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Abstract. We present a non-Hermitian Floquet model with topological edge states in real and imaginary
band gaps. The model utilizes two stacked honeycomb lattices which can be related via four different types
of non-Hermitian time-reversal symmetry. Implementing the correct time-reversal symmetry provides us
with either two counterpropagating edge states in a real gap, or a single edge state in an imaginary gap.
The counterpropagating edge states allow for either helical or chiral transport along the lattice perimeter.
In stark contrast, we find that the edge state in the imaginary gap does not propagate. Instead, it remains
spatially localized while its amplitude continuously increases. Our model is well-suited for realizing these
edge states in photonic waveguide lattices.

1 Introduction

After their discovery in 1980 [1] topological states of mat-
ter have been in the focus of condensed matter research
for the past decades and have led to fundamental insights
regarding the interplay between bulk topology and edge
transport [2–4]. Unidirectional transport emerges at an
edge via chiral edge states if the bulk is topologically
non-trivial. In combination with time-reversal symmetry,
topology even allows for bidirectional helical transport via
counterpropagating edge states [5–10]. With the discovery
of anomalous Floquet topological insulators [11–16], it was
found that time-periodicity leads to another unique inter-
play between bulk topology and edge transport in the form
of quantized charge pumping [17].

It was recognized only recently that non-Hermiticity
extends this picture even further, both for static
[18–22] and Floquet systems [23–26]. In addition to the
familiar topological phases with real band gaps, new non-
Hermitian topological phases emerge [27–29] which arise
from imaginary and point gaps in the complex-valued
spectrum. While the topological phases arising from
point gaps have been extensively investigated theoretically
[20,27] and experimentally [30,31], studies on edge states
in imaginary gaps and their transport properties are still
rare.

In this paper, we present a non-Hermitian Floquet
model which possesses edge states in both real and imagi-
nary gaps. The model consists of two layers of honeycomb
lattices stacked on top of each other. Two inverse copies
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of an anomalous Floquet topological insulator are imple-
mented on the two layers. This arrangement is inherently
time-reversal symmetric. In combination with complex
on-site potentials, which introduce non-Hermiticity, four
distinct types of non-Hermitian time-reversal symmetry
can occur within the model. The first two symmetries
enforce counterpropagating edge states in real gaps, the
third one is incompatible with topological edge states,
and the fourth one allows for a single edge state in an
imaginary gap.
We discuss how our model could be implemented in

photonic waveguide lattices where the real-space propa-
gation of edge states is directly observable. In contrast to
the counterpropagating edge states in real gaps, we find
that the edge state in the imaginary gap remains localized
during time evolution while its amplitude continuously
increases. This amplification is protected by time-reversal
symmetry. In this way, the symmetry and its realization
in a double-layer honeycomb lattice is essential for this
edge state phenomenon.
This paper is organized as follows. In Section 2, we

introduce the stacked honeycomb model. In Section 3,
we implement the four time-reversal symmetry types and
determine the resulting constraints on the model parame-
ters. We provide specific parameter values for the different
cases and demonstrate the existence of edge states in real
and imaginary gaps. The three-dimensional geometry of
the two honeycomb layers can not be implemented in
photonic waveguide lattices, which is why we map the
two honeycomb layers onto a square lattice in Section 4.
For this lattice configuration, the propagation of the edge
states is investigated. We conclude in Section 5.
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2 Stacked honeycomb model

The basis of our studies is an extension of the Floquet
driving protocol presented in reference [11], which consists
of three time steps that cycle through the three nearest-
neighbor couplings on a honeycomb lattice. In each step,
two of the three couplings are set to zero while the third
coupling has a constant non-zero value. Depending on the
coupling strength, the system is either in a trivial phase or
in an anomalous Floquet topological phase with a single
edge state in a real gap [11].
We would like to point out that this driving protocol

can not be implemented in graphene [32]. Periodically
switching the nearest-neighbor couplings on and off is
currently not possible in a real solid state system. In addi-
tion, next-nearest-neighbor couplings, spin-orbit coupling,
and interactions have to be included in a graphene model
which are not considered here.

In our model, we add a second honeycomb layer on
which an inverse copy of the driving protocol is imple-
mented, similiar to the procedure in references [10,33].
The two layers (indicated by red circles and blue diamonds
in Fig. 1) are then coupled in two additional time steps
where all intralayer couplings are set to zero. In total,
one period T in our model cycles through five time steps
of equal length T/5 with pairwise coupling in each step.
This precise control over the couplings becomes possible
in photonic waveguides [10,14,15].

