logarithm of its size. 

BCS conducts the search from left to right, expanding 
at each iteration the top element of the heap, which is 

the best string encountered so far. 

The score of a string at this stage (computed by a 
function, scorel) must be independent of its length, 

otherwise the best-first search degenerates quickly into 

a depth-first one. The independence is achieved by com- 
puting a basic letter-cumulative score and dividing it 

by the length of the string. The basic score has two main 

components: the sum of the scores of constituent char- 

acters, and the sum of their token coverage indices. 4 

The two components are combined into a weighted sum 
(normally, the token coverage and the score are given 

equal weight). The result is multiplied by a penalty fac- 
tor that depends mainly on the style consistency of the 

string. 

The expansion of the best candidate is performed by 

the function expand which takes a string and returns 

all its one-letter continuations to the right, subject to 
two conditions: (1) validity of the result and (2) close- 
ness of the continuation letter to the rightmost letter 

of the original string (this heuristic uses the fact that 

no gap wider than about twice the height of an average 

letter usually exists between two successive letters of 
a word). When expansion to the right is no longer possi- 

ble, the string is removed from the heap and saved in 

an accumulator, and the entire cycle is repeated. 
When a preset number of iterations is exceeded, the 

accumulator is sorted using a different scoring function, 

score2. In contrast with score1, this function gives pref- 
erence to longer strings. Specifically, the token coverage 

of individual characters enters it in a cumulative fash- 
ion, while their scores are still averaged. This serves 

to discourage character fragmentation (e.g., breaking 

down a w into a c and a u). 

4.3.1 Algorithm BCS 

1. Initialize the heap H and an accumulator R to 0 (the 

top of an empty heap is the null string e). 
2. Do h ~- top(H); E ~ expand(h). 

3. If E ~ 0 then remove top(H) and for all e E E insert 
(e, scorel(e)) into H; else remove top(H) and add 
the result h to R. 

4. If H = 0 or the number of iterations N is exceeded, 

return the first 100 elements of R, after sorting it 

by score2; else, go to step 2. 

The maximum allowed number of iterations N was ad- 

justed empirically to a value that prevented the algo- 

rithm from returning prematurely for all the test words. 

Provided that N is high enough, the following claims 
can be made about the performance of BCS. Since the 

path from the root of the search tree to a solution is 
irrelevant for the present problem, BCS satisfies the 

condition for optimality ([Pearl 1984] p. 62). It also 

trivially satisfies the completeness condition because 

the state space is finite (the string cannot be expanded 
beyond the rightmost element of L). The condition for 

admissibility is satisfied for an infinite N. BCS is there- 

fore admissible on short enough inputs. 
The output of the heuristic search is a list of strings, 

ordered according to a set of criteria that rely solely 

on visual information. For a considerable proportion 
of inputs, the top five strings on this list include correct 

interpretation (we shall describe the statistics shortly). 5 

Even when they do not, the top interpretation can often 
be intuitively justified (see figure 14). If desired, lex- 

ical knowledge can now be applied to this raw output, 

as described below. 

4. 4 Application of Lexical Knowledge 

In the present system, the application of lexical knowl- 

edge is no optional operation, and is independent of the 

visual recognition module, described above. Because 

of the independence requirement, contextual post- 

processing [Hanson et al. 1976] or error correction is 
used, rather than an integrated approach such as that 
of Srihari and Bo~inovi6 [1987]. 

A contextual post-processor assumes that the letter 

string that is the outcome of the visual recognition stage 

is a garbled version of a legal word. It then uses the 

letter context of the string to produce the most likely 
word from which it could have originated. The degree 

of likelihood may be computed for each word in the 

lexicon directly, for example, using the Levenshtein 
metric on strings [Okuda et al. 1976]. Another possibil- 
ity is to use n-gram statistics to decide which of the 

letters are erroneously detected [Hanson et al. 1976]. 
The only input to a post-processor of the above type 

is the best string supplied by the visual module: the 
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less successful candidate strings are disregarded. This 

approach is unwarrranted in cursive script recognition, 

where the high inherent ambiguity of the image inter- 

pretation causes the spread of the useful information 

over the first several candidates. When the visual 

goodness-of-fit alone is considered, the best string often 

is an alternative parsing (interpretation) of the image. 

