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0. Introduction. Let SL(n, R) denote the group of all n•~n real 

matrices of determinant 1. In the previous paper [12], we classified real 

analytic SL(n, R) actions on the standard n-sphere for each n•†3. In 

this paper we study real analytic SL(n, R) actions on the standard 

m-sphere for 5•…n•…m•…2n-2 . We shall show that such an action is 

characterized by a certain real analytic R•~ action on a homotopy 

(m-n+1)-sphere. Here R•~ is the multiplicative group of all non-zero 

real numbers.

In Section 1 we construct a real analytic SL(n, R) action on the 

standard (n+k-1)-sphere from a real analytic R•~ action on a homo-

topy k-sphere satisfying a certain condition for each n+k•†6. In 

Section 3 we state a structure theorem for a real analytic SL(n, R) 

action which satisfies a certain condition on the restricted SO(n) action, 

and in Section 5 we state a decomposition theorem and a classification 

theorem. In Section 6 we construct real analytic R•~ actions on the 

standard k-sphere. It can be seen that there are infinitely many (at 

least the cardinality of the real numbers) mutually distinct real analytic 

SL(n, R) actions on the standard m-sphere.

1. Construction. Let ƒµ: R•~•~ƒ°•¨ƒ° be a real analytic R•~ action 

on a real analytic closed manifold ƒ° which is homotopy equivalent to 

the k-sphere. Define a real analytic involution T of ƒ° by T(x)=ƒµ(-1, x) 

for x•¸ƒ°. Put F=F(R•~, ƒ°), the fixed point set. We say that the 

action ƒµ satisfies the condition (P) if

(i ) there exists a compact contractible k-dimensional submanifold 

X of ƒ° such that X•¾TX=ƒ° and X•¿TX=F,

(ii) there exists a real analytic R•~ equivariant isomorphism j of 

R•~F onto an open set of such that j(0, x)=x for x•¸F. Here R•~ 

acts on R by the scalar multiplication.

Notice that F=F(T, ƒ°), the fixed point set of the involution T by 

the condition (i), and hence F is a real analytic (k-1)-dimensional 

closed submanif old of ƒ°. Define a map
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f:(Rn-0)•~F•¨(Rn-0)•~(ƒ°-F)

by f(u,x)=(u,j(1,x)) for u•¸Rn-0, x•¸F. Then the map f is a real 

analytic SL(n, R) equivariant isomorphism of (Rn-0)•~F onto an open 

set of (Rn-0)•~R•~(ƒ°-F), where SL(n, R) acts naturally on Rn, R•~ acts 

on Rn by the scalar multiplication and R•~ acts on ƒ° by the given action 

ƒµ. Here (Rn-0)•~R•~(ƒ°-F) is the quotient of (Rn-0)•~(ƒ°-F) ob-

tained by identifying (u,y) with (t-1u, ƒµ(t,y)) for u•¸Rn-0, y•¸ƒ°-F, 

t•¸R•~. Put

M(ƒµ, j)=Rn•~F•¾(Rn-0)•~(ƒ°-F),

which is the space formed from the disjoint union of Rn•~F and 

(Rn-0)•~R•~(ƒ°-F) by identifying (u,x) with f(u,x) for u•¸Rn-0, x•¸F. 

By the construction, it can be seen that the space M(ƒµ, j) is a compact 

Hausdorff space with SL(n, R) action, and M(ƒµ, j) admits a real analytic 

structure so that the SL(n, R) action is real analytic.

PROPosITION 1.1. (a) Let j1: R•~F•¨ƒ° be a real analytic R•~ equi-

variant isomorphism of R•~F onto an open set of ƒ° such that j1(0,x)=x 

for x•¸F. Then M(ƒµ, j1) is real analytically isomorphic to M(ƒµ, j) as 

SL(n, R) manifolds.

(b) Suppose n•†1 and n+k•†6. Then M(ƒµ, j) is real analyti-

cally isomorphic to the standard (n+k-1)-sphere.

PROOF. It is easy to see that there is a real analytic function 

s: F•¨R•~ such that j1(t, x)=j(s(x)t,x) for t•¸R, x•¸F. Let g be a real 

analytic automorphism of the disjoint union of Rn•~F and (Rn-0)•~R•~(?ƒ°-F) 

defined by

g(u,x)=(s(x)u, x) for u•¸Rn, x•¸F,

g(v,y)=(v,y) for v•¸Rn-0, y•¸ƒ°-F.

Then it is easy to see that g induces a real analytic SL(n, R) equivari-

ant isomorphism of M(ƒµ, j1) onto M(ƒµ, j).

To show (b), we consider the restricted SO(n) action on M(ƒµ, j). 

We can assume j([0, •‡)•~F)•¼X by the condition (P). Put X1=X-

j([0, 1)•~F). Let Dn denote the closed unit disk of Rn. Let •ÝY denote 

the boundary of a given manifold Y. Then it can be seen that there 

exists an equivariant diffeomorphism

M(ƒµ, j)=Dn•~F•¾•ÝaDn•~X1

as smooth SO(n) manifolds, where h: •ÝDn•~F •¨•ÝDn•~?•ÝX1 is a C•‡ diffeo-

morphism defined by h(u, x)=(u, j(1, x)) for u•¸aDn, x?•¸F. Hence
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M(ƒµ, j) is C•‡ diffeomorphic to •Ý(Dn•~X1). Here X1 is a compact con-

tractible k-manifold; hence a(Dn•~X1) is simply connected for n•†1. 

Therefore M(ƒµ, j) is C•‡ diffeomorphic to the standard (n+k-1)-sphere 

for n+k•†6 by the h-cobordism theorem (cf. Milnor [8, Theorem 9.1]). 

It is known by Grauert [3] and Whitney [13, Part III] that two real 

analytic paracompact manifolds are real analytically isomorphic if they 

are C•‡ diffeomorphic. Consequently, M(ƒµ,j) is real analytically iso-

morphic to the standard (n+k-1)-sphere for n+k•†6. q.e.d.

REMARK. By the condition (P), it is shown that ƒ° is real analyti-

cally isomorphic to the standard k-sphere for k•†5 by the k-cobordism 

theorem.

2. Certain subgroups of SL(n, R). As usual we regard M‚Ž(R) with 

the bracket operation [A, B]=AB-BA as the Lie algebra of GL(n, R). 

Let SI(n, R) and SD(n) denote the Lie subalgebras of Mn(R) correspond-

ing to the subgroups SL(n, R) and SO(n) respectively. Then 

SI (n, R)={X•¸Mn(R): trace X=0},

SD(n)={X•¸Mn(R): X is skew symmetric}.

Define certain linear subspaces of SI(n, R) as follows:

SI( n-r, R)={(00 0A): A is (n-r)•~(n-r) matrix of trace 0},

SD(n-r)=SD(n)•¿sl(n-r, R),

SDm(n-1)={X•¸SI(n-1, R): X is symmetric},

a={(aij)•¸SI(n, R):aij=0 for i•‚1},

a*={(aij)•¸SI(n, R): aij=0 for j•‚1},

b ={(aij)?•¸SI(n
,R):aij=0 for i•‚=j,a22=a33=•c=ann}.

Then 

SI (n, R)=SI(n-1, R) (+)a(+)a*(+)b,

SI(n-1, R)=SD(n-1)(+)SDm(n-1)

as direct sums of vector spaces. Moreover we have 

[a,a*]=SI(n-1,R)(+)b,

(2.1) [a, a]=[a*, a*]=[b, b]=[b, SI(n-1, R)]=0,

[a, b]=[a, SI(n-1, R)]=a, [a*, b]=[a*, SI(n-1, R)]=a*.

Let SL(n-r, R) and SO(n-r) denote the connected subgroups of 

SL(n, R) corresponding to the Lie subalgebras SI(n-r, R) and SD(n-r), 

respectively.
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Let Ad: SL(n, R)•¨GL(SI(n, R)) be the adjoint representation defined 

by Ad(A)X=AXA-1 for A•¸SL(n, R), X•¸SI(n, R). Then the linear sub-

spaces SI(n-1, R), a, a* and are Ad(SL(n-1, R)) invariant, and the 

linear subspaces SD(n-1) and SDm(n-1) are Ad(SO(n-1)) invariant. 

Moreover, the linear subspaces m(n-1), a, a* and b are irreducible 

Ad(SO(n-1)) spaces respectively for each n•†3. Put

for p, q•¸R. Then t(p, q) is an Ad(SO(n-1)) invariant linear subspace 

of a(+)a*, arid we have 

[t(p, q),SDm(n-1)]=(p, q), b] t(p, q),

(2.2) [t(
p, q), t(p, q)]={0 for pq=0, SD(

n-1) for pq•‚0.

LEMMA 2.3. Suppose n•†3. Let g be a proper Lie subalgebra of 

SI(n, R) which contains SD(n-1). Then g is one of the following: 

SD(n-1),SD(n-1)(+) b,SD(n-1)(+)a, SD(n-1)(+)a*, SD(n-1)t(p, q) 

for pq•‚0, SD(n-1)(+)a(+)b, SD(n-1)(+)a*(+)b, SI(n-1, R), SI(n-1, 

R)(+)b, SI(n-1, R)(+)a, SI(n-1, R)(+)a*, SI(n-1, R)(+)a(+)b, SI(n-1, 

R) (+)a* b.

PROOF. Since g contains SD(n-1), g is an Ad(SO(n-1)) invariant 

linear subspace of SI(n, R). Hence we have g=SD(n-1)(+)(g•¿SDm(n-1))(+) 

(g•¿(a(+)a*))(+)(g•¿b) as a direct sum of Ad(SO(n-1)) invariant linear 

subspaces. Since SDm(n-1) is irreducible, we have g•¿SDm(n-1)=0 

or SDm(n-1). Since g is a proper Lie subalgebra of SI(n, R), g does not 

contain a(+)a* by (2.1). Suppose n•†4. Then we derive that g•¿(a(+)a*) 

coincides with certain t(p, q). If g contains SDm(n-1), then (2.2) im-

plies that g•¿(a(+)a*)=0, a or a*. Now we can prove the lemma for 

n•†4 by a routine work from (2.1) and (2.2). The proof for n=3 is 

similar, so we omit the detail. q.e.d.