The position of the two honeycomb layers relative to
each other is irrelevant for the theoretical description of
the interlayer coupling. For now, we utilize the stacked
geometry in Figure 1 to graphically separate the two lay-
ers into a “bottom” and a “top” layer. In Section 4, we
switch to a planar geometry, which is more relevant for
experiments in photonic systems.

The time-periodic Bloch Hamiltonian can be expressed
in standard bra-ket notation as

H(k, t) =

3
∑

l=1

[

Jl(t)e
ik·δl |k, A〉〈k, C|+H.c.

]

+
3

∑

l=1

[

Jl(T − t)eik·δl |k, B〉〈k, D|+H.c.
]

+ J ′(t)
(

|k, A〉〈k, B|+ |k, C〉〈k, D|
)

+H.c.

+
∑

s∈{A,B,C,D}

∆s|k, s〉〈k, s| .

(1)

The first line of equation (1) includes the three nearest-
neighbor couplings Jl(t) between sites A, C on the

bottom layer along the directions δ1 = (
√
3/2, 1/2), δ2 =

(−
√
3/2, 1/2), and δ3 = (0,−1). In steps 1, 3, and 5,

exactly one of these three couplings is set to the constant
real value Jl(t) = J while the other two couplings are set
to zero (see Fig. 1). In the second line, the same couplings
are used for the top layer with sites B, D, but in inverse
time order. In the third line, the interlayer coupling J ′(t)
appears which is non-zero only in steps 2 and 4. We set

Fig. 1. Double-layer Floquet honeycomb model (1). The two
layers are stacked on top of each other. The lattice is periodic
along the x-axis and y-axis. The model consists of a cycli-
cally repeated sequence of five time steps. In steps 1 (orange),
3 (violet), and 5 (magenta) intralayer couplings occur while
interlayer couplings occur in steps 2 and 4 (both green). For
clarity, only a few of the interlayer couplings are shown here.
The unit cell is given by the four sites labeled with A, B, C,
and D.

J ′(t) = J in step 2 and J ′(t) = αJ in step 4 with the sign
α = ±1 as a free parameter.
For vanishing on-site potentials ∆s = 0, the propagator

UJ =

(

cos(JT/5) −i sin(JT/5)
−i sin(JT/5) cos(JT/5)

)

(2)

of two coupled sites is a periodic function of J for each
time step of length T/5. The time steps in equation (1)
are arranged such that edge states on different layers
propagate in opposite directions at perfect coupling (J =
5π/(2T ),∆s = 0), where a full amplitude transfer occurs
between two coupled sites in each step. An edge state on
the bottom layer propagates in counter-clockwise direc-
tion along the lattice perimeter while an edge state on the
top layer moves clockwise. The bulk states are completely
localized on both layers.
The two counterpropagating edge states appear as chi-

ral modes in the real band gaps of the quasienergy
spectrum {ε(k)}, which is obtained from the eigenvalues
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{e−iε(k)T } of the Floquet-Bloch propagator

U(k, T ) = T exp
(

− i

∫ T

0

H(k, t′)dt′
)

(3)

(T denotes time-ordering, and we set ~ ≡ 1). Due to
the 2π/T -periodicity of the eigenvalues, we restrict the
real part of the quasienergy spectrum to the quasienergy
Brillouin zone −π/T ≤ Re ε(k) ≤ π/T .
The complex on-site potentials ∆s in the fourth line

of equation (1) introduce non-Hermiticity which leads to
complex quasienergies. In addition to the aforementioned
counterpropagating edge states in real gaps, edge states
in imaginary gaps can be obtained for non-zero on-site
potentials. Which of the two cases occurs for a specific set
of parameters is linked to the fundamental symmetries of
our model.

3 Floquet bands, edge states and

time-reversal symmetry

In a Hermitian system, the symmetry relation for time-
reversal symmetry (TRS) is

H(−k, T − t) = ΘH(k, t)Θ−1 (4)

with an anti-unitary operator Θ for which Θ2 = ±1 [6].
The anti-unitary operator Θ = Kθ can be written as the
product of the complex conjugation operator K and a uni-
tary operator θ which satisfies θ∗θ = ±1. Per construction,
equation (1) with zero on-site potentials ∆s = 0 is time-
reversal symmetric. Here, the operator θ exchanges the
two honeycomb layers such that site A (C) is mapped
onto site B (D) and vice versa. For fermionic (bosonic)
TRS with θ∗θ = −1 (θ∗θ = 1) the sign of the interlayer
coupling in step 4 is set to α = −1 (α = 1).