This parsing may have nothing to do with the legal word 

that is the intended interpretation. 

In choosing the method for lexical post-processing, 

we also considered the requirement to simulate human 

ability to interpret (recognize the letters of) nonwords. 

In particular, the facilitation of letter recognition in 

pseudowords (such as pronounceable nonwords) had 

to be accounted for. An approach that incorporates 

this feature is interactive activation [McClelland and 

Rumelhart 1981]. However, as discussed above, it 

proved to be inadequate for cursive connected script. 

The advantage of pseudowords over random strings 

may be attributed to the reader's tendency to look for 

meaning (Englishness) even where there is none. This 

makes the concept of statistical Englishness, as defined 

by Travers and Olivier [1978], useful in the simulation 

of the word (and pseudoword) superiority effect. 

The lexical module relies on the synthesis of the con- 

cepts of lexical neighborhood and statistical English- 

ness (see [Edelman 1988] for a discussion). It uses the 

fast spell-checking function available in the Symbolics 

Lisp environment. The Englishness of a string S is esti- 

mated as 

~ Ernax if S is a legal 
word 

~ length (c) otherwise 
c~c(s) (5) 

where P = {US, I(S~ c_ S) & (Is, I -> 3)} is the bag 

(set with possible repetitions) of all substrings of S of 

length 3 or more, C(s) is the set of all corrections of 

the string s, returned by the spell-checking function, 6 

and Emax--an empirically determined constant. The 

division by ]PI makes possible the comparison of E(S) 

for short and long S's alike. 
The E measure takes into account n-gram statistics 

of the language in an indirect manner, through a proce- 

dure that may be interpreted as activation of word units, 

with a subsequent excitation feedback to the letter unit 
level. The amount of excitation depends on the likeli- 

hood of letter groups. The grouping is encoded by letter 

positions relative to each other rather than by absolute 

positions. This approach incorporates the positive fea- 

tures of the interactive activation scheme, such as its 

natural account of word superiority, without suffering 

from its main shortcoming: the dependency on absolute 

positioning of letter units. 

5 P e r f o r m a n c e  

5.1 Evaluation Paradigm 

The evaluation of the system's performance proceeded 

in four stages. The first stage amounted to a feasibility 

study, in which the best possible performance on a pre- 

determined set of word images was sought. In the sec- 

ond stage, the system has been manually trained, using 

the same set of images. In the third stage, the system 

was tested on several image sets, produced by different 

writers. Finally, the influence of some of the system's 

parameters on its performance was estimated. 

Six sets of word images (generated from four different 

word sets: see table 1) were used in this study. Four 

of these were produced by the first author. The remain- 

ing two sets were generated by two other writers. The 

six sets of images are described in table 2. For easy 

reference, they are designated by a capital letter (the 

initial of the writer), subscripted by the number of the 

word set. 

Table L Word sets used in the experiments. Several images of some 
of these sets were produced (see text). The pseudowords in set #3 
were obtained from legal words by substitution of one of the letters. 
All these pseudowords were pronounceable. 

Word Set # 1 2 3 4 

Description 43 words 40 words 40 pseudowords 32 words 

Table 2. Image sets produced by 
the three writers. The set B[ was 
derived from B~ by erasing the lig- 
atures between letters (see text). 

Writer Image Sets 

EDE El, E2, E3, E4 

BEN B~, B~ 

CHE C1 

All words used in the experiments contained between 
three and six letters. The histogram of letter occurrences 

in word set number one (from which image sets El, 
B1, and C1 were generated) appears in figure 16. For 
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Fig. 16 (a) The histogram of letter occurrences in word set number 
one (from which image sets El, B1, and Cl were generated). (b) A 
similar histogram for a randomly chosen set of 1000 words. The two 
histograms are similar. 

comparison, a similar histogram for a randomly chosen 

set of 1000 words is also shown. The images were pro- 

duced by a digitizing tablet [Edelman 1988]. Ruled 

paper and an ordinary ballpoint refill, built into the 

tablet's stylus, were used. The writers were asked to 

write along the rulings. No other constraints on the 

writing style were imposed (see figure 17 for an exam- 

ple of an image set, C1). 

