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 Consider a family of cubic parabolic polynomials given by )1()( 2zzzzf λλ −−=  for 

non-zero complex parameters 0D∈λ such that for each 0D∈λ the polynomial  λf  is a 

parabolic polynomial, that is, the polynomial λf  has a parabolic fixed point and the 

Julia set of λf , denoted by )( λfJ , does not contain any critical points of λf . We also 

assumed that for each 0D∈λ , one finite critical point of the polynomial λf  escapes to the 

super-attracting fixed point infinity. So, the Julia sets are disconnected. The concern 

about the family is that the members of this family are generally not even bi-Lipschitz 

conjugate on their Julia sets. We have proved that the parameter set 0D is open and 

contains a deleted neighborhood of the origin 0. Our main result is that the Hausdorff 

dimension function )2,
2
1(0 →D  defined by ))(( λλ fJHD is real analytic. To prove this 

we have constructed a holomorphic family of holomorphic parabolic graph directed 

Markov systems whose limit sets coincide with the Julia sets of polynomials 
0

}{ Df ∈λλ  up 

to a countable set, and hence have the same Hausdorff dimension. Then we associate to 

this holomorphic family of holomorphic parabolic graph directed Markov systems  an 

analytic family, call it
0

}S{ D∈λλ , of conformal graph directed Markov systems with infinite 

number of edges in order to reduce the problem of real analyticity of Hausdorff 

dimension for the given family of polynomials 
0

}{ Df ∈λλ  to prove the corresponding 

statement for the family 
0

}{ DS ∈λλ . 
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CHAPTER 1

INTRODUCTION

Hausdorff dimension as a function of subsets of a given metric space usually behaves

extremely irregularly. For example if n ≥ 1 and K(Rn) denotes the space of all non-empty

compact subsets of the Euclidean space Rn, then the function K(Rn) 3 K 7→ HD(K) ∈ R,

ascribing to the compact set K its Hausdorff dimension HD(K), is discontinuous at every

point. It is therefore surprising indeed that the function c 7→ HD(Jc) is continuous, where c

belongs to M0, the main cardioid of the Mandelbrot set M, and Jc denotes the Julia set of

the polynomial C 3 z 7→ z2 +c. This is a relatively straightforward consequence of (classical)

Bowen’s formula which states that the Hausdorff dimension of a conformal expanding repeller

is given by the unique zero of the corresponding pressure function. Bowen’s formula was

proved in [4] for limit sets of quasi-Fuchsian groups, and it was the first application of ther-

modynamic formalism to fractal geometry. Its extension to conformal expanding repellers is

rather straightforward; see [23] for the proof and related issues. As a matter of fact Bowen’s

formula can be used to prove much more, namely, that the function M0 3 c 7→ HD(Jc)

is real-analytic. This fact was proved in [25] based on considerations involving dynamical

zeta-functions. Going beyond the classical (finite-to-one) conformal expanding case, real

analyticity of the Hausdorff dimension was proved in [34] for Julia-Lavaurs maps and in [33]

for the hyperbolic family of exponential maps. The proofs in both papers are based on a

different idea than in [25]; their point is to exploit complex analyticity of the correspond-

ing (generalized) Perron-Frobenius operators and to prove applicability of the Kato-Rellich

Perturbation Theorem. Further results in this direction (for expanding systems) and simpli-

fications of the proof can be found in [17] and [24], see also [16] and [30]. Real analyticity

for still expanding though random systems is proven in [18] with the use of [27], comp. [26].
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Going beyond the expanding case, up to our knowledge, the first real analyticity result is

proved in [32] for analytic families of semi-hyperbolic generalized polynomial-like mappings.

In this realm the Julia set is allowed to contain critical points but their forward orbit is

assumed to be non-recurrent. This allows us to associate with such a family an analytic

family of conformal graph directed Markov systems (in the sense of [15]) with infinite number

of edges and to reduce the problem of real analyticity of Hausdorff dimension of limit sets of

this family. In the current paper we investigate another important case where the expanding

property breaks down, this time because of presence of parabolic points. We choose to

deal with this phenomenon by working with a concrete but representative family of cubic

polynomials

fλ(z) = z(1− z − λz2).

We know that (see [7]) a holomorphic endomorphism T : J(T ) → J(T ) is expansive if

and only if J(T ) contains no critical point of T and an expansive holomorphic endomorphism

T : Ĉ→ Ĉ is not expanding if and only if T has at least one parabolic fixed (periodic) point.

It has been proved already by Fatou (see [3]) that all parabolic fixed (periodic) points for

T : Ĉ→ Ĉ are contained in J(T ). A rational function f : Ĉ→ Ĉ is called parabolic ([7]) if

its restriction to the Julia set J(f) is expansive but not expanding., equivalently, if the Julia

set contains no critical points but it contains at least one parabolic periodic point.

Note that each member of the family of quadratic polynomials {gλ : z 7→ z(1−λz)}λ∈C\{0}

is parabolic since for each λ ∈ C \ {0}, the polynomial gλ has a parabolic fixed point 0 with

miltiplicity 2 and the only finite critical point of gλ is given by 1
2λ

which is contained in the

basin of 0. The study of this family is too trivial since all its members are conjugate to

z 7→ z2 + 1
4

via Möbius transformations hλ(z) = −λz + 1
2

and therefore all their Julia sets

J(gλ) have the same Hausdorff dimension as HD(J(z2 + 1
4
)) ≈ 1.0812 (see [19] ). Hence

the Hausdorff dimension function λ 7→ HD(J(gλ)) is real analytic. On the other hand,

what concerns the above family {fλ}, we prove that they are generally not even bi-Lipschitz

conjugate on their Julia sets.
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We prove in Chapter 4 (Theorem 4.5) that D0, the set of all parameters λ ∈ C for which

the cubic polynomial fλ is parabolic and has no other parabolic or finite attracting periodic

points, contains a deleted neighborhood of the origin 0. Our main result is that the function

D0 3 λ 7→ HD(J(fλ)) ∈ R is real analytic. As in [32] the general idea is to associate to the

family {fλ}λ∈D0 an analytic family, call it {Sλ}λ∈D0 , of conformal graph directed Markov

systems with infinite number of edges in order to reduce the problem of real analyticity

of Hausdorff dimension for this family to prove the corresponding statement for the family

{Sλ}λ∈D0 . The basic steps of this approach are these. In Chapter 4, The Family P3, we prove

basic facts about polynomials fλ, λ ∈ C. In chapter 5, Graph Directed Markov Systems, we

introduce the class of parabolic graph directed Markov systems (PGDMS) and provide the

reader with their basic properties. In particular we associate to each PGDMS S the canonical

hyperbolic system Ŝ. The concept of parabolic graph directed Markov System generalizes

slightly the notion of parabolic iterated function systems introduced in [13], further inves-

tigated in [14], and treated at length in the book [15]. In Chapter 6, Analytic Families

of PGDMS, we first generalize a theorem from [32] about real analyticity of the Hausdorff

dimension for regularly analytic families of conformal (hyperbolic) graph directed Markov

Systems. Then we introduce the concept of a holomorphic family of holomorphic parabolic

graph directed Markov systems, and the central part of the chapter is a rather long proof

that a holomorphic family {Sλ}λ∈Λ of holomorphic parabolic graph directed Markov systems

gives rise to a locally regular analytic family {Ŝlλ}λ∈Λ (with some l ≥ 1) of corresponding

conformal (hyperbolic) graph directed Markov Systems. These considerations are so long

since they require a detailed analysis of local behavior of families of parabolic maps around

their common parabolic fixed points. This permits us to conclude, see Corollary 6.14, the

chapter with the theorem that the Hausdorff dimension of limit sets of a holomorphic family

of holomorphic parabolic graph directed Markov systems is real analytic. In Chapter 7,

PGDMS Associated With fλ, λ ∈ D0, which is the last chapter of this paper, we apply the

machinery developed in the previous chapters to study the family of polynomials fλ, λ ∈ D0.
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The idea is to associate to this family of polynomials a holomorphic family of holomorphic

parabolic graph directed Markov systems whose limit sets coincide with the Julia sets of

polynomials fλ up to a countable set. Then to apply Corollary 6.14.
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CHAPTER 2

INTRODUCTON OF GEOMETRIC STUDY OF JULIA SETS

In this chapter we introduce some of the main ideas in iteration theory and recall some

relevant definitions and theorems. In the first section of the chapter we will study topological

and geometrical properties of Julia sets. Since the polynomial fλ, λ ∈ D0 has a parabolic

fixed point at 0 and of course a superattracting fixed point at∞, in second and third sections

we will discuss the behavior of points near a super-attracting fixed point and near a parabolic

fixed point respectively.

2.1. Introductory Dynamical Notions

The main goal of this section is to provide relevant definitions and theorems and discuss

properties of the Julia set J(f) for a rational function f of degree d ≥ 2 on the Riemann

sphere Ĉ = C ∪ {∞}.

A rational function is any function which can be written as the ratio of two polynomial

functions, i.e. a function f : Ĉ → Ĉ is called a rational function if and only if it can be

written in the form

f(z) =
P (z)

Q(z)
, z ∈ Ĉ,

where P and Q are polynomial functions, not both being the zero polynomial. If P is the

zero polynomial, then f is the constant function zero. If Q is the zero polynomial, then f is

the constant function∞. The domain of f is the set of all points z for which the denominator

Q is not zero, where one assumes that P and Q are coprime (that is, they have no common

zeros). The degree of f is denoted by deg(f) and is defined by

deg(f) = max{deg(P ), deg(Q)},

where deg(S) is the usual degree of the polynomial S.
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If Q is the constant polynomial 1, i.e. Q(z) = 1 for all z ∈ Ĉ, then f is the polynomial

function P and the degree of f is the degree of the polynomial P .

Since a rational function of degree 1 is a Möbius transformation

f(z) =
az + b

cz + d
, ad− bc 6= 0,

and Möbius transformations are among the small class of functions whose iterates can be

computed explicitly, we will consider the function f to have degree at least 2.

2.1.1. The Fatou and Julia Sets

Let f : Ĉ→ Ĉ be a rational function of degree d ≥ 2 on the Riemann sphere Ĉ. A point

ζ is a fixed point of f if f(ζ) = ζ. To each fixed point ζ of a rational function f , we associate

a complex number which we call the multiplier of f at ζ and is denoted by m(f, ζ). If ζ ∈ C,

the multiplier is simply the derivative f ′(ζ). The multiplier of f at ζ = ∞, m(f,∞), is

defined by

m(f,∞) = m(gfg−1, g(∞),

where g is a Möbius transformation with g(∞) ∈ C. A fixed point ζ of f is:

(1) an attracting fixed point if |m(f, ζ)| < 1,

(2) a repelling fixed point if |m(f, ζ)| > 1,

(3) an indifferent fixed point if |m(f, ζ)| = 1.

Definition 2.1. The indifferent fixed point ζ is called rationally indifferent or parabolic if

f ′(ζ) is a root of unity and it is called irrationally indifferent if |f ′(ζ)| = 1, but f ′(ζ) is not

a root of unity.

A point ζ is a periodic point of a ratinal function f of period n if ζ, f(ζ), · · · , fn−1(ζ)

are distinct but fn(ζ) = ζ. The set of points {ζ, f(ζ), · · · , fn−1(ζ)} is called the cycle of ζ.

The fixed points of f are the periodic points of period 1. More generally, a fixed point ζ of

f has period n if and only if it is a fixed point of fn but not of any lower-order iterate. A
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point ζ is pre-periodic under f if it is not periodic but some image of f is periodic, that is,

if there exist positive integers m and n such that

ζ, f(ζ), · · · , fm(ζ), fm+1(ζ), · · · , fm+n−1(ζ)

are distinct but fm+n(ζ) = fm(ζ), then ζ is pre-periodic of period n.

Definition 2.2. Normal Families.

A collection F of holomorphic functions from a Riemann surface S to a compact Rie-

mann surface T is called a normal family if its closure F̄ ⊂ Hol(S, T ) is a compact set,

or equivalently if every infinite sequence of functions fn ∈ F contains a subsequence which

converges locally uniformly to some limit function g : S → T .

Theorem 2.3. (Montel’s Theorem) Let S be a Riemann surface and let F be a collection

of holomorphic functions f : S → Ĉ which omit three different values. That is, assume that

there are distinct points a, b, c ∈ Ĉ so that f(S) ⊂ Ĉ \ {a, b, c} for every f ∈ F . then F is a

normal family, that is, the closure F̄ ⊂ Hol(S, Ĉ) is a compact set.

Definition 2.4. The Fatou and Julia Sets.

Let fn : Ĉ → Ĉ be the n-fold iterates of f . The domain of normality for the collection

of iterates {fn} is called the Fatou set for f and is denoted by F = F (f). That is, if a point

z0 ∈ F (f), then there exists some neighborhood U of z0 so that the sequence of iterates {fn}

restricted to U forms a normal family of functions from U to Ĉ. If no such neighborhood

exists, we say that z0 in the complement of F (f) and its complement is called the Julia set.

We will use the notation J = J(f) for the Julia set and write the Fatou set simply as Ĉ \ J .

Definition 2.5. By the grand orbit of a point z under f : Ĉ→ Ĉ we mean the set GO(z, f)

consisting of all points z′ ∈ C whose orbits eventually intersect the orbit of z. Thus z and

z′ have the same grand orbit if and only if fn(z) = fm(z′) for some choice of m ≥ 0 and

n ≥ 0. A point z ∈ C will be called grand orbit finite or exceptional under f if its grand
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orbit GO(z, f) ⊂ C is a finite set. The set of all exceptional points under f is denoted by

E(f).

Theorem 2.6. If f : Ĉ → Ĉ is rational of degree d ≥ 2, then the set E(f) of exceptional

points can have at most two elements. These exceptional points, if they exist, must always

be superattracting periodic points of f and hence must belong to the Fatou set F

Definition 2.7. The basin of attraction of an attracting fixed point z0 is the set A(z0) =

A(z0, f) consisting of all z such that fn(z) → z0. If {z0, z1, ..., zm} is an attracting cycle of

length m, then each zj is an attracting fixed point for fm and we define the basin of attraction

of the attracting cycle , or of z0, to be the union of the basins of attraction A(zj, f
m) of the

zj’s with respect to fm. The basin of attraction is again denoted by A(z0). The immediate

basin of attraction of the cycle, denoted by A∗(z0), is the union of the m components of

A(z0) which contain points of the cycle.

Definition 2.8. The filled-in Julia set K = K(f) is the set of all points z ∈ C for which

the orbit of z under f is bounded. Note that J(f) ⊆ K(f).

Recall that a critical point of f is a point on the sphere where f is not locally one-to-one.

These consist of solutions of f ′(z) = 0 and of poles of f of order 2 or higher. The order of a

critical point z is the integer m such that f is (m+ 1)-to-1 in a punctured neighborhood of

z. If z is not a pole, this is its multiplicity as a zero of f ′.

Theorem 2.9. If f is a rational funtion of degree d, then there are 2d − 2 critical points,

counting with multiplicity.

Definition 2.10. By the postcritical set P = P (f) of a rational map f we mean the union

of all forward images fn(c) with n ≥ 0, where c ranges over the critical points. The closure

of the postcritical set P = P (f) is denoted by P̄ (f).
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Theorem 2.11. If the postcritical set of f is finite and there are no superattracting cycles,

then J = Ĉ. Otherwise. J has empty interior.

Definition 2.12. A Fatou component for a rational map f of degree d ≥ 2 is any connected

component of the Fatou set F (f) = Ĉ \ J(f). A component U of F (f) is called forward

invariant under f if f(U) ⊆ U .

Theorem 2.13. (Fatou-Sullivan Classification of Fatou Components) If the rational func-

tion f maps the Fatou component U onto itself, then U is one of the following types:

(1) U is the basin for a super-attracting fixed point, that is a super-attracting component

which contains a super-attracting fixed point ζ of f ,

(2) U is the immediate basin for an attracting fixed point, that is an attracting component

which contains an attracting fixed point ζ of f ,

(3) U is the immediate basin for one petal of a parabolic fixed point which has multiplier

+1, that is a parabolic component with a parabolic fixed point ζ ∈ ∂U and fn → ζ

on U ,

(4) U is a Siegel disk if f : U → U is analytically conjugate to a Euclidean rotaion of

the unit disk onto itself,

(5) U is a Herman ring if f : U → U is analytically conjugate to a Euclidean rotaion

of some annulus onto itself.

Theorem 2.14. If f is a rational function of degree d ≥ 2 and {Ω1, · · · ,Ωq} be a cycle of

Siegel disks or Herman rings of f , then the closure of the postcritical set of f , P̄ (f), contains

∂
⋃q
j=1 Ωj.

Corollary 2.15. If f is a polynomial, then the Fatou set F (f) does not have a Herman

ring.
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2.1.2. Properties of Julia Set

Here we will summerize the properties of a Julia set of a rational function f : Ĉ→ Ĉ of

degree d ≥ 2. Details can be found in any standard Dynamical System book (see [2], [20],

[6]). Recall that the Fatou set F (f) of f is defined as the set of all those points z ∈ Ĉ that

admit an open neighborhood U such that the family of iterates {fn|U}n≥1 is equicontinuous

with respect to the spherical metric on Ĉ and the Julia set J(f) is the complement of F (f)

in Ĉ, i.e. J(f) = Ĉ \ F (f).

The basic properties of Julia set J(f):

(a) J(f) is a non-empty compact subset of Ĉ.

(b) J(f) is totally invariant, meaning that f−1(J(f)) = f(J(f)) = J(f).

(c) If deg(f) ≥ 2, then J(f) is an infinite and perfect set and so is uncountable.

(d) For any N ≥ 1, the Julia set of f coincides with that of fN , i.e. J(f) = J(fN).

(e) If deg(f) ≥ 2, then

(i) if z is not exceptional, then J is contained in the closure of the backward orbit

of z, O−(z);

(ii) if z ∈ J , then J is the closure of the backward orbit of z, O−(z).

(f) Any non-empty completely invariant subset of J is dense in J . If D is a union of

components of F that is completely invariant, then J = ∂D.

(g) If deg(f) ≥ 2, then J is contained in the closure of the set of periodic points of f .

(h) The dynamical system f : J(f) → J(f) is topologically exact, i.e. for every non-

empty open (in the relative topology) set U ⊂ J(f) there exists an integer n ≥ 0

such that fn(U) = J(f).

Theorem 2.16. The Julia set J contains all repelling fixed points and all indifferent fixed

points that do not correspond to Siegel disks. The Fatou set F contains all attracting fixed

points and all indifferent fixed points corresponding to the Siegel disks.
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Theorem 2.17. If deg(f) ≥ 2, then the Julia set is the closure of the set of all repelling

periodic points of f .

