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From the fundamental principle of causality we show that epsilon-near-zero (ENZ) materials with
very low (asymptotically zero) intrinsic dielectric loss do necessarily posses a very low (asymptot-
ically zero) group velocity of electromagnetic wave propagation. This leads to the loss function
being singular and causes high non-radiative damping of optical resonators and emitters (plasmonic
nanoparticles, quantum dots, chromophore molecules) embedded into them or placed at their sur-
faces. Rough ENZ surfaces do not exhibit hot spots of local fields suggesting that surface modes are
overdamped. Reflectors and waveguides also show very large losses both for realistic and idealized
ENZ.
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Recently, materials at frequencies ω close to the bulk
plasmon frequency, ωP , which are characterized by di-
electric permittivity ε being small enough, |ε| � 1, and
are usually referred to as Epsilon Near Zero (ENZ) ma-
terials, have attracted a great deal of attention [1–12].
Their optical properties are expected to be quite remark-
able: ENZ should totally reflect light at all angles, the
phase velocity of light tends to infinity and, correspond-
ingly, the light wave carries almost constant phase, the
density of photonic states diverges at ω → ωP , a waveg-
uide formed inside an ENZ material can confine light
at deep sub-wavelength dimensions, there is no reflec-
tions even at sharp bands, and the unavoidable rough-
ness of the waveguide walls does not significantly spoil
the wave-guiding. As in many other cases in nanoop-
tics [13], dielectric losses present a significant problem
deteriorating these unique properties and limiting useful
applications of ENZ materials. Several approaches have
been proposed to mitigate these unwanted effects of the
optical loss: new conducting oxide and nitride materials,
in particular, indium tin oxide (ITO), bear promise of
significant reduction of the optical losses [14, 15]. An-
other proposed approach is based on loss compensation
by gain [10]. The most radical way to eliminate the loss is
using of an all-dielectric metamaterial at optical frequen-
cies whose effective permittivity is near zero and losses
are extremely low [16].

The goal of this Letter is to establish fundamental limi-
tations that causality and dielectric losses impose on ENZ
materials. We show that a fundamental causality require-
ment for a perfectly transparent ENZ material (where
ε = ε′ + iε′′ possesses a small real part, 1 � |Reε| → 0
and a negligible imaginary part, ε′′ = Im ε = 0) leads to
a vanishing group velocity, vg → 0. Thus, such a “per-
fect” ENZ material cannot transmit energy or informa-
tion. Also, the establishment time of stationary optical
regime diverges ∝ v−1g →∞. (Note that it has been un-
derstood that in “perfect lens” systems, where ε′′ → 0
and ε′ → −1, the asymptotically infinite establishment
time has already been found earlier [42, 43].) Therefore

any dielectric metamaterials emulating ε′ → 0 must be
diffractive, i.e., not true metamaterials that transmit and
absorb light but not scatter or diffract it. Moreover, we
show that the introduction of even very small losses dras-
tically degrades the expected remarkable properties of
idealized ENZ materials. Adding gain to reduce ε′′ would
be no radical solution either because gain affects also ε′

leaving the causality limitations in place [18]. Also, the
energy loss function, L = −Im

(
ε−1
)
, is singular for a

low-loss ENZ material, which causes strong damping of
embedded nanosystems. In the optical (near-infrared to
visible) range, real ENZ materials such as ITO do not
actually show remarkable manifestations of the ENZ be-
havior due to the losses.

Because we are interested in the most fundamental
properties of the ENZ materials, we consider such a ma-
terial as a uniform and isotropic infinite medium (natural
or metamaterial [19]). We also assume that the dielec-
tric response of the ENZ material is local (i.e., there is
no spatial dispersion), which assures that are results are
also applicable to micro- and nano-structures made of it
through the use of the Maxwell boundary conditions.