5.2 Evaluation Results 

5.2.1 Feasibility Study. The purpose of the feasibility 

study was to find out the best performance on a fixed 

image set, El, that could he reached with a moderate 

investment of programming effort. Such a study was 

necessary, because the initial definitions of prototype 

characters, as well as the initial versions of character 

experts (see the previous section), were empirical, 

guided by our intuition about the problem. The first 

run of the program on E1 resulted in 77% top-five cor- 

rect rate. 7 This figure has been brought subsequently 

to 95 %, with the best lexical choice being correct in 

100 % of the cases. When tested on E2 and E3, the sys- 

tem achieved an average correct rate of 51% without 

the lexicon. 

5.2.2 Training. We next tested the stability of the sys- 

tem's performance across writers. It was clear that quite 

a few new versions of characters would have to be 

added, mainly because of stylistic variation among the 

writers. Since in its present form the system was incapa- 

ble of automatic learning, it had to be trained manually, 

by parameter adjustment and program rewriting. After 

studying the image sets B1 and C1, the adjustments that 

seemed to be necessary were carried out. The resulting 

system was then repeatedly modified, until its perform- 

ance on the training set E1 reached a level somewhat 

below human performance (see the first line of table 3). 

The main reason to halt at that point was the difficulty 

to achieve further progress by manual training. The 

modification was guided mostly by the feedback from 

the E~ set, although occasionally individual character 

experts were modified using images from B1 and C1. 

5.2.3 Performance Transfer. The system's performance 

was subsequently tested on sets E2, E3, E4, B1, and C1. 

For each test set, proportion of correct interpretations 

in the first 1, 5, and 100 candidates, average position 

of correct interpretation in the outcome list, and propor- 

tion of correct lexieal interpretation were recorded. The 

results are summarized in table 3. No system modifica- 

tion whatsoever was carried out between tests; thus, 

the results indicate the transfer of performance across 

word identity (lines 2 through 4) and across writers 

(lines 5 and 6). 

The system configuration that brought the top-five 

performance on the training set of 56% yielded 37% 

and 35 % average top-five correct rate across words and 

across writers, respectively. This corresponds to a per- 

formance transfer ratio across words of 0.67 and across 

writers--0.04 on the average. In absolute terms, the top- 

five correct rate averaged over the test sets, 36%, is 

about half as good as average human performance 

(72 %; the best and the worst experimental figures were, 

respectively, 59% and 86%. See [Edelman 1988], 

appendix 1). 

5. 3 Exploring Different Parameter Settings 

Several special runs on the image set B 1 w e r e  carried out 

in order to estimate the sensitivity of the results described 

above to various system parameters. The following 
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Dynamic Lisp Listener 1 
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F/g. 17. Word image set Cj. The images are reproduced here at about one fourth the resolution actually used by the system. 

Table 3. System performance summary. It is more informative to con- 

sider the top five outcomes rather than just the best one, as no effort 

has been invested in distinguishing letters that differ but slightly (such 

as n and u, or g and q). As a result, the top choice often differed 

from the correct response merely by a substitution in one of these 
letters. The low figure in line 3, column 4 reflects the performance 

of the lexical module on set E3, which contained only pseudowords. 

Correct 

Correct Correct 1st Avg Position 

Image Correct in in Using of Correct 

Set First Top 5 Top 100 Lexicon in Top 100 

E1 t 30% 56% 93% 81% 13.2 

E2 8% 23% 60% 48% 14.5 

E3 15% 43% 70% 8% 10.1 

E, 22% 41% 56% 50% 4.7 

B1 16% 40% 65% 53% 10.4 

C1 19% 30% 60% 47% 11.4 

~The training set. 

issues were considered: stroke metrics, string metrics, 

the use of ligatures, the depth of heuristic search, and 

the step size in tracing during token extraction. 

5.3.1 Influence of Stroke Metrics. The function that 

measures the goodness of fit between an aligned stroke 

prototype and the input image includes a multiplicative 

emphasis operation. The multiplication factor is greater 

than one for distances that exceed a certain threshold 

and smaller than one for distances below that threshold. 

Normally, a threshold value of w = 5 pixels was used. 

