
Reading, Writing and Relations

Towards Extensional Semantics for Effect Analyses

Nick Benton1, Andrew Kennedy1, Martin Hofmann2, and Lennart Beringer2

1 Microsoft Research, Cambridge
2 Ludwig-Maximilians-Universität, München

Abstract. We give an elementary semantics to an effect system, tracking
read and write effects by using relations over a standard extensional se-
mantics for the original language. The semantics establishes the soundness
of both the analysis and its use in effect-based program transformations.

1 Introduction

Many analyses and logics for imperative programs are concerned with establish-
ing whether particular mutable variables (or references or heap cells or regions)
may be read or written by a phrase. For example, the equivalence of while-
programs

C ; if B then C’ else C’’ = if B then (C;C’) else (C;C’’)

is valid when B does not read any variable which C might write. Hoare-style
programming logics often have rules with side-conditions on possibly-read and
possibly-written variable sets, and reasoning about concurrent processes is dra-
matically simplified if one can establish that none of them may write a variable
which another may read.1

Effect systems, first introduced by Gifford and Lucassen [8,11], are static anal-
yses that compute upper bounds on the possible side-effects of computations.
The literature contains many effect systems that analyse which storage cells may
be read and which storage cells may be written (as well as many other proper-
ties), but no truly satisfactory account of the semantics of this information, or of
the uses to which it may be put. Note that because effect systems overestimate
the possible side-effects of expressions, the information they capture is of the
form that particular variables will definitely not be read or will definitely not be
written. But what does that mean?

Thinking operationally, it may seem entirely obvious what is meant by saying
that a variable X will not be read (written) by a command C, viz. no execution
trace of C contains a read (resp. write) operation to X . But, as we have argued
before [3,6,4], such intensional interpretations of program properties are over-
restrictive, cannot be interpreted in a standard semantics, do not behave well
with respect to program equivalence or contextual reasoning and are hard to

1 Though here we restrict attention, in an essential manner, to sequential programs.

N. Kobayashi (Ed.): APLAS 2006, LNCS 4279, pp. 114–130, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Reading, Writing and Relations 115

maintain during transformations. Thus we seek extensional properties that are
more liberal than the intensional ones yet still validate the transformations or
reasoning principles we wish to apply.

In the case of not writing a variable, a naive extensional interpretation seems
clear: a command C does not observably write the variable X if it leaves the
value of X unchanged:

∀S, S′. C, S ⇓ S′ =⇒ S′(X) = S(X)

Note that this definition places no constraint on diverging executions or the value
of X at intermediate states. Operationally, C may read and write X many times,
so long as it always restores the original value before terminating. Furthermore,
the definition is clearly closed under behavioural equivalence. If we have no non-
termination and just two integer variables, X and Y , and the denotation of C
is [[C]] : Z × Z → Z × Z then our simple-minded definition of what it means for
C not to write X can be expressed denotationally as

∃f2 : Z × Z → Z.∀X, Y. [[C]](X, Y) = (X, f2(X, Y))

which is the same as saying [[C]] = 〈π1, f2〉.
The property of neither reading nor writing X , i.e. of being observationally

pure in X is also not hard to formalize extensionally:

∀S, S′, n. C, S ⇓ S′ ⇐⇒ C, S[X
→ n] ⇓ S′[X
→ n]

Alternatively ∃f2 : Z → Z.∀X, Y. [[C]](X, Y) = (X, f2(Y)), which is the same as
saying [[C]] = 1 × f2.

The property of not observably reading X is rather more subtle, since X may,
or may not, be written. We want to say that the final values of all the other
variables are independent of the initial value of X , but the final value of X itself
is either a function of the other variables or is the initial value of X :

∃f1 : Z → B, f2, f3 : Z → Z.∀X, Y. [[C]](X, Y) = (f1(Y) ⊃ X | f2(Y), f3(Y))

This is clearly a more complex property than the others. Another way to think
of it is that the final values of the variables other than X are functions of the
initial values of those variables and that for each value of those other variables,
the (curried) function mapping the initial value of X to its final value is ei-
ther constant or the identity. The tricky nature of the ‘does not read’ property
also shows up if one tries to define a family of monads in a synthetic, rather
than an analytic fashion (as in Tolmach’s work [20]): neither reading nor writ-
ing corresponds to the identity monad; not writing corresponds to the reader
(environment) monad; but there is no simple definition of a ‘writer’ monad.

Our basic approach to the soundness of static analyses and optimizing trans-
formations is to interpret the program properties (which may be expressed as
points in an abstract domain, or as non-standard types) as binary relations
over a standard, non-instrumented (operational or denotational) semantics of

116 N. Benton et al.

the language. We have previously [3] described how such an extensional rela-
tional interpretation of static analyses allows one both to express constancy and
dependency properties for simple imperative programs, and to reason about the
transformations they enable. But the non-parametric relations used in that work
turn out to be insufficient to admit a compositional, generic translation of per-
haps the simplest static analysis there is: the obvious inductive definition of
possibly-read and possibly-written variable sets for while-programs.

In earlier, operationally-based, work [6] we expressed the meaning of some
simple global (i.e. treating the whole store monolithically) effects using sets of
cotermination tests (pairs of contexts) written explicitly in the language, but
those definitions were very unwieldy and phrased in a way that would not gen-
eralize easily to other types. Here we will show how reading, writing and allocat-
ing properties for a higher-order language with state can be elegantly captured
using parametric logical relations over a simple denotational semantics for the
original language. This new interpretation of effects is dramatically slicker and
more compelling than previous ones.