REMARK. Let G(p, q) denote the connected Lie subgroup of SL(n, R) 

corresponding to the Lie subalgebra SD(n-1)(+)t(p, q) for pq•‚0. If 

pq<0, then G(p, q) is conjugate to G(1, -1)=SO(n). If pq>0, then 

G(p, q) is conjugate to G(1,1), which is non-compact.
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LEMMA 2.4. (i) Assume that g is one of the following:

SD(n-1),SD(n-1)(+)b,SD(n-1)(+)a, SD(n-1) (+)a(+)b,

SD(n-1)(+)t(p, q) for pq•‚0, SI(n-1, R), SI(n-1, R) (+) b. 

Then SD(n)•¿Ad(X1)g=SD(n-2).

(ii) Assume that g is one of the following:

SD(n-1)(+)a*, SD(n-1)a*(+)b.

Then SD(n)•¿Ad(tX-11)g=SD(n-2).

PROOF. Since SD(n)•¿Ad(X1)g={A2•¸SD(n): X-11AX1•¸g}, we have the 

desired equations by a routine work from the following relation:

q.e.d.

Let L(n), L*(n), N(n) and N*(n) denote the connected Lie subgroups 

of SL(n, R) corresponding to the Lie subalgebras SI(n-1, R)(+)a, 

SI (n-1, R)(+)a*, SI(n-1, R) (+)a(+)b and SI(n-1, R)(+)a*)(+)b, respec-

tively. Then these are closed subgroups of SL(n, R).

PROPOSITION 2.5. Suppose n•†3. Let M be an SL(n, R) space. 

Assume that the restricted SO(n) action on M has at most two orbit 

types SO(n)/SO(n-1) and SO(n)/SO(n). Then the identity component 

o f an isotropy group of the SL(n, R) action on M is conjugate to one 

of the following: L(n), L*(n), N(n) N*(n) and SL(n, R).

PROOF. Let g be the Lie algebra corresponding to an isotropy 

group. By the assumption on the restricted SO(n) action, we see that 

Ad(x)g contains SD(n-1) for some x?•¸SL(n, R). Such a Lie subalgebra 

is determined by Lemma 2.3. Moreover, we can derive SD(n)•¿Ad(y)g•‚

SD(n-2) for any y•¸SL(n, R) by the assumption on the restricted SO(n) 

action. Hence we see that g is one of the following up to conjugation: 

SI(n-1, R)(+), SI(n-1, R)(+)a*,(n-1, R)(+)a(+)b, SI(n-1, R)(+)a*(+)b, 

SI (n, R) by Lemma 2.3 and Lemma 2.4. On the other hand, it is easy
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to see that the restricted SO(n) actions on the homogeneous spaces 

SL(n, R)/L(n), SL(n, R)/L*(n), SL(n, R)/N(n) and SL(n, R)/N*(n) have 

only one orbit type SO(n)/SO(n-1) respectively. q.e.d.

3. Structure theorem. Let ƒÓ: G•~M•¨M be a real analytic G action. 

Let g be the Lie algebra of all left invariant vector fields on G. Let 

L(M) denote the Lie algebra of all real analytic vector fields on M. 

Then we can define a Lie algebra homomorphism ƒÓ+: g•¨L(M) as follows 

(cf. Palais [10, Chapter II, Theorem II]): 

ƒÓ+(X)
q(f)=limt•¨0(f(ƒÓ(exp(-tX), q))-f(q))/t

for X•¸g, q•¸M and a real analytic function f defined on a neighborhood 

of q. It is easy to see that ƒÓ+(X)q=0 iff q is a fixed point of the one-

parameter subgroup {exp tX}. For each subgroup H of G, let F(H, M) 

denote the fixed point set of the restricted H action of ƒÓ. Then F(H, M) 

is a closed subset of M.

LEMMA 3.1. Let ƒÓ: SL(n, R)•~M•¨M be a real analytic action. Let 

p•¸F(SL(n, R), M). Suppose that there exists an analytic system of 

coordinates (U; u1,•c, um) with origin at p, such that 

(*) ƒÓ+((xij))q=-nƒ°i,j=1 xijuj(q)(•Ý/•Ýui)

for (xij)•¸SI(n, R), q•¸U. Then, (1) there exists an open neighborhood V 

of p in F(SL(n, R), M) and there exists an analytic isomorphism h of 

Rn•~V onto an open set of M such that 

(a) h(0, v)=v for v•¸V, 

(b) h(gu, v)=ƒÓ(g, h(u, v)) for g•¸SL(n, R), u•¸Rn, V•¸V. 

Moreover, (ii) if pairs (V1, h1) and (V2, h2) satisfy the conditions (a), (b), 

then 

h1(Rn•~V1)•¿h2(Rn•~V2)=h1(Rn•~(V1•¿V2)), 

and there exists a unique real analytic real valued function f on V1•¿V2 

such that h1(u,v)=h2(f(v)u,v) for u•¸Rn, v•¸V1•¿V2. 

PROOF. The assumption (*) implies F(SL(n, R), M)•¿U={q•¸U: u1(q)=

•c= un(q)=0}. Define a real analytic isomorphism k of U onto an 

open set of Rm by k(q)=(u1(q),•c, um(q)). There is a positive real 

number r such that Drn•~Drm-n•¸k(U), namely (u1,•c,um)•¸k(U) for 

(u1,•c,un)•¸Drn, (un+1,•c,um)•¸Drm-n. Here we denote Drn={(v1,•c,vn)•¸

Rn: v12+•c+vn2<r2}. Consider the following curves 

a(t)=a(t; X, u, v)=k(ƒÓ(exp tX, k-1(u, v))),

b(t)=b(t; X, u, v)=((exp tX )u, v)
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for X•¸SI(n, R), u•¸Drn;, v•¸Drm-n. The curve b(t) is defined for each t•¸R, 

the curve a(t) is defined on an interval (-t1, t2) for some positive real 

numbers t1, t2. Put X=(xij), a(t)=(a1(t),•c, am(t)) and b(t)=(b1(t),•c,

bm(t)). Then it follows from the assumption (*) that

(d/dt)ai(t)=nƒ°j=1xijaj(t) for 1•…i•…n, 

(d/dt)ai(t)=0 for n<i•…m.

On the other hand,

(d/dt)bi(t)=nƒ°j=1xijbj(t) for 1•…i•…n,

(d/dt)bi(t)=0 for n<i•…m

by the definition of b(t). Since a(0)=b(0), we can derive that

(**) a(t;X,u,v)=b(t;X,u,v)

on the interval (-t1, t2). Put u0=(r/2, 0, •c, 0)•¸Drn. Then it follows 

from the equation (**) that the identity component of an isotropy group 

at k-1(u0,v) coincides with L(n) for each v•¸Drm-n. Hence we can define 

a map h': Rn•~Drm-n•¨M by 

h'(u,v)={k-1(0, v) for u=0,

ƒÓ(g,k-1(u0,v)) for u=gu0, g•¸SL(n, R).

First we shall show that kh'=identity on Drn•~Drm-n. Let u•¸Drn

and u•‚0. Then u can be expressed as follows: u=(expX1•EexpX2)u0 

for X1•¸SD(n), and X2 is a diagonal matrix with diagonal components 

c, -c, 0, •c, 0 for c•¸R. The equation (**) implies that k(ƒÓ(exp tX2, 

k-1(u0, v))=((exp tX2)u0, v) for |t|•…1 and k(ƒÓ(exp tX1, k-1((exp X2)u0, v)))=

((exp tX1)(exp X2)u0, v) for t•¸R. Then we have kh'=identity on Drn•~

Drm-n. Since k: U•¨k(U) is a real analytic isomorphism, it follows that 

the restriction of h' to Drn•~Drm-n is a real analytic isomorphism of 

Drn•~Drm-n onto an open set of M. On the other hand, the restriction of 

h' to (Rn-0)•~Drm-n is real analytic by definition. Moreover, the map 

h' is SL(n, R) equivariant by definition. Hence the map h' is a real 

analytic local isomorphism at each point of Rn•~Drm-n.

Now we shall show that h' is an injection. Assume that h'(g1u0, v1) _ 

h'(g2u0, v2) for some gi•¸SL(n•¸R), vi•¸Drm-n. Since h' is equivariant, we 

have k-1(u0, v1)=ƒÓ(g1-1g2, k-1(u0, v2)). Put g=g1-1g2. Let Li be the iden-

tity component of the isotropy group at k-1(u0, vi). Then L1=gL2g-1 

and Li=L(n) by the assumption (*). Hence g•¸NL(n), the normalizer 

of L(n) in SL(n, R). The equation (**) implies that k(ƒÓ((xij), k-1(u0, v)))=
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(x11u0, v) for v•¸Drm-n(xij)•¸NL(n), 0<|x11|<2. We can choose g or g-1 

as (xij) such that 0<|x11|<2. It follows that v1=v2 and g=g1-1g2•¸

L(n). Hence g1u0=g2u0. Therefore h' is an injection. The map v•¨

h'(0, v) is a real analytic isomorphism of Drm-n onto an open neighborhood 

V of p in F(SL(n, R), M).

Define a map h: Rn•~V•¨M by h(u,v)=h'(u,k(v)) for u•¸Rn, v•¸V. 

Then it is easy to see that h is a real analytic isomorphism of Rn•~V 

onto an open set of M satisfying the conditions (a), (b).

Next, let hi: Rn•~Vi•¨M be a real analytic into isomorphism satis-

fying the conditions (a), (b) for i=1, 2. Put e=(1, 0,•c, 0)•¸Rn. As-

sume that ƒÓ(g1, h1(e, v1))=ƒÓ(g2, h2(e, v2)) for some gi•¸SL(n, R), vi•¸V2. 

Then h1(e, v1)=ƒÓ(g1-1g2, h2(e, v2)), and hence g1-1g2•¸NL(n), because the iso-

tropy group at hi(e, vi) coincides with L(n). Put xt the diagonal matrix 

with diagonal components t, t-1, 1,•c, 1. Then xt•¸NL(n). Since 

hi(te, vi)=ƒÓ(xt, hi(e, vi)) and NL(n)/L(n) is abelian, it follows that 

h1(te, v1)=ƒÓ(g1-1g2, h2(te, v2)) for t•‚0. Let t•¨0. Then v1=ƒÓ(g1-1g2, v2)=

v2. It follows that h1(Rn•~V1)•¿h2(Rn•~V2) is contained in hi(Rn•~V) for 

V=V1•¿V2. Since hi(Rn•~V) is a smallest open SL(n, R) invariant 

neighborhood of V=hi(0•~V), we can derive that h1(Rn•~V)=h2(Rn•~V), 

and hence h1(Rn•~V1)•¿h2(Rn•~V2)=h1(Rn•~V).