In the non-Hermitian case H∗(k, t) 6= HT (k, t) with
complex on-site potentials, equation (4) splits up into two
independent symmetry relations [23,28,29]

TRS∗ : H(−k, T − t) = θH∗(k, t)θ−1 , (5a)

TRST : H(−k, T − t) = θHT (k, t)θ−1 . (5b)

Here, (·)∗ denotes complex conjugation and (·)T transpo-
sition. The two symmetry relations enforce the constraints

TRS∗,T : Re {ε(k)} = Re {ε(−k)} , (6a)

TRS∗ : Im {ε(k)} = − Im {ε(−k)} , (6b)

TRST : Im {ε(k)} = Im {ε(−k)} (6c)

upon the real and imaginary part of the quasienergy spec-
trum {ε(k)}. Note that the constraints enforced upon the
real and imaginary part differ for TRS∗. In that case, dif-
ferent topological phases can emerge in real and imaginary
gaps. While equation (6a) implies that edge states appear
in pairs with opposite chirality in real gaps, equation (6b)
allows for individual edge states in imaginary gaps.

Table 1. Parameter sets for the stacked Floquet honey-
comb model with TRS∗ or TRST . The sign α determines
if the symmetry is bosonic or fermionic.

Fermionic TRS∗ Fermionic TRST

α = −1 α = −1
∆A = −∆C = δ + iγ ∆A = −∆C = δ + iγ
∆B = −∆D = δ − iγ ∆B = −∆D = δ + iγ

J = 5π

2T
, δ = 3

4T
, γ = 5

2T
J = 5π

2T
, δ = 3

4T
, γ = 5

2T

Bosonic TRS∗ Bosonic TRST

α = 1 α = 1
∆A = −∆C = δ + iγ ∆A = −∆C = δ + iγ
∆B = −∆D = δ − iγ ∆B = −∆D = δ + iγ

J = 5π

4T
, δ = 1

2T
, γ = 3

2T
J = 5π

2.2T
, δ = 1

2T
, γ = 2

T

Fig. 2. Floquet bands and edge state dispersions for fermionic
TRS∗ with the parameters from Table 1. Shown is the real
part of the quasienergy dispersion as a function of momentum
ky (top panel) and the imaginary part as a function of the
real part (bottom panel). We observe two counterpropagating
edge states in the real gaps at Re ε = 0, π/T with opposite
imaginary part. Here, and in Figures 3–5, we show the bands
and edge states on a semi-infinite strip along the y-axis with
armchair boundaries on both layers of the stacked honeycomb
lattice. The arrows indicate which edge states belong to the
left and right edge of the strip.

The symmetry relations (5) are fulfilled if we set ∆A =
∆∗

B , ∆C = ∆∗
D for TRS∗ and ∆A = ∆B , ∆C = ∆D for

TRST . Combined with the possibility to switch between
a bosonic and fermionic symmetry via the parameter α,
we get four distinct TRS types that can be realized in the
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Fig. 3. Same as Figure 2, now for fermionic TRST with the
parameters from Table 1. We again observe two counterprop-
agating edge states in the real gaps at Re ε = 0, π/T , but they
now have the same imaginary part.

present model. In the following, we will use the parameter
sets in Table 1 to implement the four symmetry types and
explore the ensuing topological phases. It should be noted
that in an experiment, fine-tuning to these parameter val-
ues is not required. As long as the relevant band gap does
not close, one may continuously deform the parameters as
desired. However, the deformed parameters still have to
satisfy the TRS relations in equation (5).

In Figures 2 and 3, we show the Floquet bands and the
edge state dispersions for fermionic TRS∗ and fermionic
TRST , respectively. In both cases, we observe two counter-
propagating edge states per edge which cross at momen-
tum ky = 0 in the real gaps at Re ε = 0, π/T . For TRS∗,
the two edge states are separated by their imaginary part
at the crossing, while for TRST, they cross at the same
imaginary part. In that case, the crossing is protected by
Kramers degeneracy. The counterpropagating edge states
indicate a Z2 topological phase for the real gaps, which
is in agreement with the symmetry classification in refer-
ence [28]. Since the counterpropagating edge states appear
in all real gaps of the quasienergy spectrum, the Z2 phase
is anomalous [13].
For the bosonic symmetries, the crossing at ky = 0 is

not protected by Kramers degeneracy and the counter-
propagating edge states can cancel, resulting in trivial
edge states. We demonstrate this for bosonic TRST in
Figure 4. The trivial edge states do not traverse the real

Fig. 4. Same as Figures 2, 3, now for bosonic TRST with
the parameters from Table 1. The trivial edge states do not
traverse the real gaps at Re ε = 0, π/T .

gaps at Re ε = 0, π/T . Through appropriate symmetry-
preserving parameter variations, the edge states could be
continuously deformed to merge with the Floquet bands.
These results also hold for bosonic TRS∗.