1.1 Relations

We just recall some basic facts and notation. A (binary) relation R on a set A is
a subset of A×A. If R is a relation on A and Q a relation on B, then we define
relations on Cartesian products and function spaces by

R × Q = {((a, b), (a′, b′)) ∈ (A × B) × (A × B) | (a, a′) ∈ R, (b, b′) ∈ Q}
R → Q = {(f, f ′) ∈ (A → B) × (A → B) | ∀(a, a′) ∈ R. (f a, f ′ a′) ∈ Q}

A binary relation on a set is a partial equivalence relation (PER) if it is symmetric
and transitive. The set of PERs on a set is closed under arbitrary intersections
and disjoint unions. If R and Q are PERs, so are R → Q and R × Q. Write ΔA

for the diagonal relation {(a, a) | a ∈ A}, and a : R for (a, a) ∈ R.

1.2 The Basic Idea

Our starting point is the following simple, yet striking, observation, which seems
not to have been made before:

Lemma 1. For total commands operating on two integer variables, as above,

1. The property of not observably writing X is equivalent to

∀R ⊆ Δ. [[C]] : R × Δ → R × Δ

i.e. preserving all relations less than or equal to the identity on X.
2. The property of neither observably reading nor observably writing X is equiv-

alent to
∀R. [[C]] : R × Δ → R × Δ

i.e. preserving all relations on X.

Reading, Writing and Relations 117

3. The property of not reading X is equivalent to

∀R ⊇ Δ. [[C]] : R × Δ → R × Δ

i.e. preserving all relations greater than or equal to the identity on X.

Proof. We write f for [[C]] and just consider the last case. Assume f(X, Y) =
(f1(Y) =⇒ X | f2(Y), f3(Y)) and R ⊇ Δ. Then if (X, X ′) ∈ R and (Y, Y ′) ∈ Δ
so Y = Y ′, we have

(f(X, Y), f(X ′, Y ′)) = ((f1(Y) =⇒ X | f2(Y), f3(Y)),
(f1(Y) =⇒ X ′ | f2(Y), f3(Y)))

Clearly (f3(Y), f3(Y)) ∈ Δ. In the first component, if f1(Y) = true then we get
(X, X ′) ∈ R and if f1(Y) = false we get (f2(Y), f2(Y)) ∈ Δ ⊆ R so we’re done.

Going the other way, preservation of T × Δ deals with the independence of
the second component. In the first component we need to show that for each Y ,
π1f(−, Y) : Z → Z is uniformly either constant or the identity. Pick any two dis-
tinct elements X ,X ′ and let R = Δ∪{(X, X ′)}, which contains Δ and is therefore
preserved by the first component of f . Thus (π1f(X, Y), π1f(X ′, Y)) ∈ R means
either π1f(X, Y) = π1f(X ′, Y) or π1f(X, Y) = X and π1f(X ′, Y) = X ′. ��
(Note that preservation of relations is closed under unions, so it actually suffices
to consider singleton relations in the first two cases and singleton extensions of
the identity relation in the last case.)

In the next section we develop the result above to give a semantics for a simple
effect system for a higher-order language with global variables, in the process
explaining where the faintly mysterious bounded quantification really ‘comes
from’. The language and effect system is purposefully kept very minimal, so we
may explore the key idea without getting bogged down in too much auxiliary
detail.

2 Effects for Global Store

2.1 Base Language

We consider a monadically-typed, normalizing, call-by-value lambda calculus
with a collection of global integer references. The use of monadic types, making
an explicit distinction between values and computations, simplifies the presenta-
tion of the effect system and cleans up the equational theory of the language. A
more conventionally-typed impure calculus may be translated into the monadic
one via the usual ‘call-by-value translation’ [5], and this extends to the usual
style of presenting effect systems in which every judgement has an effect, and
function arrows are annotated with ‘latent effects’ [21].

We assume a finite set L of global variable names, ranged over by �, and define
value types A, computation types TA and contexts Γ as follows:

A, B := unit | int | bool | A × B | A → TB

Γ := x1 : A1, . . . , xn : An

118 N. Benton et al.

Γ � n : int Γ � b : bool Γ � () : unit Γ, x : A � x : A

Γ � V1 : int Γ � V2 : int

Γ � V1 + V2 : int

Γ � V1 : int Γ � V2 : int

Γ � V1 > V2 : bool

Γ � V1 : A Γ � V2 : B

Γ � (V1, V2) : A × B

Γ � V : A1 × A2

Γ � πi V : Ai

Γ, x : A � M : TB

Γ � λx : A.M : A → TB

Γ � V1 : A → TB Γ � V2 : A

Γ � V1 V2 : TB

Γ � V : A

Γ � val V : TA

Γ � M : TA Γ, x : A � N : TB

Γ � let x⇐M in N : TB

Γ � V : bool Γ � M : TA Γ � N : TA

Γ � if V then M else N : TA

Γ � read(�) : Tint

Γ � V : int

Γ � write(�, V) : Tunit

Fig. 1. Simple computation type system

Note that variables are always given value types, as this is all we shall need
to interpret a CBV language. There are two forms of typing judgement: value
judgements Γ � V : A and computation judgements Γ � M : TA, defined induc-
tively by the rules in Figure 1. Note that the presence of types on lambda-bound
variables makes typing derivations unique and that addition and comparison
should be considered just representative primitive operations.