From the above argument, there exists a unique real analytic func-

tion f: V•¨R such that h1(e, v)=h2(f(v)e, v) for v•¸V. Then h1(u, v)=

h2(f(v)u,v) for u•¸Rn, v•¸V, because h1 and h2 are SL(n, R) equivariant. 

q.e.d.

REMARK 3.2. Let M be a real analytic paracompact manifold. Then 

M admits a real analytic Riemannian metric, because M is real analyti-

cally isomorphic to a real analytic closed submanif old of RN (cf. Grauert 

[3, Theorem 3]). Suppose that M admits a real analytic action of a 

compact Lie group H. Then M admits a real analytic H invariant Rie-

mannian metric, by averaging a given real analytic Riemannian metric. 

In particular, each connected component of F(H, M) is a real analytic 

closed submanif old of M.

LEMMA 3.3. Suppose n•†3. Let ƒÓ: SL(n, R)•~M•¨M be a real 

analytic SL(n, R) action on a connected paracompact m-manifold. Sup-

pose that the restricted SO(n) action of ƒÓ has dust two orbit types 

SO(n)/SO(n-1) and SO(n)/SO(n). Then

(a) each connected component of F(SO(n), M) is (m-n)-dinen-

sional,

(b) F(SO(n-1), M) is connected and (m-n+1)-dimensional,

(c) F(SO(n-1), M) coincides with either F(L(n), M) or F(L*(n), M).
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Moreover, if F(SO(n-1), M)=F(L(n), M), then there is an equivariant 

decomposition:

M-F=SL(n,R)•~F(L(n), M-F),

where F=F(SL(n, R), M)=F(SO(n), M).

PROOF. It follows from the assumption that the isotropy represen-

tation at a point of F(SO(n), M) is equivalent to ƒÏn(+) trivial. Here ƒÏn 

is the canonical representation of SO(n). Hence (a) follows. Put X=

F(SO(n-1), M)-F(SO(n), M). There is an equivariant decomposition:

M-F=SO(n)/SO(n-1)•~X,

where W=NSO(n-1)/SO(n-1)=Z2. In particular, dim X=m-n+1. 

Let ƒÎ: M•¨M*=SO(n)/M be the canonical projection to the orbit space 

M*. Then M*=ƒÎ(F(SO(n-1), M)) by the assumption. Put g0 the 

diagonal matrix with diagonal components -1, -1, 1, •c, 1. Define a 

map T: F(SO(n-1), M)•¨F(SO(n-1), M) by T(x)=ƒÓ(g0, x). Then T 

is an involution on F(SO(n-1), M) and the fixed point set agrees with 

F(SO(n), M). Then orbit space T/F(SO(n-1), M) is naturally homeo-

morphic to a connected space M*. Let Y be a connected component of 

F(SO(n-1), M) such that Y•¿F(SO(n), M) is non-empty. Then TY=Y 

and the orbit space T/Y is a connected component of T/F(SO(n-1), M). 

Hence Y=F(SO(n-1), M) is connected. Hence (b) follows. By the 

assumption, Lemma 2.3 and Proposition 2.5, we have the following: 

F(SO(n-1), M)=F(L(n), M)•¾F(L*(n), M),

F(SO(n), M)=F(L(n), M)•¿F(L*(n), M)=F(SL(n, R), M).

It follows from the above argument that X has at most two connected 

components. If X is connected, then it is easy to see that F(SO(n-1), M) 

coincides with either F(L(n), M) or F(L*(n), M). Suppose that X has 

two connected components X1 and X2. Then TX1=X2. Since g0L(n)g0-1=

L(n) and g0L*(n)g0-1=L*(n), we see that if X1 is contained in F(L(n), M) 

(resp. F(L*(n), M)), then X2 is also contained in F(L(n), M) (resp. 

F(L*(n), M)). Hence (c) follows.

Suppose now that F(SO(n-1), M)=F(L(n), M). Consider the fol-

lowing commutative diagram:
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Here X=F(SO(n-1), M)-F(SO(n), M)=F(L(n), M)-F(SL(n, R), M); ƒÎ

,ƒÎ' are the natural projections; ƒÓ1, ƒÓ2 are the restrictions of the map ƒÓ

; ƒÓ1', ƒÓ2' are the induced maps. Then ƒÓ1' is an SO(n) equivariant real 

analytic isomorphism. Since SL(n, R)=SO(n)•EN(n), it is easy to see 

that the map j is a surjection. Here the group N(n) is defined in 

Section 2. It follows that ƒÓ2' is an SL(n, R) equivariant real analytic 

isomorphism. q.e.d.

We require the following result due to Guillemin and Sternberg [4]: 

LEMMA 3.4. Let g be a real semi-simple Lie algebra and letƒÏ: g•¨

L(M) be a Lie algebra homomorphism of g into a Lie algebra of real 

analytic vector fields on a real analytic m-manifold M. Let p be a 

point at which the vector fields in the image ƒÏ(g) have common zero. 

Then there exists an analytic system of coordinates (U; u1, •c, um), with 

origin at p, in which all of the vector fields in ƒÏ(g) are linear. Name-

ly, there exists aij•¸g*=HomR(g, R) such that 

ƒÏ(X)q=-ƒ°i,jai(X)uj(q)(•Ý/•Ýui) for X•¸g , q•¸U.

REMARK 3.5. The correspondence X•¨(aij(X)) defines a Lie algebra 

homomorphism of g into gl(m, R). Let P=(pij)•¸GL(m, R). Define an 

analytic system of coordinates (U; v1, •c, vm) by vi(q)=ƒ°mj=1 pijuj(q), q•¸

U. Then ƒÏ(X)q=-ƒ°i,jbij(X)vj(q)(•Ý/•Ývi) for X•¸g, q•¸U. Here (bij(X))=

P(aij(X))P-1.

LEMMA 3.6. Suppose n•†3. Let ƒÓ: SL(n, R)•~M•¨M be a real an-

alytic action on m-manifold. Suppose that the restricted SO(n) action 

of ƒÓ has just two orbit types SO(n)/SO(n-1) and SO(n)/SO(n). Sup-

pose F(SO(n-1), M)=F(L(n), M). Then for each p•¸F(SL(n, R), M) 

there exists an analytic system of coordinates (U; u1, •c, um), with 

origin at p, such that

ƒÓ+((x
ij))q=-nƒ°i,j=1xijuj(q)(•Ý/•Ýui) for (xij)•¸SI(n, R), q•¸U.

PROOF. By Lemma 3.4, there exists an analytic system of coordi-

nates (U; v1, •c, vm) with origin at p and there exists aij•¸SI(n, R)* such 

that ƒÓ+(X)q=-ƒ°i,j=1m aij(X)vj(q)(•Ý/•Ývi) for X•¸SI(n, R), q•¸U. Then 

F(SO(n), M)•¿U={q•¸U:ƒÓ+(X)q=0 for X•¸SD(n)}={q•¸U: ƒ°j=1m aij(X)vi(q)= _ 

0 for X•¸SD(n), 1•…i•…m}. Since dim F(SO(n), M)=m-n by Lemma 

3.3 (a), we can assume F(SO(n), M)•¿U={q•¸U: v1(q)=•c=vn(q)=0} 

by Remark 3.5. Then aij(X)=0 for n+1•…j•…m,1•…i•…m for each 

X•¸SI(n, R), because F(SO(n), M)=F(SL(n, R), M) by Lemma 3.3. There-
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fore the representation X•¨(aij(X)) of SI(n, R) has (m-n)-dimensional 

trivial subspace. It is well known that any real representation of 

SI(n, R) is completely reducible (cf. Humphreys [6, Section 6]). Hence 

the representation X•¨(aij(X)) is a direct sum of an n-dimensional re-

presentation and (m-n)-dimensional trivial representation. It is known 

that an n-dimensional real representation of SI(n, R) is equivalent to the 

canonical representation X•¨X or the contragredient representation 

X•¨-tX. By Remark 3.5, there exists an analytic system of coordi-

nates (U; u1, •c, um), with origin at p, such that 

(a) +((xij))q=xijuj(q)(•Ý/•Ýui)

or

(b) +((xij))q=nƒ°i,j=1xjiuj(q)(•Ý/•Ýui)

for (xij)•¸SI(n, R), q•¸U. The case (b) contradicts the assumption 

F(SO(n-1), M)=F(L(n), M). q.e.d.

THEOREM 3.7. Suppose n•†3. Let ƒÓ: SL(n, R)•~M•¨M be a real 

analytic action on a connected paracompact m-manifold. Suppose that 

the restricted SO(n) action of ƒÓ has dust two orbit types SO(n)/SO(n-1) 

and SO(n)/SO(n). Suppose F(SO(n-1), M)=F(L(n), M). Put F=

F(SL(n, R), M). Then (i) there exists a real analytic left principal R•~

bundle p: E•¨F, and there exists a real analytic isomorphism h of 

Rn•~R•~E onto an open set of M such that

(a) h(0,u)=p(u) for u•¸E,

(b) h(gx, u)=ƒÓ(g, h(x, u)) for g•¸SL(n, R), x•¸Rn, u•¸E.

Moreover, (ii) if there exists a real analytic left principal R•~ bundle 

p': E'•¨F and if there exists a real analytic isomorphism h' of Rn•~R•~E' 

onto an open set of M such that

(a') h'(0, u')=p'(u') for u'•¸E',

(b') h'(gx, u')=ƒÓ(g, h'(x, u')) for g•¸SL(n, R), x•¸Rn, u'•¸E',

then there exists a real analytic R•~ bundle isomorphism f: E•¨E' such 

that h(x,u)=h'(x,f(u)) for x•¸Rn, u•¸E.