Theorem 2.18. If f is a polynomial of degree d ≥ 2, then the following are equivalent.

(1) The unbounded component of the Fatou set F (f), say F∞ is simply connected,

(2) Julia set J(f) is connected,

(3) there are no finite critical points of f in F∞.

Theorem 2.19. If z0 is an attracting periodic point, then the basin of attraction A(z0) is

a union of components of the Fatou set, and the boundary of A(z0) coincides with the Julia

set.

Proof. ([6]) Let U be an open neighborhood of the cycle of z0 contained in the Fatou

set. Then A(z0) is the union of the backward iterates of U , an open subset of the Fatou

set. If ω0 ∈ ∂A(z0) and V is any neighborhood of ω0, then the iterates fn(z) converge

towards the cycle of z0 on V
⋂
A(z0), whereas they remain outside A(z0) for z ∈ V \ A(z0).

Consequently, {fn} is not normal on V , and ω0 ∈ J . Since A(z0) is completely invariant,

then by the property of Julia set (1f), J = ∂A(z0). �

Theorem 2.20. If z0 is an attracting periodic point, then the immediate basin of attraction

A∗(z0) contains at least one critical point.

Proof. ([6]) Suppose first that z0 is an attracting fixed point. We may assume its

multiplier λ satisfies 0 < |λ| < 1. Let U0 = ∆(z0, ε) be a small disk, invariant under f , on

which the analytic branch h of f−1 satisfying h(z0) = z0 is defined. The branch h maps

U0 into A∗(z0), and h is 1-to-1. Thus U1 = h(U0) is simply connected, and U1 ⊃ U0. We

proceed in this fashion, constructing Un+1 = h(Un) ⊃ Un and extending h analytically to

Un+1. If the procedure does not terminate we obtain a sequence hn : U0 → Un of analytic

functions on U0 which omits J , hence is normal on U0. But this is impossible, since z0 ∈ U0

is a repelling fixed point for h. Thus we eventually reach a Un to which we cannot extend h.

There is then a critical point p ∈ A∗(z0) such that f(p) ∈ Un. If z0 is a periodic point with
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period n > 1 and |(fn)′(z0)| < 1, this argument shows each component of A∗(z0) contains

a critical point of fn. Since (fn)′(z) =
∏n

j=0 f
′(f j(z)), A∗(z0) must also contain a critical

point of f . �

Observation 2.21. Since there are only 2d − 2 critical points, counting with multiplicity,

the Theorem 2.20 above shows that the number of attracting cycles is at most 2d− 2.

2.2. Superattracting Fixed Points

The polynomial fλ, λ ∈ D0, has three fixed points 0, − 1
λ

and ∞ which are parabolic,

repelling and superattracting respectively, so the next two sections will study the dynamics

of the rational function f : Ĉ→ Ĉ in some small neighborhoods of a superattracting and a

parabolic fixed points respectively.

We start by expressing our function in terms of a local uniformizing parameter z, which

can be chosen so that the fixed point corresponds to z = 0. We can then describe the

function by a power series of the form

f(z) = αzn + an+1z
n+1 + an+2z

n+2 · · · ,

where α 6= 0 and n ≥ 1. The series converges for |z| sufficiently small. Recall that if n = 1,

initial coefficient α = f
′
(0) is called the multiplier of the fixed point z = 0. If n ≥ 2, then

f
′
(0) = 0, and z = 0 is a superattracting fixed point. This section studies the case of n > 1.

Theorem 2.22 (Böttcher’s Theorem). With f as above, there exists a local holomorphic

change of coordinate w = φ(z), with φ(0) = 0, which conjugates f to the n-th power map

w 7→ wn throughout some neighborhood of zero. Furthermore, φ is unique up to multiplication

by an (n− 1)-st root of unity.

Thus near any superattracting fixed point, f is conjugate to a map of the form

φ ◦ f ◦ φ−1 : w 7→ wn,
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with n ≥ 2. This theorem has important applications to polynomial dynamics, since any

polynomial map C → C of degree d ≥ 2 extends to a rational map of Ĉ which has a

superattracting fixed point at ∞ with local degree n = d

Remark 2.23. Given a global holomorphic map f : S → S with a superattracting fixed

point p̂, we can choose a local uniformizing parameter z = z(p) with z(p̂) = 0 and construct

the Böttcher coordinate w = φ(z(p)) as above. To simplify the notation. we will henceforth

forget the intermediate parameter z and simply write w = φ(p).

Since the holomorphic extension of the local map p 7→ φ(p) throughout the entire basin

of attraction of p̂ is not always possible because the n-th root function

p 7→ (φ(fn(p)))
1
n ,

cannot always be defined as a single-valued function. For example, there is a trouble when-

ever some other point in the basin maps to exactly onto the superattracting point or whenever

the basin is not simply connected. However, if we consider only the absolute value of φ, there

is no problem.

Lemma 2.24 (Extension of |φ|). If f : S → S has a superattracting fixed point p̂ with

basin A, then the function p 7→ |φ(p)|, where φ is the associated Böttcher map of Theorem

2.22, extends uniquely to a continuous map |φ| : A → [0, 1) which satisfies the identity

|φ(f(p))| = |φ(p)|n. Furthermore, |φ| is real analytic, except at the iterated preimages of p̂

where it takes the value zero.

Now, let f : Ĉ → Ĉ be a rational function with a superattracting fixed point p̂. Then

the associated Böttcher map φ, which carries a neighborhood of p̂ biholomorphically onto a

neighborhood of zero, has a local inverse ψε mapping the ε-disk around zero to a neighborhood

of p̂.

Theorem 2.25 (Critical Points in the Basin). There exists a unique open disk Dr of maximal

radius 0 < r ≤ 1 such that ψε extends holomorphically to a map ψ : Dr → A∗, where A∗ is
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the immediate basin of p̂. If r = 1, then ψ maps the unit disk D biholomorphically onto A∗

and p̂ is the only critical point in the basin. On the other hand, if r < 1, then there is at

least one other critical point in A∗, lying on the boundary of ψ(Dr).

2.2.1. Application of the Böttcher’s Map to Polynomial Dynamics

Let f(z) = adz
d + ad−1z

d−1 + · · · + a1z + a0, where ad 6= 0, be a polynomial of degree

d ≥ 2. Without loss of generality we may assume that ad = 1, otherwise, we can always

choose c with cd−1 = ad so that the linearly conjugate polynomial cf( z
c
) is monic. Since f

has a superattracting fixed point at ∞, we can apply Böttcher’s Theorem.

Lemma 2.26 (The Filled-in Julia Set). For any polynomial f of degree d ≥ 2, the filled-in

Julia set K ⊂ C is compact, with connected component, with topological boundary ∂K equal

to the Julia set J = J(f) and with interior equal to the union of all bounded components U

of the Fatou set F = Ĉ \ J . Thus K is equal to the union of all such U , together with J

itself. Any such bounded component U is necessarily simply connected.

To better understand this filled-in Julia set K, we consider the dichotomy of Theorem

2.25 for the complementary domain A(∞) = Ĉ \K

Theorem 2.27 (Connected K ⇐⇒ Bounded Critical Orbits). Let f be a polynomial of

degree d ≥ 2. If the filled-in Julia set K = K(f) contains all of the finite critical points of

f , then both K and J = ∂K are connected and the complement of K in C is conformally

isomorphic to the exterior of the closed unit disk D̄ under an isomorphism

φ̂ : C \K → C \ D̄,

which conjugates f on C \K to the d-th power map w 7→ wd. On the other hand, if at least

one critical point of f belongs to C\K, then both K and J have uncountably many connected

components.
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To study the behavior of f near ∞, we make the usual substitution ζ = 1
z

and consider

the rational function

R(ζ) =
1

f(1
ζ
)
.

Again we may assume that f is monic. From the asymptotic equality f(z) ∼ zd as

z → ∞, it follows that R(ζ) ∼ ζd as ζ → 0. Thus R has a superattracting fixed point at

ζ = 0 and R has a power series expansion of the form

R(ζ) = ζd − ad−1ζ
d+1 + (a2

d−1 − ad−2)ζd+2 + · · · ,

for |ζ| small.

There is an associated Böttcher’s map

φ(ζ) = limk→∞[Rk(ζ)]
1

dk ∈ D,

which is defined and biholomorphic for |ζ| small and φ
′
(0) = 1 since f is assumed to be

monic. In practice, it is more convenient to work with the reciprocal

φ̂(z) =
1

φ(1
z
)

= limk→∞[fk(ζ)]
1

dk ∈ C \ D̄.

Thus φ̂ maps some neighborhood of ∞ biholomorphically onto a neighborhood of ∞ with

φ̂(z) ∼ z as |z| → ∞ and φ̂ conjugates the degree d polynomial map f to the d-th power

map, so that φ̂(f(z)) = [φ̂(z)]d.

Observation 2.28. Suppose that there is at least one critical point of f in C\K. Then the

conclusion of the Theorem 2.25 translates that there is a smallest number r > 1 so that the

inverse of φ̂ near ∞ extends to a conformal isomorphism

ψ̂ : C \ D̄r

∼=→ U ⊂ C \K.

Furthermore, the boundary ∂U of this open set U = ψ̂(C \ D̄r) is a compact subset of C \K

which contains at least one critical point of f .
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2.2.2. The Green’s Function of a Polynomial Map

As in Lemma 2.24, the function z 7→ |φ̂(z)| extends continuously throughout the attract-

ing basin C \K, taking values |φ̂(z)| > 1 for all z ∈ C \K. This function is finite valued,

since a polynomial has no poles in the finite plane.

Definition 2.29. By the Green’s function or the canonical potential function associated

with the filled-in Julia set K of the monic degree d polynomial f we mean the function

G : C→ [0,∞) which is identically zero on K and takes the value

G(z) = log|φ̂(z)| = limk→∞
1

dk
log|fk(z)| > 0

outside of K. The function G is continuous everywhere and harmonic, that is Gxx+Gyy = 0,

where the subscripts denote the partial derivatives, with z = x+ iy outside of the Julia set.

The curves G = constant > 0 in C \K are known as equipotentials. Since for all z ∈ C \K,

f(z) ∈ C \K, so we have

G(f(z)) = log|φ̂(f(z))| = log|φ̂(z)|d = d · log|φ̂(z)| = d ·G(z),

which shows that f maps each equipotential to an equipotential.

2.3. Parabolic Fixed Points

This section is devoted to a brief description of the dynamics of the iterates fn near a

parabolic fixed point ([20]). Again we consider functions f(z) = αz + a2z
2 + a3z

3 + · · ·

which are defined and holomorphic in some neighborhood of the origin, but in this section

we suppose that the multiplier α at the fixed point is a root of unity, that is αq = 1 for some

q ≥ 1. Such a fixed point is said to be parabolic provided that f q is not the identify map.

First consider the special case α = 1. We can write our map as

(1) f(z) = z(1 + azn +O(zn+1)),

with n ≥ 1 and a 6= 0. The integer n+ 1 is called the multiplicity of the fixed point. We are

concerned here with fixed points of multiplicity n+ 1 ≥ 2.
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Definition 2.30. A complex number v will be called a repulsion vector for f at the origin

if the product navn is equal to +1, and an attraction vector if navn is equal to −1. The

notation of the vector v indicates that v should be thought of intuitively as a tangent

vector to C at the origin. Thus there are n equally spaced attraction vectors at the origin,

separated by n equally spaced repulsion vectors. Denote them by v0,v1, · · · ,v2n−1, where

v0 is a repulsion vector and for each j ∈ {1, 2, · · · , 2n− 1}

vj = e
πij
n v0 so that navnj = (−1)j.

Thus vj is attracting if j is odd or repelling otherwise. Note that the inverse map f−1 is also

well-defined and holomorphic in some neighborhood of 0, and that the repulsion vectors for

f are the attraction vectors for f−1.

Now, consider the orbit of some point z0, {zk = fk(z0) : k ≥ 0}, for the map f given by

(1). We say that the orbit converges to zero nontrivially if zk → 0 as k → ∞, but no zk is

actually equal to zero.

Lemma 2.31. If an orbit {zk = fk(z0) : k ≥ 0} of f for some point z0 converges to zero

nontrivially, then zk is asymptotic to
vj
n√
k

as k → ∞ for one of the n attraction vectors vj.

In other words, limk→∞
n
√
kzk exists and is equal to one of the vj with j odd. Similarly, if an

orbit {z′k = f−k(z
′
0) : k ≥ 0} of f−1 for some point z

′
0 converges to zero nontrivially, then z

′

k

is asymptotic to
vj
n√
k

as k →∞, where vj is now one of the n repulsion vectors, with j even.

Any attraction or repulsion vector can occur.

Definition 2.32. If an orbit {zk = fk(z0) : k ≥ 0} of f for some point z0 converges to zero,

with zk ∼ vj
n√
k
, then we say that this orbit {zk}k≥0 tends to zero from the direction vj.

Remark 2.33. The array of attraction-repulsion vectors at a fixed point transforms natu-

rally under a holomorphic change of coordinate. This array can be thought of as a geometric

representation for the leading terms of the power series for f at the fixed point. More

generally, consider a Riemann surface S and a map p 7→ f(p) ∈ S which is defined and
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holomorphic in some neighborhood of a fixed point p̂ of multiplicity n+1 ≥ 2. Then there is

a corresponding uniquely defined array of attraction-repulsion vectors in the tangent space

at p̂ with completely analogous properties.

Now suppose that the multiplier α at a fixed point is a q-th root of unity, say α = e
2πip
q ,

where p
q

is a fraction in lowest terms.

Lemma 2.34. If the multiplier α at a fixed point f(ẑ) = ẑ is a primitive q-th root of unity,

then the number n of attraction vectors at ẑ must be a multiple of q. In other words, the

multiplicity n+ 1 of ẑ as a fixed point of f q must be congruent to 1 modulo q.

Definition 2.35. Consider a rational function f : Ĉ→ Ĉ with a fixed point p̂ of multiplier

+1. Given an attraction vector vj in the tangent space of Ĉ at p̂, the associated parabolic

basin of attraction Aj = A(p̂,vj) is defined to be the set consisting of all p0 ∈ Ĉ for

which the orbit p0 7→ p1 7→ · · · converges to p̂ from the direction vj. Evidently these

basins A1,A2, · · · An are disjoint fully invariant open sets, with the property that an orbit

p0 7→ p1 7→ · · · under f converges to p̂ nontrivially if and only if it belongs to one of the

Aj. The immediate basin A∗j is defined to be the unique connected component of Aj which

maps into itself under f . Equivalently, Aj can be described as the connected component of

the Fatou set Ĉ \ J(f) which contains pk for large k whenever {pk} converges to p̂ from the

direction vj.

More generally, if p̂ is a periodic point of period k with multiplier α = e
2πip
q for the map

f : Ĉ → Ĉ, then p̂ is a fixed point of multiplier +1 for the iterate fkq. By definition, the

parabolic basins for fkq at p̂ are also called parabolic basins for f .

Lemma 2.36. For a holomorphic map f : Ĉ → Ĉ, each parabolic basin Aj is contained in

the Fatou set Ĉ \ J(f), but each basin boundary ∂Aj is contained in the Julia set J(f).
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Definition 2.37. Let p̂ ∈ Ĉ be a fixed point of multiplicity n+ 1 ≥ 2 for a map f which is

defined and univalent on some neighborhood N ⊂ Ĉ of p̂, and let vj be an attraction vector

at p̂. An open set P ⊂ N will be called an attracting petal for f for the vector vj at p̂ if

(1) f maps P into itself, and

(2) an orbit p0 7→ p1 7→ · · · under f is eventually absorbed by P if and only if it

converges to p̂ from the direction vj.

Similarly, if f : N
∼=→ N

′
, then an open subsetP ⊂ N

′
will be called a repelling petal for the

repulsion vector vk if P is an attracting petal for the map f−1 : N
′ → N and for this vector

vk.

Theorem 2.38. (Parabolic Leau-Fatou Flower Theorem) If ẑ is a fixed point of multiplicity

n+1 ≥ 2, then within any neighborhood of ẑ there exists simply connected petals Pj, where the

subscript j ranges over the integers modulo 2n and where Pj is either repelling or attracting

according to whether j is even or odd. Furthermore, these petals can be chosen so that the

union

{ẑ} ∪ P0 ∪ · · · ∪ P2n−1

is an open neighborhood of ẑ. When n > 1, each Pj intersects each of its two immediate

neighborhoods in a simply connected region Pj ∩Pj±1 but is disjoint from the remaining Pk.

Theorem 2.39. (Parabolic Linearization Theorem) For any attracting or repelling petal P,

there is one and, up to composition with a translation of C, only one conformal embedding

υ : P → C which satisfies the Abel functional equation

υ(f(z)) = 1 + υ(z)

for all z ∈ P ∩ f−1(P).

The linearizing coordinate υ(z) is often referred to as a Fatou coordinate in P .

Corollary 2.40. If P ⊂ Ĉ is an attracting petal for f , then the Fatou map υ : P → C

extends uniquely to a map A → C which is defined and holomorphic throughout the attracting
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basin A of P, still satisfying the Abel functional equation

υ(f(z)) = 1 + υ(z).

In the case of a repelling petal, the analogous statement is the following.

Corollary 2.41. If P ′ ⊂ Ĉ is a repelling patel for f , then the inverse of the Fatou map

υ−1 : υ(P ′) → P ′ extends uniquely to a globally defined holomorphic map γ : C → Ĉ which

satisfies the corresponding equation

f(γ(w)) = γ(1 + w).

Theorem 2.42. If ẑ is a parabolic fixed point with multiplier α = 1 for a rational map

f : Ĉ → Ĉ, then each immediate basin for ẑ contains at least one critical point of f . Fur-

thermore, each basin contains one and only one attracting petal Pmax which maps univalently

onto some right half-plane under υ and which is maximal with respect to this property. This

preferred petal Pmax always has one or more critical points on its boundary.

The existence of the univalent map which maps the petal to some right half-plane has

been studied in more refine analytically near the parabolic fixed point in Chapter 6. For a

given analytic family it has been given uniformly with respect to the parameter.

As an immediate consequence of Theorem 2.42 we have the following.

Corollary 2.43. A rational map can have at most finitely many parabolic periodic points.

In fact, for a map of degree d ≥ 2, the number of parabolic cycles plus the number of attracting

cycles is at most 2d− 2.
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CHAPTER 3

MEASURE THEORETIC PROPERTIES OF JULIA SETS OF PARABOLIC

FUNCTIONS

In this chapter we review results ([7], [31]) concerning fractal and ergodic properties of

Julia sets of rational functions with a rationally indifferent periodic point. Our main goal is to

recall ([7]) that the Hausdorff dimension of the Julia set J(f) of a parabolic rational function

f can be expressed by the smallest zero of the pressure function t 7→ P (fJ(f),−tlog|f ′|). This

result is similar to the Bowen-Manning-McCluskey formula (see [4], [12]). In the first section

we recall the definition of parabolic function and then in next few sections we will provide

relevant definitions and theorems in the realm of Hausdorff measures and dimensions. In the

last section of this chapter we will recall the well-developed theory ([7], [31]) of parabolic

functions.