Since our simple language has no recursion, we can give it an elementary
denotational semantics in the category of sets and functions. Writing S for L →
Z, the semantics of types is as follows:

[[unit]] = 1 [[int]] = Z [[bool]] = B [[A × B]] = [[A]] × [[B]]

[[A → TB]] = [[A]] → [[TB]] [[TA]] = S → S × [[A]]

The interpretation of the computation type constructor is the usual state
monad. The meaning of contexts is given by [[x1 : A1, . . . , xn : An]] = [[A1]] ×
· · · × [[An]], and we can then give the semantics of judgements

[[Γ � V : A]] : [[Γ]] → [[A]] and [[Γ � M : TA]] : [[Γ]] → [[TA]]

inductively, though we omit the completely standard details here. The semantics
is adequate for the obvious operational semantics and ground contextual equiv-
alence (observing, say, the final boolean value produced by a closed program).

2.2 Effect System

We now present our effect analysis as a type system that refines the simple type
system by annotating the computation type constructor with information about

Reading, Writing and Relations 119

X ≤ X

X ≤ Y Y ≤ Z

X ≤ Z

X ≤ X ′ Y ≤ Y ′

X × Y ≤ X ′ × Y ′

X ′ ≤ X TεY ≤ Tε′Y
′

(X → TεY) ≤ (X ′ → Tε′Y
′)

ε ⊆ ε′ X ≤ X ′

TεX ≤ Tε′X
′

Fig. 2. Subtyping refined types

whether a computation may read or write particular locations. Formally, define
refined value types X , computation types TεX and contexts Θ by

X, Y := unit | int | bool | X × Y | X → TεY

ε ⊆
⋃

�∈L
{r�, w�}

Θ := x1 : X1, . . . , xn : Xn

There is a subtyping relation on refined types, axiomatised in Figure 2. The
evident erasure map, U(·), takes refined types to simple types (and contexts) by
forgetting the effect annotations:

U(int) = int U(bool) = bool U(unit) = unit
U(X × Y) = U(X) × U(Y)

U(X → TεY) = U(X) → U(TεY)
U(TεX) = T (U(X))

U(x1 : X1, . . . , xn : Xn) = x1 : U(X1), . . . , xn : U(Xn)

Lemma 2. If X ≤ Y then U(X) = U(Y), and similarly for computations. ��
The refined type assignment system is shown in Figure 3. Note that the subject
terms are the same (we still only have simple types on λ-bound variables).

Lemma 3. If Θ �V :X then U(Θ)� V : U(X), and similarly for computations.
��

Note that the refined system doesn’t rule out any terms from the original lan-
guage. Define a map G(·) from simple types to refined types that adds the ‘top’
annotation

⋃
�∈L{r�, w�} to all computation types, and then

Lemma 4. If Γ � V : A then G(Γ) � V : G(A) and similarly for computations.
��

2.3 Semantics of Effects

The meanings of simple types are just sets, out of which we now carve the
meanings of refined types as subsets, together with a coarser notion of equality.

120 N. Benton et al.

Θ � n : int Θ � b : bool Θ � () : unit Θ, x : X � x : X

Θ � V1 : int Θ � V2 : int

Θ � V1 + V2 : int

Θ � V1 : int Θ � V2 : int

Θ � V1 > V2 : bool

Θ � V1 : X Θ � V2 : Y

Θ � (V1, V2) : X × Y

Θ � V : X1 × X2

Θ � πi V : Xi

Θ, x : X � M : TεY

Θ � λx : U(X).M : X → TεY

Θ � V1 : X → TεY Θ � V2 : X

Θ � V1 V2 : TεY

Θ � V : X

Θ � val V : T∅X

Θ � M : TεX Θ, x : X � N : Tε′Y

Θ � let x⇐M in N : Tε∪ε′Y

Θ � V : bool Θ � M : TεX Θ � N : TεX

Θ � if V then M else N : TεX

Θ � read(�) : T{r�}(int)

Θ � V : int

Θ � write(�, V) : T{w�}(unit)

Θ � V : X X ≤ X ′

Θ � V : X ′

Θ � M : TεX TεX ≤ Tε′X
′

Θ � M : Tε′X
′

Fig. 3. Refined type system

More formally, the semantics of each refined type is a partial equivalence relation
on the semantics of its erasure, defined as follows:

[[X]] ⊆ [[U(X)]] × [[U(X)]]

[[int]] = ΔZ [[bool]] = ΔB [[unit]] = Δ1

[[X × Y]] = [[X]] × [[Y]]

[[X → TεY]] = [[X]] → [[TεY]]

[[TεX]] =
⋂

R∈Rε
R → R × [[X]]

where Rε ⊆ P(S × S) is given by Rε =
⋂

e∈ε Re and for atomic effects e,
Re ⊆ P(S × S) is given by

Rr�
= {R | (s, s′) ∈ R =⇒ s � = s′ �}

Rw�
= {R | (s, s′) ∈ R =⇒ ∀n ∈ Z. (s[�
→ n], s′[�
→ n]) ∈ R}

Apart from the clause for computation types, this is a familiar-looking logical
relation. To understand the interpretation of effect annotations, note that the
first intersection is intersection of relations, whilst the second is an intersection
of sets of relations. Then for each ε there is a set Rε of relations on the state
that computations of type TεX have to preserve; the more possible effects occur
in ε, the fewer relations are preserved.