PROOF. From Lemma 3.1 and Lemma 3.6, there exists an open 

covering {Vƒ¿, ƒ¿•¸A} of F and there exists a real analytic SL(n, R) equi-

variant isomorphism hƒ¿ of Rn•~Vƒ¿ onto an open set of M for each ƒ¿•¸A, 

such that hƒ¿(0,v)=v for v•¸Va. Put U=•¾ƒ¿•¸A hƒ¿(Rn•~Vƒ¿). Then U is 

an SL(n, R) invariant open neighborhood of F in M. Put E=F(L(n),
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U-F), and define kƒ¿: R•~•~Vƒ¿•¨E by kƒ¿(t, v)=hƒ¿(te, v) for t•¸R•~, v•¸Vƒ¿. 

Here e=(1, 0, •c, 0)•¸Rn. The group NL(n)/L(n)=R•~ acts naturally 

on E, and the map kƒ¿ is R•~ equivariant. It follows from Lemma 3.1 

that E=•¾ƒ¿•¸A kƒ¿(R•~•~Vƒ¿) and kƒ¿(R•~•~Vƒ¿)•¿kƒÀ(R•~•~VƒÀ)=kƒ¿(R•~•~(Vƒ¿•¿VƒÀ)) 

for ƒ¿,ƒÀ•¸A, and there exists a unique real analytic function gƒ¿ƒÀ: Vƒ¿•¿

VƒÀ•¨R•~ such that kƒÀ(t,v)=kƒ¿(gƒ¿ƒÀ(v)t, v) for t•¸R•~, v•¸Vƒ¿•¿VƒÀ.

Define p: E•¨F by pkƒ¿(t,v)=v for t•¸R•~, v•¸Vƒ¿. This is a desired 

real analytic left principal R•~ bundle. We can define a map h: Rn•~R•~E•¨M 

by h(x, kƒ¿(t, v))=hƒ¿(tx, v) for x•¸Rn, t•¸R•~, v•¸Vƒ¿. The map h is a real 

analytic SL(n, R) equivariant isomorphism onto U. This is a desired map. 

Suppose finally that there exists a real analytic left principal R•~ bundle 

p': E'•¨F and there exists a real analytic isomorphism h' of Rn•~R•~E' 

onto an open set of M, satisfying the conditions (a'), (b'). It is easy 

to see from Lemma 3.1 (ii) that image h=U=image h'. It follows 

that there exists a unique SL(n, R) equivariant real analytic isomorphism 

f:Rn•~E•¨Rn•~E'

such that h(x, u)=h'(f(x, u)) for x•¸Rn, u•¸E. Considering the fixed 

point sets of the restricted L(n) action, we have a real analytic R•~ 

equivariant isomorphism f: E•¨E' such that f(te, u)=(te, f(u)) for t•¸

R, u•¸E. Then f: E•¨E' is a bundle isomorphism of principal R•~ bun-

dles, because p(u)=h(0, u)=h'(f(0, u))=h'(0, f(u))=p'(f(u)) for u•¸E. 

 q.e.d.

4. Smooth SO(n) actions on homotopy spheres. First we state the 

following two lemmas of which proofs are given in Section 7.

LEMMA 4.1. Suppose n•†5. Let G be a closed connected proper 

subgroup of O(n) such that dim O(n)/G•…2n-2. Then it is one of the 

following listed in Table 1 up to an inner automorphism of O(n).

Here 

ƒÏ k: SO(k)•¨O(k), ƒÊk: U(k)•¨O(2k), ƒÊk: SU(k)•¨O(2k)

are the canonical inclusions, ƒÆk is the trivial representation of degree 

k, and ƒ¢7, ƒÖ, ƒÀ are irreducible representations, respectively.

LEMMA 4.2. Suppose 5•…n•…k•…2n-2. Then an orthogonal non-

trivial representation of SO(n) of degree k is equivalent to ƒÏn(+)ƒÆk-n by 

an inner automorphism o f O(k).

Now we shall prove the following result.

LEMMA 4.3. Suppose 5•…n•…k•…2n-2. Let ƒ°k be a homotopy 

k-sphere with a non-trivial smooth SO(n) action. Then the principal
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TABLE 1

isotropy type is (SO(n-1)) and the fixed point set F(SO(n), ƒ°k) is non-

empty.

Let us start with some observations. In the following, let M be a 

closed connected k-dimensional manifold with a non-trivial smooth SO(n) 

action, let (H) be the principal isotropy type, and suppose 5•…n•…k•…

2n-2. Denote by H0 the identity component of H.

OBSERVATION 4.4. If F(SO(n), M) is non-empty, then (H)=

(SO(n-1)).

This is a direct consequence of Lemma 4.2, by considering the iso-

tropy representation at a fixed point.

OBSERVATION 4.5. Suppose that M is 2-connected and the SO(n) ac-

tion is transitive. Then M=SO(n)/SO(n-2) or M=SO(5)/ƒÀSO(3).

This is a direct consequence of Lemma 4.1.

OBSERVATION 4.6. Suppose that the principal isotropy type (H) is 

one of the following listed in Table 2. Then M is not 3-connected.

PROOF. Since F(SO(n), M) is empty by Observation 4.4 and H0 is 

a proper maximal connected subgroup of SO(n) by Lemma 4.1, there is 

an equivariant decomposition: M=SO(n)/H0•~WF(H0, M), where W=

N(H0)/H0 is a finite group. If M is simply connected, then M=SO(n)/
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H0•~F and it is not 3-connected, where F is a connected component of 

F(H0, M).

TABLE 2

OBSERVATION 4.7. Suppose that (H) is one of the following:

H0=SO(n-2)•~SO(2); U(4), n=8; U(3), n=6; U(2), n=5.

Then M is not stably parallelizable.

PROOF. If M is stably parallelizable, then the principal orbit 

SO(n)/H is stably parallelizable; hence SO(n)/H0 is also stable paralle-

lizable.

OBSERVATION 4.8. Suppose that dim M=2n-2, ƒÎ1(M)={1}, ƒÔ(M)•‚0, 

and H0 is conjugate to SO(n-2). Then ƒÔ(M)•†4. Here ƒÔ(M) is the 

Euler characteristic of M.

PROOF. The principal orbit SO(n)/H is of codimension one. Since 

ƒÎ1(M)={1}, there are just two singular orbits (cf. Uchida [11, Lemma 

1.2.1]). By Observation 4.4, F(SO(n), M) is empty. Hence the follow-

ing are the only possibilities of the singular orbit types:

SO(n)/SO(n-1)=Sn-1, SO(n)/S(O(n-1)•~O(1))=Pn-1(R),

SO(n)/SO(n-2)•~SO(2)=Qn-2, SO(n)/S(O(n-2)•~O(2))=Qn-2/Z2.

By the general position theorem and the assumption ƒÎ1(M)={1}, it is 

easy to see that the pair of singular orbits is none of the following: 

(Sn-1, Pn-1(R)), (Sn-1, Qn-2/Z2), (Pn-1(R), Pn-1(R)), (Pn-1(R), Qn-2/Z2). Since 

ƒÔ(M)=ƒÔ (singular orbits), we have the desired result.

OBSERVATION 4.9. Suppose that dimM=2n-2 and (H) is one of 

the following:

H0=Spin(7), n=9; SU(4), n=8; SU(2), n=5.

Then ƒÎ1(M)•‚{1} or ƒÔ(M)•†4.

This is similarly proved as Observation 4.8.
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OBSERVATION 4.10. Suppose that n=6 and H0 is conjugate to SU(3). 

Then M is not 2-connected.

PROOF. By Observation 4.4, F(SO(6), M) is empty. Hence the 

identity component of an isotropy group is conjugate to SU(3) or U(3) 

for each point of M. It follows that there is an equivariant decomposi-

tion: M=SO(6)/SU(3)•~WF(SU(3),M), where W=NSU(3)/SU(3)=U(1). 

Then it is seen that M is not 2-connected by the following homotopy 

exact sequence:

ƒÎ2(M)•¨ƒÎ1(W)ƒÎ1(SO(6)/SU(3))•~ƒÎ1(F(SU(3), M))•¨ƒÎ1(M).

PROOF OF LEMMA 4.3. It is sufficient to prove that the set F(SO(n), 

ƒ°k) is non -empty by Observation 4.4. It is well known that every 

homotopy sphere is stably parallelizable (cf. Kervaire and Milnor [7, 

Theorem 3.1]). Let (H) be the principal isotropy type of a non-trivial 

smooth SO(n) action on a homotopy k-sphere ƒ°k. Then it follows that 

H0 is conjugate to SO(n-1) by Lemma 4.1 and the above Observations. 

Suppose that F(SO(n), ƒ°k) is empty. Then there is an equivariant de-

composition: ƒ°k=SO(n)/SO(n-1)•~WF(SO(n-1), ƒ°k), where W=

NSO(n-1)/SO(n-1)=Z2. But this is impossible for k•†n. q.e.d.

THEOREM 4.11. Suppose 5•…n•…k•…2n-2. Let ?ƒ°k be a homotopy 

k-sphere with a non-trivial smooth SO(n) action. Then there is an 

equivariant decomposition: ƒ°k=•Ý(Dn•~Y) as a smooth SO(n) manifold. 

Here Y is a compact contractible (k-n+1)-manifold with trivial 

SO(n) action, and Dn is the standard n-disk with the canonical SO(n) 

action.

PROOF. Put F=F(SO(n), ƒ°k). By Lemma 4.3, F is non-empty. It 

follows from Lemma 4.2 that each connected component of F is of 

(k-n)-dimension. Let U be a closed SO(n) invariant tubular neigh-

borhood of F in ƒ°k. Then U is regarded as an n-disk bundle over F 

with a smooth SO(n) action as bundle isomorphisms. It follows that 

there is an equivariant decomposition: U=Dn•~WF(SO(n-1), •ÝU), 

where W=NSO(n-1)/SO(n-1)=Z2. Put E=ƒ°k-intU. Then there 

is an equivariant decomposition: E=SO(n)/SO(n-1)•~WF(SO(n-1), E). 