3.1. Parabolic (and hyperbolic) Rational Functions

This section contains the explicit definition of parabolic rational function in the sense of

M. Denker and M. Urbański ([7]). Let f : Ĉ→ Ĉ be a rational function of degree d ≥ 2 and

J(f) be the Julia set of f . Recall that the Julia set J(f) is non-empty, compact and perfect,

and satisfies

(2) f(J(f)) = J(f) = f−1(J(f)).

By (2) f also acts on J(f). Frequently we shall consider the restriction of f on J(f)

without special indication. Here we will discuss the expanding and expansive functions on

an arbitrary compact metric space (X, d).

Definition 3.1. A continuous function T : X → X from a metric space (X, d) into itself

is called expanding if there exist two constants λ > 1 and δ > 0 such that for all pairs of
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points x, y ∈ X,

d(x, y) < δ ⇒ d(T (x), T (y)) ≥ λd(x, y).

Equivalently, a rational function f : J(f) → J(f) is said to be expanding if there exists

λ > 1 and an integer n ≥ 1 such that

|(fn)
′
(z)| ≥ λ for every z ∈ J(f).

Definition 3.2. A continuous function T : X → X from a metric space (X, d) into itself is

called expansive if there exists δ > 0 such that for all pairs of points x, y ∈ X, x 6= y, there

exists a positive integer n = n(x, y) satisfying

d(T n(x), T n(y)) ≥ δ.

The constant δ is called an expansive constant for T and T is also called δ-expansive.

Notice that T is δ-expansive if

supn≥0d(T n(x), T n(y)) ≤ δ ⇒ x = y.

In other words, δ-expansiveness means that two forward T -orbits that remain forever within

a distance δ from each other are originated from the same point (and are therefore only one

orbit). Moreover. if T is δ-expansive, then T is δ
′
-expansive for any 0 < δ

′
< δ and the

expansiveness of T is independent of topologically equivalent metrices, although particular

expansive constants generally depend on the metric chosen. That is, if two metrics d and d
′

generate the same topology on X, then T is expansive when X is equipped with the metric

d if and only if T is expansive when X is equipped with the metric d
′
. The expansiveness of

a system may also be expressed in terms of the following “dynamical”’ metrics.

Definition 3.3. Let T : (X, d) → (X, d) be a dynamical system. For every n ≥ 0, let

dn : X ×X → [0,∞) be the metric

dn(x, y) = max{d(T j(x), T j(y)) : 0 ≤ j < n}.

The metrics dn arise from the dynamics of the system T and are called dynamical metrics.
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Observe that for each x, y ∈ X we have dn(x, y) ≥ dm(x, y) whenever n ≥ m and also

that d0 = d. Moreover, the metrics dn, for each n ≥ 0, are topologically equivalent. Thus,

we call a continuous function T : X → X from a metric space (X, d) into itself expansive if

there exists δ > 0 such that for all pairs of points x, y ∈ X, x 6= y, there exists n ≥ 0 such

that dn(x, y) ≥ δ.

Definition 3.4. A rational function f : J(f) → J(f) is called hyperbolic if there exists

n ≥ 1 such that

inf{|(fn)
′
(z)| : z ∈ J(f)} > 1.

Note that a rational function is hyperbolic if and only if it is expanding. We also have

the following ([23]).

Proposition 3.5. Every distance expanding dynamical system is expansive.

The following topological characterization of hyperbolicity is well-known (see [2] and [6]

for example).

Theorem 3.6. A rational function f : J(f)→ J(f) is hyperbolic if and only if

P̄ (f) ∩ J(f) = ∅, where P̄ (f) is the closure of the postcritical set of f .

The next theorem has been proven by M. Denker and M. Urbański ([7]).

Theorem 3.7. A rational function f : J(f)→ J(f) is expansive if and only if the Julia set

J(f) contains no critical points of f .

We recall that a periodic point z of f , say of period q ≥ 1, is called parabolic if the

derivative (f q)′(z) is a root of unity. It is well-known (see [2] and [6]) that the set Ω of all

parabolic periodic points is finite and contained in the Julia set. It follows from Theorems

3.6 and 3.7 that a rational function is expansive but not hyperbolic if and only if the Julia

set contains no critical points of f but it intersects the closure of the postcritical set of f .

Now, if we have a rational function f whose Julia set J(f) contains no critical points of f ,

then it follows from the Fatou Sullivan’s classification of connected components of Fatou set
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(see Theorem 2.13) and from the fact that the boundaries of Siegel disks and Herman rings

intersect the closure of the postcritical set of f (see Theorem 2.14) that if f is not hyperbolic,

then there must exists a parabolic point in the Julia set. On the other hand, the existence

of such a point obviously rules out hyperbolicity. Hence we get the following theorem ([7]).

Theorem 3.8. A rational function f : J(f) → J(f) is expansive but not hyperbolic (ex-

panding) if and only if the Julia set J(f) contains no critical points of f but contains at least

one parabolic point.

Definition 3.9. A rational function f : J(f)→ J(f) which is expansive but not hyperbolic,

i.e. whose Julia set J(f) contains no critical points of f but contains at least one parabolic

point is called parabolic rational function.

3.2. Topological Entropy

In this section, we present definitions of topological entropy and topological pressure for

a dynamical system T : X → X on a compact metric space (X, d). Here we will present

Bowen’s definition of topological entropy. Since Bowen’s definition only makes sense in a

compact metric space, we will as usual assume that X is a compact metric space.

3.2.1. Bowen’s Definition of Topological Entropy

Let T : X → X be a dynamical system on a compact metric space (X, d). Recall the

Definition 3.3 of dynamical metric, also called Bowen’s metric, dn, for each n ≥ 0:

dn(x, y) = max{d(T j(x), T j(y)) : 0 ≤ j < n}.

Henceforth, the open ball centered at x of radius r induced by the metric dn shall be denoted

by Bn(x, r). As d0 = d, we shall denote B0(x, r) simply by B(x, r). Observe that

Bn(x, r) := {y ∈ X : dn(x, y) < r} = ∩n−1
j=0T

−j (B(T j(x), r)
)
.
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In other words, the ball Bn(x, r) consists of points whose orbits stay within a distance r from

the orbit of x until at least time n − 1, that is, the ball Bn(x, r) is the set of points whose

orbits are r-shadowed by the orbit of x until at least time n− 1.

Definition 3.10. A subset F of X is said to be (n, ε)-separated if F is ε-separated with

respect to the metric dn, which is to say that dn(x, y) ≥ ε for all x, y ∈ F with x 6= y.

Definition 3.11. A subset F of X is called a maximal (n, ε)-separated if for any (n, ε)-

separated F
′

with F
′ ⊆ F , we have F

′
= F . In other words, no proper subset of F is

(n, ε)-separated.

Definition 3.12. A subset E of X is said to be an (n, ε)-spanning set if

∪x∈EBn(x, ε) = X.

That is, the orbit of every point in the space is ε-shadowed by the orbit of a point of E until

at least time n− 1.

Definition 3.13. A subset E of X is called a minimal (n, ε)-spanning set if for any (n, ε)-

spanning set E
′

with E ⊇ E
′
, we have E = E

′
. In other words, no proper subset of E is

(n, ε)-spanning.

The next theorem gives Bowen’s definition of topological entropy of the system.

Theorem 3.14. For all ε > 0 and all n ∈ N, let Fn(ε) be a maximal (n, ε)-separated set

in X and En(ε) be a minimal (n, ε)-spanning set in X. Then the topological entropy of T ,

htop(T ) is:

htop(T ) = lim
ε→0

lim
n→∞

sup
1

n
log #Fn(ε) = lim

ε→0
lim
n→∞

inf
1

n
log #Fn(ε)

= lim
ε→0

lim
n→∞

sup
1

n
log #En(ε) = lim

ε→0
lim
n→∞

inf
1

n
log #En(ε).
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3.2.2. Invariant Measure

Here we collect some of the relevant definitions from standard measure theory. The

following is intended only as an aid to memory; we assume that the reader has a basic

knowledge of measure theory.

Definition 3.15. If (X,B) is a measurable space and Y is a topological space, then a

function f : X → Y is said to be measurable provided that f−1(G) ∈ B for every open set

G in Y .

Definition 3.16. Let X be a set and B be a σ-algebra on X. A function µ : B → [0,∞] is

said to be measurable on X provided that

(i) µ(∅) = 0

(ii) µ is countably additive, that is, for each sequence (An)n≥1 of pairwise disjoint sets

belonging to B, we have that

µ (∪n≥1An) =
∑
n≥1

µ(An).

If, in addition, µ(X) is finite, the measure µ is said to be a finite measure. If µ(X) = 1, we

say that µ is a probability measure. If the σ-algebra B is smallest σ-algebra that contains

the open sets of X, this is, the σ-algebra of Borel sets, the µ is called a Borel measure.

Let (X,B) and (Y, C) be measurable spaces, and let T : (X,B)→ (Y, C) be a measurable

transformation. If the domain of T is endowed with a probability measure µ, then the

measurable transformation T induces a probability measure on its codomain. Indeed, the

set function µ ◦ T−1, where

(µ ◦ T−1)(B) := µ(T−1(B)), ∀B ∈ C,

defines a probability measure on (Y, C). This measure is sometimes called the push-down of

the measure µ under the transformation T .
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Definition 3.17. Let (X,B, µ) and (Y, C, ν) be probability spaces, and let T : (X,B, µ)→

(Y, C, ν) be a measurable transformation. Then T is said to be measure preserving transfor-

mation if µ ◦ T−1 = ν. If T : (X,B, µ) → (X,B, µ) is a measure preserving transformation,

that is, µ ◦ T−1 = µ, then T is called a measure preserving endomorphism.

Proving the equality µ ◦ T−1(B) = ν(B) for all elements of the σ-algebra C is generally

an onerous task. The following result can sometimes be a tremendous assistance.

Theorem 3.18. Let T : (X,B, µ)→ (Y, C, ν) be a measurable transformation. If C = σ(S)

is a σ-algebra generated by the semi-algebra S on Y , then T is measure preserving if and

only if µ ◦ T−1(S) = ν(S) for all S ∈ S.

Definition 3.19. Let T : (X,B, µ)→ (X,B, µ) be a measure preserving endomorphism of a

probability space (X,B, µ). Then the probability measure µ on (X,B) is called T -invariant

or invariant with respect to T .

Note that if a measurable transformation T : (X,B, µ) → (Y, C, ν) is invertible and

its inverse T−1 is measurable, then µ(T−1(B)) = ν(B) for every B ∈ C if and only if

ν(T (A)) = µ(A) for every A ∈ B. In particular, if X,B, µ) = (Y, C, ν), then µ is T -invariant

if and only if µ is T−1 invariant. This justifies the following definition.

Definition 3.20. If T : (X,B, µ)→ (X,B, µ) is a measure preserving endomorphism which

is invertible and whose inverse is measurable is called a measure preserving automorphism.

Definition 3.21. Given a measurable transformation T : (X,B)→ (X,B), we shall denote

the set of all T -invariant probability measure on the σ-algebra B by M(T,B). If B is a Borel

σ-algebra on X, we write simply M(T ) := M(T,B(X)).

3.2.3. Ergodic Measure

Definition 3.22. Let T : X → X be a measure preserving endomorphism of a probability

space (X,B, µ) Then T is said to be ergodic if all sets B ∈ B such that T−1(B) = B have
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the property that µ(B) = 0 or µ(B) = 1. Alternatively, we say that the measure µ is ergodic

with respect to T .

In other words, a measure-theoretic dynamical system is ergodic if and only if it does

not admit any non-trivial measure-theoretic subsystem. Let T : (X,B) → (X,B) be a

measurable transformation. The set of all T -invariant probability measures that are ergodic

with respect to T is denoted by E(T,B). If we are in the case where B s a Borel σ-algebra

on X, we write simply E(T ) := E(T,B(X)).

Recall that the symmetric difference of two sets A and B is denoted by A∆B and is the

set of all points that belong to one and only one of the sets, that is,

A∆B := (A \B) ∪ (B \ A) = (A ∪B(\(A ∩B).

A set A is µ-a.e. T -invariant means that it satisfies µ(T−1(A)∆A) = 0. Of course, any

T -invariant set A is µ-a.e. T -invariant, since T−1(A)∆A = ∅ for such a set.

Proposition 3.23. Let T : X → X be a measure preserving endomorphism of a probability

space (X,B, µ). Then T is ergodic if and only if all sets B ∈ B such that µ(T−1(B)∆B) = 0

satisfy µ(B) = 0 or µ(B) = 1.

It is easy to see that the family {B ∈ B : T−1(B) = B} of all T -invariant sets forms

a sub-σ-algebra of B. So does the family {B ∈ B : µ(T−1(B)∆B) = 0} for all µ-a.e. T -

invariant sets ([23]). We shall denote by Iµ := {B ∈ B : µ(T−1(B)∆B) = 0} the collection

for all µ-a.e. T -invariant sets. The family Iµ is a σ-algebra (see [23]).

Definition 3.24. Let T : (X,B) → (X,B) be a measurable map, let µ be a probability

measure on (X,B) and let φ : (X,B)→ R be a measurable function. Then

(a) The function φ : (X,B)→ R is said to be T -invariant if φ ◦ T = φ.

(b) The function φ is said to be µ-a.e. T -invariant if φ ◦ T = φ, µ-almost everywhere.

In other words, φ is µ-a.e. T -invariant if the measurable set

∆φ := {x ∈ X : φ(T (x)) 6= φ(x)}
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is a null set. Equivalently, µ (X \∆φ) = µ ({x : φ(T (x)) = φ(x)}) = 1.

Definition 3.25. Let T : X → X be a self-map and let φ : X → R be a real-valued

function. Then the n-th Birkhoff sum of φ at a point x ∈ X is

Snφ(x) =
n−1∑
j=0

φ(T j(x)).

This is the sum of the values of the function φ at the first n points in the orbit of x. Sometimes

these are also referred to as ergodic sums.

Definition 3.26. Measure-Theoretic Entropy

Let T : X → X be a continuous map of a compact metric space (X, d) and that µ is

a Borel T -invariant probability measure on X. Let Bn(x, r) be the open ball in the metric

dn centered in x and with radius r. If measure µ is ergodic, then (see [5]) for µ-a.e. point

x ∈ X the limit

limr→0limn→∞ −
logµ(Bn(x, r))

logn

exists, is called the entropy of the system T with respect to the measure µ and is denoted

by hµ(T ).

Usually a different, more classical approach is undertaken to define the entropy hµ(T ) (

see [5] and [36]), the one chosen here is probably the fastest and reflecting well the nature

of entropy.

3.3. Topological Pressure

Topological pressure is a generalisation of topological entropy. Indeed, the topological

entropy of a dynamical system coincides with the topological pressure of that system when

this latter is subject to the constant potential 0, that is, in the absence of any potential.

Now we will give the definition of topological pressure.

For every Y ⊆ X and n ∈ N, define

Snφ(Y ) := sup
y∈Y

Snφ(y).
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In fact, the supremum is a maximum since X is compact. Now let U be an open cover of X.

Define the natural number Zn(U) by

Zn(U) := min{#V : V is a subcover of Un},

where

Un :=
n−1∨
j=0

T−jU = U ∨ T−1U ∨ · · · ∨ T−(n−1)U .

Zn(U) denotes the minimum number of elements of Un necessary to cover X. A subcover

of Un whose cardinality equals the minimum number is called a minimal subcover of Un.

Notice that

Zn(U) = Z1(Un) = exp(H(Un)),

where H(U) := logZ1(U) is the entropy of the open cover U of X. Since 0 ≤ H(U) < ∞,

we get that 1 ≤ Zn(U) < ∞ for all n ∈ N. For each n ∈ N, define the n-th partition of U

with respect to the potential φ by

Zn(φ,U) := inf

{∑
V ∈V

exp(Snφ(V )) : V is a subcover of Un
}
.

It is sufficient to take the infimum over all finite subcovers since the exponential function

takes only positive values. However, this infimum may not be achieved if U is infinite.

Given an open cover U of X, the sequence (Zn(φ,U))∞n=1 is submultiplicative (see [23]) and

hence the sequence (logZn(φ,U))∞n=1 is subadditive. Since (logZn(φ,U))∞n=1 is a subadditive

sequence of real numbers, then the sequence
(

1
n

logZn(φ,U)
)∞
n=1

converges (see [23]) and

(3) lim
n→∞

1

n
logZn(φ,U)∞n=1 = inf

n∈N

1

n
logZn(φ,U)∞n=1.

Definition 3.27. The topological pressure of φ with respect to U , denoted by P (φ,U), is

defined by

P (φ,U) := lim
n→∞

1

n
logZn(φ,U) = inf

n∈N

1

n
logZn(φ,U).
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We can also define the topological pressure of the function φ with respect to T using the

sequence of maximal (n, ε)-separated sets Fn(ε) of X as follows

(4) P (T, φ) = lim
ε→0

lim
n→∞

sup
1

n
log

 ∑
x∈Fn(ε)

exp
n−1∑
j=0

φ ◦ T j(x)

 .

Since the Julia set J(f) of a expansive rational function f : J(f) → J(f) contains no

critical points, the function

J(f) 3 z 7→ − log |(f j)′(z)|

is continuous, and therefore the function

(5) [0,∞) 3 t 7→ P (t) = P (f |J(f),−t log |f ′ |),

called the pressure function, is well-defined.

From (4) we see that, in case when φ = 0, the topological pressure is the topological

entropy (see Theorem 3.14). It has been proved ([10]) that topological entropy of any

rational function is equal to the logarithm of its degree. Topological pressure belongs to

topological dynamics and metric entropy is a notion of measure-preserving endomorphism.

The link joining them is given by the following formula called variational principle (see [35]).

P (f |J(f),−t log |f ′|) = sup{hµ(f) +

∫
fdµ},

where the supremum is taken over all Borel probability T -invariant (ergodic) measure of f .

Definition 3.28. Let f : Ĉ → Ĉ be a rational function and µ be a f -invariant ergodic

Borel probability measure on J(f). Then the Lyapunov exponent χµ(f) of f : J(f)→ J(f)

with respect to measure µ is defined as

χµ(f) =

∫
log |f ′ |dµ.