Reading, Writing and Relations 121

Thus, for example, if ε is the empty set then Rε is the empty intersection,
i.e. all state relations. So [[T∅X]] relates two computations m and m′ of type
[[T (U(X))]] if for all state relations R and pre-states s,s′ related by R, m s and
m′ s′ yield post-states related by R and values related by [[X]], which is just what
one would expect the definition of observational purity to be from the discussion
in Section 1.2. A little more calculation shows that, if L = {x,y} then a state
relation R is in [[T{wx,wy,ry}(unit)]], the interpretation of commands not reading
x, just when it (is either empty or) factors as Rx×Δ with Rx ⊇ Δ, which again
matches the observation in the introduction. What is going on is even clearer if
one rephrases the RHS of the implication in the definition of Rr�

as

([[read(�)]] () s, [[read(�)]] () s′) ∈ R × [[int]]

and that of Rw�
as saying

([[write(�, V)]] () s, [[write(�, V ′)]] () s′) ∈ R × [[unit]]

for all V ,V ′ such that ([[V]] (), [[V ′]] ()) ∈ [[int]]. The usual ‘logical’ relational
interpretation of a type can be understood as ‘preserving all the relations that
are preserved by all the operations on the type’ and the above shows how the
semantics of our refined types really does extend the usual notion: the refined
type is a subtype with only a subset of the original operations and thus will
preserve all relations that are preserved by that smaller set of operations.

We also extend the relational interpretation of refined types to refined contexts
in the natural way:

[[Θ]] ⊆ [[U(Θ)]] × [[U(Θ)]]
[[x1 : X1, . . . , xn : Xn]] = [[X1]] × · · · × [[Xn]]

Lemma 5. For any Θ, X and ε, all of [[Θ]], [[X]] and [[TεX]] are partial equiva-
lence relations. ��
The following sanity check says that the interpretation of a refined type with
the top effect annotation everywhere is just equality on the interpretation of its
erasure:

Lemma 6. For all A, [[G(A)]] = Δ[[A]]. ��
The following establishes semantic soundness for our subtyping relation:

Lemma 7. If X ≤ Y then [[X]] ⊆ [[Y]], and similarly for computation types. ��
And we can then show a ‘fundamental theorem’ establishing the soundness of
the effect analysis itself:

Theorem 1

1. If Θ � V : X, (ρ, ρ′) ∈ [[Θ]] then

([[U(Θ) � V : U(X)]] ρ, [[U(Θ) � V : U(X)]] ρ′) ∈ [[X]]

122 N. Benton et al.

2. If Θ � M : TεX, (ρ, ρ′) ∈ [[Θ]] then

([[U(Θ) � M : T (U(X))]] ρ, [[U(Θ) � M : T (U(X))]] ρ′) ∈ [[TεX]] ��
Because we have used standard technology (logical relations, PERs), the pattern
of what we have to prove here is obvious and the definitions are all set up so
that the proofs go through smoothly. Had we defined the semantics of effects in
some more special-purpose way (e.g. trying to work directly with the property
of being uniformly either constant or the identity), it could have been rather less
clear how to make everything extend smoothly to higher-order and how to deal
with combining effects in the let-rule.

2.4 Basic Equations

Before looking at effect-dependent equivalences, we note that the semantics vali-
dates all the usual equations of the computational metalanguage, including con-
gruence laws and β and η laws for products, function spaces, booleans and the
computation type constructor. We show some of these rules in Figure 4. Note
that the correctness of the basic congruence laws subsumes Theorem 1 and that,
rather subtly, we have made the reflexivity PER rule invertible. This is sound
because our effect annotations are purely descriptive (or extrinsic in Reynolds’s
terminology [17]) whereas the simple types are more conventionally prescriptive
(which Reynolds calls intrinsic). We actually regard the rules of Figure 3 as
abbreviations for a subset of the equational judgements of Figure 4; thus we can
allow the refined type of the conclusion of interesting equational rules (e.g. the
dead computation rule, to be presented shortly) to be different from (in particu-
lar, have a smaller effect than) the refined types in the assumptions. In practical
terms, this is important for allowing inferred effects to be improved locally as
transformations are performed, rather than having to periodically reanalyse the
whole program to obtain the best results.

3 Using Effect Information

More interesting equivalences are predicated on the effect information. The read-
set of an effect ε is denoted rds(ε) and defined as {� ∈ L | r� ∈ ε}. Likewise, the
write-set of an effect ε is denoted wrs(ε) and defined as {� ∈ L | w� ∈ ε}. The set
of locations mentioned in an effect is locs(ε) = rds(ε) ∪ wrs(ε). We make use of
these definitions in refined side-conditions for the effect-dependent equivalences,
presented in Figure 5.

The Dead Computation transformation allows the removal of a computation
producing an unused value, provided the effect of that computation is at most
reading (if the computation could write the store then its removal would generally
be unsound, as that write could be observed by the rest of the computation).

The Duplicated Computation transformation allows two evaluations of the
same computation to be replaced by one, provided that the observable reads and
observable writes of the computation are disjoint. Intuitively, the locations that

Reading, Writing and Relations 123

PER rules (+ similar for computations):

Θ � V : X
============
Θ � V = V : X

Θ � V = V ′ : X

Θ � V ′ = V : X

Θ � V = V ′ : X Θ � V ′ = V ′′ : X

Θ � V = V ′′ : X

Θ � V = V ′ : X X ≤ X ′

Θ � V = V ′ : X ′

Congruence rules (extract):

Θ � V1 = V ′
1 : int Θ � V2 = V ′

2 : int

Θ � (V1 + V2) = (V ′
1 + V ′

2) : int

Θ � V = V ′ : X1 × X2

Θ � πi V = πi V ′ : Xi

Θ, x : X � M = M ′ : TεY

Θ � (λx : U(X).M) = (λx : U(X).M ′) : X → TεY

β rules (extract):

Θ, x : X � M : TεY Θ � V : X

Θ � (λx : U(X).M) V = M [V/x] : TεY

Θ � V : X Θ, x : X � M : TεY

Θ � let x⇐val V in M = M [V/x] : TεY

η rules (extract):

Θ � V : X → TεY

Θ � V = (λx : U(X).V x) : X → TεY

Θ � M : TεX

Θ � (let x⇐M in val x) = M : TεX

Commuting conversions:

Θ � M : Tε1Y Θ, y : Y � N : Tε2X Θ, x : X � P : Tε3Z

Θ � let x⇐ (let y⇐M in N) in P = let y⇐M in let x⇐N in P : Tε1∪ε2∪ε3Z

Fig. 4. Effect-independent equivalences

may be read on the second evaluation were not written during the first one, so
will have the same values. Hence the actual values written during the second
evaluation will be the same as were written during the first evaluation. Thus
both the final state and the computed value after the second evaluation will be
the same (equivalent) to the state and value after the first evaluation.