Notice that F(SO(n-1), •ÝU)=•ÝF(SO(n-1), E). It is easy to see that 

ƒÎ 1(E)={1} by the general position theorem. Hence F(SO(n-1), E) has 

just two connected components. Let Y be a connected component of 

F(SO(n-1), E). Then Y is a compact simply connected (k-n+1)-

manifold with non-empty boundary, and there is an equivariant decom-

position: ƒ°k=U•¾E=•Ý(Dn•~Y).
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It remains to prove that Y is contractible. By the Poincare Lefs-

chetz duality, Hi(Dn•~Y, ƒ°k; Z)=Hk+1-i(Dn•~Y; Z)={0} for each i<n. 

Consider the homology exact sequence: Hi+1(Dn•~Y, ƒ°k; Z)•¨Hi(ƒ°k; Z)•¨

Hi(Dn•~Y; Z)•¨Hi(Dn•~Y, ƒ°k; Z). Then Hi(Y; Z)={0} for 0<i•…n-2. 

On the other hand, Y is a compact simply connected manifold with non-

empty boundary, and dim Y•…n-1 by the assumption k•…2n-2. It 

follows that Y is contractible. q.e.d.

REMARK. Theorem 4.11 for n•†9 has been proved already by Hsiang 

[5, Theorem III].

5. Decomposition and classification. Suppose 5•…n•…m•…2n-2. 

Let ƒÓ be a non-trivial real analytic SL(n, R) action on Sm. Consider the 

restricted SO(n) action of ƒÓ. By Theorem 4.11, there exists an equi-

variant decomposition: Sm=•Ý(Dn•~Y) as a smooth SO(n) manifold. In 

particular, the SO(n) action has just two orbit types SO(n)/SO(n-1) 

and SO(n)/SO(n). Then, by Lemma 3.3, F(SO(n-1), Sm) coincides with 

either F(L(n), Sm) or F(L*(n), Sm). We shall show first the following 

decomposition theorem.

THEOREM 5.1. Suppose 5•…n•…m•…2n-2. Let ƒÓ be a non-trivial 

real analytic SL(n, R) action on Sm. Suppose

F(SO(n-1), Sm)=F(L(n), Sm).

Then, (i) ƒ°=F(L(n), Sm) is a real analytic (m-n+1)-dimensional 

closed submanifold of Sm which is homotopy equivalent to a sphere, and 

R•~=NL(n)/L(n) acts naturally on ƒ°, (ii) F=F(SL(n, R), Sm) is a real 

analytic (m-n)-dimensional closed submanifold of ƒ°, and there exists 

a real analytic R•~ equivariant isomorphism of R•~F onto an open 

set of ƒ° such that j(0, x)=x for x•¸F, (iii) there exists an equivariant 

decomposition: 

Sm=Rn•~F•¾(Rn-0)•~(ƒ°-F)

as a real analytic SL(n, R) manifold, where SL(n, R) acts naturally on 

Rn, R•~ acts on Rn-0 by the scalar multiplication, and f is an equi-

variant isomorphism of (Rn-0)•~F onto an open set of (Rn-0)•~R•~(ƒ°-F) 

defined by f(u, x)=(u, j(1, x)) for u•¸Rn-0, x•¸F.

PROOF. Consider the restricted SO(n) action of ƒÓ. By Theorem 4.11, 

there exists an equivariant decomposition: Sm=•Ý(Dn•~Y) as a smooth 

SO(n) manifold. Here Y is a compact contractible smooth (m-n+1)-

manif old. Then ƒ°=F(SO(n-1), Sm) is a real analytic (m-n+1)-

dimensional closed submanifold of Sm which is C•‡ diffeomorphic to a
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double of Y; hence ƒ° is a homotopy sphere. By Lemma 3.3, F=

F(SO(n), Sm) is a real analytic (m-n)-dimensional closed submanif old 

of Sm which is C•‡ diffeomorphic to •ÝY; hence F is homology equivalent 

to a sphere. Moreover, there exists an equivariant decomposition: 

Sm-F=SL(n, R)/L(n)•~(ƒ°-F)=(Rn-0)•~(ƒ°-F) 

as a real analytic SL(n, R) manifold. By Theorem 3.7, there exists a 

real analytic left principal R•~ bundle p: E•¨F and there exists a real 

analytic SL(n, R) equivariant isomorphism h of Rn•~R•~E onto an open 

set of Sm such that h(0, u)=p(u) for u•¸E. It is easy to see that the 

bundle p: E•¨F is trivial as a C•‡ bundle by the decomposition Sm=

•Ý(Dn•~Y).

To show that E is trivial as a real analytic R•~ bundle,, we need the 

following.

LEMMA 5.2. Let p: V•¨X be a real analytic vector bundle over a 

paracom pact real analytic manifold X. Then the bundle V admits 

a real analytic Riemannian metric.

PROOF. Let i: X•¨V be the zero section. Then it follows from a 

calculation of transition functions that there is an isomorphism i*ƒÑ(V)=

V(+)ƒÑ(X) as real analytic vector bundles. Here ƒÑ() denotes the tangent 

bundle. Since V is a paracompact real analytic manifold, there exists 

a real analytic embedding f: V•¨RN such that f(V) is a closed real 

analytic submanif old of RN (cf. Grauert [3]). It follows that there is 

an isomorphism ƒÑ(V)(+)ƒË=RN•~V as real analytic vector bundles. Here 

ƒË denotes the normal bundle. Therefore there is an isomorphism V(+) 

ƒÑ(X)(+)i*ƒË=RN•~X as real analytic vector bundles. The product bundle 

RN•~X admits canonically a real analytic Riemannian metric; hence its 

real analytic subbundle V admits a real analytic Riemannian metric.

q.e.d.

We now return to the proof of Theorem 5.1. Let R•~R•~E•¨F be 

the line bundle associated to the principal bundle p: E•¨F. Then it 

has a real analytic Riemannian metric; hence the associated sphere bundle 

is a real analytic double covering over F. Since p: E•¨F is trivial as 

a C•‡ bundle, the sphere bundle is trivial as a real analytic bundle, and 

hence the principal bundle p: E•¨F has a real analytic cross-section. 

Therefore E is trivial as a real analytic R•~ bundle. It follows that 

there exists a real analytic SL(n, R) equivariant isomorphism h: Rn•~

F•¨Sm onto an open set of Sm such that h(0, x)=x for x•¸F.

Consider the fixed point sets of restricted L(n) actions. We have
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a real analytic R•~ equivariant isomorphism j: R•~F•¨ƒ° onto an open 

set of ƒ°=F(L(n), Sm), defined by j(t, x)=h(te, x) for t•¸R, x•¸F. Here 

e=(1, 0, •c, 0)•¸Rn, and R•~ acts canonically on ƒ° through the identi-

fication R•~=NL(n)/L(n). It is easy to see that there exists an equi-

variant decomposition:

Sm=Rn•~FU(Rn-0)•~(ƒ°-F)

as a real analytic SL(n, R) manifold. Here f is an equivariant iso-

morphism of (Rn-0)•~F onto an open set of (Rn-0)•~R•~(ƒ°-F) de-

fined by f(u, x)=(u, j(1, x)) for u•¸Rn-0, x•¸F. This completes the 

proof of Theorem 5.1.

REMARK. By this theorem, the action ƒÓ on Sm is completely deter-

mined up to an equivariant isomorphism by ?ƒ°=F(L(n), Sm) with R•~ 

action and an equivariant map j: R•~F•¨ƒ°.

To state a classification theorem, we introduce the following notions. 

Let G be a Lie group, and let ƒÓi: G•~Mi•¨Mi be a real analytic G ac-

tion for i=1, 2. We say that ƒÓ1 is weakly Cr equivariant to ƒÓ2 if there 

exists an automorphism h of G and there exists a Cr diffeomorphism 

f: M1•¨M2 such that the following diagram is commutative: 

(5-a)

In particular, ƒÓ1 is said to be Cr equivariant to ƒÓ2 if the identity map 

of G can be chosen as the automorphism h.

Let h be an automorphism of G, and let ƒÓ: G•~M•¨M be a real 

analytic G action. Define a new real analytic G action h#ƒÓ on M as fol-

lows: (h#ƒÓ)(g,x)=ƒÓ(h(g),x) for g•¸G, x•¸M. Then the action h#ƒÓ is 

weakly CƒÖ equivariant to ƒÓ, because the following diagram is commuta-

tive:

(5-b)

Let Ig denote the inner automorphism of G defined by Ig(g')=gg'g-1 for 

g, g'•¸G. Then, for any real analytic G action ƒÓ on M, ƒÓ is CƒÖ equi-

variant to Ig#ƒÓ, because the following diagram is commutative:
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(5-c)

where f(x)=ƒÓ5(g,x) for x•¸M.

THEOREM 5.3. Suppose 5•…n•…m•…2n-2. Then there is a nat-

ural one-to-one correspondence between the weak Cr equivariance class-

es of non-trivial real analytic SL(n, R) actions on the standard 

m-sphere and the Cr equivariance classes of real analytic R•~ actions 

on homotopy (m-n+1)-spheres satisfying the condition (P), for each 

r=0, 1, •c, •‡, ƒÖ. The correspondence is given by the construction in 

Section 1.

PROOF. Let Ar(n, m) denote the weak Cr equivariance classes of 

non-trivial real analytic SL(n, R) actions on the standard m-sphere, let 

Ar'(n, m) denote the Cr equivariance classes of non-trivial real analytic 

SL(n, R) actions on the standard m-sphere such that F(SO(n-1), Sm)=

F(L(n), Sm), and let Br(k) denote the Cr equivariance classes of real 

analytic R•~ actions on homotopy k-spheres satisfying the condition (P) 

in Section 1.

Let ƒµ: R•~•~ƒ°•¨ƒ° be a real analytic R•~ action on a homotopy 

k-sphere ƒ° satisfying the condition (P). We constructed, in Section 1, 

a compact real analytic SL(n, R) manifold M(ƒµ, j) such that the CƒÖ 

equivariance class of M(ƒµ, j) does not depend on the choice of j, 

F(SO(n-1), M(ƒµ, j))=F(L(n), M(ƒµ, j)), and M(ƒµ, j) is real analytically 

isomorphic to the standard (n+k-1)-sphere for n+k•†6. The cor-

respondence ƒµ•¨M(ƒµ, j) defines a mapping cr: Br(k)•¨Ar'(n, n+k-1) 

for r=0, 1, •c, •‡, ƒÖ and each n+k•†6. It follows from Theorem 5.1 

that cr is a bijection (r=0, 1, •c, •‡, ƒÖ) if n•†5 and 1•…k•…n-1.