Two other values were tested. A run on the image set 

B~ with w = 4 resulted in a significant deterioration 

in performance, which dropped to 16 %. The average 

position of the correct interpretation in the results list 

improved, however, and reached 1.6 (those strings for 

which the correct interpretation is not found in the top 

100 candidates do not contribute to the average position 
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computation; thus, the average position may look good 

even when the general performance is unacceptable). 
Setting w = 6 brought the performance to 35 %, again 
a deterioration. The default value of w = 5 seems there- 

fore to be locally optimal as far as the correct top-five 
rate is concerned. A smaller value of w would improve 
the correct first rate, at the cost of a decrease in the 
correct top-five rate. This behavior of the system signi- 

fies that closer alignment is necessary before a stricter 
goodness of fit measure can be usefully applied. 

5.3.2 Influence of String Metrics. The heuristic search 
for the best interpretation relies on a measure of string 

goodness that includes two components (see the descrip- 
tion of the evaluation function score~ in the previous 
chapter). The first of these is proportional to the average 
score of the constituent characters and the second--to 
the average index of image contour coverage by the 

string (normally, the weights of the two components 
of scorem were equal). The test of the influence of com- 
ponent weights consisted of two runs. When the relative 
weight of contour coverage was decreased by a factor 
of 5, the top-five correct rate dropped from 40% to 

35 %. An increase of this weight by a factor of 2 resulted 
in a similarly degraded correct rate of 37 %. It may be 
assumed therefore that the weights normally used in 
the tests were (at least locally) optimal. 

5. 3. 3 The Use of Ligatures. The character prototypes 
used by the system are minimal in the sense that they 
include no ligatures in either the leading or the trailing 
position. Thus, even the best interpretation of the image 
of a fully connected string cannot account for its entire 

contour, since it is bound to leave the ligatures out. As 
it happens, the ligatures may constitute a substantial 
portion of the image, serving as a pool of contour frag- 
ments from which spurious letters are constructed. 
These letters in turn give rise to unwanted alternative 
interpretations (see, e.g., figure 14). 

As we have mentioned above, the set of character pro- 

totypes included one that corresponded to a typical 
ligature rather than to any of the 26 characters. To com- 
plement the minimalistic approach to character defini- 

tion, the system could try to account for as much of 
the contour as possible, by explicitly detecting the liga- 
tures. This feature was tested, again on the image set 
BI, resulting in a reduced correct rate of 35 %. This 
result justifies the minimal approach to prototype defi- 

nition: apparently, the diversity of the liguature shapes 
is such that attempting to detect the ligatures explicitly 
harms rather than helps. 

5.3.4 The Depth of Heuristic Search. When the value 

of the depth parameter of the heuristic search (desig- 

nated in the description of algorithm BCS in the pre- 
vious chapter by N) is too small, the system often fails 

to reach the correct interpretation. The default value, 
N = 7500, represents a compromise between considera- 
tions of performance and running time. To find out the 

influence of this value on performance, the system was 

run on B1 with N = 15000. The effect of the twofold 
increase in N was negligible (a 2 % increase in the top- 

five correct rate). Thus, the default value of N seems 
to be satisfactory. 

5. 3.5 Tracing Step Size in Token Extraction. Most of 

the twenty-odd minutes it takes the system to interpret 

an average string are spent in alignment and evaluation 

of candidate stroke instances. This time depends on the 

number of detected tokens (anchor points): the more 

tokens there are, the more anchor-point combinations 

must be tried. In fact, the number of combinations 
grows as n 3 for three-point alignment (see section 2). 
During system training and testing, the step size in trac- 

ing has been equal to 8 pixels (about one tenth the aver- 

age string height). With this step size, the average num- 

ber of detected tokens for a five-letter word was about 

70. To test the possibility of reducing this number, the 
system has been run on image set B1 with step size equal 

to 10 (a 20 % increase). The resulting top-five correct 

rate decreased by a small amount (just 3 %, due to the 
reduced accuracy in anchor-point positioning), while 
the average running time per string dropped from 22 

minutes to 12. This result indicates that better algo- 

rithms for token extraction may reduce the processing 
time significantly without compromising the perform- 

ance of the system. 

5.4 Difficulties of Reading Cursive Script Reassessed 

At the beginning of the article, we suggested that diffi- 

culty of segmentation and variability of individual char- 

acters are the main factors that aggravate the problem 

of interpretation of connected strings. We attempted to 
assess empirically their relative importance and con- 
tribution to the error rate exhibited by the system, as 
follows. 

