
I.J. Intelligent Systems and Applications, 2015, 12, 1-22
Published Online November 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2015.12.01

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 1-22

Real Coded Genetic Algorithm Operators

Embedded in Gravitational Search Algorithm for

Continuous Optimization

Amarjeet Singh
Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee – 247667, Uttarakhand, India.

Emails: amarjeetiitr@gmail.com

Kusum Deep
Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee – 247667, Uttarakhand, India.

Emails: kusumdeep@gmail.com

Abstract—The objective of this paper is to propose three

modified versions of the Gravitational Search Algorithm

for continuous optimization problems. Although the

Gravitational Search Algorithm is a recently introduced

promising memory-less heuristic but its performance is

not so satisfactory in multimodal problems particularly

during the later iterations. With a view to improve the

exploration and exploitation capabilities of GSA, it is

hybridized with well-known real coded genetic algorithm

operators. The first version is the hybridization of GSA

with Laplace Crossover which was initially designed for

real coded genetic algorithms. The second version is the

hybridization of GSA with Power Mutation which also

was initially designed for real coded genetic algorithms.

The third version hybridizes the GSA with both the

Laplace Crossover and the Power mutation. The

performance of the original GSA and the three proposed

variants is investigated over a set of 23 benchmark

problems considered in the original paper of GSA. Next,

all the four variants are implemented on 30 rotated and

shifted benchmark problems of CEC 2014. The extensive

numerical, graphical and statistical analysis of the results

show that the third version incorporating the Laplace

Crossover and Power mutation is a definite improvement

over the other variants.

Index Terms—Gravitational Search Algorithm, Real

Coded Genetic Algorithm operators, Laplace Crossover,

Power Mutation, continuous optimization.

I. INTRODUCTION

Many real-world nonlinear optimization problems are

possessing increased level of complexities. Their nature

may be highly non-linear or high dimensional or non-

differential discontinuous or having large search space or

their search space may increase exponentially with

problem size. Although in literature many deterministic

techniques are available but they are applicable to a

restricted class of functions e.g. Lipchitz continuous

functions, differentiable functions etc. On the other hand,

probabilistic techniques are becoming increasingly

popular due to their ease of use and wide applicability.

Due to the No Free Lunch Theorem no single algorithm

can solve problems of all complexities. Therefore,

efficient and reliable optimization algorithms are always

in demand. In the last few decades, more adaptable and

flexible heuristic optimization algorithms have been

developed to handle such problems, especially with

imperfect or incomplete information. Deriving their

inspiration from natural phenomenon like evolutionary

process of living organisms and swarm behaviour, Nature

Inspired Algorithms are one such category of popular

algorithms which find numerous applications in

clustering, pattern recognition, image processing,

numerical and combinatorial optimization and many

other problems arising in science, engineering, business,

economics and finance.

Ant Colony Optimization (ACO) [1], Artificial Bee

Colony (ABC) [2], Artificial Immune System (AIS) [3],

Bacterial Foraging Optimization Algorithm (BFOA) [4],

Differential Evolution (DE) [5], Genetic Algorithm (GA)

[6], Glowworm Swarm Optimization (GSO) [7,8],

Particle Swarm Optimization (PSO) [9] are some of the

biological-based stochastic nature inspired optimization

algorithm. Simulated Annealing (SA) [10], Artificial

Physics Optimization (APO) [11, 12], Central Force

Optimization (CFO) [13], Harmony Search Algorithm

(HS) [14], Space Gravitation optimization [15] etc. are

physics inspired heuristic search algorithms [16]. These

algorithms mimic physical behaviour and physical

principals.

To achieve efficient global and local search, a heuristic

algorithm must have a good trade-off between

exploration and exploitation. The exploration ability

makes the algorithm to investigate the search space and

explore new and better solutions, and exploitation ability

make the algorithm to search the optimal solution near a

good one. The ability of exploration and exploitation of

heuristic algorithm is made by specific operators. Hence,

new operators are designed or available operators are

redesigned in order to add specific capabilities in

heuristic algorithms to solve such problems.