It remains to show that there is a natural one-to-one correspondence 

between Ar'(n, m) and Ar(n, m). Let ƒÓ be a real analytic non-trivial 

SL(n, R) action on Sm such that F(SO(n-1), Sm)=F(L(n), Sm). Then 

ƒÓ represents a class of Ar'(n, m) and a class of Ar(n, m). Hence there 

is a natural mapping ir: Ar'(n, m)•¨Ar(n, m).

We shall show that it is a bijection (r=0, 1, •c, ƒÖ) if 5•…n•…

‚••… 2n-2. Let ƒÐ be the automorphism of SL(n, R) defined by ƒÐ(X)=

tX-1 for X•¸SL(n
, R). Then it is seen that ƒÐ is an involution and 

ƒÐ(L(n))=L*(n). Let ƒÓ be a real analytic non-trivial SL(n, R) action on 

Sm. Then, by Lemma 3.3 (c) we have that F(SO(n-1), Sm) coincides 

with F(L(n), Sm) or F(L*(n), Sm)• Since ƒÐ(L(n))=L*(n), we see that if
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F(SO(n-1), Sm)=F(L* (n), Sm) for ƒÓ, then F(SO(n-1), Sm)=F(L(n), Sm) 

for the induced action ƒÐ#ƒÓ. By the diagram (5-b), ƒÐ#ƒÓ is weakly CƒÖ 

equivariant to ƒÓ; hence the natural mapping it is surjective.

To show that ir is injective, we consider the automorphism group 

of SL(n, R). Let Aut SL(n, R), Inn SL(n, R) denote the automorphism 

group and the inner automorphism group of SL(n, R), respectively. De-

fine an automorphism ƒÁ of SL(n, R) by ƒÁ(X)=YXY-1 for X•¸SL(n, R), 

where Y is the diagonal matrix with diagonal elements -1, 1, •c,1. 

Then it is known that ƒÐ and ƒÁ generate the quotient group Out SL(n, R)=

Aut SL(n, R)/Inn SL(n, R). In fact

Out SL(n, R)={Z2 for n: odd•†3Z

2(+)Z2 for n: even•†4,

and ƒÁ is an inner automorphism for n odd (cf. Murakami [9]).

Let ƒÓ,ƒÓ' be real analytic non-trivial SL(n, R) actions on Sm. Suppose 

that ƒÓ' is weakly Cr equivariant to ƒÓ. Then by the diagrams (5-a), (5-b), 

(5-c) ƒÓ' is Cr equivariant to one of the following: ƒÓ, ƒÐ#ƒÓ, ƒÁ#ƒÓ, ƒÐ#ƒÁ#ƒÓ.Notice 

that if F(SO(n-1), Sm)=F(L(n), Sm) for ƒÓ, then F(SO(n-1), Sm)=

F(L(n), Sm) for ƒÁ#ƒÓ, and F(SO(n-1), Sm)=F(L*(n), Sm) for ƒÐ#ƒÓ, ƒÐ#ƒÁ#ƒÓ. 

Therefore, if ƒÓ and ƒÓ' represent classes of Ar'(n, m), respectively, and if 

ƒÓ' is weakly Cr equivariant to ƒÓ
, then ƒÓ' is Cr equivariant to ƒÓ or ƒÁ#ƒÓ. 

To show that ir is injective, it suffices to prove ƒÁ#ƒÓ is CƒÖ equivariant 

to ƒÓ. Consider the real analytic SL(n, R) manifold

M(ƒµ,j)=Rn•~F•¾(Rn-0)•~(ƒ°-F)

constructed in Section 1. Define a real analytic isomorphism g: M(ƒµ, j)•¨

M(ƒµ, j) by

g(u, x)=(Y•Eu, x) for (u, x)•¸Rn•~F,

g(v, y)=(Y•Ev, y) for (v, y)•¸(Rn-0)•~(X-F).

Here the matrix Y is as before. Then the following diagram is com-

mutative:

where ƒÓ is the natural SL(n, R) action on M(ƒµ, j). By the diagram 

(5-b), we have the following commutative diagram:
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Since ƒÁ2=1, it follows that ƒÁ#ƒÓ is CƒÖ equivariant to ƒÓ; hence the map-

ping ir is bijective. q.e.d.

6. R•~ actions on spheres. In the previous section, we showed that 

the classification of real analytic SL(n, R) actions on the m-sphere can 

be reduced to that of real analytic R•~ actions on homotopy (m-n+1)-

spheres satisfying the condition (P). So we study now R•~ actions on 

spheres.

Let Sk be the standard k-sphere in Rk+1, k2•†1. Let T be an involu-

tion of Sk defined by T(x0, x1, •c, xk)=(-x0, x1, •c, xk). Put 

ƒÌa =x0(1-x02)a(x02)(•Ý/•Ýx0)-x02a(x02)kƒ°i=1xi(•Ý/•Ýxi),

where a(t) is a real analytic function defined on an open neighborhood 

of the closed interval [0, 1]. It is easy to see that ƒÌa is a real analytic 

tangent vector field on Sk such that T*ƒÌa=ƒÌa. Let {ƒÆt; t•¸R} be the 

one-parameter group of real analytic transformations of Sk associated 

with the vector field ƒÌa. It follows from T*ƒÌa=ƒÌa that T•EƒÆt=ƒÆt•ET for 

t•¸R. Now we can define a real analytic R•~ action ƒµa Sk by 

ƒµa((-1)net, x)=Tn(ƒÆt(x)) for x•¸Sk, t•¸R , n•¸Z.

It is easy to see that the R•~ actiona ƒµa satisfies the condition (P)-(i). 

We shall give a sufficient condition for ƒµa to satisfy the condition (P)-

(ii).

PROPOSITION 6.1. .If a(0)=1, then the R•~ action ƒµa satisfies the 

condition (P).

PROOF. It is sufficient to construct a real analytic into isomorphism 

j: R•~F•¨Sk satisfying the following conditions:

(1) j(0,x)=x,

(2) T(j(t, x))=(-t, x),

(3) j(est, x)=ƒµa(es, j(t, x))

for x•¸F; t, s•¸R. Here F is the fixed point set of T. It is easy to see 

that the condition (3) is equivalent to the following condition:

(3') j*(t(•Ý/•Ýt))=ƒÌa.
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By the assumption a(0)=1, there is a real analytic function b(t) such 

that a(t)=1+t.b(t). Put F(t, u)=-tu3+tu3b(t2u2)-t3u5b(t2u2). Then 

there is a unique real analytic function c(t) defined on an interval 

(-ƒÃ, ƒÃ) for a positive real such that (d/dt)c(t)=F(t, c(t)), c(0)=1, 

-1<t•E(t)<1 .

Define a real analytic mapping j1: (-ƒÃ; ƒÃ)•~F•¨Sk by j1(t, x)=(t•Ec(t), 

(1-t2c(t)2)1/2,x), Then it is easy to see that j1*(t(•Ý/•Ýt))=ƒÌa at j1(t, x). 

Since F(-t, u)=-F(t, u), we have c(t)=c(-t). Therefore the map j1 

satisfies the following conditions: (1) j1(0, x)=(0, x), (2) T(j1(t, x))=

j1(-t, x), (3') j1*(t(•Ý/•Ýt))=ƒÌa at j1(t, x), for x•¸F, -ƒÃ<t<ƒÃ. By the de-

finition of the action ƒµa, the curve s•¨ƒµa(es, j1(t, x)) is an integral 

curve of the vector field ƒÌa. By the condition (3'), the curve s•¨j1(est, x) 

is also an integral curve of ƒÌa. It follows that 

(*) ƒµa(es, j1(t, x))=j1(est, x)

for x•¸F,-ƒÃ<t<ƒÃ,-ƒÃ<est<ƒÃ. Define a mapping j: R•~F•¨Sk by 

Then j is an extension of j1 by (*); hence j is real analytic. By de-

finition, the map j satisfies the conditions (1), (2) and (3).

Finally, we shall show that j is an into isomorphism. Let O(k) be 

the orthogonal transformation group of the Euclidean space Rk+1 leaving 

fixed the x0-coordinate. Then the vector field ƒÌa and the map j1 are 

O(k) invariant by definition. Hence we have 

(**) A(j(t, x))=j(t, Ax) for A•¸O(k), (t, x)•¸R•~F.

Since c(0)=1, the map j is non-singular at each point of 0•~F. It re-

mains to show that j is injective. Assume j(t1, x1)=j(t2, x2) for some 

(ti, xi)•¸R•~F. Then j(st1, x1)=j (st2, x2) for any s•‚0 by the definition 

of j. Let s•¨0. Then j(0, x1)=j(0, x2). Hence we have x1=x2 and 

j(t1, x1)=j(t2, x1). It follows from (**) that j(t1, x)=j(t2, x) for any 

x•¸F. Assume t1•‚t2. Then j induces a real analytic isomorphism of 

S1•~F onto an open set of Sk. This is a contradiction. Therefore the 

map j is injective. q.e.d.

By Proposition 6.1, we can construct many examples of real analytic 

R•~ actions on the standard k-sphere satisfying the condition (P). Let 

a=(a1, a2, •c, aN)•¸RN for N=1, 2, •c

and define a real analytic tangent vector fields ƒÌa on Sk as follows:
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ƒÌa=Nƒ®i=1(1-a1x02))•E(x0(1-x02)(•Ý/•Ýx0)-x02kƒ°i=1x
1(•Ý/•Ýxi)).

Leta ƒµa the real analytic R•~ action on Sk determined by the vector 

field ƒÌa and the involution T. Then the action ƒµa satisfies the condition 

(P).

PROPOSITION 6.2. Let a=(a1,•c,aN) and a'=(a1',•c,aN'k).

(i) If ƒµa is C0 equivariant to ƒµa', then the cardinality of the set 

{aj:aj>1} is equal to that of the set {aj':aj'>1}.

(ii) If ƒµa is C2 equivariant to ƒµa', then ƒ®Nj=1(1-aj)=ƒ®Nj=1(1-aj').