We start first with an idealized case of a material that
is lossless at observation frequency ω, i.e., ε′′(ω) = 0. We
assume that it is also lossless in the infinitesimal vicinity
of ω, which we re-formulate as a condition dε′′(ω)/dω =
0. We will also assume that this material is not mag-
netic (which is usual at the optical frequencies [20]). Un-
der these conditions, the fundamental causality principle
leads to an exact dispersion relation [18],
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where c is speed of light, vp = c
/√

ε′(ω) is phase ve-

locity, and vg = c
/

d
dωω

√
ε′(ω) is group velocity. From

this, we can immediately find an exact dispersion relation
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for group velocity as
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Due to the requirement of stability, ε′′ ≥ 0. Con-
sequently, vg ≤ c

√
ε′(ω), and vg → 0 for ε′(ω) → 0.

Thus, a lossless ENZ material in the limit ε′(ω) = 0 does
not transport electromagnetic energy. As a corollary, es-
tablishment time τs of the stationary regime diverges,
τs ∼ a/vg → ∞, where a is the characteristic size, and
the ENZ media may have high (albeit slow) optical non-
linearities (cf. Ref. 21). Note that Eq. (2) is an exact
local property of the lossless ENZ materials, and it is not
affected by their micro- or nano-structuring.

In the experiment of Ref. 16, the medium designed to
be a lossless ENZ metamaterial is, in reality, a diffrac-
tive medium – a photonic crystal [22, 23] where the lin-
ear photon momentum is within the first Brillouin zone,
where the diffraction does not show itself. Another class
of pertinent systems are parallel-plate waveguides. These
are not true continuous media but emulate properties of
two-dimensional ENZ media [2–4], which are isotropic in
the plane of the waveguide. They may be designed for
microwave frequencies where the propagation losses are
relatively low but the loss function is large (see the next
paragraph), and they cannot be nano-structured.

Now, let us turn to ENZ media with a small but finite
loss at the observation frequency, 1 � ε′′(ω) > 0. More
precisely, we will call it an ENZ material if the real part
of permittivity is still the smallest part of it and the loss
is small enough, which can be stated as 1 � ε′′ � |ε′|.
It is well known that energy loss of charged particles in a
medium is proportional to the energy-loss function (see,
e.g., Ref. 24, Sec. IIIB), L(ω) = −Im

[
ε−1(ω)

]
. For an

ENZ material with a very low loss, this loss function di-
verges,

L(ω) ≈ 1/ε′′(ω)→∞ for ε′′(ω)→ 0 . (3)

This diverging singularity of the loss function for ENZ
materials will lead to anomalously high energy losses of
nanophotonic systems (e.g., plasmonic nanoparticles or
chromophores) at the surfaces of or embedded into such
materials. Such a paradoxical behavior – singularly high
loss in the limit of vanishing internal dissipation (ε′′ → 0)
– is due to the singularly low group velocity in this case,
cf. Eq. (2), which is also related to the excitation of bulk
plasmons.

In a sharp contrast, for all other types of materials,
including dielectrics (ε′ > 0) and metals (ε′ < 0), where
ε′′ � |ε′|, the loss function vanishes for negligible internal
dissipation,

L(ω) =
ε′′(ω)

ε′(ω)2 + ε′′(ω)2
≈ ε′′

ε′(ω)2
→ 0 for ε′′(ω)→ 0 .

(4)

Note that this regime is of especial interest for a case
of ε′′ � |ε′| � 1 which mimics the ENZ behaviorand is
realistic in the microwave frequency range [25, 26].

The results of Eqs. (3)-(4) are easy to understand. The
energy loss density per unit time, Q̇, for a given electric
field, E, oscillating inside a medium is given by an uni-
versal expression [20] Q̇ = ω

4π ε
′′ |E|2. (This can also be

equivalently written in terms of the real part of conduc-
tivity, σ′, as Q̇ = σ′ |E|2.) Obviously, Q̇ → 0 for low
internal dissipation, ε′′ → 0 (or, equivalently, σ′ → 0).
The energy loss per unit propagation length of a wave in-
side the medium is determined by the imaginary part of
wave vector, Imk = ω

c Im
√
ε′ + iε′′ → ω√

2c
Im
√
ε′′ → 0. In

contrast, for given charges oscillating inside the medium,
E ∝ ε−1, and Q̇ ∝ 1/ε′′ → ∞ for ENZ media where
ε′′ � |ε′| → 0.