2 Real Coded Genetic Algorithm Operators Embedded in Gravitational Search Algorithm for Continuous Optimization

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 1-22

Recently, a new physics based heuristic optimization

algorithm, namely Gravitational Search Algorithm (GSA)

has been introduced by Rashedi et al [17]. It mimics the

characteristic of Newton’s law of gravitation and motion.

GSA is popular as it has a small number of parameter to

adjust and it is easy to implement. But like other

heuristics GSA too has some demerits. It is not suitable

for highly complex problems. It usually get stuck at local

optimal solutions or non-optimal solutions, therefore it is

unable to improve the quality of solutions in the latter

iterations. To overcome these drawbacks many

researchers have introduced new operator in it and also

hybridized with other heuristic algorithms.

Sarafrazi et al [18] defined a new operator

“Disruption”, originating from astrophysics and

Doraghinejad et al [19] defined a new operator “Black

Hole”, inspired by some of the characteristics of the black

hole as an astronomy phenomenon, for GSA to increase

the exploration and exploitation ability. Based on the

dynamics of Quantum, Mohadeseh Soleimanpour et al

[20] proposed Quantum behaved GSA but it suffers with

diversity loss problem in collecting the masses of objects.

Later on, Improved Quantum behaved GSA is proposed

in which fitness function of QGSA is replaced by new

fitness function [21, 22]. Radu et al [23, 24] applied three

modifications: define constraint regarding system, modify

deprecation equation of gravitation constant and extended

symmetrical method and proposed new GSA to reduce

parametric sensitivity of fuzzy based control system for

optimal tuning. Gao et al [25] proposed a chaotic GSA

which combines GSA with chaos. Rashedi et al. [26]

proposed Binary GSA for solving discrete optimization

problems. Mirjalili et al [27] proposed PSOGSA in which

particles update their velocity using PSO velocity update

equation. Chengyi [28] proposed Simulated Annealing

based GSA in which position of the particles updated

according to Metropolis-principle. Xu et al [29] proposed

Improved GSA which uses trial-and-error method to

update the optimal agent during the whole search process.

GSA is memory less algorithm. Hence, for enhancing

particle memory ability and improve its search accuracy,

Gu et al [30] uses the idea of local optimum solution and

global optimum solution from PSO and proposed

modified GSA. Jiang et al [31] proposed an improved

GSA, in which the chaos operator and memory strategy

are applied.

GSA has also been successfully applied to solve

constrained as well as multi-objective optimization

problems. Yadav et al [32] used GSA to solve

constrained optimization problems and [33] also

hybridized it with Differential Evolution. Nobahari et al

[34] extend GSA and proposed non-dominated sorting

GSA for multi-objective optimization problems.

Hassanzadeh et al [35] also proposed another variant for

multi-objective problems. It used pareto optimality

function with standard GSA.

In this paper, an attempt is made to hybridize GSA

with well-known real coded crossover operators. Three

versions are proposed. First, GSA is hybridized with

Laplace Crossover (LX) Operator, second GSA is

hybridized with Power Mutation (PM) Operator and

thirdly it is hybridized with both LX and PM. The

motivation behind this hybridization is that the

exploration and exploitation capabilities of GSA can be

enhanced by the LX and PM operators of Real Coded

Genetic Algorithms.

The remaining paper is composed as follows: In

section II, the Gravitational Search Algorithm is

explained. In section III, the three proposed versions of

GSA are described. In section IV, the numerical results

are analysed. In section V, the performance of the four

algorithms is demonstrated on the rotated and shifted

benchmark collection as given in CEC 2014. Finally in

section VI the conclusions are drawn.

II. GRAVITATIONAL SEARCH ALGORITHM

Gravitational Search Algorithm (GSA) is a new

addition in the class of nature inspired optimization

techniques based on gravitational interaction between

masses [17]. GSA artificially simulates the Newton's

Theory, Newtonian laws of gravitation and motion.