PROOF. The points x0=•}1 are isolated zeros of the vector field ƒÌa, 

and the other zeros of ƒÌa are the hypersurf aces

x0=0 and x0=•}1/j1/2 for a>1.

If there is an equivariant homeomorphism of Sk with the R•~ action ƒµa 

to Sk with the R•~ action ƒµa', then the zeros of the vector field ƒÌa is 

homeomorphic to the zeros of the vector field ƒÌa'. Hence the cardinality 

of the set {aj: aj>1} is equal to that of the set {aj': aj'>1}.

Suppose next that there is an equivariant C2 diffeomorphism f of 

Sk with the R•~ action ƒµa to Sk with the R•~ action ƒµa'. We shall show 

that there is an equivariant C2 diffeomorphism g of S1 with the R•~ ac-

tion ƒµa to S1 with the R•~ action ƒµa'. Put 

A(x)={(t,(1-t2)1/2x)•¸Sk:-1<t<1},

C(x)={(sinƒÆ, cosƒÆ•Ex)•¸Sk: ƒÆ•¸R},

for x•¸F. Then C(x) is the closure of the union A(x)•¾A(-x). Since 

the map f is equivariant, we have f(A(x))=A(f(x)) for x•¸F. Then 

we have f(-x)=-f(x) for x•¸F, by the differentiability of f at x0=1. 

Hence f(C(x))=C(f(x)) for x•¸F. Since the R•~ action ƒµa is compatible 

with the O(k) action (see the proof of Proposition 6.1), we can assume 

f(y)=y for some y•¸F. Then the restriction f: C(y)•¨C(y) can be re-

garded as an equivariant C2 diffeomorphism g of S' with the R•~ action 

ƒµa to S1 with the R•~ action ƒµa'.

Finally we shall show that the existence of g implies ƒ®Nj=1(1-aj)=

ƒ®Nj=1(1-aj'). Since g is equivariant, we have g*(ƒÌa)=ƒÌa'. LetƒÎ: S1•¨R 

be a map defined by ƒÎ(x0, x1)=x1. Then ƒÎ is a local diffeomorphism at 

x0=•}1, and

ƒÎ*(ƒÌa)=-x1(1-x12)Nƒ®j=1(1-aj(1-x12))(d/dx1).

There is a local C2 diffeomorphism h of R such that h(0)=0, ƒÎ•Eg=
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h.ƒÎ.Then it follows from h* (ƒÎ*(ƒÌa))=ƒÎ*(ƒÌa') that -x1(1-x12)ƒ®Nj=1(1-

aj(1-x12))(dh/dx1)(x1)=-y1(1-y12)ƒ®Nj=1(1-a'j(1-y12)) for y1=h(x1). Dif-

ferentiate by x1, and put x1=0. Then we have the desired equation, 

because dh/dx1(0)•‚0. q.e.d.

7. Closed subgroups of O(n). In this section, we shall prove Lem-

mas 4.1 and 4.2. The method used here is essentially due to Dynkin[2].

PROOF OF LEMMA 4.1. Let G be a connected closed subgroup of 

O(n). Suppose that

(*) n•†5, 0<dimO(n)/G•…2n-2.

The inclusion map i: G•¨O(n) gives an orthogonal faithful representa-

tion of G.

(A) Suppose first that the representation i is irreducible.

(A-1) Suppose that G is not semi-simple. Let T be a one-dimen-

sional closed central subgroup of G. Since i is irreducible, the central-

izer of T in O(n) agrees with U(n/2) by an inner automorphism of O(n) 

(cf. Uchida [12, Lemma 5.1]). Put n=2k. Then it can be assumed 

that G is a subgroup of U(k) and the inclusion G•¨U(k) is irreducible. 

It follows that the center of G is one-dimensional by Schur's lemma. 

Moreover the condition (*) implies k(k-1)=dimO(2k)/ U(k)•…4k-2. 

Hence k=3, 4. It is easy to see that SU(3) has no semi-simple proper 

subgroup of codimension•…4, and SU(4) has no semi-simple proper sub-

group of codimension•…2. Therefore the case (A-1) occurs only when 

n=6, 8; G agrees with U(n/2) up to an inner automorphism of O(n).

(A-2) Suppose that G is semi-simple and the complexification iC of 

the representation i is reducible. Then n=2k, G is isomorphic to a 

subgroup G' of U(k), and the inclusion G'2•¨U(k) is irreducible. Hence 

k=3, 4 and G'=SU(k). Calculating the centralizes of the center of G 

in O(n), we can show that G agrees with SU(n/2) up to an inner auto-

morphism of O(n).

(A-3) Suppose that G is semi-simple, non-simple, and iC is irreduc-

ible. Let G* be the universal covering group of G, and let p: G*•¨G 

be the projection. Since G is not simple, there are closed semi-simple 

normal subgroups H1, H2 of G* such that G*=H1•~H2. Consider the 

representation iCp: G*-U(n). Then there are irreducible complex re-

presentations rt: Ht•¨U(n) for t=1, 2 such that the tensor product 

r1(•~) r2 is equivalent to iCp. Since iCp has a real form, the representa-

tions r1, r2 are self-conjugate; hence r1 (resp. r2) has a real form or a 

quaternionic structure, but not both (cf. Adams [1, Proposition 3.56]).
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Moreover, if r1 has a real form (resp. quaternionic structure), then r2 

has also a real form (resp. quaternionic structure).

Suppose first that r1, r2 have quaternionic structures. Then it fol-

lows that n1, n2 are even, and dim Ht•…dim Sp(nt/2)=nt(nt+1)/2 for 

t=1, 2. The condition (*) implies dim O(n)-dim Sp(n1/2)-dim Sp(n2/2)•…

2n-2, n=n1n2. Therefore n2-3n+4•…(n1+n2)(n1+n2+1)•…(2+n/2)•~

(3+n/2). Hence n•…7. But n is a multiple of 4 and n•†5. There-

for r1, r2 cannot have quaternionic structures simultaneously.

Suppose next that r1, r2 have real forms. Then, since Ht is semi-

simple, it follows that nt•†3 for t=1, 2. Moreover, dimHt•…dimO(n1)=

nt(nt-1)/2 for t=1, 2. The condition (*) implies dim O(n)-dimO(n1)-

dim O(n2)•…2n-2, n=n1n2. Therefore n2-3n+4•…(n1+n2)(n1+n2-

1)•…(3+n/3)(2+n/3). Hence n•…5. But n=n1n2•†9. Therefore 

r1, r2 cannot have real forms simultaneously. Therefore the case (A-3) 

does not happen.

(A-4) Suppose finally that G is simple and iC is irreducible. Put 

r=rank G, and denote by G* the universal covering group of G. De-

note by L1, L2,•c, Lr the fundamental weights of G*. Then there is a 

one-to-one correspondence between complex irreducible representations of 

G* and sequences (a1,•c, ar) of non-negative integers such that a1L1+

+arLr is the highest weight of a corresponding representation (cf. 

Dynkin [2, Theorems 0.8 and 0.9]; Humphreys [6, Section 21.2]). Denote 

by d(a1L1+•c+arLr) the degree of the complex irreducible represen-

tation of G* with the highest weight a1L1+•c+arLr. The degree can 

be computed by Weyl's dimension formula (cf. Dynkin [2, Theorem 0.24, 

(0.148)-(0.155)]; Humphreys [6, Section 24.3]). Notice that if ai•†a'i for 

i=1, 2,•c r, then d(a1L1+•c+arLr)•†d(a'1L1+•c+ a'rLr) and the 

equality holds only if ai=a'i for i=1, 2,•c,r.

(A-4-1) Suppose that G is an exceptional Lie group. Then we have 

Table 3. Here m(G) is the least degree of non-trivial complex irreduci-

TABLE 3

ble representations of G* (cf. Dynkin [2, p. 378, Table 30]). The condi-

tion (*) implies that dim G•†dimO(n)-(2n-2)=(n-1)(n-4)/2. Hence 

(m-1)(m-4)•…2k. The possibility remains only when G*=G2 and
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n•… 8. Since d(L1)=7, d(L2)=14, d(2L1)=27 for G*=G2, there is no 

complex irreducible representation of G2 of degree 8. The complex ir-

reducible representation of G2 of degree 7 has a real form. Therefore the 

case (A-4-1) occures only when n=7 and G=G2, where the inclusion 

G2•¨O(7) is uniquely determined up to an inner automorphism of O(7).

(A-4-2) Suppose that G* is isomorphic to S U(r+1) for r•†1. 

Since rank G•…rankSO(n), it follows that 

(a) 2r•…n.

The condition (*) implies that 

(b) (n-1)(n-4)/2•…r(r+2)•…n(n-1)/2, n•†5.

It is easy to see from (a), (b) that n•…13. If the pair (n, r) satisfies 

the conditions (a), (b), then it is one of the following: (12, 6), (11, 5), 

(10, 5), (9, 4), (8, 4), (8, 3), (7, 3), (6, 2), (5, 2), (5, 1). Notice that d(L1)=

+1C, d(L1+Lr)=r(r+2), d(2L1)=d(2Lr)=(r+1)(r+2)/2. Hence there 

is no complex irreducible representation of SU(r+1) of degrees 2r and 

2r+1 for r•†4. If r=3, then d(L1)=d(L3)=4, d(L2)=6, d(2L1)=

d(2L3)=10, d(2L2)=d(L1+L2)=d(L2+L3)=20, d(L1+L3)=15. Hence 

there is no complex irreducible representation of SU(4) of degrees 7 and 

8. If r=2, then d(L1)=d(L2)=3, d(2L1)=d(2L2)=6, d(L1+L2)=8. 

Hence there is no complex irreducible representation of SU(3) of degree 

5. There are just two complex irreducible representations of SU(3) of 

degree 6 which are not self-conjugate. Therefore there is no possibility 

for r•†2. Finally there is only one complex irreducible representation 

of SU(2) of degree 5 which has a real form. Therefore the case (A-4-2) 

occurs only when n=5 and G=SO(3), where the inclusion SO(3)•¨O(5) 

is an irreducible representation uniquely determined up to an inner 

automorphism of O(5).