χµ(f) ≤ log||f ′|| <∞ and it was proved in ([22]) that χµ(f) ≥ 0. The following theorem

was proved in ([11]) (comp. also Chapters 8-10 of [23]).
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Theorem 3.29. If f : Ĉ → Ĉ is a rational function and µ is a Borel probability ergodic

invariant measure on Ĉ such that χµ(f) > 0, then

HD(µ) =
hµ(f)

χµ(f)
.

We would like to notice that ergodicity of f and the fact that the Lyapunov exponent is

positive imply that µ is supported on the Julia set. We would also like to add that due to

Ruelle’s inequality hµ(f) ≤ 2·χµ(f), inequality χµ(f) > 0 is implied by inequality hµ(f) > 0.

The basic properties of the pressure function given by (5) are collected in the following

theorem (see [7]).

Theorem 3.30. Suppose that f : J(f)→ J(f) is expansive. Then

(i) The pressure function is convex and therefore continuous.

(i) The pressure function is non-increasing.

(iii) If the mapping f is parabolic then there exists a number s(f) > 0 such that P (t) > 0

for all 0 ≤ t < s(f), P (t) = 0 for all t ≥ s(f) and P |[0,s(f)] is strictly decreasing.

(iv) If the mapping f is hyperbolic, that is, f does not have any parabolic points, then

the pressure function is strictly decreasing and limt→∞ P (t) = −∞.

3.4. Hausdorff Measure and Hausforff Dimension of Julia Set

Here we recall few definitions relevant to fractal properties of a Julia set, and we begin

the section with the definitions of Hausdorff measure and Hausdorff dimension.

Definition 3.31. Given a non-decreasing function g : (0, ε) → (0,∞) for some ε > 0, the

g-dimensional outer Hausdorff measure Hg(A) of the set A is defined as

Hg(A) = supε>0inf{
∞∑
i=1

g(diam(Ai))},

where the infimum is taken over all countable covers {Ai : i ≥ 1} of A by arbitrary sets

whose diameters do not exceed ε.
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If g(x) = xt for t ∈ (0, ε) for some ε > 0, instead of writing Hg = Hxt we write

Ht(A) = supε>0inf{
∞∑
i=1

(diam(Ai))
t},

and speak about t-dimensional outer Hausdorff measure. In this case one will get comparable

numbers (in the sense that ratios are bounded away from 0 and ∞) if instead of covering A

by arbitrary sets one considers only open balls centered at points of A.

Definition 3.32. The Hausdorff dimension of A is denoted by HD(A) and is given by

HD(A) = inf{t : Ht(A) = 0} = sup{t : Ht(A) =∞}.

Definition 3.33. Given a Borel probability measure µ on a compact metric space X, then

the Hausdorff dimension of the measure µ is denoted by HD(µ) and is defined by the number

HD(µ) = inf{HD(Y ) : µ(Y ) = 1},

where infimum is taken over all subsets Y ⊂ X.

Definition 3.34. The dynamical dimension DD(J(f)) is defined as

DD(J(f)) = sup{HD(µ)},

where the supremum is taken over all ergodic invariant measure of positive entropy.

Our main tool to understand fractal properties of a Julia set, i.e. its dimension and

measure will be the concept of conformal measure introduced in the case of Fuchsian groups

by S. Patterson in ([21]) and adopted to the case of rational functions by D. Sullivan in

([28]). Its definition is the following.

Definition 3.35. Let t ≥ 0. A measure m on J(f) is said to be t-conformal for the rational

function f : Ĉ→ Ĉ if m(J(f)) = 1 and

m(f(A)) =

∫
A

|f ′|tdm
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for every Borel set A ⊂ J(f) such that f |A is injective. A t-conformal measure for some

t ≥ 0 will be called a conformal measure. Since these measures are concentrated on the set

J(f), they also will be called conformal for f : J(f)→ J(f) or conformal for f .

In ([29]) Sullivan proved that for every rational function f there exists a t-comformal

measure for some t ≥ 0. The construction for the existence of t-conformal measure does not

tell too much about the exponent t of conformal measure. In order to get such information,

M. Denker and M. Urbański have proposed in ([9]) a general scheme of constructing gener-

alizations of conformal measures and in ([8]) they have applied it to the case of (Sullivan’s)

conformal measures. M. Denker and M. Urbański’s approach is a modification of Paterson’s

and Sullivan’s and the main difference is that they start with a point in the Julia set and

not in the Fatou set.

Definition 3.36. δ(f) is the minimal exponent for which a conformal measure exists.

Theorem 3.37. DD(J(f)) = δ(f).

The following theorem which is classical in the hyperbolic case and called Bowen-Manning-

McCluskey formula ([4]) has been proved in the parabolic case in ([7])

Theorem 3.38. If a rational function f : J(f)→ J(f) is expansive, then we have

δ(f) = s(f) = HD(J(f)),

where s(f) is the smallest zero of the pressure function P (t).

The following theorems has been proved in ([1]).

Theorem 3.39. If f : Ĉ→ Ĉ is a parabolic mapping, then HD(J(f)) < 2.

Recall that the set Ω of all parabolic fixed points is finite and contained in the Julia

set. Suppose now that ω ∈ Ω is a fixed point of f . Looking at the Taylor series expansion

of f around ω and at Leau-Fatou Flower Theorem 2.38 one can deduce (see [1]) that there

exists σ > 0 such that for every sufficiently small δ > 0 and every point z ∈ B(ω, δ) \ {ω}

all continuous inverse branches f−nω : B(z, σ|z − ω|) → C, n ≥ 1, of fn moving point z

34



towards ω are well defined. Looking again at the Taylor series expansion of f around ω we

can conclude (see [1]) that for every x ∈ B(z, σ|z − ω|)

(6) |(f−nω )
′
(x)| � n−

p+1
p

and

(7) |f−nω (x)− ω| � n−
1
p ,

where p = p(ω) is the number of petals associated with the parabolic point ω and where

the comparability constants depend only on the distance of z and ω. Relying on (6) and

following the proof of Theorem 8.5 in ([1]), M. Urbański has proved the following ([31]).

Theorem 3.40. If a rational function f : Ĉ → Ĉ has parabolic points ωi with p(ωi) petals,

then

HD(J(f)) > max

{
p(ωi)

p(ωi) + 1
: ωi is parabolic

}
.
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CHAPTER 4

THE FAMILY P3

By definition, the family P3 consists of all cubic polynomials of the form

(8) fλ(z) = z(1− z − λz2), λ ∈ C \ {0}.

Note that

(9) fλ(0) = 0

and

(10) f ′λ(z) = 1− 2z − 3λz2.

Hence f ′λ(0) = 1, and therefore (looking also at (8)), we get the following.

Proposition 4.1. The number 0 is a parabolic fixed point of fλ with multiplicity equal to

1 and with one petal. The ray [0,+∞) forms its attracting direction and the ray (−∞, 0]

forms its repelling direction.

The other finite fixed point of fλ is the non-zero solution to the equation 1−z−λz2 = 1,

that is

z = −1

λ
.

We have

(11) f ′λ

(
−1

λ

)
= 1 +

2

λ
− 3

λ
= 1− 1

λ
.

Since any two polynomials bi-Lipschitz conjugate on their Julia sets have the same moduli

of multipliers at corresponding periodic points, (11) yields the followings.
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Theorem 4.2. If λ, γ ∈ C \ {0} such that |1 − 1
λ
| 6= |1 − 1

γ
|, then fλ and fγ are not bi-

Lipschitz conjugate on their Julia sets. In particular, if λ, γ ∈ (0, 1) and λ = γ, then fλ and

fγ are not bi-Lipschitz conjugate on their Julia sets.

Theorem 4.3. If g(z) = z̄, then fλ(z) = (g ◦ fλ̄ ◦ g−1)(z), that is, fλ and fλ̄ are bi-Lipschitz

conjugate and their dynamics are symmetric about the real axis. Also, they share same

topological and geometrical properties.

The critical points of fλ are the solutions to the equation 1− 2z − 3λz2 = 0, i.e.

(12) c
(1)
λ =

−1 +
√

1 + 3λ

3λ
and c

(2)
λ =

−1−
√

1 + 3λ

3λ
,

and we take the convention that
√

1 = 1. We shall prove the following.

Lemma 4.4. For all λ ∈ C \ {0} sufficiently small in modulus, limn→∞ f
n
λ (c

(2)
λ ) =∞.

Proof. It follows from (12) that for all λ ∈ C \ {0} sufficiently small in modulus, say

λ ∈ B∗(0, R1) := B(0, R1) \ {0}

7

12|λ|
≤ |c(2)

λ | ≤
3

4|λ|
.

So,

(13)

∣∣∣fnλ (c
(2)
λ )
∣∣∣ =

∣∣∣c(2)
λ

∣∣∣ ∣∣∣1− c(2)
λ − λ(c

(2)
λ )2

∣∣∣
≥ |c(2)

λ |
(
|c(2)
λ | − |λ||c

(2)
λ |

2 − 1
)

≥ 7

12|λ|

(
7

12|λ|
− 9

16|λ|
− 1

)
=

7

12|λ|

(
28

48|λ|
− 27

48|λ|
− 1

)
=

7

12|λ|

(
1

48|λ|
− 1

)
≥ 7

12|λ|
1

96|λ|

≥ 7

1200

1

|λ|2
≥ 1

29|λ|2
,

where writing the second last inequality we assumed that R1 ≤ 1
96

which implies that,

1

48|λ|
− 1− 1

96|λ|
=

1

96|λ|
− 1 ≥ 1

96R1

− 1 ≥ 0.
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Now, if |z| ≥ (29|λ|2)−1 and λ ∈ B∗(0, R2) with 0 < R2 ≤ R1 sufficiently small, we get

(14)

|fλ(z)| = |z||1− z − λz2| ≥ |z|(|λ||z2| − |z| − 1)

= |z| (|z|(|λ||z| − 1)− 1)

≥ |z|((29|λ|2)−1
(
(29|λ|)−1 − 1)− 1

)
≥ |z|(29|λ|2)−1

(
(210|λ|)−1 − 1

)
≥ |z|(29|λ|2)−1(211|λ|)−1

= 2−20|λ|−3|z| ≥ 2|z|

Combining this with (13), we get by a straight forward induction, for all λ ∈ B∗(0, R2)

that

|fn+1
λ (c

(2)
λ )| ≥ 2n(29|λ|2)−1.

We are therefore done. �

Let D0 be the set of parameters λ ∈ C \ {0} defined by

D0 = {λ ∈ C \ {0} :fλ has no non-zero parabolic or finite attracting periodic points

and one finite critical point of fλ escapes to ∞}

and let

P0
3 = {fλ : λ ∈ D0}.

The existence of a positive R > 0 in the theorem bellow follows from Theorems 2.20,

2.42 and Lemma 4.4 together with Theorem 2.13 (Fatou-Sullivan Classification of Fatou

Components).

Theorem 4.5. There exists R > 0 such that B∗(0, R) ⊆ D0.

From Theorems 2.16 and 2.42 we have the following.

Corollary 4.6. For each λ ∈ D0, the polynomial fλ is a cubic parabolic polynomial.

The following theorem immediately follows from Theorem 2.18.

Theorem 4.7. For each λ ∈ D0 the Julia set J(fλ) is disconnected.
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Define the set of all finite critical points of fλ for all λ ∈ D0 by

Crit(fλ) = {c ∈ C : f
′

λ(c) = 0 ∀λ ∈ D0 ⊂ C \ {0}}.

Lemma 4.8. The set of parameters D0 is open.

Proof. To prove the Lemma, first we will prove that ∀ compact set K ⊂ C, ∃ a neigh-

borhood Û of ∞ such that ∀ λ ∈ K, fλ(Û) ⊆ Û .

Consider the function h(z) = 1
z

and define gλ = h−1 ◦ fλ ◦ h. Then

gλ(z) =
1

fλ(
1
z
)

=
z3

z2 − z − λ

and

g
′

λ =
z4 − 2z3 − 3λz2

(z2 − z − λ)2
.

We have gλ(0) = 0 and g
′

λ(0) = 0. For some small 0 < ε < 1, define U = {(λ, z) ∈ K × Ĉ :

|g′λ(z)| < 1 − ε}. Then U 6= ∅ since K × {0} ⊆ U , that is U is a non-empty open set.

There exist U, V ⊂ C such that K ⊂ U , {0} ⊂ V with U × V ⊂ U . Since V is an open set

containing 0, without loss of generality we may assume that V = B(0, δ) for some δ > 0. By

Mean Value Inequality, for all z ∈ V = B(0, δ)

|gλ(z)− gλ(0)| ≤ (1− ε)|z − 0| ⇒ |gλ(z)| < (1− ε)δ < δ

and so we have gλ(V ) ⊆ V for all λ ∈ K.

Now h is an open map, implies h(V ) is open and h(0) =∞ ∈ h(V ). Denote∞ ∈ h(V ) =

Û , an open neighborhood of ∞. Since gλ = h−1 ◦ fλ ◦ h, for all λ ∈ K we have

fλ(Û) = fλ(h(V )) = h(gλ(V )) ⊆ h(V ) = Û .

Now we will prove the Lemma 4.8.

Since λ = −1
3
⇒ c− 1

3
= 1 is a double critical point and limn→∞ f

n
− 1

3

(1) = 0, so λ = −1
3
/∈

D0. Fix λ0 ∈ D0. Consider the compact set K = B̄(λ0, 1). Then there exists a neighborhood

Û of ∞ such that

∀ λ ∈ K, fλ(Û) ⊆ Û .
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Since λ0 ∈ D0, there exists cλ0 ∈ Crit(fλ) and a positive integer N = N(λ0) such that

fnλ0
(cλ0) ∈ Û ∀ n ≥ N(λ0).

Take a small neighborhood of λ0, say B(λ0, r), where r is small enough so that −1
3
/∈

B(λ0, r) ⊆ B̄(λ0, 1). Define

X = {(λ, c) : λ ∈ B(λ0, r) and c ∈ Crit(fλ)},

and define a function

ρ : X → B(λ0, r) by ρ((λ, c)) = λ.

Then ρ is analytic and since the gradient of the function ρ is ∇ρ = 1 at any point (λ, c) ∈ X,

ρ does not have any critical point and hence there is no critical value of ρ in B(λ0, r). Then

by Inverse Function Theorem, there exist a neighborhood N of (λ0, c) and a neighborhood

M of λ0 = ρ((λ0, c)) such that ρ : N → M is a bijection and ρ−1 : M → N is analytic. We

can choose r > 0 small enough so that M = B(λ0, r). Then ρ−1 : B(λ0, r)→ X, λ 7→ (λ, c),

is analytic. Thus there exists a map ρ−1 : B(λ0, r) → N given by λ 7→ cλ ∈ Crit(fλ) which

is analytic.

Define

φ : B(λ0, r)→ Û by φ(λ) = f
N(λ0)
λ (cλ) ∈ Û .

Then φ is continuous and φ(λ0) ∈ Û , which imply φ−1(Û) is open and λ0 ∈ φ−1(Û) ⊆ K. It

is enough to show that φ−1(Û) ⊆ D0.

Let γ ∈ φ−1(Û) be arbitrary. Then φ(γ) ∈ Û implies

fN(λ0)
γ (cγ) ∈ Û ⇒ fnγ (fN(λ0)

γ (cγ)) ∈ fnγ (Û) ⊆ Û .

Since ∞ ∈ h(B(0, δ)) = Û and h is a Möbius transformation, we have Û = B(∞, 1
δ
). Now

fλ : B(∞, 1
δ
) → B(∞, 1

δ
) is an analytic function with fλ(∞) = ∞ and fλ(φ(λ)) ∈ B(∞, 1

δ
)

for all λ ∈ φ−1(B(∞, 1
δ
)), then by Schwarz Lemma

lim
n→∞

fnγ (Û) = lim
n→∞

fnγ (B(∞, 1

δ
)) =∞,
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hence γ ∈ D0 and so D0 is open. �

Since fλ does not have any finite attracting or any non-zero parabolic periodic point for

each λ ∈ D0 and the Julia set J(fλ) does not contain any critical point, so by Theorems

2.13, 2.14 and Corollary 2.15 we get

Corollary 4.9. The only non-zero finite fixed point of fλ, − 1
λ

, is a repelling fixed point

with multiplier |1− 1
λ
| > 1.

By Corollary 4.9, since each λ ∈ D0 safisfies |1− 1
λ
| > 1, we see that D0 is contained in

some left half-plane.

Corollary 4.10. The set D0 ( {λ = a+ ib ∈ C \ {0} : a < 1
2

and b ∈ R}.

The main result of this paper is the real analyticity of the Hausdorff dimension function

D0 → (1
2
, 2) : λ 7→ HD(J(fλ)). The proof is given in Chapter (7). The theory of parabolic

and hyperbolic graph directed Markov systems with infinite number of edges has been used

in the proof.

Observation 4.11. Consider the family of cubic polynomials {fa,b}a,b∈C\{0}, where

fa,b(z) = z(1− az − bz2).

We can conjugate fa,b to ga,b via the Möbius transformation h(z) = 1
a
z, where

ga,b(z) = z(1− z − b

a2
z2).

If fa,b is parabolic, ga,b has a parabolic fixed point at 0 with multiplicity 2 and −a2

b
is a

repelling fixed point with multiplier 1− a2

b
. Define the function

κ : C \ {0})× (C \ {0})→ C \ {0}

κ((a, b)) =
b

a2
.

Also define D̃0 = κ−1(D0). Then the Hausdorff dimension function D̃0 3 (a, b) 7→ HD(J(fa,b))

is real analytic.

41



CHAPTER 5

GRAPH DIRECTED MARKOV SYSTEMS

The theory of parabolic and hyperbolic graph directed Markov systems with infinite

number of edges is used in the proof of real analyticity of the Hausdorff dimension function.

This chapter is a review of the relavent definitions and theorems of Graph Directed Markov

Systems (GDMS). The first section introduces the basic ideas of graph directed Markov sys-

tems. Definitions of hyperbolic and parabolic graph directed Markov systems are introduced

in sections two and three respectively.

5.1. Introduction

Graph directed Markov systems are based upon a directed multigraph and an associated

incidence matrix, (V,E, i, t, A). The multigraph consists of a finite set V of vertices and a

countable (either finite or infinite) set of directed edges E and two functions i, t : E → V .

For each edge e, i(e) is the initial vertex of the edge e and t(e) is the terminal vertex of e.

