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Real Coded Genetic Algorithm for Jiles–Atherton
Model Parameters Identification

J. V. Leite, S. L. Avila, N. J. Batistela, W. P. Carpes, Jr., N. Sadowski, P. Kuo-Peng, and J. P. A. Bastos

Abstract—The parameters set of the Jiles–Atherton hysteresis
model is identified by using a real coded genetic algorithm. The
parameters identification is performed by minimizing the mean
squared error between experimental and simulated magnetic field
curves. The procedure is validated by comparing experimental and
simulated results.

Index Terms—Magnetic hysteresis modeling, magnetic mate-
rials, parameters identification.

I. INTRODUCTION

A
MONG the hysteresis models proposed in recent years for
representing nonlinear characteristics of magnetic mate-

rials, the Jiles–Atherton (JA) model has been one of the most
investigated. Compared to other models, the JA model has some
advantages: it is formulated in terms of a differential equation
and it uses only five parameters whose identification is per-
formed from a single measured hysteresis loop [1].

The mathematical hysteresis model presented by Jiles and
Atherton is based on physical considerations about the mate-
rials magnetic behavior [1]. Consequently, the five parameters
of the JA model have a physical significance and a way to ob-
tain the suitable parameters set is based on the physics concepts
of the parameters. In this way, Jiles and Thoelke [2] proposed
the first methodology for JA parameters identification from an
experimental B-H loop.

Several others methods have been developed to achieve the
best parameters set for the JA hysteresis model. Among them,
some authors have proposed the use of optimization techniques
to obtain a good representation of hysteresis loops. For instance,
[3] uses an optimization technique based on simulated annealing
and [4] uses a genetic algorithm with binary codification.

As an original contribution, we present here an optimiza-
tion methodology based on a real coded genetic algorithm. The
model parameters are obtained by fitting the simulated curve
with the experimental one.

This method is less time consuming compared to trial-and-
error adjustment (as given in a previous work [5]) and, as it
will be shown, the obtained parameters allow a good agreement
between simulated and measured curves even for inner loops.

II. INVERSE JA MODEL

In the original JA model, the total magnetization is cal-

culated from the magnetic field . is decomposed into re-

versible and irreversible components.
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A modified JA model using the magnetic induction as an

independent variable was proposed in [6]. This inverse model

keeps the original advantages of the direct model and can be

directly used in time-stepping finite element calculations using

a formulation based on the magnetic vector potential.

The main equation of this model is

(1)

Both original and modified models belong to the Langevin

type hysteresis models. If there is no hysteresis loss, the mag-

netization follows the anhysteretic curve given by

(2)

Its derivative with respect to the effective magnetic field is

(3)

where the effective magnetic field is given by

(4)

The following complementary relationships are also needed:

(5)

where is the irreversible component of magnetization, and

is a directional parameter and takes the value for

and for . The effective magnetic density and

the magnetic induction are given, respectively, by

(6)

(7)

Parameters and must be determined from a

measured hysteresis loop [2], [3].

In this work, an alternative solution uses a mean squared error

(MSE) definition based on the fitting between the measured and

the calculated curves. The objective is to find the JA model pa-

rameters that minimize this MSE. The search for the global min-

imum is performed by an optimization method based on genetic

algorithms (GAs) [7].
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III. GENETIC ALGORITHMS

GAs optimizers are well-known tools in the electromagnetic

community [8], [9]. GAs are stochastic optimization techniques

founded on the concepts of natural selection and genetics. The

algorithm starts with a set of solutions called population. So-

lutions from a population are used to form a new population.

This is motivated by the hope that the new population will be

better than the old one. Solutions that will form new solutions

are selected according to their fitness: the more suitable they

are, the more chances they have to reproduce. This is repeated

until some condition (for example, number of generations or im-

provement of the best solution) is satisfied.

Among the advantages of GAs, we can quote that they can

optimize with continuous or discrete parameters and do not re-

quire information about gradients; the possible discontinuities

present on the fitness function have little effect on the overall op-

timization performance; GAs are resistant to becoming trapped

in local optima; they can handle numerically generated data, ex-

perimental data, or analytical functions; and they can be em-

ployed for a wide variety of problems.

Real coding is well suited to a large class of programming

languages and to problems with a great number of variables. For

this reason, modified genetic operators are being developed for

a real coded GA aiming an effective exploration of the search

space [10]. These modified genetic operators are used in this

paper as well as the improvement tools presented in [11].

A. Parameters Identification Procedure

Fig. 1 is a schematic representation of the parameters identi-

fication procedure presented here. The first step is the charac-

terization of the individuals that will form the population.

The individuals are composed by the five parameters of the

JA model (in real coding, it is not necessary to code the vari-

ables in binary representation). We consider the case where the

population is given by

...
...

...
...

... (8)

where each line represents an individual (a point in the optimiza-

tion space), is the generation, and is the population size.

The initial values assigned to the population are random

values in the allowable range, as shown in Tables I and II.