(A-4-3) Suppose that G* is isomorphic to Sp(r) for r•†2. The con-

dition (*) implies that (n-1)(n-4)/2•…r(2r+1)<n(n-1)/2. Hence 

n=2r+2 or n=2r+3. Notice that d(L)=2r+1Gi-2r+1Ci-1, d(2L1)=

r(2r+1). If r•†3, then d(L1)<d(L2)<•c<d(Ls)•†d(Ls+1)>•c>

d(Lr) for some s. It is easy to see that there is no complex irreducible 

representation of Sp(r) of degrees 2r+2 and 2r+3 for r•†3. If 

r=2, then d(L1)=4, d(L2)=5, d(2L1)=10, d(2L2)=14, d(L1+L2)=16. 

Hence there is no complex irreducible representation of Sp(r) of de-

grees 2r+2 and 2r+3 for r•†2. Therefore the case (A-4-3) does not 

happen.

(A-4-4) Suppose that G* is isomorphic to Spin(k) for k•†5. The 

condition (*) implies that (n-1)(n-4) k(k-1)<n(n-1). Hence
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n=k+1 or n=k+2. If k=2r, then d(Li)=2rCi for 1•…i•…r-2, 

d(Lr-1)=d(Lr)=2r-1, d(2L1)=(r+1)(2r-1), d(2Lr-1)=d(2Lr)=2r-1Cr, 

d(L1+Lr-1)=d(L1+Lr)=2r-1(2r-1), d(Lr-1+Lr) =2rCr-1. Hence there 

is no complex irreducible representation of Spin(2r) of degrees 2r+1 

and 2r+2. If k=2r+1, then d(Li)=2r+1Ci for 1•…i•…r-1, d(Lr)=

2r, d(2L1)=r(2r+3), d(L1+Lr)=2r+1r, d(2Lr)=22r. Hence there is no 

complex irreducible representation of Spin(2r+1) of degrees 2r+2 and 

2r+3 for r•‚3, there is no complex irreducible representation of 

Spin(7) of degree 9, but there is only one complex irreducible represen-

tation of Spin(7) of degree 8 which has a real form. Therefore the 

case (A-4-4) occurs only when n=8 and G=Spin(7), the inclusion 

Spin(7)•¨O(8) is a real spin representation uniquely determined up to 

an inner automorphism of O(8).

Consequently, the case (A) occurs only when G is one of the fol-

lowing listed in Table 4 up to an inner automorphism of O(n). Here 

TABLE 4

ƒÊk: U(k)•¨O(2k), ƒÊ0k: SU(k)•¨O(2k) are the canonical inclusions, and ƒ¢7, ƒÖ

, ƒÀ are irreducible representations uniquely determined up to an inner 

automorphism of O(n), respectively.

(B) Suppose next that the representation i: G•¨O(n) is reducible. 

Then, by an inner automorphism of O(n), G is isomorphic to a subgroup 

G' of O(k)•~O(n-k) for some k such that 0<k•…n/2. The condition 

(*) implies that

(c) k(n-k)=dimO(n)/O(k)•~O(n-k)•…2n-2.

Hence k=1, 2 or k=3 and n=6, 7. If k=3 and n=6, 7, then it is 

easy to see that G'=SO(3)•~SO(3), G'=SO(3)•~SO(4), respectively. Sup-

pose k=2. Then the inequality (c) implies 2+dimG'•†dimO(2)•~O(n-2). 

Since SO(n-2) is semi-simple for n•†5, SO(n-2) has no closed sub-

group of codimension one. Therefore G'=SO(n-2), SO(2)•~SO(n-2) 

or G'=SO(2)•~G", where G" is a closed subgroup of O(n-2) of codi-

mension 2. If the inclusion G"•¨O(n-2) is irreducible, then n=5, 6
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by the case (A). Hence n=6 and G"=U(2). If the inclusion G"•¨

O(n-2) is reducible, then n=5 and G" is a maximal torus of SO(3). 

Suppose k=1. Then G' is a closed subgroup of O(n-1), and the in-

equality (c) implies dimO(n-1)/G'•…n-1. It can be assumed that 

the inclusion G'•¨O(n-1) is irreducible. By the case (A), G' is one of 

the following listed in Table 5. Consequently, the case (B) occurs only 

when G is one of the following listed in Table 6 up to an inner auto-

morphism of O(n). Here ƒÏk: SO(k)•¨O(k) is the canonical inclusion, and 

ƒÆk is the trivial representation of degree k
. This completes the proof 

of Lemma 4.1.

TABLE 5

TABLE 6

PROOF OF LEMMA 4.2. It is sufficient to prove that there is no 

irreducible real representation of SO(n) of degree m for 5•…n•…m 

2n-2, and a non-trivial orthogonal representation of SO(n) of degree 

n is equivalent to the canonical representation ƒÏn up to an inner auto-

morphism of O(n). The second half is well known and a proof is given 

in our previous paper [12, Section 5]. To prove the first half, suppose 

that there is an irreducible real representation ƒÐ of SO(n) of degree m 

for 5•…n•…m•…2n-2. Then it is easy to see that the complexifica-

tion ƒÐC of ƒÐ is irreducible. Let p: Spin(n)•¨SO(n) be the covering pro-
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jection. Then the composition ƒÐcp is an irreducible complex representa-

tion of Spin(n), which has a real form. Suppose n=2r. Then d(Li)=

2rCi for 1•…i•…r-2, d(Lr_1)=d(Lr)=2r-1, d(2L1)=(r+1)(2r-1), 

d(2L-1)=d(2Lr)=2r-1Cr, d(L1+Lr-1)=d(L1+Lr)=2r-1(2r-1), d(Lr-1+

Lr)=2rCr-1. Therefore the following are the only possibilities for the 

irreducible complex representation of Spin(2r) of degree m (2r<m•…

4r-2):

ƒ¢+2r,ƒ¢-2r: Spin(2r)•¨U(2r-1) for r=5, ƒÑ

,ƒÑ*: Spin(6)=SU(4)•¨U(10).

Here the representation space of ƒÑ is the second symmetric product of 

the canonical representation space C4 of SU(4), and ƒÑ* is the dual re-

presentation. Hence ƒÑ,ƒÑ* have no real form. It is known that the 

half spin representations ƒ¢+2r, ƒ¢-2r are not induced from a representation 

of SO(2r). Suppose n=2r+1. Then d(L2)=2r+1Ci for 1•…i•…r-1, 

d(Lr)=2r, d(2L1)=r(2r+3), d(L1+Lr)=2r-r, d(2Lr)=22r. Therefore 

the following is the only possibility for the irreducible complex repre-

sentation of Spin(2r+1) of degree m(2r+1<m•…4r): 

ƒ¢2r+1: Spin(2r+1)•¨U(2r) for r=3, 4. 

It is known that the spin representation ƒ¢2r+1 is not induced from a re-

presentation of SO(2r+1). Consequently, we have the desired result. 

q.e.d.

8. Concluding remark. If 5•…n•…m•…2n-2, then there exists 

only one linear SO(n) action ƒÏn(+)ƒÆm-n-1 on the standard m-sphere (see 

Theorem 4.11). This action is the restriction of a linear SL(n, R) 

action. We shall show a counterexample for n=4.

Recall that there is a surjective homomorphism ƒÎ: SO(4)•¨SO(3). 

Through this homomorphism, SO(4) acts on R3 and the action is transi-

tive on the unit sphere S2 with the isotropy group U(2). Also SO(4) 

acts naturally on R4 and the action is transitive on the unit sphere S3 

with the isotropy group SO(3). Thus we have the diagonal action of 

SO(4) on the unit sphere S6 of R3(+)R4. This action is a linear SO(4) 

action on S6, the principal orbit type is SO(4)/SO(2) and there are just 

two singular orbit types SO(4)/SO(3) and SO(4)/U(2).

PROPOSITION 8.1. The above SO(4) action on S6 is not extendable to 

any continuous SL(4, R) action on S6.

PROOF. Suppose that there exists a continuous SL(4, R) action on 

S6 which is an extension of the SO(4) action. Let x•¸S6 be a point such



174 F. UCHIDA

that SO(4)x=U(2). Then

(1) U(2)•¼SL(4, R)x•‚SL(4, R),

(2) dimSL(4, R)/SL(4, R)x•…6.

Here we shall show first the following result.

LEMMA 8.2. Let u(2) be the Lie algebra of U(2). Let g be a proper 

Lie subalgebra of SI(4, R) which contains u(2). Then dim g=4, 6, 7 or 

10.

PROOF. Recall

U(2)={•¸M4(R): AtA+BtB=I2, AtB=BtA}

Put

u(2)=•¸M4(R): X+tX=0, Y=Y},

b(2)=•¸M4(R):X=tX, Y+tY=0, trace X=0]},

a=•¸M4(R):X=tX, Y=tY},

b={•¸M4(R). X+tX=Y+tY=0}.

Then SI(4, R)=u(2)(+)b(2)(+)a(+)b as a direct sum of Ad(U(2)) invariant 

linear subspaces. Here b(2), a and b are irreducible, respectively, and 

dim b(2)=3, dim a=6, dim b=2. Moreover, we have b(2), a]=b, 

[b(2), b]=a, [a, b]=b(2), [a,a]•¼(2), [b, b]•¼u(2), [b(2),b(2)]•¼(2). There-

fore g is one of the following: u(2), u(2)(+)a, u(2)(+)b, u(2)(+)b(2). Then 

dim g=4, 10, 6 or 7, respectively. q.e.d.

We now return to the proof of Proposition 8.1. By the condition 

(1), (2), it follows from Lemma 8.2 that dim SL(4, R)x=10. Therefore 

the orbit SL(4, R)•Ex contains the orbit SO(4)•Ex as a proper subset. 

Since the orbit SO(4)•Ex is isolated, the orbit SL(4, R)•Ex must intersect 

a principal orbit of the SO(4) action. Hence there is an element g•¸

SL(4, R) such that SO(4)gx=SO(2). Put y=gx. Then there is an em-

bedding SO(4)•Ey•¼SL(4, R)•Ey=SL(4, R)•Ex. But dim SO(4)•Ey=dim 

SL(4, R)•Ex=5. Hence SO(4)•Ey=SL(4, R)•Ex. Since SO(4)•Ey is a 

principal orbit, we have x•¸SO(4)•Ey. This is a contradiction. Therefore 

there is no continuous SL(4, R) action on S6 which is an extension of 

the SO(4) action. q.e.d.
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