The edge goes from t(e) to i(e). Also, a function A : E × E → {0, 1} is given, called an

incidence matrix. The matrix A is an edge matrix. A determines which edges may follow a

given edge. So, the incidence matrix has the property that are given with the property that

if Aab = 1, then t(a) = i(b). But, in this paper we are considering Aab = 1 if and only if

t(a) = i(b). We will consider finite and infinite walks through the vertex set consistent with

the incidence matrix. Thus, we define the set of infinite A-admissible words

E∞A = {ω ∈ E∞ : Aωiωi+1
= 1 for all i ≤ 1},

by En
A we denote the set of all subwords of E∞A of length n ≥ 1, and by E∗A we denote the

set of all finite subwords of E∞A . Given ω ∈ E∞A by |ω| we denote the length of the word ω,
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i.e. the unique n such that ω ∈ En
A. If ω ∈ E∞A and n ≥ 1, then

ω|n = ω1 · · ·ωn.

A Graph Directed Markov System (GDMS) consists of a directed multigraph and an in-

cidence matrix together with a finite set of non-empty compact metric spaces {Xv}v∈V , a

number s, 0 < s < 1, and for every e ∈ E, a 1-to-1 contraction φe : Xt(e) → Xi(e) with a

Lipschitz constant ≤ s. That is, the set

S = {φe : Xt(e) → Xi(e)}e∈E

is called a GDMS.

5.1.1. Metric and Shift Map

Given ω, τ ∈ E∞A , we define ω ∧ τ ∈ E∞A ∪ En
A to be the longest initial block common to

both ω and τ . For each α > 0, we define a metric dα on E∞A by setting dα(ω, τ) = e−α|ω∧τ |.

These metrics are all equivalent and induce the same topology and Borel sets. A function

is uniformly continuous with respect to one of these metrics if and only if it is uniformly

continuous with respect to all. Also, a function is Hölder continuous with respect to one of

these metrics if and only if it is Hölder continuous with respect to all; of course the Hölder

order depends on the metric. If no metric is specifically mentioned, we take it to be d1.

We will consider the left shift map σ : E∞A → E∞A defined by dropping the first entry of

ω ∈ E∞A . Sometimes we also consider the shift as defined on words of finite length.

5.1.2. Limit Set of the System S

The main object of interest in this paper is the limit set of the system S and objects

associated to this set. We now describe the limit set. Assume that φe(Xt(e)) ⊆ Xi(e) for all

e ∈ E. Now for each ω ∈ E∗A, say ω ∈ En
A, we consider the map coded by ω = ω1ω2 · · ·ωn :

φω = φω1 ◦ φω2 ◦ · · · ◦ φωn : Xt(ωn) → Xi(ω1),

where t(ω) = t(ωn) and i(ω) = i(ω1).
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Lemma 5.1. For all ω ∈ E∞A , the intersection
⋂
n≥0 φω|n(Xt(ωn)) is a singleton.

proof. For every e ∈ E, diam(φe(Xt(e))) ≤ s · diam(Xt(e)) for 0 < s < 1. So for every

ω ∈ E∞A , the sets {φω|n(Xt(ωn))}n≥1 form a descending sequence of non-empty compact sets

and therefore
⋂
n≥0 φω|n(Xt(ωn)) 6= ∅. Since for every n ≥ 1,

diam(φω|n(Xt(ωn))) ≤ sn · diam(Xt(ωn)) ≤ sn ·max{diam(Xv) : v ∈ V },

we conclude that the intersection
⋂
n≥0 φω|n(Xt(ωn)) is a singleton. �

Lemma 5.2. limn→∞supω∈EnA{diam(φω(Xt(ω)))} = 0.

Define the coding map π : E∞A → X :=
⋃
v∈V Xv by

π(ω) =
⋂
n≥0

φω|n(Xt(ωn)), ω ∈ E∞A .

The map π is uniformly continuous with respect to the metric dα for some fixed α. The set

J = JS = π(E∞A )

is called the limit set of the GDMS S. It satisfies the equation

J =
⋃
e∈E

φe(J ∩Xt(e)).

If the set of vertices V is a singleton, then the GDMS is called an Iterated Function System.

Definition 5.3. A Graph Directed Markov System S is called Conformal Graph Directed

Markov System (CGDMS) if the following conditions are satisfied.

(1) For every vertex v ∈ V , Xv is a compact connected subset of a Euclidean space Rd

(the dimension d is common for all v ∈ V ) and Xv = IntXv.

(2) (Open Set Condition) (OSC) ϕa(IntXt(a))
⋂
ϕb(IntXt(b)) = ∅ for all a, b ∈ E and

a 6= b.

(3) For every vertex v ∈ V there exists an open connected set Wv ⊃ Xv such that for

every e ∈ E with t(e) = v, the map φe extends to a C1−conformal diffeomorphism

of Wv into Wi(e).
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(4) (Cone Property) There exists γ, l > 0, γ ≤ π
2
, such that for every v ∈ V and for

every x ∈ Xv ⊂ Rd there exists an open cone Con(x, γ, l) ⊂ IntXv with vertex x,

central angle of measure γ, and altitude l which may depend on x.

(5) There are two constants α > 0 and L ≥ 1 such that

||ϕ′e(y)| − |ϕ′e(x)|| ≤ L · ||(ϕ′e)−1||−1||y − x||α

for all e ∈ E and all x, y ∈ Wt(e), where |ϕ′ω(x)| means the norm of the derivative.

5.2. Parabolic Graph Directed Markov Systems

In this section we will introduce the definitions of parabolic edges and parabolic graph

directed Markov systems. Assume that there exists a non-empty finite subset Ω ⊂ E such

that t(e) = i(e) for every e ∈ Ω. Call a word ω ∈ E∗A hyperbolic if either ω|ω| /∈ Ω or

ω|ω|−1 6= ω|ω| and ω|ω| ∈ Ω.

Definition 5.4. A Graph Directed Markov System S is called Parabolic (Conformal) Graph

Directed Markov System (PGDMS) if the following conditions are satisfied.

(1) For every vertex v ∈ V , Xv is a compact connected subset of a Euclidean space Rd

(the dimension d is common for all v ∈ V ) and Xv = IntXv.

(2) ϕe(Xt(e)) ⊆ Xi(e) for all e ∈ E. this enables us to define for every ω ∈ E∗A, say

ω ∈ En
A, the map ϕω := ϕω1 ◦ϕω2 ◦ · · · ◦ϕωn : Xt(ωn) → Xi(ω1). Put also t(ω) = t(ωn)

and i(ω) = i(ω1).

(3) (Open Set Condition) (OSC) ϕa(IntXt(a))
⋂
ϕb(IntXt(b)) = ∅ for all a, b ∈ E and

a 6= b.

(4) (Cone Property) There exists γ, l > 0, γ ≤ π
2
, such that for every v ∈ V and for

every x ∈ Xv ⊂ Rd there exists an open cone Con(x, γ, l) ⊂ IntXv with vertex x,

central angle of measure γ, and altitude l which may depend on x.

(5) If ω ∈ E∗A is a hyperbolic word, then ϕω : Xt(ω) → Xi(ω) extends to a C2-conformal

map from Wt(ω) to Wi(ω). This conformal map is defined by the same symbol ϕω.

45



(6) There are constants α > 0 and L ≥ 1 such that

||ϕ′e(y)| − |ϕ′e(x)|| ≤ L · ||ϕ′e||||y − x||α

for all e ∈ E and all x, y ∈ Wt(e).

(7) (Bounded Distortion Property) There exists K ≥ 1 such that for every hyperbolic

word ω ∈ E∗A and all x, y ∈ Wt(ω),

|ϕ′ω(y)|
|ϕ′ω(x)|

≤ K.

(Here and in the sequel for any conformal mapping ϕ, |ϕ′(z)| denotes the similarity

factor (equivalently its norm as a linear map from Rd into Rd) of the differential

ϕ′(z) : Rd → Rd. In addition, if ϕ : Wv → Rd for some v ∈ V , then

||φ′|| := sup{|φ′(x)| : x ∈ Wv}.)

(8) ∃ s < 1 such that for every hyperbolic word ω ∈ E∗A, ||ϕ′ω|| ≤ s.

(9) For every e ∈ Ω, t(e) = i(e) and there exists a unique fixed point xe of the map

ϕe : Xt(e) → Xi(e). In addition, |ϕ′e(xe)| = 1.

(10) For every e ∈ Ω,

lim
n→∞

diam(ϕen(Xt(e))) = 0.

This implies that
∞⋂
n=0

ϕen(Xt(e)) = {xe}.

The set Ω is referred to as the set of parabolic edges, the maps ϕe, e ∈ Ω, are called

parabolic maps, and xe, e ∈ Ω, are called parabolic fixed points. If Ω = ∅, then the system

S = {ϕe : e ∈ E} is called hyperbolic or CGDMS.

We could have in principle provided a somewhat less restrictive definition of a PGDMS

allowing finitely many parabolic periodic points (fixed points of ϕω, ω ∈ E∗A) that are not

necessarily fixed points, but then passing to a sufficiently large iterate Sn = {ϕω : ω ∈ En
A}

we would end up in a parabolic system as described above. Notice also that our assumptions

imply each map ϕω : Xt(ω) → Xi(ω) such that i(ω) = t(ω) to have a unique fixed point,

46



call it xω, and that the diameters diam(ϕnω(Xt(ω))) converge to zero exponentially fast unless

ω ∈ Ω∗ = {ek : for some k > 1 and e ∈ Ω}.

Definition 5.5. The incidence matrix A is called finitely irreducible if there exists a finite

set Λ ⊆ E∗A such that for all α, β ∈ E∗A there exists γ ∈ Λ such that αγβ ∈ E∗A. The system

S is called finitely irreducible if the matrix A is finitely irreducible.

Definition 5.6. The incidence matrix A is called finitely primitive if there exists a finite

set Λ ⊆ E∗A consists of the words with the same length such that for all α, β ∈ E∗A there

exists γ ∈ Λ such that αγβ ∈ E∗A. The system S is called finitely primitive.

Definition 5.7. The incidence matrix A is called properly finitely (pf) irreducible if there

exists a finite set Λ ⊆ E∗A such that for all α, β ∈ E∗A there exists γ ∈ Λ such that αγβ ∈ E∗A
and for every two letters a, c ∈ E \ Ω there exists β ∈ Λ with β1, β|β| ∈ E \ Ω such that

aβc ∈ E∗A.

5.2.1. Topological Pressure for PGDMS

Here we will recall the definition of pressure function for a PGDMS. Define the function

ζ : E∞A → R by the formula

ζ(ω) = − log |ϕ′ω1
(π(σω))|.

It can be proved in the same way as Proposition 8.2.1 in [15] that the function ζ is accept-

able in the sense of [15]. This implies that for every t ∈ R the topological pressure P (σ, tζ)

makes a meaningful sense as introduced in [15], and all versions of the variational princi-

ple established in [15] hold. One can also define the topological pressure without involving

symbolic dynamics. Namely, see Lemma 2.1.2 in [15], for all t ≥ 0

P (σ, tζ) = P (t) := lim
n→∞

1

n
log

∑
ω∈E∞A

||ϕ′ω||t∞.

Observe that if the set of edges E is infinite and the matrix A contains sufficiently many 1s,

for example, if A is finitely irreducible, then P (0) = +∞ and it may happen that P (t) = +∞
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for some positive t. It is therefore natural to introduce the parameter

θ = θs := inf{t ≥ 0 : P (t) < +∞}.

We call θ the finiteness parameter of the system S.

Definition 5.8. Given an exponent t ≥ 0, a Borel probability measure m on X is said to

be t-conformal provided that m(J) = 1 and the following two conditions are satisfied.

(i) m
(
ϕa(Xt(a)) ∩ ϕb(Xt(b))

)
= 0 for all a, b ∈ E with a 6= b.

(ii) m(ϕe(A)) =
∫
A
|ϕ′e|tdm for every Borel set A ⊆ Xt(e) and e ∈ E.

It is easy to prove by induction that conditions (i) and (ii) above continue to hold with

E replaced by E∗A. The following theorem ([15]) proves that the image of all shift-invariant

measure satisfies a measure theoretic open set condition for a PGDMS. Note that this result

holds for a CGDMS (hyperbolic systems) (see [15]).

Theorem 5.9. If µ is a shift-invariant Borel probability measure on E∞A , then

µ ◦ π−1(φω(Xt(ω)) ∩ φτ (Xt(τ))) = 0

for all incomparable words ω, τ ∈ E∞A .

Recall that if µ is a Borel probability measure supported on X, we denote the Hausdorff

dimension of µ by HD(µ) and defined by the infimum of the Hausdorff dimensions of sets

with µ measure 1. Let α = {[e] : e ∈ E} be the partition of E∞A into initial cylinders of

length 1. We let Hµ(α) denote the entropy of the partition α with respect to µ. The following

theorem relating the Hausdorff dimension of a measure and the ratio of the entropy to the

Lyapunov exponent was proved for PGDMS in ([13]).

Theorem 5.10. If µ is a shift-invariant ergodic Borel probability measure on E∞A , such that

Hµ(α) < ∞, χµ(σ) =
∫
ζdµ < ∞ and either χµ(σ) > 0 or hµ(σ) > 0 (hµ(σ) > 0 implies

χµ(σ) > 0), then

HD(µ ◦ π−1) =
hµ(σ)

χµ(σ)
.
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Assume from now on that the system S is finitely irreducible, i.e. the incidence matrix

A is finitely irreducible. Let

h = hs := HD(Js) and let β = βS = sup{HD(µ ◦ π−1)},

where the supremum is taken over all ergodic invariant probability shift-invariant mea-

sures on E∞A , and let e be the minimum of all exponents t of all t-conformal measures on Js.

With only minor modifications one can prove in the same way as Theorem 8.3.6 in ([15]),

the following version of Bowen’s formula.

Theorem 5.11. h = β = e = the minimal zero of the pressure function t 7→ P (t).

In order to get a better appreciation of the right-hand side of this theorem, let us formu-

late the following proposition describing the shape of the graph of the pressure function. Its

proof, up to minor modifications, is the same as the proof of the Proposition 8.2.5 in ([15]).

Proposition 5.12. The pressure function P (t) has the following properties.

(1) P (t) ≥ 0 for all t ≥ 0,

(2) P (t) > 0 for all 0 ≤ t < h,

(3) P (t) = +∞ for all 0 ≤ t < θ,

(4) P (t) < +∞ for all t > θ,

(5) P (t) = 0 for all t ≥ h,

(6) P (t) is non-increasing,

(7) P (t) is strictly decreasing on [θ, h],

(8) P (t) is convex and continuous on (θ,∞).

Remark 5.13. It is possible that h = β = θ. We will call such systems “strange”. Also,

although it can happen that θ = 0, we always have P (0) ≥ log 2 and therefore h > 0.

5.3. Associated Hyperbolic Conformal Graph Directed Markov System

In this section we describe how to associate to our parabolic system a new system which

is hyperbolic and we apply its properties to study the original PGDMS ( see [13]). Following
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([13]) and Section 8.4 from ([15]) we will do it now. So, given a PGDMS S, the corresponding

hyperbolic system Ŝ is defined as follows.

The set of vertices V̂ = V . The set of edges

Ê = {anb : n ≥ 1, a ∈ Ω, b 6= a,Aab = 1} ∪ (E \ Ω) .

The incidence matrix Â : Ê × Ê → {0, 1} is naturally defined by requiring that Âst = 1 if

and only if As|s|t1 = 1, where |s| and t1 are understood here in the sense of the set of edges

E. The functions t and i are defined on Ê by their restrictions to Ê treated as a subset

of E∗A and by the same procedure the maps ϕe, e ∈ Ê, are defined. Recall that a finitely

irreducible parabolic system S is called properly finitely (pf) irreducible if and only if for

every two letters a, c ∈ E \ Ω there exists β ∈ Λ, Λ resulting from finite irreducibility of S,

such that aβc ∈ E∗A and β1, β|β| ∈ E \ Ω. Two basic facts about the system

Ŝ = {φanb : n ≥ 1, a ∈ Ω, b 6= a,Aab = 1} ∪ {φk : k ∈ E \ Ω}

that make them useful in study the system S are followings.

Theorem 5.14. If S is a PGDMS, then Ŝ is a (hyperbolic) CGDMS. If S is pf-irreducible,

then Ŝ is finitely irreducible.

Proof. The proof that Ŝ is a CGDMS is a minor modification of the proof of Theorem 8.4.2

in [15]. So, suppose that S is pf-irreducible and let Λ be the corresponding finite set contained

in E∗A. Shortening the words of Λ if necessary, we may assume without loss of generality

that no word of Λ contains a subword of the form e2, e ∈ E. Call all such words reduced. If

a word in E∗A can be split into blocks such that it becomes a member of Ê∗
Â

, slightly abusing

terminology, we say that this word is in Ê∗
Â

. Now notice that any reduced word ω ∈ E∗A

with ω|ω| ∈ E \ Ω is in Ê∗
Â

. Notice also that for every reduced word γ ∈ E∗A at least one

of the words γ or γ||γ|−1 is in Ê∗
Â

. In order to show that Ŝ is finitely irreducible, consider

arbitrary two elements α, β ∈ Ê. If both α, β ∈ E \ Ω, then by pf-irreducibility of S there

exists a word γ ∈ Λ such that αγβ ∈ E∗A and γ|γ| ∈ E \ Ω. But then, by the first of the

above observations γ ∈ Ê∗
Â

, and we are done in this case. So, suppose that β = anb, where
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n ≥ 1, a ∈ Ω, and b 6= a and α is any word in Ê. By finite irreducibility of S there exists

γ ∈ Λ such that αγa ∈ E∗A. If γ ends with aq, q ≥ 1, remove from γ the last block aq. If

γ ∈ Ê∗
Â

, then we are done. Otherwise, γ = γ̂c, where γ̂ ∈ Ê∗
Â

and c ∈ Ω \ {a}. But then

αγ̂(ca)anb ∈ Ê∗
Â

and γ̂(ca) ∈ Ê∗
Â

. So, we are also done in this case. In order to end the proof

notice that all the words in Ê∗
Â

we have constructed above to join all α and β in Ê led from

Λ to a finite set, say Λ̂. �

Let JŜ be the limit set generated by the system Ŝ. It is obvious that JŜ ⊂ JS. The only

infinite words generated by S but not generated by Ŝ are of the form ωe∞, where ω is a

finite word and e is a parabolic edge. Since E is a countable set, the set

{ωe∞ ∈ E∞A : |ω| <∞ and e ∈ Ω}

is countable. So, we have the following.

Theorem 5.15. The limit sets JS and JŜ of the systems S and Ŝ respectively differ only

by a countable set and hence have the same Hausdorff dimension. In fact, JŜ ⊂ JS and

JS \ JŜ ⊆ πS ({ωe∞ ∈ E∞A : |ω| <∞ and e ∈ Ω}).

Definition 5.16. A parabolic system S is called finite if and only if the set of edges E is

finite and it is called holomorphic if d = 2 and all maps ϕe, e ∈ E, are holomorphic, and

ϕ′e(xe) = 1 for all e ∈ Ω.