Behavior of these three measures of losses in ENZ with
vanishing internal dissipation is fundamentally different:
∝ ε′′−1 → ∞, ∝ ε′′ → 0, and ∝

√
ε′′ → 0. This im-

plies singularity of the ENZ properties, which, as we have
already indicated above in conjunction with Eq. (2), is
related to vg → 0. Physically, this prevents energy re-
moval from an excitation volume and leads to singularly
increased fields, which brings about the high loss func-
tion. This can be useful to make efficient (“perfect”) thin
absorbers [27, 28]. Noteworthy, there is also degeneracy
in mathematical sense for ε = 0 because the coefficient
at one of the highest derivatives in the wave-propagation
equation (obtained from the Maxwell equations) turns to
zero.

As an example of the singular behavior of the ENZ
materials, the simplest case is a semi-infinite slab where
reflection coefficient R is given by the familiar Fresnel for-
mula [we will consider, for certainty, the p- (or, TM-) po-
larization]. It is expected that a good ENZ material will
be highly reflective (R ≈ 1) for any non-normal incidence.
In reality, as the results of Fig. 1(a) show, even for unre-
alistically small loss, ε(ω) = 0.03 + i10−3, there is a low
reflection for incidence angle θ ≤ 12◦ with a pronounced
Brewster-angle minimum at θ ≈ 10◦. As a realistic exam-
ple, in Fig. 1(a), we also plot results for ITO [29] where
for the carrier concentration n = 6.3 × 1020 cm−3 at
the telecommunication vacuum wavelength λ = 1.55 µm,
ENZ conditions are attained: ε = 0 + i0.57. Even for a
smooth surface, as Fig. 1(a) shows, the reflection is far
from perfect: R ≤ 30% for θ ≤ 60◦. Introduction of a
∼ 50-nm roughness, as the numerical results obtained by
FDTD calculations (Lumerical) show, further decreases
R by a factor ∼ 0.5. This low reflectivity is very far from
what is conventionally expected for an ENZ material. It
is physically related to excitation of bulk plasmons: the
ENZ materials are those at the bulk plasmon frequency,
ωP , where ε′(ωP ) = 0. Note that large losses at ω ≈ ωP
are known and actively exploited in plasma physics for
electromagnetic heating of plasmas [30].

To obtain more insight into nanooptical properties of
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FIG. 1. (Color online) Reflection R and transmission T co-
efficients of ENZ systems as functions of incidence angle θ.
(a) Reflection from a planar surface of semi-infinite ENZ ma-
terial. Analytical Fresnel reflection coefficient R for smooth
surfaces of ITO (ε = 0. + i0.57) and idealized low-loss ENZ
(ε = 0.03 + i0.001). Numerical FDTD reflection coefficient R
is displayed for ITO smooth and rough (RMS roughness of 50
nm) surfaces. (b) Analytical and numerical R and T for a 0.5
mm film of ITO (ε = 0.+ i0.57).
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FIG. 2. (Color online) Local field intensity E2(r) at rough
(random Gaussian roughness, MRS 50 nm) surfaces of ITO
(ε = 0. + i0.57) and gold (dielectric data are adapted from
Ref. 31). The excitation radiation is p-polarized incident at
45◦. The color scale of intensity (relative units) is indicated
to the right of the panels.