In imaginary gaps, edge states become possible for
bosonic TRS∗. In Figure 5, we observe a single edge
state which traverses the imaginary gap at Im ε = 0. This
unpaired edge state is pinned at momentum ky = 0 by the
quasienergy relation (6b). Note that only the imaginary
part of the edge state dispersion is chiral. The real part
is flat. The edge state indicates a Z topological phase for
the imaginary gap, which also agrees with the symmetry
classification in reference [28].

Unfortunately, the imaginary edge state is attached to a
band which resides above the imaginary gap at Im ε = 0.
This band necessarily has a larger imaginary part than
the edge state and thus will dominate on large time
scales, making the observation of the imaginary edge state
challenging in experiments.

4 Edge state propagation in a square lattice

Photonic waveguide lattices are well-suited for the real-
ization of two-dimensional Floquet systems [10,14,15].
Since the third spatial coordinate represents the time axis
in waveguide lattices, the stacked geometry in Figure 1
is inconvenient. Therefore, we now switch to a planar
geometry where the two honeycomb layers are mapped

https://epjb.epj.org/
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Fig. 5. Same as Figures 2–4, now for bosonic TRS∗ with
the parameters from Table 1. Here, we include the imaginary
part of the quasienergy dispersion as a function of ky (bottom
panel). An edge state traverses the imaginary gap at Im ε = 0.

onto a square lattice (see the dashed lines in Fig. 7).
In this way, our model can be readily implemented in
photonic lattices. The couplings J(t), J ′(t) and complex
on-site potentials ∆s are then realized via spatially peri-
odic modulation of the interwaveguide distance [34] and
manipulation of the waveguide losses [35], respectively.
In the square lattice, the two sites A, C of the bottom

honeycomb layer are located at the positions rA = (i +
2j, 2i), rC = rA + (1, 1) with i, j ∈ Z. The two sites B,D
of the top layer are located at rB = rA+(1, 0), rD = rC +
(1, 0). The positions are chosen such that in each of the
five time steps couplings only occur between neighboring
sites (see Fig. 6).

For this lattice configuration, equation (1) enforces the
patterns of motion shown in Figure 7 at perfect coupling.
Note that we track the patterns of motion for two full

Fig. 6. The five time steps of equation (1) adapted for a two-
dimensional square lattice. The red circles and blue diamonds
correspond to the bottom and top honeycomb layer in Figure 1,
respectively. The unit cell is given by the four sites labeled with
A, B, C, and D.

Fig. 7. Patterns of motion at perfect coupling on a finite
square lattice with eight unit cells in the x-direction and three
unit cells in the y-direction. The edges parallel to the x-axis
(y-axis) correspond to zigzag (armchair) edges on both layers
of the stacked honeycomb geometry in Figure 1. The honey-
comb structure of the red and blue sublattices are indicated by
the dashed lines. We show the trajectories for two full cycles of
the time-periodic driving. Bulk states are localized while edge
states propagate.

cycles because only then the periodicity of the trajectories
becomes apparent. An excitation in the bulk moves in a
closed loop, while an excitation starting on an edge site is
transported by four sites. Edge states on the sublattice
formed by the A, C sites (denoted as the red sublat-
tice in the following) move counter-clockwise while their
counterparts on the B, D sublattice (denoted as the blue
sublattice) move clockwise. In waveguide lattices, these
trajectories are directly observable.

https://epjb.epj.org/
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Fig. 8. Edge state propagation on a finite square lattice for fermionic TRS∗ with the parameters from Table 1. We use the
same edge configuration as in Figure 7. The initial excitation at t = 0 is marked by a filled black site. The red and blue color
indicates the wave function amplitude after one (t = T , first and third panel) and five periods (t = 5T , second and fourth panel)
on the two sublattices. After each period, the amplitude at each lattice site is normalized to the total amplitude.

Fig. 9. Qualitative time evolution of a Gaussian wave
packet (7) for a free particle with k0 6= 0, an edge state in
a real gap with arbitrary k0, and an edge state in an imagi-
nary gap with k0 = 0. The arrows indicate the time evolution
from the initial state (gray) to the final state (hatch pattern).
Note that in the bottom panel, the Gaussian does not spread,
only its amplitude increases.