Definition 5.17. A CGDMS is said to be regular if there is some t ≥ 0 such that P (t) = 0

and the system is said to be strongly regular if there exists t ≥ 0 such that 0 < P (t) <∞.

Definition 5.18. A family {φe}e∈F is said to be a cofinite subsystem of a system {φe}e∈E

if F ⊂ E and the difference E \ F is finite.

Definition 5.19. A CGDMS S = {φe : e ∈ E} is said to be cofinitely regular if each cofinite

subsystem {φe}e∈F⊂E of S is regular. The system S is hereditarily regular if and only if it is

cofinitely regular.
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Now consider a holomorphic parabolic system S. Then for every e ∈ Ω, we have the

following power series expansion about xe. Namely,

(15) ϕe(z) = z + ae(z − xe)1+pe +
∞∑
n=2

an(e)(z − xe)n+pe , pe ≥ 1.

Hence (see [14]),

|ϕ′en(z)| � n−
pe+1
pe

uniformly on compact subsets of Xt(e) \ {xe}. So, looking at the series,

∞∑
n=1

‖ϕ′anb‖t �
∞∑
n=1

n−
pe+1
pe

t, a ∈ Ω, b 6= a,

we immediately get the following.

Theorem 5.20. If S is a finite holomorphic parabolic graph directed system, then the asso-

ciated hyperbolic system Ŝ is cofinitely (= hereditarily) regular.
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CHAPTER 6

ANALYTIC FAMILIES OF PGDMS

First we want to recall from ([32]) a result about real analyticity of Hausdorff dimension

of limit sets. The key idea is the concept of regularly analytic families of conformal graph

directed Markov systems. We also want to weaken the assumptions of Section 4 from ([32])

at some important points. Let Λ ⊆ C and let {Sλ}λ∈Λ be a family of CGDMS with the same

set of vertices V , the same set of edges E, the same finitely irreducible matrix A, and the

same sets {Wv}v∈V with all Wv ⊆ C. Unlike ([32]), we do not assume the compact spaces

{Xλ
v }λ∈Λ to be all equal. Fix λ0 ∈ Λ and for every ω ∈ E∞A consider the function ψω : Λ→ C

given by the formula

ψω(λ) =

(
ϕλω1

)′
(πλ(σω))(

ϕλ0
ω1

)′
(πλ0(σω))

,

where πλ := πS(λ)
: E∞A → JSλ is the coding map induced by the CGDMS Sλ.

Definition 6.1. The family {Sλ}λ∈Λ is said to be analytic if For every e ∈ E and every

x ∈ Wt(e) the function Λ 3 λ 7→ ϕλe (x) ∈ Wt(e) ⊆ C is holomorphic.

Definition 6.2. The family {Sλ}λ∈Λ is called regularly analytic if it is analytic and satisfy

following conditions:

(a) the system {Sλ0} is strongly regular,

(b) there exists a constant D > 0 such that

sup{|ψω(λ)| : ω ∈ E∞A , λ ∈ Λ} ≤ D.

The basic fact resulting from this kind of analyticity is provided by the following.

Lemma 6.3. If {Sλ}λ∈Λ is an analytic family, then the family {Λ 3 λ 7→ πλ(ω) ∈ C : ω ∈

E∞A } consists of holomorphic maps and is normal.
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Proof. For every v ∈ V choose a point xv ∈ ∪v∈VXλ
v . Since all the maps Λ ×Wt(e) 3

(λ, z) 7→ φλe (z), e ∈ E, are holomorphic, all the maps Λ 3 λ 7→ φλω(xt(ω)), ω ∈ E∗A, are also

holomorphic. Since their ranges are all contained in the bounded subset of
⋃
v∈V Wv, the

family {Λ 3 λ 7→ φλω(xt(ω))}ω∈E∗A is normal. Therefore, since for every ω ∈ E∞A , the sequence

of functions
(

Λ 3 λ 7→ φλω|n(xt(ω|n))
)∞
n=1

converges pointwise to πλ(ω), we conclude that each

function Λ 3 λ 7→ πλ(ω), is holomorphic. Since the range of all these functions is contained

in the bounded subset of
⋃
v∈V Wv, the family {Λ 3 λ 7→ πλ(ω)}ω∈E∞A is normal. We are

done. �

As an immediate consequence of this Lemma (6.3) and Hartog’s Theorem, we get the

following.

Lemma 6.4. If {Sλ}λ∈Λ is a analytic family, then for every ω ∈ E∞A the map Λ 3 λ 7→

(ϕλω1
)′(πλ(ω)) ∈ C, is holomorphic.

Combining Lemma 6.4 and Lemma 6.3 we conclude that for every ω ∈ E∞A , the map

Λ 3 λ 7→ ψω(λ) ∈ C, is holomorphic. We shall prove the following.

Lemma 6.5. Suppose {Sλ}λ∈Λ is a regular analytic family of holomorphic systems. Then

for every ω ∈ E∞A there is a well-defined logψω : B(λ0, R) → C, the unique holomorphic

branch of logarithm of ψω such that logψω(λ0) = 0. In addition, the family of functions

{logψω}ω∈E∞A is bounded.

Proof: Indeed, fix R2 > 0 such that B(λ0, R2) ⊆ Λ. Fix ω ∈ E∞A . Since for all λ ∈

B
(
λ0,

R2

2

)
and all 0 < r ≤ R2

2
, we have

ψ′ω(λ) =
1

2πi

∫
∂B(λ0,r)

ψω(γ)

(γ − λ)2
dγ,

we thus obtain from (c) the following.

|ψ′ω(λ)| ≤ 1

2π

∫
∂B(λ0,r)

D

r2
|dγ| = D

r
.
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Since ψω(λ0) = 1, we therefore get for all λ ∈ B(λ0, r) that

|ψω(λ)− 1| = |ψω(λ)− ψω(λ0)| =
∣∣∣∣ ∫ λ

λ0

ψ′ω(γ)dγ

∣∣∣∣ ≤ ∫ λ

λ0

|ψ′ω(γ)||dγ| ≤ D

r
|λ− λ0|.

So, if we take r = R2

2
, then for all λ ∈ B(λ0, R3) with R3 = R2

8D
, we get

|ψω(λ)− 1| ≤ 1

4
.

Hence, for each ω ∈ E∞A there is a well-defined logψω : B(λ0, R3)→ C, the unique holomor-

phic branch of the logarithm of ψω such that logψω(λ0) = 0, and the family of functions

{logψω}ω∈Ê∞
Â

is bounded. The proof of Lemma 6.5 is complete. �

Setting κ(ω1) = 1 in the proof of Theorem 4.2 in ([32]) and having Lemma 6.3, Lemma 6.4

and Lemma 6.5, the proof of Theorem 4.2 in ([32]) goes verbatim to result in the following.

Theorem 6.6. If {Sλ}λ∈Λ is a regular analytic family of holomorphic conformal graph di-

rected Markov systems, then the function Λ 3 λ 7→ HD(J(Sλ)) ∈ R, is real-analytic.

Definition 6.7. An analytic family {Sλ}λ∈Λ of holomorphic CGDMS is called locally reg-

ularly analytic if for every λ0 ∈ Λ there is R0 > 0 such that the family {Sλ}λ∈B(λ0,R0) is

regularly analytic.

As an immediate consequence of the Theorem 6.6, we obtain the following.

Theorem 6.8. If {Sλ}λ∈Λ is a locally regularly analytic family of holomorphic CGDMS,

then the function Λ 3 λ 7→ HD(J(Sλ)), is real-analytic.

Suppose E, V,A,Ω and Wv ⊂ C, v ∈ V are given so that all the requirements imposed on

them by the definition of PGDMS are met. We assume in addition that A is pf-irreducible

and that the set of edges E is finite. Suppose Λ is an open connected subset of C.

Definition 6.9. A family {Sλ}λ∈Λ of holomorphic PGDMS, each of which is built with the

help of the above block E, V,A,Ω, {Wv}v∈V , is called holomorphic if and only if

(a) the functions Λ 3 λ 7→ xλe , e ∈ Ω, are constants for all λ ∈ Λ; call their common

values by xe, e ∈ Ω,
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(b) the family {Ŝλ}λ∈Λ is analytic,

(c) for every e ∈ Ω there exists Re > 0 such that B (xe, Re) ⊆ Wt(e), and the map

Λ×B (xe, Re) 3 (λ, z) 7→ ϕλe (z) is holomorphic,

and

(d) for every v ∈ V there exists a compact set Yv ⊆ Wv such that Xλ
v ⊆ Yv for all λ ∈ Λ.

Theorem 6.10. If {Sλ}λ∈Λ is a holomorphic family of holomorphic PGDMS, then there

exists l ≥ 1 such that the family {Ŝlλ}λ∈Λ is locally regularly analytic.

Proof. In virtue of Proposition 9.3.9 from ([15]), there exists l ≥ 1 such that
(
ϕlλ
)′

(xe) = 1

for every e ∈ Ω. This is the integer l claimed in our theorem. For the ease of exposition

we replace Sλ by Slλ and assume without loss of generality that l = 1. The family {Ŝλ}λ∈Λ

is analytic by assumption. Condition (b) of regular analyticity of {Ŝλ}λ∈Λ is satisfied by

Theorem 5.20. So, we are only left to verify condition (c) of regular analyticity of the family

{Ŝλ}λ∈Λ. Towards this end a detailed analysis of parabolic maps ϕλa, a ∈ Ω, λ ∈ Λ, is needed.

If we dealt with a one single parabolic system the analysis done in [14] (comp. Section 9.3

in [15]) would suffice. But we want the big O constant in (9.4) in [15] to be independent

of λ lying in a sufficiently small neighborhood of some arbitrarily chosen and then fixed

parameter λ0 ∈ Λ. So, fix e ∈ Ω. Then with R = Re, we have that

ϕλe (z) = z − aλe (z − xe)p+1 +
∞∑
n=2

aλn(e)(z − xe)n+p

for all λ ∈ Λ and all z ∈ B(xe, R), where p = pe. It follows from condition (c) that all the

functions λ 7→ aλe and aλn(e), n ≥ 2, are analytic. Translating and rotating the plane, we

may assume without loss of generality that xe = 0 and one of the contracting directions of

ϕλ0
e coincides with (0,+∞), the positive ray emanating from 0, meaning that aλ0

e ∈ R and

aλ0
e > 0. Further on, making a homothetic change of variables, we may assume that

(16) aλ0 =
1

p
.
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Further, rotating the plane again, we may of course assume that the contracting direction

associating with Xλ0

t(e) coincides with (0,+∞). Since in the rest of this proof all iterates

involving parabolic maps are of the form φλanb, where a ∈ Ω, and b 6= a (b can be an empty

word), enlarging the sets Xλ0

t(e), Yt(e), and W λ0

t(e) appropriately, we may further assume without

loss of generality that some initial segment of [0,+∞) is contained in Xλ0

t(e) ⊆ Yt(e) ⊆ W λ0

t(e).

We also skip for simplicity the dependence on e. The power series expansion above takes

then the following form

ϕλ(z) = z − aλzp+1 +
∞∑
n=2

an(λ)zn+p, z ∈ B(0, R),

where aλ := aλe , ϕλ := ϕλe .

Now, let p
√
z be the holomorphic branch of the p-th radical defined on C \ (−∞, 0] and

sending 1 to 1. Define then H : C \ (−∞, 0]→ C by the formula

H(z) =
1
p
√
z
,

and consider the conjugate maps

ϕ̃λ = H−1 ◦ ϕλ ◦H : C \ (−∞, 0]→ C,

where H−1(w) = 1
wp

; in fact ϕ̃λ is defined on U = H−1(B(0, R)) \ (−∞, 0]. For all z ∈ U we

have

(17)

ϕ̃λ(z) = H−1 (ϕλ(H(z))) = H−1

(
H(z)− aλH(z)p+1 +

∞∑
n=2

an(λ)H(z)n+p

)

= H−1

(
1
p
√
z
− aλz−

p+1
p +

∞∑
n=2

an(λ)z−
p+n
p

)

= H−1

(
1
p
√
z

(
1− aλz−1 +

∞∑
n=2

an(λ)z−
p+n−1

p

))

=
z(

1− aλz−1 +
∑∞

n=2 an(λ)z−
p+n−1

p

)p
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Set w = H(z) = z−
1
p , put

gλ(w) = 1− aλwp +
∞∑
n=2

an(λ)wp+n−1

and ĝλ(w) = (gλ(w))−p. Then (λ,w) 7→ gλ(w) is a holomorphic function of λ and w, and

(18)

ĝλ(0) = 1,
∂kĝλ(w)

∂wk
|(λ,0) = 0 for all k = 1, 2, · · · , p− 1, and

∂pĝλ
∂wp
|(λ,0) = (−1)p+1aλ(2p)!

2
.

Therefore, we have the following power series expansion

ĝλ(w) = 1 + bλw
p +

∞∑
n=1

bn(λ)wp+n

for (λ,w) ∈ D2 ((λ0, 0);R) with some R > 0 sufficiently small, where D2(a; r) ⊆ C2 is the

polydisk centered at a and of radius r. Going back to the variable z = w−p, we thus get

from (17) that

(19)

ϕ̃λ(z) = z

(
1 + bλ

1

z
+

1

z

∞∑
n=1

bn(λ)H(z)n

)

= z + bλ +
∞∑
n=1

bn(λ)H(z)n

for all λ ∈ B(λ0, R) and all z ∈ U . Note that because of (16) and (18), bλ0 = (−1)p+1(2p−1)!.

If the number of petals p is odd (which is the case for the function fλ for each λ ∈ D0

(see chapter 4)), then bλ0 is positive, otherwise bλ0 is negative. We can use the change

of coordinate in order for bλ0 to be positive. Without loss of generality, we have bλ0 =

(2p− 1)!. Since the series
∑∞

n=1 bn(λ)wn converges absolutely uniformly on compact subsets

of D2 ((λ0, 0);R), the number

M = sup

{
∞∑
n=1

|bn(λ)||w|n : (λ,w) ∈ D2

(
(λ0, 0);

R

2

)}

is finite. Hence, for all λ ∈ B
(
λ0,

R
2

)
and all

z ∈ U1 := H−1

(
B

(
0,
R

8
min{1,M−1}

))
\ (−∞, 0] ⊆ U
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we get

(20)

∣∣∣∣∣
∞∑
n=1

bn(λ)H(z)n

∣∣∣∣∣ ≤
∞∑
n=1

|bn(λ)||H(z)|n ≤
∞∑
n=1

|bn(λ)||z|−
n
p

=
∞∑
n=1

|bn(λ)|
(
R

2

)n((
R

2

)p
|z|
)−n

p

≤M

((
R

2

)p
|z|
)− 1

p

=
2M

R
|z|−

1
p ≤ 1

4
.

Combining this estimate with (19), we get that if Re(z) >
(

8
R

max{1,M}
)p

, then

(21) Re (ϕ̃λ(z)− (z + bλ)) = Re

(
∞∑
n=1

bn(λ)H(z)n

)
≥ −

∣∣∣∣∣
∞∑
n=1

bn(λ)H(z)n

∣∣∣∣∣ ≥ −1

4
.

Since bλ0 = (2p − 1)! ∈ R and (λ,w) 7→ ĝλ(w) is holomorphic, there exists R1 ∈
(
0, R

2

)
so

small that |bλ − bλ0 | < 1
2
, that is

(22) bλ0 −
1

2
< Rebλ < bλ0 +

1

2
and |bλ| ≤ bλ0 +

1

2

for all λ ∈ B (λ0, R1). It then follows from (21) and (22) that

(23)

Re (ϕ̃λ(z)) ≥ Re (z + bλ)−
1

4

= Re(z) + Re (bλ)−
1

4

> Re(z) + bλ0 −
1

2
− 1

4

= Re(z) + bλ0 −
3

4

for all λ ∈ B (λ0, R1) and all

z ∈ U2 :=

{
z ∈ C : Re(z) >

(
8

R
max{1,M

})p
} ⊆ U1.

Note that bλ0 − 3
4
> 0 since bλ0 ≥ 1. Analogously,

(24) |ϕ̃λ(z)| ≤ |z|+ |bλ|+
1

4
≤ |z|+ bλ0 +

1

2
+

1

4
= |z|+ bλ0 +

3

4
.

Set

K1 = bλ0 −
3

4
and K2 = bλ0 +

3

4
.
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From (23) we get ϕ̃λ(U2) ⊆ U2 for all λ ∈ B (λ0, R1), and by a straightforward induction of

(23) and (24), we get

(25) Re(z) + nK1 ≤ Re (ϕ̃nλ(z)) ≤ |ϕ̃nλ(z)| ≤ |z|+ nK2

for all λ ∈ B (λ0, R1), all z ∈ U2 and all n ≥ 0, where K1 < K2. It follows from (19) that

(26) ϕ̃′λ(z) = 1 +
∞∑
n=1

bn(λ)nH(z)n−1H ′(z) = 1− 1

p
z−1

∞∑
n=1

bn(λ)nH(z)n.

Now notice that there exists a constant Q ≥ 1 such that n
(
R
4

)n ≤ Q
(
R
2

)n
for all n ≥ 0.

Proceeding as in (20), we thus get for all λ ∈ B (λ0, R2) ⊆ B
(
λ0,

R
4

)
and all z ∈ U2 that

(27)

∣∣∣∣∣
∞∑
n=1

nbn(λ)H(z)n

∣∣∣∣∣ ≤
∞∑
n=1

|bn(λ)|n
(
R

4

)n((
R

4

)p
|z|
)−n

p

≤ Q
∞∑
n=1

|bn(λ)|
((

R

4

)p
|z|
)−n

p

≤MQ

((
R

4

)p
|z|
)− 1

p

= 4MQR−1|z|−
1
p ,

where writing the last inequality (”≤”) sign we were assuming that |z| ≥
(

4
R

)p
. Assume

from now on that in the definition of U2, the number Re(z) > T >
(

4
R

)p
for all z ∈ U2.

Inserting (27) to (26), we get that

(28) |ϕ̃′λ(z)− 1| ≤ 4MQ(pR)−1|z|−
p+1
p .

Write qλ(z) = ϕ̃′λ(z)− 1. By the Chain Rule we have,

(29) (ϕ̃nλ)′ (z) =
n−1∏
j=0

ϕ̃′λ
(
ϕ̃jλ(z)

)
=

n−1∏
j=0

(
1 + qλ

(
ϕ̃jλ(z)

))
.

But, with Q1 = 4MQ(pR)−1, combining (28) and (25), we get

|qλ
(
ϕ̃jλ(z)

)
| ≤ Q1|ϕ̃jλ(z)|−

p+1
p

≤ Q1 (Re(z) + jK1)−
p+1
p

≤ Q1 (T + jK1)−
p+1
p .
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Since the series
∑∞

j=0 (T + jK1)−
p+1
p converges, taking T > 0 sufficiently large and looking

at (29), we get the following.