Each individual of this population is evaluated using the fit-

ness between calculated and experimental results.

The convergence criterion is based on the achievement of an

acceptable (fixed) MSE:

(9)

and also on a maximum allowed number of generations.

If convergence is not attained, genetic operators (selection,

crossover, mutation, and improvements techniques) are applied.

The selection procedure is responsible for forming the pairs that

will be submitted to the other genetic operators. Selection is a

mechanism related to individual fitness. The “roulette wheel”

method was used as the selection procedure [7]. Crossover and

Fig. 1. Optimization procedure.

TABLE I
MATERIAL A PARAMETERS

TABLE II
MATERIAL B PARAMETERS

mutation are mechanisms used to change the genetic materials

of the individuals. They are the main tools for the success of the

optimization process and must be implemented in order to allow

an effective exploration of the search space. We use an efficient

scheme for crossover and mutation for a real coded GA, pro-

posed in [10]. The improvement techniques presented in [11]

are also used here: global elitism (which avoids loss of good

solutions during the process), dynamic adaptation of crossover

and mutation probabilities (variation of the probabilities values

according to the population behavior), and reduction of the vari-

ables spaces (reduction of the variables ranges to increase the

results precision and to facilitate the search toward the global

minimum). The new individuals created by the genetic opera-

tors described above will be evaluated and the iterative process

will be repeated until one convergence criterion is reached.
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B. Program Data

The GA was implemented with 30 individuals (each with five

variables corresponding to the parameters of the JA hysteresis

model). The maximum number of generations was set to 50.

The initial crossover and mutation probabilities were set in 90%

and 5%, respectively. The allowable ranges for each variable are

shown in Tables I and II.

The objective function to be minimized corresponds to the

total MSE between experimental and simulated magnetic field

curves.

The suitable ranges for the variables must be provided to the

program. These ranges can be obtained by a trial-and-error pro-

cedure: we perform repeated calculations using a small number

of individuals with few generations and we observe the error be-

havior for each chosen range.

The optimization procedure was executed several times. In

the great majority of the cases, the algorithm found practically

the same best individual. This demonstrates the convergence of

the applied methodology. For a stochastic optimization method,

the final solution can only be considered optimal by repetition

of the results [7]. In the next section, the best solution found for

the proposed examples is presented.

IV. RESULTS

A. Measured Curves

The experimental curves shown in this paper were obtained

in a workbench presented in [5]. The magnetic device used was

an Epstein’s frame 0.28-m long with 0.03-m-width iron sheets.

The primary and secondary windings have 700 turns

. The magnetic mean path is 0.94 m. The electric

resistance of primary winding is 0.691 . The secondary voltage

and the primary current are measured simultaneously

with an oscilloscope. The magnetic field is related to the

current by

(10)

The magnetic induction is obtained by time integration of the

voltage in the secondary coil:

(11)

where is the cross section of the Epstein’s frame.

It is important to remark that the use of the inverse JA model

for the parameters identification has an additional advantage

compared with the original model: the input of the inverse model

is the magnetic induction waveform. Since the magnetic induc-

tion is obtained from integration, it is naturally filtered, with

fewer oscillations than those of the magnetic field waveform.

The noise present in the field waveform brings additional diffi-

culties to the parameters identification procedure.

The obtained set of parameters is valid for both models, orig-

inal and inverse, allowing good agreement between measured

and calculated data.

Fig. 2. Hysteresis loops: measured and modeled for material A.

Fig. 3. Field: measured and modeled for material A.

Fig. 4. Hysteresis loops: measured and modeled for material B.

B. Comparison With Simulation

Fig. 2 shows the experimental and simulated hysteresis curves

for a material A modeled with the set of parameters obtained

with the methodology proposed here. Table I shows the search

ranges and the optimized parameters set for material A. Fig. 3

shows the experimental and simulated field curves of this mate-

rial when submitted to a 1.24 T peak value sinusoidal induction.

Calculated and measured hysteresis loops for a different ma-

terial B are shown in Fig. 4; the corresponding field curves are

presented in Fig. 5. The search ranges and the optimized param-

eters set are shown in Table II. The comparison between these

results shows a good agreement.

Fig. 6 and 7 show, respectively, the evolution of the MSE for

materials A and B. We observe that the error decreases quickly
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Fig. 5. Field: measured and modeled for material B.

Fig. 6. Evolution of the total error for material A.

Fig. 7. Evolution of the total error for material B.

and the algorithm reaches an optimized set of parameters with

little computational effort.

V. CONCLUSION

A Jiles–Atherton parameters identification program was im-

plemented using genetic algorithms and tested with measured

curves.

The GA methodology used in this work allows results to be

obtained with good precision. Real coding has advantages re-

lated to the convergence time (few generations) and simplicity

to assemble the individuals (it is not necessary to code them in

binary representation). The computational effort and calculation

time are lower compared to trial-and-error adjustment.

The good agreement between calculated and measured hys-

teresis curves, for the complete set of magnetic induction am-

plitudes, validates the proposed procedure.
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