The Commuting Computations transformation allows the order of two
value-independent computations to be swapped provided that their write sets
are disjoint and neither may read a location that the other may write.

The Pure Lambda Hoist transformation allows a computation to be hoisted
out of a lambda abstraction (so it is performed once, rather than every time the
function is applied) provided that it is observably pure (and, of course, that it
does not depend on the function argument). This is not only useful, but also
interesting as an example of a transformation we did not manage to prove sound
in our earlier [6] work.

124 N. Benton et al.

Dead Computation:

Θ � M : TεX Θ � N : Tε′Y
x �∈ Θ, wrs(ε) = ∅

Θ � let x⇐M in N = N : Tε′Y

Duplicated Computation:

Θ � M : TεX Θ, x : X, y : X � N : Tε′Y
rds(ε) ∩ wrs(ε) = ∅

Θ � let x⇐M in let y⇐M in N
= let x⇐M in N [x/y]

: Tε∪ε′Y

Commuting Computations:

Θ �M1 : Tε1X1 Θ � M2 : Tε2X2 Θ, x1 : X1, x2 : X2 � N : Tε′Y rds(ε1) ∩ wrs(ε2) = ∅
wrs(ε1) ∩ rds(ε2) = ∅
wrs(ε1) ∩ wrs(ε2) = ∅Θ � let x1⇐M1 in let x2⇐M2 in N

= let x2⇐M2 in let x1⇐M1 in N
: Tε1∪ε2∪ε′Y

Pure Lambda Hoist:

Θ � M : T{}Z Θ, x : X, y : Z � N : TεY

Θ � val (λx : U(X).let y⇐M in N)
= let y⇐M in val (λx : U(X).N)

: T{}(X → TεY)

Fig. 5. Effect-dependent equivalences

The following Lemma states that a computation with effect ε cannot change
the state of locations outside wrs(ε). We write s =L s′ if for all � ∈ L, s(�) = s′(�).
Lemma 8 (No writes). Suppose Θ � M : TεX and (ρ, ρ) ∈ [[Θ]]. If [[Θ � M :
TεX]] ρ s0 = (s1, x) then s0 =L\wrs(ε) s1.

Proof. Define a relation R = {(s, s) | s =L\wrs(ε) s0}. It is easy to see that R ∈
Rε, and clearly (s0, s0) ∈ R. Then applying Theorem 1 to M and (ρ, ρ) ∈ [[Θ]]
we can deduce that (s1, s1) ∈ R, so s1 =L\wrs(ε) s0. ��

Dually, running a computation with effect ε on states that differ only outside
rds(ε) makes an identical change to each state:

Lemma 9 (No reads). Suppose Θ � M : TεX and (ρ, ρ′) ∈ [[Θ]]. Let s0 and s′0
be two states such that s0 =rds(ε) s′0. If [[Θ � M : TεX]] ρ s0 = (s1, x) and [[Θ �
M : TεX]] ρ′ s′0 = (s′1, x′) then (x, x′) ∈ [[X]] and for all � ∈ L, either s1(�) = s′1(�)
(locations are updated, identically), or s1(�) = s0(�) and s′1(�) = s′0(�) (locations
are left unchanged).

Proof. Define a relation R = {(s, s′) | ∀� ∈ L, s � = s′ � ∨ (s � = s0 � ∧ s′ � =
s′0 �)}. It is straightforward to check that R ∈ Rε, and that (s0, s

′
0) ∈ R. Then

applying Theorem 1 to M and (ρ, ρ′) ∈ [[Θ]] we can deduce that (s1, s
′
1) ∈ R and

(x, x′) ∈ [[X]] and the result follows immediately. ��

Reading, Writing and Relations 125

If U(Θ) � V : U(X) and U(Θ) � V ′ : U(X) then write Θ |= V = V ′ : X to mean
that for all (ρ, ρ′) ∈ [[Θ]]

([[U(Θ) � V : U(X)]] ρ, [[U(Θ) � V ′ : U(X)]] ρ′) ∈ [[X]]

and similarly for computations.

Theorem 2. All of the equations shown in Figures 4 and 5 are soundly modelled
in the semantics:

– If Θ � V = V ′ : X then Θ |= V = V ′ : X.
– If Θ � M = M ′ : TεX then Θ |= M = M ′ : TεX.

Proof. We present proofs for the equivalences in Figure 5.

Dead computation. If we let Γ = U(Θ), A = U(X) and B = U(Y) and (ρ, ρ′) ∈
[[Θ]] then we have to show

([[Γ � let x⇐M in N : TB]] ρ, [[Γ � N : TB]] ρ′) ∈ [[Tε′Y]]

Pick R ∈ Rε′ and (s, s′) ∈ R, and let (s1, x) = [[Γ � M : TA]] ρ s. As [[Θ]] is a
PER we know (ρ, ρ) ∈ [[Θ]], and because wrs(ε) = ∅ we can apply Lemma 8 to
deduce that s1 = s. Hence

[[Γ � let x⇐M inN : TB]] ρ s = [[Γ � N : TB]] ρ s

and by assumption on N

([[Γ � N : TB]] ρ s, [[Γ � N : TB]] ρ′ s′) ∈ R × [[Y]]

so we’re done.