ENZ in comparison with conventional plasmonic metals,
we display in Fig. 2 local optical field intensity E2(r)
at a rough (random Gaussian roughness, MRS 50 nm)
surfaces of ITO (ε = 0. + i0.57) and gold [31]. As one
can see, the gold surface shows a pronounced picture of
nanoscopic hot spots with local fields enhanced by a fac-
tor of up to ∼ 103 as expected for a rough plasmonic
metal [13, 32, 33]. In a sharp contrast, the ENZ surface of
the same geometry does not show such hot spots. This is
certainly related to anomalous damping of the plasmonic
resonances due to the singularly-enhanced loss function
L(ω) → ∞ – see Eq. (3) and its discussion above. The
hot spots at the rough surface are damped due to the
anomalous loss caused by enhanced energy flow into the
ENZ.

Now let us consider another important system: a thin
film of ENZ where reflection and transmission are also
expected to have interesting properties (cf. Ref. 1 and
references therein). Such a film with smooth surfaces al-
lows for an exact analytical solution (see, e.g., Ref. 34].
The actual analytical results, which are illustrated in Fig.
1(b) for a 0.5 mm ITO film, turn out to be not remark-
able: the reflection coefficient is, for most angles, not very
high, R ∼ 10−40%, and transmission is rather low due to
the losses, typically T . 1−15%. We treat a similar thin
film with a nanoscopic roughness numerically using the
Lumerica package. For the sake of control and testing, we
applied this package also to smooth surfaces obtaining an
excellent agreement with the analytical formulas – cf. Fig.
1(b). For a nanofilm with rough surfaces [a Gaussian ran-
dom roughness with root mean-square (RMS) size δ = 50
nm], the reflection is further reduced suggesting the dom-
inating role of loss. In fact, the roughness helps to relax
the momentum conservation converting the electromag-
netic energy into non-propagating bulk plasmons.

It is widely discussed in the literature that ENZ mate-
rials bear high promise for nanoscale waveguiding, which
is suggested by the expected strong reflection from ENZ
surfaces at all angles [1, 3, 4, 6, 8, 35–40]. Propagation
in the plane nanoslit filled by a dielectric material be-
tween two semi-infinite slabs made of an ENZ material,
which we will call ENZ-I-ENZ waveguide, is amenable to
an exact analytical solution. The corresponding disper-
sion relation is an analytical continuation of the known
relation for the metal-insulator-metal (MIM) waveguides
[41] and is valid for any values of dielectric functions. For
a symmetric waveguide where the ENZ material with di-
electric permittivity ε surrounds a nanoscopic planar di-
electric waveguide with thickness d and permittivity εd,
this dispersion relation for the lower-loss mode of inter-
est, which is a symmetric mode, is

tanh

[
1

2
k0dεdu (εd)

]
= − u (ε)

u (εd)
, (5)

where a function u(ε) is defined as u(ε) = 1
ε

(
k2

k20
− ε
)1/2

;
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FIG. 3. (Color online) Intensity of wave propagating in ENZ-
I-ENZ waveguide with a 500-nm-thick (in the z-direction)
SiO2 dielectric as a waveguide core. The intensity is shown is
as function of the propagation length (in the x-direction).
Analytical results are for a planar waveguide (infinite in
the xy-direction). Numerical results are calculated for a
500 nm× 500 nm rectangular-cross-section SiO2 waveguide.
(a) The ENZ material of the waveguide is ITO at the vacuum
wavelength of 1.55 µm where ε = 0. + i0.57. (b) The ENZ
material is idealized with a very low loss, ε = 0.+ i0.05.

k is the modal wave vector, and k0 = ω/c is vacuum wave
vector.

For a plasmonic system, where ε′ < −εd, the sym-
metric mode is highly confined, k � k0, and Eq. (5)
simplifies,

k =
1

d
ln
ε− εd
ε+ εd

≈ −2

d

εd
ε
, (6)

where the approximation is valid in a deep plasmonic
region, ε′ � −εd. Obviously, k → ∞ for d → 0, which
describes a highly nano-confined guided mode.