5. 4.1 Performance on Discrete-Character Strings. First, 
we ran the program on image set B ~, obtained from 
B1 by erasing inter-character ligatures without affecting 
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Fig. 18. An image of a word from the set B~, dismay. The 

character shapes (see figure 18). On this set, the system 

achieved 33 % correct rate for the top interpretation, 

twice the figure for B]. In the top five interpretations the 

correct rate was 47 %, exceeding the corresponding fig- 

ure for B1 by 7 %. The average distance of correct inter- 

pretation from the top diminished from 10.4 to 8.7. Thus, 

disconnecting the characters within strings improved 

the general performance slightly, whereas the correct 

rate for the top interpretation increased by a factor of 

two. The relative stability of the top-five correct rate 

with respect to changing segmentation conditions shows 

that the system is to a certain extent capable of segment- 

ing connected strings (see also the next subsection). 

This capability is an emergent property: there are no 

explicit segmentation rules in the system. On the other 

hand, the sharp increase in the correct-first rate brought 

about by character disconnection indicates that perhaps 

explicit segmentation heuristics [Srihari and Bo~inovi6 

1987; Maier 1986] may be helpful, after all. 

image was obtained by removing the ligatures between the letters. 

5.4.2 Character Confusion Data. Another method of 

assessing the relative importance of correct segmenta- 

tion is to calculate the character error rate directly. A 

sufficiently high character error rate may mask the effect 

of incorrect segmentation and account alone for the 

observed string errors. To investigate this possibility, 

the system recorded two types of character error events 

during the test runs: missed instances and falsely de- 

tected ones. The results were presented in the form of 

confusion matrices. For example, in figure 19 the entry 

in row b, column a signifies that in half of the relevant 

strings an a overlapped the detected b. s The confusion 

matrix thus provides an estimate of the false detection 

rate for various characters. 

Many of the entries in the confusion matrix of figure 

19 are greater than 1. This is due in part to compound 

characters such as w overlapping more than one instance 

of a simple character such as v, and in part to characters 

that include ligatures. These confounding factors must 
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Fig. 19. The confusion table for the image set B 1. The entry in row b, column a signifies, for example, that in half of the relevant strings 
an a overlapped the detected b. The confusion matrix provides an estimate of the false detection rate for various characters. 

be removed to permit a faithful estimate of recognition 

rate for individual characters. Accordingly, the true con- 

fusion matrix has been computed using the set B~ and 

manual segmentation information. A list of segmentation 

points (x coordinates) was provided for each one of the 

43 images of  the set. After detecting the character in- 

stances, the system picked for each segmentation slot 

the best character that wholly resided in it. This char- 

acter was then compared with the true answer and the cor- 

responding entry in the confusion matrix was updated. 

The result appears in figure 20. This matrix is less 

crowded than the previous one. It should be remembered, 

however, that while it reflects truthfully the situation 

in isolated character recognition, the string interpretation 

system must cope with a flood of character instances 

like the one that gave rise to the matrix in figure 19. 

Note the presence in figure 20 of the diagonal entries 

that are absent in figure 19. A diagonal entry equal to 1 

means that the corresponding character has been always 

detected correctly. In every case, the sum of the entries 

along the rows of the matrix is always 1. The 37 mis- 

recognized characters are listed in figure 20 below the 

matrix. In addition, in five cases it happened that a seg- 

mentation slot held no character at all. The estimate 

of  the character recognition rate from this experiment 

was 78.5 % (42 missed characters out of the total of 195). 

The string recognition rate was 35%. I f  this figure is 

compared to the 16% actual correct best rate for B1 (see 

table 3), it may be concluded that segmentation errors 

constitute a considerable proportion of the total made 

by the system. 

5.4.3 Potential Performance. To assess the potential of 

the system, we have modified the above experiment to 

look in each segmentaion slot for any (not just the best) 

instance of the true character. Under this condition, the 
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Fig. 212 The confusion table for image set B;. 

character recognition rate was 93.3 % (13 missed char- 

acters out of 195), and the string recognition rate was 

70%. In comparison, people recognize correctly 96.8% 

of handprinted characters [Neisser and Weene 1960], 

95.6 % of discretized handwriting [Suen 1983] and 

about 72 % of cursive strings (see [Edelman 1988], ap- 

pendix 1). The present system appears therefore to have 

the potential to attain human-like performance in cur- 

sive script recognition. 