Pure lambda hoist. Define Γ = U(Θ), A = U(X), B = U(Y), C = U(Z). Pick
(ρ, ρ′) ∈ [[Θ]], R ∈ R{} and (s, s′) ∈ R (note that R is actually unconstrained in
this case). Then

[[Γ � val (λx : A.let y⇐M inN) : T (A → TB)]] ρ s
= (s, λx ∈ [[A]].[[Γ, x : A � let y⇐M inN : TB]] (ρ, x))

and
[[Γ � let y⇐M in val (λx : A.N) : T (A → TB)]] ρ′, s′

= (s′′, λx′ ∈ [[A]].[[Γ, x : A, y : C � N : TB]] (ρ′, x′, y′))

where
(s′′, y′) = [[Γ � M : TC]] ρ′ s′

Now, as M doesn’t write, Lemma 8 entails s′′ = s′ and hence (s, s′′) ∈ R.
Thus it remains to show that the two functions are in [[X → TεY]]. So assume
(x, x′) ∈ [[X]], we have now to show

([[Γ, x : A � let y⇐M inN : TB]] (ρ, x),
[[Γ, x : A, y : C � N : TB]] (ρ′, x′, y′)) ∈ [[TεY]]

126 N. Benton et al.

So pick R2 ∈ Rε, (s2, s
′
2) ∈ R2 and calculate

[[Γ, x:A � let y⇐M in N : TB]] (ρ, x) s2 = [[Γ, x:A, y:C � N : TB]] (ρ, x, y2) s3

where (as x �∈ fv(M))

(s3, y2) = [[Γ � M : TC]] ρ s2

By Lemma 8, s3 = s2, so (s3, s
′
2) ∈ R2. As M preserves all relations, it preserves

{(s2, s
′)}, so (y2, y

′) ∈ [[Z]], which implies

((ρ, x, y2), (ρ′, x′, y′)) ∈ [[Θ, x : X, y : Z]]

so we’re done by assumption that N preserves R2.

Duplicated computation. Let Γ = U(Θ), A = U(X), B = U(Y) and (ρ, ρ′) ∈
[[Θ]]. Because [[Θ]] is a PER, we also have (ρ, ρ) ∈ [[Θ]] and (ρ′, ρ′) ∈ [[Θ]]. Pick
R ∈ Rε∪ε′ and (s0, s

′
0) ∈ R. We need to show

([[Γ � let x⇐M ; y⇐M in N : TB]] ρ s0,
[[Γ � let x⇐M inN [x/y] : TB]] ρ′ s′0)

∈ R × [[Y]]

Let

(s1, x) = [[Γ � M : TA]] ρ s0

(s′1, x
′) = [[Γ � M : TA]] ρ′ s′0

(s2, y) = [[Γ � M : TA]] ρ s1.

By Lemma 8 we can deduce s1 =L\wrs(ε) s0. We can use this fact as assumption
to Lemma 9 starting in states s1 and s0, since rds(ε) ∩ wrs(ε) = ∅, to obtain
(y, x) ∈ [[X]] and for all � ∈ L, either s2(�) = s1(�), or s2(�) = s1(�) and
s1(�) = s0(�). Hence s2 = s1; in other words, M behaves idempotently.

Expanding the semantics,

[[Γ � let x⇐M ; y⇐M in N : TB]] ρ s0 = [[Γ ′ � N : TB]] (ρ, x, y) s2

[[Γ � let x⇐M in N [x/y] : TB]] ρ′ s′0 = [[Γ ′ � N : TB]] (ρ′, x′, x′) s′1

where Γ ′ = Γ, x : A, y : A.
Since R ∈ Rε∪ε′ we must have R ∈ Rε. Therefore M preserves R, so we

can deduce that (x, x′) ∈ [[X]] and (s1, s
′
1) ∈ R, so (s2, s

′
1) ∈ R. By transitivity

we have that (y, x′) ∈ [[X]]. Hence ((ρ, x, y), (ρ′, x′, x′)) ∈ [[Γ ′]]. Finally, because
R ∈ Rε′ , we know that N preserves R, from which we obtain the desired result.

Commuting computations. Let Γ = U(Θ), Ai = U(Xi) and B = U(Y). Pick
(ρ, ρ′) ∈ [[Θ]], R ∈ Rε1∪ε2∪ε′ , (s0, s

′
0) ∈ R. Let

(s1, x1) = [[Γ � M1 : TA1]] ρ s0 and (s2, x2) = [[Γ � M2 : TA2]] ρ s1

(s′1, x
′
2) = [[Γ � M2 : TA2]] ρ′ s′0 and (s′2, x

′
1) = [[Γ � M1 : TA1]] ρ′ s′1.