Tracking the real-space propagation is also a power-
ful tool to study the properties of the edge states for
the non-perfect couplings in Table 1. In Figure 8, we
show the real-space propagation of the counterpropagat-
ing edge states for fermionic TRS∗ after one (t = T ) and
five (t = 5T ) cycles of the model. Since the parameter
values in Table 1 are close to perfect coupling, we would
expect that an initial state at t = 0, which is prepared on
an edge of the red sublattice (blue sublattice), will lead to
predominantly counter-clockwise (clockwise) propagation

along the lattice perimeter. For fermionic TRST , where
the edge states have identical imaginary parts, we observe
this helical transport. For fermionic TRS∗, however, the
two edge states have opposite imaginary parts and so
the clockwise moving edge state with negative imaginary
part will be suppressed after a few periods. Therefore, we
observe counter-clockwise propagation for an initial exci-
tation on the blue sublattice in the long-time limit, and
thus chiral, instead of helical, transport.
The edge state in the imaginary gap at Im ε = 0 does

not lead to real-space propagation due to the flat real
part of its quasienergy dispersion. To illustrate this, we
show in Figure 9 the stroboscopic time evolution of a

one-dimensional Gaussian wave packet

ψnT (x) =
1√
2π

∫ π

−π

dk exp
(

ikx− inTε(k)
)

× exp
(

− k2/(2σ2)
)

(7)

with momentum width σ after multiple driving periods nT
for three different quasienergy dispersions: the dispersion
of a free particle, an edge state in a real gap, and an edge
state in an imaginary gap.
A free particle with ε(k) = v(k − k0)

2 spreads out dur-
ing propagation, while an edge state in a real gap with
ε(k) = v(k− k0) propagates without spreading. The slope
v and momentum shift k0 are free parameters. For an edge
state in an imaginary gap with ε(k) = iv(k − k0), we get

|ψnT (x)|2 ≃ σ2 exp
(

(σvnT )2 − 2k0vnT − (σx)2
)

, (8)

if the momentum width σ is small relative to the Brillouin
zone [−π, π). This means that the wave packet is pinned
at its initial position and does not spread. For finite k0,
the sign of the slope determines if the amplitude of the
wave packet increases or decreases on short time scales.
For the edge state in Figure 5, the momentum shift k0

is set to zero by bosonic TRS∗. In this case, the amplitude
of the wave packet in equation (8) continuously increases
during time evolution. As long as the imaginary gap stays

open, we have exp
(

(σvnT )2
)

> 1. The amplification is

symmetry-protected.

5 Conclusion

The stacked Floquet honeycomb model introduced in
the present paper allows for the realization of two
counterpropagating edge states in real gaps and a single
edge state in an imaginary gap. The four TRS types
determine which of the two edge state configurations is
possible for a specific parameter set. Switching between
the four symmetry types only requires adjustments of the
on-site potentials or the sign of the interlayer coupling.
In case of the counterpropagating edge states, the edge
transport can be tailored to be either helical or chiral
with the imaginary part of the on-site potentials. The

https://epjb.epj.org/
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edge state in the imaginary gap does not propagate.
Instead, it behaves like a localized flat edge state, but
with a continuously increasing amplitude. Our results
suggest that the amplification is symmetry-protected by
bosonic TRS∗. This essentially follows from the pinned
momentum of the edge state. Note that momentum
is not conserved in disordered systems. Therefore, the
robustness of the symmetry protection with regard to
disorder remains an open question for future studies.
Our model provides an experimentally accessible plat-

form for the realization of these edge states in photonic
waveguide lattices. Since waveguides are gainless, the
amplification of the edge state in the imaginary gap
would be relative to a uniform loss background in such
systems. Inherent amplification is possible in fiber loop
setups [31] which also allow for two-dimensional Floquet
protocols [36,37] like our model.
Irrespective of the concrete experimental setup, a fun-

damental challenge regarding the observation of the edge
states in imaginary gaps is the fact that there is always
at least one bulk band which has a larger imaginary part
than the edge states. Therefore, precise control over the
selective excitation of bulk and edge states will prove to
be essential in experiments.
For the counterpropagating edge states in the real gaps,

this problem can be completely avoided. Since the two
edge states are anomalous, non-Hermitian boundary state
engineering [23] can be used to tailor the imaginary part of
the edge states such that they become dominant relative
to the bulk states.
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