In a sharp contrast, for an ENZ material, k � k0, and
Eq. (5) simplifies to

k ≈ k0
[
ε+

1

2
(k0dε)

2

]1/2
≈ k0

√
ε . (7)

Thus, the dispersion of the ENZ nano-waveguide is close
to that of the embedding ENZ medium, which indicates a
very weak mode confinement. In fact, k → 0 for |ε| → 0,
which is characteristic of the ENZ materials.

We consider numerically a parallel plate ENZ-I-ENZ
waveguide whose core is made of a d = 500 nm dielec-
tric plate of SiO2, surrounded by two semi-infinite ENZ
slabs. These are made of ITO at λ = 1.55 µm, where
ε = 0 + i0.57. In Fig. 3(a), intensity of the symmetric
mode propagating in such an ENZ-I-ENZ waveguide is
displayed as a function of the propagation coordinate by
a solid red line. As one can see, the real ENZ makes a
very poor waveguide: the modal propagation length is
only ≈ 0.3 µm. In comparison, for the same wavelength
and geometry, replacing the ENZ by gold (using dielec-
tric data of Ref. [31]), leads to the modal propagation
length of 51 µm. Thus the real ENZ material (ITO) of
relatively low loss [14, 15] in the optical range is indeed
much inferior to real metals as a waveguiding material.
As we have discussed above in conjunction with Eq. 7,
this is due to the weak confinement: the energy leaks into
the ENZ material where it is absorbed.

For a rectangular SiO2 waveguide of 500 × 500 nm
cross section in the ENZ ITO, we used Lumerical pack-
age to describe the mode propagation. The results for
smooth surfaces, rough surfaces (δ = 50 nm) and very
rough surfaces (δ = 100 nm) are shown in Fig. 3(a) by
dashed lines. As one can see, the propagation length in
the square waveguide is indeed even shorter than in the
parallel-plate one but not by very much. The roughness
shortens the propagation length somewhat by increasing
coupling to bulk plasmons.

Given the high propagation losses of the waveguides
based on ITO as a realistic ENZ material, one may ask
how much the loss, i.e., ε′′, for a waveguiding ENZ ma-
terial should be reduced to make it competitive with
the real metals in the optical spectral region. To elu-
cidate this question, we plot in Fig. 3(b) results for the
same waveguide geometry calculated for an idealized, ex-
tremely low-loss ENZ material where dielectric permit-
tivity is set to be ε = 0 + i0.05. In this idealized case,
the waveguide modal propagation length is, indeed, in-
creased but still it is in a . 0.8 µm range, i.e., much
inferior to gold as a plasmonic waveguiding material.

To conclude, the fundamental principle of causality [as
given by Eq. (1)] dictates that any ENZ material with
a very low (asymptotically zero) loss at the observation
frequency has necessarily asymptotically zero group ve-
locity at that frequency. Physically, this leads to en-
hanced scattering and dissipative losses as given by the
diverging energy-loss function – cf. Eq. (3). Paradoxi-
cally, a reduction of the intrinsic loss, ε′′ → 0, leads to
an increase of energy-loss function and further deterio-
ration of performance of reflectors and waveguides built
from ENZ materials. Both analytically and numerically
we have shown that a realistic ENZ material ITO at the
bulk plasma frequency causes high reflection and propa-
gation losses. The singular loss function is also responsi-
ble for anomalously strong optical damping of resonant
systems (plasmonic nanoparticles, dye molecules, quan-
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tum dots, etc.) embedded into or positioned at the sur-
faces of ENZ materials. In contrast to plasmonic met-
als, there are no pronounced hot spots of local fields at
rough ENZ surfaces. Structured dielectric media with
practically zero loss in the optical region cannot function
as true ENZ materials because of the singular response
(3); they necessarily are diffractive photonic crystals, and
not refractive effective media. Obviously, this anomalous
loss of ENZ materials can be gainfully used in energy ab-
sorbers, which begets analogy with heating of plasmas at
plasma frequency with charged particles or electromag-
netic waves. These losses and singularities are fundamen-
tal, local properties of the ENZ media, which cannot be
eliminated by micro- or nano-structuring.
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