Reading, Writing and Relations 127

By the definition of Rε1∪ε2 for reading we know (1) that s0 =rds(ε1)∪rds(ε2) s′0.
By four applications of Lemma 8, we have

s1 =L\wrs(ε1) s0 (2) s2 =L\wrs(ε2) s1 (3)
s′1 =L\wrs(ε2) s′0 (4) s′2 =L\wrs(ε1) s′1 (5)

From (1), (4) and the first side-condition on the rule, we have s′0 =rds(ε1) s′1. We
can use this as assumption to apply Lemma 9 to M1 starting in states s0 and s′1
with corresponding environments ρ and ρ′, to get (x1, x

′
1) ∈ [[X1]] and

∀� ∈ L, s1(�) = s′2(�) ∨ (s1(�) = s0(�) ∧ s′2(�) = s′1(�)) (6)

From (1), (2) and the second side-condition on the rule, we have s′0 =rds(ε2) s1.
We can use this as assumption to apply Lemma 9 to M2 starting in states s1

and s′0 with corresponding environments ρ and ρ′, to get (x2, x
′
2) ∈ [[X2]] and

∀� ∈ L, s2(�) = s′1(�) ∨ (s2(�) = s1(�) ∧ s′1(�) = s′0(�)) (7)

We now show that for all � ∈ L either � ∈ wrs(ε1 ∪ ε2) and s2(�) = s′2(�), or
s2(�) = s0(�) and s′2(�) = s′0(�). In other words, there is some state change Δ
with dom(Δ) ⊆ wrs(ε1 ∪ ε2) such that s2 = s0[Δ] and s′2 = s′0[Δ].

First suppose � /∈ wrs(ε1 ∪ ε2). By (2) and (3) we have s2(�) = s0(�), and
by (4) and (5) we have s′2(�) = s′0(�) so we’ve shown the right hand disjunct.

Now suppose � ∈ wrs(ε1). Therefore � /∈ wrs(ε2) by the third side-condition
on the rule. By (6) either s1(�) = s′2(�) (= s2(�) by (3)), or s1(�) = s0(�) (= s2(�)
by (3)) and s′2(�) = s′1(�) (= s′0(�) by (4)) which is the disjunction above. Similar
reasoning applies if � ∈ wrs(ε2).

Since (s0, s
′
0) ∈ R we can show that (s2, s

′
2) ∈ R by induction on the size

of dom(Δ), using the definition of Rw�
for each � ∈ dom(Δ).

Now, expanding the semantics,

[[Γ�let x1⇐M1; x2⇐M2 in N : TB]] ρ s0 = [[Γ ′�N : TB]] (ρ, x1, x2) s2

[[Γ�let x2⇐M2; x1⇐M1 inN : TB]] ρ′ s′0 = [[Γ ′�N : TB]] (ρ′, x′
1, x

′
2) s′2

where Γ ′ = Γ, x1 : A1, x2 : A2. We have ((ρ, x1, x2), (ρ′, x′
1, x

′
2)) ∈ [[Γ ′]]. Finally,

because R ∈ Rε′ , we know that N preserves R starting in states s2 and s′2, from
which we obtain the desired result. ��
To make the link between relatedness and contextual equivalence, we have to say
something just a little more sophisticated than ‘related terms are contextually
equivalent’, as we also have to restrict the set of contexts. Write (Θ � TεX)� for
the set of all ground contexts C[−] whose holes − are typable as Θ � − : TεX in
the extended language. Then write (Θ |= TεX)� for the set of all contexts with
a hole typeable as UΘ � − : T(UX) in the base language such that

∀M, M ′. Θ |= M = M ′ : TεX =⇒ [[� C[M] : T(bool)]] = [[� C[M ′] : T(bool)]]

Then Theorem 2 plus adequacy implies that whenever Θ � M = M ′ : TεX , then
for all C[−] in (Θ |= TεX)� and for all s0,s1

〈s0, C[M]〉 ⇓ 〈s1, true〉 ⇐⇒ 〈s0, C[M ′]〉 ⇓ 〈s1, true〉.
and by the congruence rules, (Θ � TεX)� ⊆ (Θ |= TεX)�.

128 N. Benton et al.

The equations above also imply some effect-dependent type isomorphisms,
proved by defining contexts transforming typed terms in both directions and
showing that both compositions rewrite to the identity. For example

X × Y → TεZ ∼= X → T{}(Y → TεZ)

follows from βη rules and the pure lambda hoist equation. However, there are
valid contextual equivalences and isomorphisms that do not follow from the
semantics. For example

(1 → Twxbool) → T{}bool ∼= 1 → T{}bool

does not hold in the model because of the presence of the non-definable ‘snap-
back’ [7] function λg.λs. let (s′, b) = g() s in (s, b).

4 Discussion

We have shown how an extensional interpretation of read and write effects may
be given using a non-standard form of relational parametricity over a standard
semantics, and how that semantics may be used to justify program transfor-
mations. This contrasts with more common intensional approaches, based on
traces in an instrumented semantics, which fail to decouple program properties
from a particular syntactic system for establishing them and are not well-suited
to reasoning about equivalences. We have also verified the interesting results of
Sections 2.3 and 3 using the Coq proof assistant; the script is available via the
first author’s homepage.

The general relational approach that we are using here has been demonstrated
to work well in both denotational and operational settings. Denotational ap-
proaches to the semantics of analysis properties using directly the obvious “fac-
tors through” style of definition (e.g. saying a computation is observationally
pure if its denotation factors through that of val) can easily raise unpleasant
questions of definability if one tries to recast them in an operational framework.