5.5 Possible Improvements 

It appears that within the proposed approach a number 

of improvements can be made. All of these pertain to 

implementation details rather than to the principle on 

which the approach is based, namely, the alignment of 

pictorial descriptions. 

5.5.1 Pre-alignment Processing. The present system 

embodies an effort to obtain maximum performance in 

cursive string recognition using the alignment approach. 

Consequently, in its development we have attached sec- 

ondary importance to issues of information extraction 

prior to alignment. Experience with the system indicates 

that this brute-force approach may be unwarranted. In- 

deed, Ullman ([1986], p. 45) lists three stages in the 

recognition process that may precede alignment: selec- 

tion, segmentation and description. In reading, these 

three stages correspond to isolating a word from its 

neighbors, segmenting it into characters or strokes and 

obtaining a suitable description of the regions that will 

be used for matching character prototypes to the image. 

Paying more attention to these early processing stages 

may result in a significant performance improvement. 

Consider for instance the process of detection of 

anchor points (tokens). In the present system, zoning 
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and token extraction take about 20 seconds, which is 
less than 2 % of the total running time per string. They 

employ straightforward algorithms that are fast but not 
always reliable. For example, zoning is done by comput- 
ing the horizontal density histogram of the image (after 
[Bo~inovi6 and Srihari 1985]). This technique fails, for 
example, if the writing baseline is curved, or if most 
of the string's letters contain ascenders (as in the word 

felt). In the current implementation, a failure at this 
stage leads to a completely wrong interpretation, because 
the classification of tokens by zoning is used to prune 
the correspondence search during alignment. Several 
such failures were in fact observed in the test runs. If 

no zoning were used, these failures would not happen 
(at the expense of longer correspondence time). 

Currently, the dependency of the complexity of corre- 
spondence computation on the number of image tokens 
is cubic (see section 2). A better scheme for token 

classification could improve this situation considerably 
[Huttenlocher and Ullman 1987]. For example, sign and 
magnitude of contour curvature may be used to label 

tokens. Ultimately, token labeling could result in a 
linear dependency of correspondence complexity on the 

number of tokens. 

5.5.2 Better Metrics. At present, the degree of fit be- 
tween a transformed model and the image is evaluated 
essentially by computing for each model point the dis- 

tance to its nearest neighbor point in the image and tak- 
ing the maximum over all model points. Some potential 
problems with this approach were discussed above. A 
better degree of fit evaluation function (e.g., one that 
is sensitive to orientation as well as position discrepan- 

cies between model and image contours) can reduce 
the number of false instances and alleviate the interpre- 
tation ambiguity. 

5.5. 3 Post-alignment Adjustment. Experience with the 
present system shows that most, but not all, of the char- 
acter shape variability can be compensated for by the 
affine transform used in the alignment of character pro- 
totypes. The remaining variability seems to be small 

enough to be removed by local methods. In other words, 
an adjustment stage could be inserted after the initial 
alignment. One such local method is Burr's elastic 
matching [Burr 1981, 1983]. In elastic matching, the 
image or the prototype (or both) is modeled as elastic 
membranes that can deform under the influence of dis- 

torting forces. In Burr's work these forces were provided 
by attraction between nearest neighbors in the image 

and the model. According to Burr ([1981], p. 102), 
coarse registration is desired initially, to improve the 
chances that the nearest-neighbor relation captures the 
true correspondence between model and image. Thus, 
alignment followed by elastic adjustment could reduce 

the post-alignment discrepancies, resulting in a smaller 
number of missed character instances. 

6 D i s c u s s i o n  

61 Comparison with Previous Work 

It is hard to compare our results directly with those 
of other researchers, since all previously implemented 

systems depended on lexical knowledge. An indirect 
comparison is possible, if the lexicalized results are 
considered. The lexical module employed by the present 
system works independently of the visual recognition 
module and uses a 30,000-word dictionary. The average 
lexicalized recognition rate for legal words is 50%. This 

may be compared with 77 %, 29 % and 32 % achieved 
by the system of Srihari and Boiinovi6 [1987] for three 
different writers, without retraining and using a small, 
700-word lexicon (when a 7800-word lexicon was used, 
the performance for the first writer dropped to 48 %; 

the other two writers were not tested in that condition). 