Lemma 6.11. There exists a constant Q2 ≥ 1 such that

Q−1
2 ≤ | (ϕ̃nλ)′ (z)| ≤ Q2

for all (λ, z) ∈ B (λ0, R2)× U2 and all n ≥ 1.

Using the Chain Rule and the definition of ϕ̃λ, we obtain

| (ϕnλ)′ (H(z)) | = |
(
H ◦ ϕ̃nλ ◦H−1

)′
(H(z)) |

= |H ′ (ϕ̃nλ(z)) | · | (ϕ̃nλ)′ (z)| · |
(
H−1

)′
(H(z)) |

=
1

p
|ϕ̃nλ (z)|−

p+1
p | (ϕ̃nλ)′ (z)| · |H ′(z)|−1

= |z|−
p+1
p | (ϕ̃nλ)′ (z)| · |ϕ̃nλ(z)|−

p+1
p .

Combining this with Lemma (6.11) and (25) yields

(30) Q−1
2 |z|

− p+1
p (|z|+ nK2)−

p+1
p ≤ | (ϕnλ)′ (H(z)) | ≤ Q2|z|−

p+1
p (Re(z) + nK1)−

p+1
p

for all (λ, z) ∈ B (λ0, R2)× U2 and all n ≥ 0.

Now, for every α ∈ (0, π) let

Sα = {z ∈ C \ {0} : |Arg(z)| < α}.

Then for every α ∈
(

0, π
p

)
, we have H−1(Sα) = Sαp and H−1(0) =∞. Now, fix α ∈

(
0, π

2p

)
.

Since 0 < αp < π
2
, we conclude from the above that there exists r2 > 0 so small that

Re(H−1(z)) ≥ T for all z ∈ Sα ∩B(0, r2). We therefore get from (30) the following.

Lemma 6.12. For every compact set Γ ⊆ Sα ∩ B(0, r2), where α ∈
(

0, π
2p

)
, there exists a

constant QΓ ≥ 1 such that

Q−1
Γ n−

p+1
p ≤ | (ϕnλ)′ (z)| ≤ QΓn

− p+1
p

for all λ ∈ B (λ0, R2), all z ∈ Γ, and all n ≥ 1.
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As the essentially last step in the process of verifying the condition (c) of the regular

analyticity of the family {Ŝλ}λ∈Λ we prove first the following.

Lemma 6.13. Suppose that {Sλ}λ∈Λ is a holomorphic family of holomorphic PGDMS. Fix

λ0 ∈ Λ. Then there exist a constant Q ≥ 1 and radius R̃ > 0 such that

Q−1n−
p+1
p ≤ |

(
ϕλanb

)′
(z)| ≤ Qn−

p+1
p

for all a ∈ Ω, all b ∈ E \ {a} such that Aab = 1, all λ ∈ B
(
λ0, R̃

)
, all z ∈ Xλ

t(b), and all

n ≥ 1.

Proof. Since the set E is finite it suffices to produce Q and R̃ for a fixed pair (a, b) ∈

Ω × (E \ {a}) such that Aab = 1. Indeed, in virtue of Lemma 9.3.8 and Proposition 9.4.1

from ([15]), there exists k ≥ 1 so large that ϕλ0
anb

(
Xλ0

t(b)

)
⊆ Sα

4
∩B

(
xa,

r2
4

)
for all n ≥ k. By

the Bounded Distortion Property, we may farther assume with k ≥ 1 sufficiently large, and

r3 ∈ (0, r2], sufficiently small, that

ϕλ0

an+kb

(
Wt(b)

)
⊆ Sα

3
∩B

(
xa,

r2

3

)
and ϕλ0

akb

(
Wt(b)

)
∩B(xa, 2r3) = ∅

for all n ≥ 1. It then follows from analyticity of the function

Λ×Wt(b) 3 (λ, z) 7→ ϕλakb(z)

(since the family {Ŝλ}λ∈Λ is analytic) and from the compactness of the set Yt(b), along with

condition (d) of analyticity of Sλ, that there exists R̃ ∈ (0, R2) so small that

ϕλakb
(
Xλ
t(b)

)
⊆ ϕλakb

(
Yt(b)

)
⊆
(
Sα

2
∩B

(
xa,

r2

2

))
\B(xa, r3)

for all λ ∈ B
(
λ0, R̃

)
. But then

Γ :=
⋃

λ∈B(λ0,R̃)

ϕλ
akb

(
Xλ
t(b)

)
⊆ Sα

2
∩B

(
xa,

r2

2

)
\B(xa, r3) ⊆ Sα ∩B(xa, r2).

Since the middle set above is compact, so is Γ. Hence, applying Lemma 6.12, we conclude

that

(31) Q−1
Γ (n+ k)−

p+1
p ≤

∣∣∣(ϕλan+kb

)′
(z)
∣∣∣ ≤ QΓ(n+ k)−

p+1
p
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for all z ∈ Xλ
t(b), all n ≥ 1, and all λ ∈ B

(
λ0, R̃

)
. Since, clearly,

0 < inf
{∣∣∣(ϕλajb)′ (z)

∣∣∣ : 0 ≤ j ≤ k, z ∈ Yt(b), λ ∈ B
(
λ0, R̃

)}
≤ sup

{∣∣∣(ϕλajb)′ (z)
∣∣∣ : 0 ≤ j ≤ k, z ∈ Yt(b), λ ∈ B

(
λ0, R̃

)}
< +∞,

and since (
ϕλan+kb

)′
(z) =

(
ϕλan
)′ (

ϕλakb(z)
) (
ϕλakb

)′
(z),

using the Chain Rule, formula (31) yields the Lemma. �

Since the set E is finite and since for every λ ∈ Λ and every ω ∈ Ê∞
Â

, we have πλ(σ(ω)) ∈

Xλ
t(ω1), Lemma 6.13 yields immediately condition (c) of regular analyticity for the family

{Ŝλ}λ∈B(λ0,R̃). The proof of the Theorem 6.10 is complete. �

Combining Theorem 6.10 with Theorem 6.8 we get the following.

Corollary 6.14. If {Sλ}λ∈Λ is a holomorphic family of holomorphic PGDMS, then the

function Λ 3 λ 7→ HD (JSλ) is real-analytic.
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CHAPTER 7

PGDMS ASSOCIATED WITH Fλ, λ ∈ D0

In this chapter we will apply the machinery developed in the previous Chapters to study

the family of polynomials fλ(z) = z(1− z − λz2), λ ∈ D0, described in Chapter 4. The idea

is to associate to this family a holomorphic family of holomorphic parabolic graph directed

Markov systems whose limit sets coincide with the Julia sets of polynomials fλ up to a

countable set. Then to apply Corollary 6.14. Fix λ ∈ D0. Let Jλ be the Julia set of fλ

and let Kλ be the corresponding filled-in Julia set. Let Aλ(∞) be the basin of attraction

to ∞ and let Gλ be Green’s function for Aλ(∞) with the pole at ∞. It has the following

properties.

(32) Gλ (fλ(z)) = 3Gλ(z), z ∈ C,

Gλ ≥ 0,

and

(33) Kλ = G−1
λ (0).

Let

ρλ = Gλ

(
c

(2)
λ

)
> 0.

Fix any tλ ∈ (1
3
ρλ, ρλ). The set G−1

λ ([0, tλ]) consists of two connected components. Denote

by Ŵ 0
λ the component containing 0 and by Ŵ 1

λ the other one. It follows from (32) that

{fnλ
(
c

(2)
λ

)
: n ≥ 0}

⋂(
Ŵ 0
λ ∪ Ŵ 1

λ

)
= ∅, and from (33) that

{fnλ
(
c

(1)
λ

)
: n ≥ 0} ⊆ Ŵ 0

λ .

Consequently, {
fnλ

(
c

(1)
λ

)
, fnλ

(
c

(2)
λ

)
: n ≥ 0

}⋂
Ŵ 1
λ = ∅.
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7.1. Construction of Associated PGDMS

Starting a rather lengthy process of the definition of a PGDMS associated to fλ. Set

V = {1, 2, 3}.

Let f−1
λ,0 be the holomorphic inverse branch of fλ defined on a sufficiently small neigh-

borhood of 0 and sending 0 back to 0. Let ∆r
λ be the repelling ray (emanating from 0) of

fλ. It follows from local behavior around parabolic points (see Chapter 6 for example) that

there exists a triangle symmetric with respect to ∆r
λ with one vertex 0 such that the convex

hull of the triangle, Triangle ∪ Int(Triangle), T rλ ⊆ Ŵ 0
λ and f−1

λ,0 (T rλ) ⊆ T rλ . Let ωλ be the

only point on ∆r
λ ∩ ∂T rλ different from 0. Then f−1

λ,0 (ωλ) ∈ T rλ and let βλ be the closed line

segment (contained in T rλ) with end points ωλ and f−1
λ,0 (ωλ) such that βλ is a transversal of

the level sets of the Green’s function. Since the diameter of f−nλ,0 (βλ) is of magnitude n−2

and limn→∞ f
−n
λ,0 (ωλ) = 0, we conclude that

β∞λ := {0} ∪
∞⋃
n=0

f−nλ,0 (βλ)

is a piecewise smooth (with countably many pieces) closed topological arc with end points 0

and ωλ. In addition β∞λ is tangent to ∆r
λ at the point 0. We notice that

(34) β∞λ ( fλ (β∞λ ) = {0}∪
∞⋃
n=0

f
−(n−1)
λ,0 (βλ) and f−1

λ,0 (β∞λ ) = {0}∪
∞⋃
n=0

f
−(n+1)
λ,0 (βλ) ⊆ β∞λ .

Let Aλ(0) be the basin of immediate attraction of fλ to the rationally indifferent fixed point

0. Like above, let ∆c
λ be the contracting ray (emanating from 0) of fλ. Again as above, there

exists a triangle symmetric with respect to ∆c
λ with one vertex 0 such that the convex hull

of the triangle T cλ ⊆ Aλ(0) ∪ {0} and

(35) fλ (T cλ) ⊆ Int (T cλ) ∪ {0}.

Let bλ be the edge of the triangle T cλ not containing 0, i.e. the edge perpendicular to ∆c
λ.

For each λ ∈ D0, T cλ can be chosen such that for some integer k ≥ 1 we have

(36) fkλ

(
c

(1)
λ

)
∈ bλ and {c(1)

λ , fλ

(
c

(1)
λ

)
, · · · , fk−1

λ

(
c

(1)
λ

)
} ∩ T cλ = ∅.
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Take now a little open ball B1
λ centered at 0 which contains T rλ (We can choose T rλ small

enough so that it is contained in B1
λ) and disjoint from the set {c(1)

λ , fλ

(
c

(1)
λ

)
, · · · , fkλ

(
c

(1)
λ

)
}.

Take also an open topological disk Dλ ⊇ B1
λ ∪ T cλ which is disjoint from the set

{c(1)
λ , fλ

(
c

(1)
λ

)
, · · · , fk−1

λ

(
c

(1)
λ

)
}.

Then, for every j = 1, · · · , k − 1 there exists a unique holomorphic inverse branch

f−jλ,0 : Dλ → C

sending 0 to 0. There also exists a unique holomorphic inverse branch

f−kλ,0 : B1
λ ∪ Int (T cλ)→ C

sending 0 to 0. Note that for all j = 1, · · · , k

(37) fλ ◦ f−jλ,0 = f
−(j−1)
λ,0

and, by (35), for all 1 ≤ j ≤ k − 1,

(38) f−jλ,0 (T cλ) ⊇ f
−(j−1)
λ,0 (T cλ) .

If j = k, then

(39) f−jλ,0 (Int (T cλ)) ⊇ f
−(j−1)
λ,0 (Int (T cλ)) .

In particular, f
−(k−1)
λ,0

(
fkλ

(
c

(1)
λ

))
= fλ

(
c

(1)
λ

)
, and, as f−1

λ

(
fλ

(
c

(1)
λ

))
∩ Aλ(0) = {c(1)

λ }, it

follows from (36) that c
(1)
λ ∈ ∂f

−k
λ,0 (Int (T cλ)). Note also that f−kλ,0 = f̃−1

λ,0 ◦f
−(k−1)
λ,0 , where f̃−1

λ,0 is

the extension of f−1
λ,0 on f

−(k−1)
λ,0 (B1

λ ∪ Int (T cλ)). But, there also exists a second holomorphic

inverse branch f̃−1
λ,1 of fλ defined on f

−(k−1)
λ,0 (B1

λ ∪ Int (T cλ)). Put f−kλ,1 = f̃−1
λ,1 ◦ f

−(k−1)
λ,0 . As

above c
(1)
λ ∈ ∂f

−k
λ,1 (Int (T cλ)). We thus have

f−kλ,0 (Int (T cλ))
⋂

f−kλ,1 (Int (T cλ)) = ∅ and f−kλ,0 (Int (T cλ))
⋂

f−kλ,1 (Int (T cλ)) = {c(1)
λ }.
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Put αλ = f−kλ,1 (0). By continuity of f−kλ,1 we get that αλ ∈ f̃−1
λ,1 ((T cλ) ⊆ f̃−1

λ,1 (Int (T cλ)) ⊆ Aλ(0),

and since αλ ∈ J(fλ), we obtain that

αλ ∈ ∂Aλ(0).

In virtue of (35), (36), and (37), f 2
λ

(
c

(1)
λ

)
∈ f−(k−1)

λ,0 (Int (T cλ)). Thus there exists a little open

disk Bλ centered at c
(1)
λ such that

(40) f 2
λ (Bλ) ⊆ f

−(k−1)
λ,0 (Int (T cλ)) .

Set

Hλ = f−kλ,0 (Int (T cλ)) ∪ f−kλ,1 (Int (T cλ)) ∪Bλ ∪ fλ (Bλ) ∪ f 2
λ (Bλ) ⊂ Aλ(0).

We have, by (37), (38), and (39), that

fλ
(
f−kλ,0 (Int (T cλ)) ∪ f−kλ,1 (Int (T cλ))

)
= fλ

(
f−kλ,0 (Int (T cλ))

)
∪ fλ

(
f−kλ,1 (Int (T cλ))

)
= f

−(k−1)
λ,0 (Int (T cλ)) ∪ f−(k−1)

λ,0 (Int (T cλ))

= f
−(k−1)
λ,0 (Int (T cλ)) ⊆ f−kλ,0 (Int (T cλ)) ⊂ Hλ.

By (40) and (39), we get

f 2
λ (Bλ) ⊆ f

−(k−1)
λ,0 (Int (T cλ)) ⊆ f−kλ,0 (Int (T cλ)) ⊆ Hλ.

Thus,

(41) fλ (Hλ) ⊆ Hλ and fλ
(
Hλ

)
⊆ Hλ.

Let

(42) β̃∞λ = f̃−1
λ,1 (fλ(β

∞
λ )) and ω̃λ = f̃−1

λ,1 (fλ(ωλ)) .

Then we get the following

(43) fλ(β̃
∞
λ ) = fλ(β

∞
λ ) and fλ(ω̃λ) = fλ(ωλ).
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Set

sλ = Gλ(ωλ) = Gλ(ω̃λ) < tλ.

Define Xλ
1 to be the connected component of G−1

λ ([0, sλ]) not containing 0. Then Xλ
1

is simply connected and, consequently, Aλ(0) ∩ Xλ
1 = ∅. Let Zλ be the other connected

component of G−1
λ ([0, sλ]), i.e. the one containing 0. The set Zλ is connected and simply

connected (closed topological disk with smooth boundary). By its construction the set Hλ is

connected and simply connected too. Since, in addition, β∞λ ∩Hλ = {0}, β̃∞λ ∩Hλ = {αλ},

β∞λ ∩ β̃∞λ = ∅, and since both β∞λ and β̃∞λ are closed arcs, the closed set

(44) Fλ := β∞λ ∪Hλ ∪ β̃∞λ ⊆ Zλ

is connected. We have

Fλ ∩ ∂Zλ = {ωλ, ω̃λ}.

In consequence, the set Zλ \ Fλ has two connected components. Label their closures by

Xλ
2 and Xλ

3 . By the construction,

(45) Xλ
1 ∩ ∪∞n=0f

n
λ

(
{c(1)
λ , c

(2)
λ }
)

= ∅,

(46) Xλ
2 ∩ ∪∞n=0f

n
λ

(
{c(1)
λ , c

(2)
λ }
)

= {0}

and

(47) Xλ
3 ∩ ∪∞n=0f

n
λ

(
{c(1)
λ , c

(2)
λ }
)

= {0}

and all these sets Xλ
1 , Xλ

2 and Xλ
3 are simply connected. Hence all the three holomorphic

inverse branches of fλ are well-defined on each set Xλ
1 , Xλ

2 and Xλ
3 . Since the polynomial

fλ is of degree 3, for each a ∈ {1, 2, 3} there are three holomorphic inverse branches f−1
λ,(a,1),

f−1
λ,(a,2) and f−1

λ,(a,3) of fλ defined on Xλ
a . Consider first the case when a = 1. Then for each

b ∈ {1, 2, 3} the holomorphic inverse branch defined on Xλ
1 satisfies

f−1
λ,(1,b)

(
Xλ

1

)
⊆ G−1

λ

(
[0,

sλ
3

]
)
⊆ G−1

λ ([0, sλ])
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and f−1
λ,(1,b)

(
Xλ

1

)
is a connected component. Since Xλ

1 ∩ Aλ(0) = ∅, there is a b ∈ {1, 2, 3},

say b = 1, such that f−1
λ,(1,1)

(
Xλ

1

)
does not contain 0. Since the connected component

f−1
λ,(1,b)

(
Xλ

1

)
⊆ G−1

λ ([0, sλ]) for each b ∈ {1, 2, 3}, we have

(48) f−1
λ,(1,1)

(
Xλ

1

)
⊆ Xλ

1 .

Now for b ∈ {2, 3}, consider the holomorphic inverse branches f−1
λ,(1,b) : Xλ

1 → C of fλ.

We then have

(49) f−1
λ,(1,b)

(
Xλ

1

)
⊆ Zλ.