In this paper we have concentrated on an extremely simple effect system, so
as to make the methodology as clear as possible. Working with domains instead
of sets, to allow recursion, is straightforward. With Buchlovsky, we have also
successfully applied just the same techniques to reason about transformations
justified by an effect analysis for exceptions. Looking at the set of all relations
preserved by a subset of the operations on a monad really does seem to be
the ‘right’ way of understanding effect systems (and seems not unrelated to the
algebraic view of effects being developed by Plotkin and Power [15]). We are
confident the idea extends to a wide class of effect analyses (and more general
notions of refinement type), and are currently working on applying it to region-
based encapsulation of state effects in the presence of dynamic allocation. This
is a challenging problem; despite much work on monadic encapsulation (and
on region-based memory management [19]) since the introduction of runST in
Haskell [10], some of it incorrect and most of it rather complex, previous work

Reading, Writing and Relations 129

mostly addresses simple syntactic type soundness, rather than equations [12],
though the region calculus has been given a relation-based semantics [2] and
studied using bisimulation [9]. Parametric logical relations have previously been
used for establishing particular equivalences involving encapsulated state [16,7]
and even provide a complete characterization of contextual equivalence for a
language with integer store [14]. However, a combination of those constructions
with our notion of refined types that is suitably generic and also expressive
enough to validate, for example, interesting cases of the duplicated computations
equation, has so far proved elusive.2

One interesting application of effect analyses is in assertion checking for im-
perative languages. Assertions are typically boolean expressions in the same
language as is being checked and make use of side-effecting operations such as
mutation in computing their results. Yet it is important that these side-effects
do not affect the behaviour of the program being specified: assertions should
be observationally pure. Naumann uses simulation relations to capture a notion
of observational purity for boolean-valued expressions that allows mutation of
encapsulated state [13].

PER-based accounts of dependency and information flow [1,18] are closely
related to the present work; as a referee observed, observable notions of reading
and writing have a natural connection with confidentiality and integrity.

Apart from the lines of future work implicit in the above, it would be inter-
esting to try to use our approach to capture some general relationship between
effect systems and their intuitive duals, capability/permission systems.

References

1. M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus of dependency.
In 26th Symposium on Principles of Programming Languages (POPL), 1999.

2. A. Banerjee, N. Heintze, and J. Riecke. Region analysis and the polymorphic
lambda calculus. In Proceedings of the 14th IEEE Symposium on Logic in Computer
Science (LICS), 1999.

3. N. Benton. Simple relational correctness proofs for static analyses and program
transformations. In Proceedings of the 31st ACM Symposium on Principles of
Programming Languages (POPL), January 2004. Revised version available from
http://research.microsoft.com/∼nick/publications.htm.

4. N. Benton. Semantics of program analyses and transformations. Lecture Notes for
the PAT Summer School, Copenhagen, June 2005.

5. N. Benton, J. Hughes, and E. Moggi. Monads and effects. In G. Barthe, P. Dybjer,
L. Pinto, and J. Saraiva, editors, Applied Semantics, Advanced Lectures, volume
2395 of Lecture Notes in Computer Science. Springer-Verlag, 2002.

6. N. Benton and A. Kennedy. Monads, effects and transformations. In 3rd Interna-
tional Workshop on Higher Order Operational Techniques in Semantics (HOOTS),
Paris, volume 26 of Electronic Notes in Theoretical Computer Science. Elsevier,
September 1999.

2 This is not quite the same problem as in region-based memory management. We want
to reason about encapsulated state being non-observable to the rest of the program,
but that does not necessarily mean it may safely be deallocated.

http://research.microsoft.com/~nick/publications.htm

130 N. Benton et al.

7. N. Benton and B. Leperchey. Relational reasoning in a nominal semantics for
storage. In Proc. 7th International Conference on Typed Lambda Calculi and Ap-
plications (TLCA), volume 3461 of Lecture Notes in Computer Science, 2005.

8. D. K. Gifford and J. M. Lucassen. Integrating functional and imperative program-
ming. In ACM Conference on LISP and Functional Programming, Cambridge,
Massachusetts, August 1986.

9. S. Helsen. Bisimilarity for the region calculus. Higher-Order and Symbolic Com-
putation, 17(4), 2004.

10. S. Peyton Jones and J. Launchbury. State in Haskell. Lisp and Symbolic Compu-
tation, 8(4), 1995.

11. J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In Conference
Record of the 15th Annual ACM Symposium on Principles of Programming Lan-
guages (POPL), 1988.

12. E. Moggi and A. Sabry. Monadic encapsulation of effects: A revised approach
(extended version). Journal of Functional Programming, 11(6), 2001.

13. D. Naumann. Observational purity and encapsulation. Theoretical Computer Sci-
ence, To appear.

14. A. M. Pitts and I. D. B. Stark. Operational reasoning for functions with local
state. In Higher Order Operational Techniques in Semantics. CUP, 1998.

15. G. D. Plotkin and J. Power. Notions of computation determine monads. In Foun-
dations of Software Science and Computation Structures, Proceedings of FOSSACS
’02, volume 2303 of Lecture Notes in Computer Science. Springer-Verlag, 2002.

16. U. S. Reddy and H. Yang. Correctness of data representations involving heap data
structures. Science of Computer Programming, 50(1–3):129–160, March 2004.

17. J. C. Reynolds. The meaning of types – from intrinsic to extrinsic semantics.
Technical Report BRICS RS-00-32, BRICS, University of Aarhus, December 2000.

18. A. Sabelfeld and D. Sands. A PER model of secure information flow in sequential
programs. Higher-Order and Symbolic Computation, 14(1):59–91, March 2001.

19. M. Tofte and J.-P. Talpin. Region-based memory management. Information and
Computation, 132(2):109–176, 1997.

20. A. Tolmach. Optimizing ML using a hierarchy of monadic types. In Proceedings
of the Workshop on Types in Compilation (TIC), volume 1473 of Lecture Notes in
Computer Science. Springer-Verlag, 1998.

21. P. Wadler and P. Thiemann. The marriage of effects and monads. ACM Trans.
Comput. Logic, 4(1):1–32, 2003.

	Introduction
	Relations
	The Basic Idea

	Effects for Global Store
	Base Language
	Effect System
	Semantics of Effects
	Basic Equations

	Using Effect Information
	Discussion