Thus, the present system performs better than its prede- 
cessors when using lexical knowledge. In addition, it 
demonstrates a substantial capability to interpret cursive 
script by a purely visual method, without recourse to 

a lexicon. 

6 2 On the Use of Motor Knowledge in Recognition 

The system described here uses alignment by affine 

transformation to remove most of the variability of 
handwritten shapes. Our choice of anchor points for 
alignment is motivated by several empirically deter- 
mined features of handwriting: 

- -  Handwritten trajectories can be approximated by 

polynomial expressions whose coefficients are deter- 
mined by a small number of control points using 
an optimization principle. 

--  The locations of the control points for a given trajec- 
tory can be inferred visually from its shape. 

- -  The six-parameter affine transform can capture the 
variability of stroke shapes across different letters 
produced by the same writer, as welt as across 
writers. 
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Putting motor knowledge to use in recognition was 
first proposed by Halle and Stevens [1962], who called 
it analysis by synthesis (ABS). In analysis by synthesis, 
letters are recognized through their motor programs, 

which are deduced by guessing an initial program and 
iteratively updating it, using the difference between 
the synthesized shape and the actual one as feedback 

[Yoshida and Eden 1973]. Thus, ABS actively uses 
motor knowledge during recognition. In contrast, our 
approach uses motor knowledge indirectly, in the ex- 

traction and use of the anchor points. Psychological 
fmdings (reviewed in [Edelman 1988]) support our ap- 
proach by indicating that while people may use motor 

knowledge in reading, they do not seem to do so by 
mentally reproducing the process of writing. 

Finally, we mention the possibility that in humans 

a common representation of contours is involved in 
planning ann movements and in processing visual infor- 

mation in tasks such as reading cursive script and 
detecting salient curves in images• Computationally, 
both kinds of processes can be described in terms of 
optimization [Edelman and Flash 1987; Sha'ashua and 

Ullman 1988]. The co-occurrence of certain kinds of 
acquired dysgraphia and dyslexia (see [Edelman 1988] 
for a discussion) may also be interpreted as supporting 
this conjecture. 
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N o ~ s  

1Our restdt may be compared to that of Duvernoy and Charraut 

]1979], who found that the first five factors of a Karhunen-Loewe 

expansion suffice to capture the variation in the shape of the letter 

a illustrated in figure 2. 

2Stentiford [1985] reported a character recognition system that uses 

316 features. 

3The relation above is not invariant under affine transformations, 

a property that should theoretically preclude its use in this context. 

The phenomenon of perceptual upright (see [Edelrnan 1988] for a 

discussion) indicates, however, that people too use such relations in 

character recognition. 
4The use of the token coverage here partially compensates for the 

asymmetry of the distance function at the stroke level. The lost sym- 

metry can be reintroduced at this stage, because the problem of inter- 

ference due to the neighboring letters is nonexistent at the string level. 
5Obviously, "correct" here can mean only "being in an agreement 

with the majority of opinions" This notion of correctness by conven- 

tion is even more important when it is known that nonsense strings 

are allowed. For example, in figure 14 the writer may well have in- 

tended to write adeyst, in which case the system's first choice inter- 

pretation would be correct. 

6The original spell-checking function returns for a given string all 

legal words that can be obtained from it by a deletion, insertion or 
substitution of a single letter, or by transposition of two adjacent letters. 

It has been modified to disallow letter transposition, which is a com- 

mon typing error that is not relevant to the present context. 

7In the present system, no effort has been invested in distinguishing 

between highly similar letters (e.g., e and c, or g and q). Consequently, 

the top choice often differs from the correct interpretation by a sub- 

stitution of one of these letters by its look-alike, making the considera- 

tion of the top five returned interpretations more informative than 

just the best one. 

8Note that the confusion relation between characters is asymmetric. 

A string is defined as relevant for the purpose of computing the con- 

fusion between cl and ca (that is, false detection of cl in c2) if it con- 

tains c2 but not cl. The last requirement is obligatory m cursive strings 

because of position indeterminacy of character instances: a rightly 

detected cl may accidentally overlap c2, distorting the confusion 

estimate. This phenomenon does not exist if the characters are pre- 

sented one at a time (e.g., [Neisser and Weene 1960; Suen i983]). 