If f−1
λ,(1,b)

(
Xλ

1

)
∩Fλ 6= ∅, there exists z ∈ f−1

λ,(1,b)

(
Xλ

1

)
∩Fλ. Since Xλ

1 ∩Zλ = ∅ and Fλ ⊆ Zλ,

looking at (34), (41) and (43), we have fλ(z) ∈ fλ(βλ) \ {ωλ}, that is |ωλ| ≥ |z| > |f−1
λ,0(ωλ)|

with z ∈ βλ. Since βλ is a closed line segment with end points ωλ and f−1
λ,0 (ωλ) and is a

transversal of the level sets of the Green’s function, then we have

Gλ(fλ(z)) = 3Gλ(z) > 3Gλ

(
f−1
λ,0(ωλ)

)
= 3 · 1

3
Gλ(ωλ) = sλ,

which implies fλ(z) /∈ X1
λ ⊆ G−1

λ ([0, sλ]) and hence we conclude that f−1
λ,(1,b)

(
Xλ

1

)
∩ Fλ = ∅.

Along with (49) this gives that

f−1
λ,(1,b)

(
Xλ

1

)
⊆ Zλ \ Fλ.

Since f−1
λ,(1,b)

(
Xλ

1

)
is a connected set it must be contained in one of the two connected

components of Zλ \ Fλ, the more in the closure of one of these two components. Set b = 2

if this closure is Xλ
2 and set b = 3 if it is Xλ

3 . We thus have

(50) f−1
λ,(1,2)

(
Xλ

1

)
⊆ Xλ

2 and f−1
λ,(1,3)

(
Xλ

1

)
⊆ Xλ

3 .

Now consider the case when a ∈ {2, 3}. Without loss of generality we may assume

that a = 2. Since the map fλ restricted to Aλ(0) is of degree 2, there are two branches of

f−1
λ defined on Xλ

2 whose images intersect Aλ(0). Fix one of them and label it by f−1
λ,(2,b),
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b ∈ {2, 3}. Since

f−1
λ,(2,b)

(
Xλ

2

)
⊆ f−1

λ

(
Zλ
)
⊆ G−1

λ

(
[0,

sλ
3

]
)
⊆ G−1

λ ([0, sλ]) ,

and since f−1
λ,(2,b)(X

λ
2 ) is a connected set and f−1

λ,(2,b)

(
Xλ

2

)
∩ Aλ(0) 6= ∅, we conclude that

(51) f−1
λ,(2,b)

(
Xλ

2

)
⊆ Zλ.

Since Int
(
Xλ

2

)
∩Fλ = ∅, and z ∈ f−1

λ,(2,b)

(
Int
(
Xλ

2

))
∩Fλ implies fλ(z) ∈ Int

(
Xλ

2

)
∩fλ(βl) = ∅,

we have that f−1
λ,(2,b)

(
Int
(
Xλ

2

))
∩ Fλ = ∅. Together with (51) this yields

f−1
λ,(2,b)

(
Int
(
Xλ

2

))
⊆ Zλ \ Fλ.

The same argument as above then gives that

f−1
λ,(2,b)

(
Int
(
Xλ

2

))
⊆ Xλ

2 or f−1
λ,(2,b)

(
Int
(
Xλ

2

))
⊆ Xλ

3 .

Thus

f−1
λ,(2,b)

(
Xλ

2

)
⊆ Xλ

2 or f−1
λ,(2,b)

(
Xλ

2

)
⊆ Xλ

3 .

Put b equal to 2 or 3 according to whether the first or the second part of the above alternative

holds, i.e.

(52) f−1
λ,(2,2)

(
Xλ

2

)
⊆ Xλ

2 and f−1
λ,(2,3)

(
Xλ

2

)
⊆ Xλ

3 .

Note that

(53) f−1
λ,(2,2)(0) = 0 and f−1

λ,(2,3)(0) = αλ.

It is left to consider the branch f−1
λ,(2,1) : Xλ

2 → C characterized by the property that

f−1
λ,(2,1)

(
Xλ

2

)
∩ Aλ(0) = ∅.

By (51), f−1
λ,(2,2)

(
Xλ

2

)
∪ f−1

λ,(2,3)

(
Xλ

2

)
⊆ Zλ. Therefore, since fλ is of degree 2 on Zλ, we have

that

(54) f−1
λ,(2,1)

(
Xλ

2

)
∩ Zλ = ∅.
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But f−1
λ,(2,1)

(
Xλ

2

)
⊆ G−1

λ ([0, sλ]), and since f−1
λ,(2,1)

(
Xλ

2

)
is connected, we conclude from (54)

and from the definition of Zλ and Xλ
2 , that,

(55) f−1
λ,(2,1)

(
Xλ

2

)
⊆ Xλ

1 .

With the same argument as above, we get the followings for a = 3.

(56) f−1
λ,(3,1)

(
Xλ

3

)
⊆ Xλ

1 , f−1
λ,(3,2)

(
Xλ

3

)
⊆ Xλ

2 and f−1
λ,(3,3)

(
Xλ

3

)
⊆ Xλ

3

with

(57) f−1
λ,(3,3)(0) = 0 and f−1

λ,(3,2)(0) = αλ.

Now, we shall define the open simply connected sets W λ
1 , W λ

2 and W λ
3 . Fix ξλ ∈ (sλ, tλ)

and define W λ
1 to be the connected component of G−1

λ ([0, ξλ]) not containing 0. Clearly W λ
1

is an open topological disk with smooth boundary and

(58) Xλ
1 ⊆ W λ

1 and W
λ

1 ∩
∞⋃
n=0

{fnλ
(
c

(1)
λ

)
, fnλ

(
c

(2)
λ

)
} = ∅.

Since, by (52), f−1
λ,(2,3)

(
Xλ

2

)
⊆ Xλ

3 , and since, by (53), 0 /∈ f−1
λ,(2,3)

(
Xλ

2

)
, it follows from

(47) that there exists an open topological disk Uλ
2 ⊇ f−1

λ,(2,3)

(
Xλ

2

)
whose closure is disjoint

from
⋃∞
n=0{fnλ

(
c

(1)
λ

)
, fnλ

(
c

(2)
λ

)
}. In virtue of (47) there exists an open topological disk

W λ
2 ⊆ C with the following properties.

(a) Xλ
2 ⊆ W λ

2 ⊆ G−1
λ ([0, ξλ]),

(b) fλ

(
{c(1)
λ , c

(2)
λ }
)
∩W λ

2 = ∅, and if f−1
λ,(2,3) is a holomorphic extension of f−1

λ,(2,3) onto

W λ
2 (which exists because of (b) and for which we keep the same symbol f−1

λ,(2,3)),

then

(c) f−1
λ,(2,3)

(
W λ

2

)
⊂ Uλ

2 .

And from (c),

(59) f−1
λ,(2,3)

(
W λ

2

)
∩
∞⋃
n=0

{fnλ
(
c

(1)
λ

)
, fnλ

(
c

(2)
λ

)
} = ∅.
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The sets Uλ
3 and W λ

3 are defined verbatim with 2 and 3 mutually interchanged.

In virtue of (58) and (a) there exists δ > 0 such that

(60) B
(
Xλ
i , δ
)
⊆ W λ

i

for all i = 1, 2, 3. By (58), the family Fλ1 of all holomorphic inverse branches of all iterates of

fλ is well-defined on an open set containing W
λ

1 . Since J(fλ)∩W λ
1 6= ∅ this family is normal

and all its limit functions are constant. Likewise, the family Fλ2
′

of all holomorphic inverse

branches of all iterates of fλ is well-defined on Uλ
2 . Let Fλ2 = {φ ◦ f−1

λ,(2,3) : φ ∈ Fλ
′

2 } and let

Fλ3 be defined analogously. Again, since J(fλ) ∩W λ
2 6= ∅ and J(f) ∩W λ

3 6= ∅, both families

Fλ2 and Fλ3 are normal and all their limit functions are constant. Using (c) we therefore

conclude that there exists qλ = q ≥ 1 such that if φ ∈ Fλ := Fλ1 ∪Fλ2 ∪Fλ3 is a holomorphic

inverse branch of fnλ with n ≥ q (we say φ ∈ Fλn ), then

(61) diam
(
φ
(
W λ
i

))
< δ and sup{|φ′(z)| : z ∈ W λ

i } <
1

2
,

where i = 1, 2 or 3 according to whether φ ∈ Fλi . Note that each such element φ ∈ Fλi
forms a unique holomorphic extension of some unique element f−1

λ,ω1
◦ f−1

λ,ω2
◦ · · · ◦ f−1

λ,ωn
, where

all ωj ∈ {1, 2, 3}2. Let Sλ be the system determined by the set of vertices V = {1, 2, 3},

the set of edges Eq = ({1, 2, 3}2)
q
, the spaces Xλ

v and W λ
v , v ∈ V , described above, the

maps t (a1, b1, a2, b2, · · · , aq, bq) = aq, i (a1, b1, a2, b2, · · · , aq, bq) = b1, the generators f−qλ,τ :

Xλ
t(τ) → Xλ

i(τ), τ = (a1, b1, a2, b2, · · · , aq, bq) ∈ Eq and f−qλ,τ = f−1
λ,(a1,b1) ◦ f

−1
λ,(a2,b2) ◦ · · · ◦ f

−1
λ,(aq ,bq)

,

Ω = {(2, 2, · · · , 2), (3, 3, · · · , 3)}, and the incidence matrix A : Eq × Eq → {0, 1} consisting

of all entries equal to 1. After all these definitions and preparations it is rather easy to prove

the following

Proposition 7.1. For every λ ∈ D0, Sλ is a pf-irreducible PGDMS.

Proof. Conditions (1) and (4) follow directly from the definition of the sets Xλ
v , v ∈ V .

Condition (2) is fulfilled by (48), (50), (52), (55) and (56) and the definition of f−qλ,τ , τ ∈

Eq, given above. Condition (3) follows from the fact that the interiors {Int
(
Xλ
v

)
}v∈V are

mutually disjoint and that the generators of the system Sλ are formed by continuous inverse
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branches of a single map, namely f qλ. Let us deal with condition (5). If ω ∈ E∗q is a hyperbolic

word with |ω| = n, then φω ∈ Fλn , and it follows from (61) that diam
(
φω

(
W λ
t(ω)

))
< δ. But

φω

(
Xλ
t(ω)

)
⊆ Xλ

i(ω), and using (60), we conclude that

φω
(
W λ
t(ω)

)
⊆ B

(
Xλ
i(ω), δ

)
⊆ W λ

i(ω).

Condition (5) is established. Conditions (6) and (7) follow directly from Koebe Distortion

Theorem. Condition (8) is established by (61). To see that conditions (9) and (10) hold,

consider without loss of generality the parabolic map φ(2,2)q . It is enough to note that the

sets φn(2,2)q

(
2B ∩Xλ

2

)
converge to the parabolic point 0, by the local behavior of parabolic

points, where B is a sufficiently small ball centered at 0, and that the family of maps φn(2,2)q ,

restricted to some sufficiently small neighborhood of Xλ
2 \ B, is well-defined and normal.

In conclusion, Sλ is a parabolic graph directed Markov system. It is obvious that Sλ is a

pf-system since the incidence matrix A consists of 1s only and since Eq \Ω is not empty. We

are done. �

Now, we shall prove the following.

Lemma 7.2. For every λ0 ∈ D0 there exists R0 > 0 such that with suitably chosen sets Xλ
v ,

λ ∈ B (λ0, R0), the family {Sλ}λ∈B(λ0,R0) of holomorphic PGDMSs is holomorphic.

Proof. It follows from the construction of systems Sλ and local behavior of maps

fλ around zero, that the only non-trivial task to be done is to verify that the family

{Sλ}λ∈D0 satisfies conditions (b), (c), and (d) of the definition of holomorphic families of

holomorphic PGDMSs. In order to do it, fix λ0 ∈ D0. Put Oλ0 = G−1
λ0

((3ρλ0 ,+∞]).

Then fλ0 (Oλ0) ⊆ G−1
λ0

((9ρλ0 ,+∞]) and taking R1 > 0 sufficiently small, we will have

fλ (Oλ0) ⊆ G−1
λ0

((8ρλ0 ,+∞]) ⊆ Oλ0 for all λ ∈ B (λ0, R1). Consequently,

(62) f−1
λ

(
G−1
λ0

([0, 3ρλ0 ])
)
⊆ G−1

λ0
([0, 3ρλ0 ]) .

We have by our construction,

(63) W λ0
1 ∪W λ0

2 ∪W λ0
3 ⊆ G−1

λ0
([0, tλ0 ]) ⊆ G−1

λ0
([0, ρλ0 ]) ⊆ G−1

λ0
([0, 3ρλ0 ]) .
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There also exists R2 ∈ (0, R1] so small that

(
Uλ0

2 ∪ Uλ0
3

)
∩

⋃
λ∈B(λ0,R2)

∞⋃
n=0

{fnλ
(
c

(1)
λ

)
, fnλ

(
c

(2)
λ

)
} = ∅.

From continuity of the functions D0 3 λ 7→ c
(1)
λ , c

(2)
λ , and consequently, of the function,

λ 7→ ρλ, we can choose the numbers sλ < ξλ such that

(64) lim
λ→λ0

sλ = sλ0 < ξλ0 = lim
λ→λ0

ξλ.

We can also choose ωλ so that limλ→λ0 ωλ = ωλ0 , limλ→λ0 T
c
λ = T cλ0

, limλ→λ0 Bλ = Bλ0 (the

two latter in the sense of Hausdorff metric on compact subsets of the complex plane C).

Consequently, also limλ→λ0 β
∞
λ = β∞λ0

, limλ→λ0 β̃
∞
λ = β̃∞λ0

, and limλ→λ0 Hλ = Hλ0 . Therefore

(see (44)

(65) lim
λ→λ0

Fλ = Fλ0 .

It follows immediately from (64) that

lim
λ→λ0

Xλ
1 = Xλ0

1 and lim
λ→λ0

Zλ = Zλ0

Along with (65) this implies that

lim
λ→λ0

Xλ
i = Xλ0

i for i = 1, 2, 3.

Because of this and (64) we can find for every i = 1, 2, 3 one open set Uλ0
i and open sets

W λ0
i ⊆ W̃i

λ0
that all satisfy all the requirements for the sets Uλ

i and W λ
i from the construction

leading to Proposition 7.1 up to formula (60) if λ is sufficiently close to λ0, say λ ∈ B(λ0, R3),

R3 ∈ (0, R2]. That is, we can from now on either set

W λ
i := W λ0

i or W λ
i := W̃ λ0

i

for all i = 1, 2, 3 and for all λ ∈ B(λ0, R3). We can even find compact sets Y1, Y2 and Y3 such

that Xλ
i ⊆ Yi ⊆ W λ0

i for all i = 1, 2, 3 and all λ ∈ B(λ0, R3). Hence, the condition (d) of the

definition of holomorphic families of holomorphic PGDMS is satisfied. Recall that for every

λ ∈ B(λ0, R3) the family Fλ is bijectively parametrized by the set Ê∗, where E = {1, 2, 3}2,
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Ω = {(2, 2), (3, 3)}, and Ê is defined accordingly. In fact, in view of our construction of the

sets W λ0
i , it follows from the Implicit Function Theorem and Monodromy Theorem, that for

every ω ∈ Ê∗, there exists a holomorphic function gω : B(λ0, R3) × W̃ λ0

t(ω) → C such that,

abusing slightly notation, we have{
gω∣∣
{λ}×W̃λ0

i

: ω ∈ Ê∗ and t(ω) = i

}
= Fλi

for all i = 1, 2, 3. In virtue of (62) and (63) we have,

gω

(
B(λ0, R3)× W̃ λ0

t(ω)

)
⊆ G−1

λ0
([0, 3ρλ0 ])

for all ω ∈ Ê∗. Since the set G−1
λ0

([0, 3ρλ0 ]) is bounded, we thus conclude that for each

i = 1, 2, 3, the family

Γi = {gω : B(λ0, R3)× W̃ λ0

t(ω) → C : ω ∈ Ê∗ and t(ω) = i}

is normal. Since for each λ ∈ B (λ0, R3) and each i ∈ {1, 2, 3}, Xλ
i ⊆ W λ0

i and Jλ ∩Xλ
i 6= ∅,

all the limit functions of the normal family Fλi are constant. But this means that all the

limit functions of the family Γi depend only on the first coordinate λ. Therefore (remember

that W λ0
i ⊂ W̃ λ0

i ), there exists R4 ∈ (0, R3] and q ≥ 1 such that

diam
(
gω

(
B(λ0, R4)× W̃ λ0

i

))
< δ

and

sup

{∣∣∣∣∂gω∂z (λ, z)

∣∣∣∣ : (λ, z) ∈ B(λ0, R)×W λ0
i

}
<

1

2

for all i ∈ {1, 2, 3} and all ω ∈ Ê∗ with |ω| ≥ q. Now, as in the previous chapter, we

conclude from this, (60), the inclusion φλω

(
Xλ
t(ω)

)
⊆ Xλ

t(ω), and equality φλω = gω∣∣
{λ}×B(λ0,R4)

(with obvious abuse of notation) that

φλω

(
W λ0

t(ω)

)
⊆ B

(
Xλ0

t(ω), δ
)
⊆ W λ0

t(ω)

for all λ ∈ B(λ0, R4) and all ω ∈ Ê∗ with |ω| ≥ q. Now, define the systems Sλ, λ ∈ B(λ0, R4),

as appearing in Proposition 7.1 with the help of this same q ≥ 1. Since obviously all the maps

B(λ0, R4) ×W λ0
i 3 (λ, z) 7→ φλω(z), ω ∈ Ê∗ are holomorphic, the family {Ŝλ}λ∈B(λ0,R4) is
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analytic, meaning that condition (b) of the definition of holomorphic families of holomorphic

PGDMSs is satisfied. Since clearly, all the maps B(λ0, R4)×B(0, R0) 3 (λ, z) 7→ φλe (z), with

e being (2, 2)q or (3, 3)q and R0 ∈ (0, R4] sufficiently small, are holomorphic, we see that

condition (c) of the definition of holomorphic families of holomorphic PGDMSs is satisfied,

and we may therefore conclude that the family {Sλ}λ∈B(λ0,R0) is holomorphic. We are done.

�

As an immediate consequence of this Lemma and Corollary 6.14, we get the following

main result of our paper.

Theorem 7.3. The Hausdorff dimension function D0 3 λ 7→ HD (J(fλ)) is real-analytic.
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[18] V. Mayer, B. Skorulski and M. Urbański, Random distance expanding mappings, thermodynamic for-

malism, gibbs measures, and fractal geometry, Preprint (2008).

[19] C. T. Mcmullen, Hausdorff dimension and conformal dynamics iii: Computation of dimension, Amer.

J. Math 120 (1998), 691–721.

[20] J. Milnor, Dynamics in one complex variable, Princeton University Press, New Jersey, 2006.

[21] S. J. Patterson, The limit set of a fuchsian group, Acta Mathematica 136 (1976), 241–273.

[22] F. Przytycki, Lyapunov characteristic exponents are nonnegative, Proc. Amer. Math. Soc. 119.1 (1993),

309–317.
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