Newton’s law of gravity states that every particle attracts

other particle by means of some gravitational force and

the gravitational force between two particles is directly

proportional to the product of their masses and inversely

proportional to the square of the distance between them.

Law of motion states that the current velocity of any mass

is equal to the sum of the fraction of its previous velocity

and the variation in the velocity. Variation in the velocity

or acceleration of any mass is equal to the force acted on

the system divided by mass of inertia.

In GSA, agents are considered as particles and every

particles represent a candidate solution. Their fitness is

measured by their masses, heavy masses correspond to

good solution. Due to gravitational force, these particles

attract each other and moves towards the heavy mass

objects. Hence, gravitational force guide the masses.

Heavy masses move slowly than lighter masses

(exploitation).

The continuous nonlinear optimization problem is

defined as:

  Minimize f x (1)

Subject to

 lower upperx x x 

Consider a system of N particles and the position of

particle i is represented as:

1 2(, ,..., ,...) for 1,2,...,d m

i i i i ix x x x x i N  (2)

where
d

ix is the position of particle i in dimension d. the

total force of attraction exerted by the ith particle at time t

in d dimension is given by Eq. (3)

 Real Coded Genetic Algorithm Operators Embedded in Gravitational Search Algorithm for Continuous Optimization 3

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 1-22

   
 

   
 ,?

() ()
 (?)

pi ajd d d

i j j i
j kbest j i

ij

M t M t
t rand G t x t x tF

R t  

 


(3)

Fig.1. Pseudo code of GSA

Where
jrand is a random number in the interval [0, 1],

()piM t is the passive gravitation mass related to ith particle

mass at time t, ()a jM t is the active gravitational mass

related to jth particle at time t, ()i jR t is Euclidean

distance between particles i and j, is a small constant,

jkbest is the set of first K particles arranged in

decreasing order according to their fitness. ()G t is the

gravitational constant at time t and the value of ()G t is

calculated by

   0 exp / max_ iterG t atG  (4)

Here,  is a constant and
0G is initial value.

The gravitational mass and inertia mass for each

particle are calculated as follows

() () () ()pi ai ii iM t M t M t M t   (5)

(()) ()
() , 1,2,...,

() ()

i

i

f x t worst t
m t i N

best t worst t


 


 (6)

1

() () ()
N

i i j
j

M t m t m t


  (7)

where (())if x t is the fitness of ith particle at time t. The

acceleration of particle i in dimension d at a specific time

t is

 
 

()

d

id

i

ii

t

M

F
t

t
a  (8)

The next velocity of a particle i is a fraction of its

current velocity added to its acceleration.

(1) () ()d d d

i i iv t rand v t a t   (9)

The next position of particle i is updated by

(1) () (1)d d d

i i ix t x t v t    (10)

In the initial population, a particle having best fitness

value is set to Lbest and in successive iteration the fitness

of Lbest is compared with the best particle’s fitness in

each iteration, if it has better fitness than Lbest is updated

otherwise Lbest remains same. Fig. 1 show the pseudo

code of GSA.

III. THREE PROPOSED HYBRID VERSIONS OF GSA

In the present study, an effort is made to enhance the

exploration and exploitation ability of GSA by

hybridizing it with two well-known operators of Real

Coded Genetic Algorithms, namely Laplace Crossover

and Power Mutation. First these two operators are

explained below.

A. Laplace Crossover

Laplace Crossover (LX) is introduced by Deep and

Thakur [36] based on Laplace distribution. It generates a

pair of offspring  1 2

1 1 1 1, ,..., my y y y and  1 2

2 2 2 2, ,..., my y y y from

a pair of parents  1 2

1 1 1 1, ,..., mx x x x and  1 2

2 2 2 2, ,..., mx x x x in

the following way. First, two uniformly distributed

random numbers , [0,1]i ir s  are generated and a random

number
i , following Laplace distribution, is generated

as:

log (), 0.5

log (), 0.5

e i i

i

e i i

a b r s

a b r s


 
 

 
 (11)

Then offspring are created by the equations:

Set number of particles = N

Set dimension of the problem = m

Set parameter value:
0 ,G 

Deploy N particles randomly in the search space

Let         1 , , , ,d m

i i i ix t x t x t x t be the position of particle

i at iteration t

Set maximum number of iteration = max_iter

t=0

while (tmax_iter) do:

 {Evaluate fitness f of each particle
   0? () max_G t G exp t iter 

   1, , 1, ,

() min (()), () max (()),j j
j jN N

best t f x t worst t f x t
 

 

msum=0;

 for i =1 to N

 { (()) ()
() ; msum=msum ();

() ()

i
i i

f x t worst t
m t m t

best t worst t


 


 }

 for i =1 to N

 { () () msum;i iM t m t }

 for each particle i = 1 to N do:

 { for d = 1 to m do:

{  
,

() ()
() () () ()

()

pi ajd d d

i j j i
j kbest j i

ij

M t M t
F t rand G t x t x t

R t  


 



 () () ()d d

i i iia t F t M t

 (1) () ()d d d

i i i iv t rand v t a t  

 (1) () (1)d d d

i i ix t x t v t   

 }

 }

 t=t+1

}

4 Real Coded Genetic Algorithm Operators Embedded in Gravitational Search Algorithm for Continuous Optimization

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 1-22

1 1 1 2

2 2 1 2

,

,

i i i i

i

i i i i

i

y x x x

y x x x





  

  
 (12)

Let i

lowerx and i

upperx to be the lower and upper bounds

of the unknown variables
ix . If i i

lowerx x or i i

upperx x for

some i , then ix is assigned a random value in the

interval [,]i i

lower upperx x .

B. Power Mutation

Power Mutation (PM) operator introduced by Deep and

Thakur [37] based on power distribution. PM operator

creates a solution in the vicinity of a parent solution x

in the following manner. First, a uniformly distributed

random number [0,1]r is generated. Then a random

number w following power distribution, is generated by
1/ pw r , where p is the index of distribution. Offspring

is created by the formula:

(),

(),
lower

upper

x w x x if t v
y

x w x x if t v

  
    

 (13)

Where [0,1]v is a uniformly distributed random

number,
lower

upper lower

x x
t

x x





 and

lowerx and
upperx are lower

and upper bound of decision variables. For small value of

p, it achieves less perturbation and for large value of p, it

achieves more diversity in the solution.

The hybridization of GSA is performed with the above

defined Laplace Crossover, which is a real coded

crossover operator for real coded genetic algorithm and

the above defined power mutation, which is a real coded

mutation operator for real coded genetic algorithm. The

motivation behind this hybridization is that the mass of

particles may decrease with the passage of time due to

environment change. Hence, the exploration and

exploitation of GSA may improve with the

implementation of real coded genetic algorithm operators.

With a view to enhance the performance of GSA, the

following three proposed variants of GSA are designed.

C. Proposed LX-GSA

After the completion of each iteration of GSA, the

Lbest particle and a randomly selected particle are

selected as parents and Laplace crossover is applied to

produce two offsprings called
1y and

2y . If fitness of
1y

is better than the fitness of worst particle then, worst is

replaced by
1y and worst is updated. In either case, if

fitness of
2y is better than the fitness of worst then,

worst is replaced by
2y and Lbest is updated if

offsprings have better fitness. Then the iteration is

incremented. Fig. 2 shows the pseudo code of LX-GSA.

D. Proposed PM-GSA

After the completion of each iteration of GSA, the

Lbest particle is selected and the Power Mutation is

applied to produce a mutated offspring called y . If fitness

of y is better than the fitness of worst, then worst is

replaced by y and Lbest is updated if offspring has better

fitness. Then the iteration is incremented. Fig. 3 shows

the pseudo code of PM-GSA.

Fig.2. Pseudo code of LX-GSA

Set number of particles = N

Set dimension of the problem = m

Set parameter value:
0 ,G 

Deploy N particles randomly in the search space

Let         1 , , , ,d m

i i i ix t x t x t x t be the position of

particle i at iteration t

Set maximum number of iteration = max_iter

t=0

while (tmax_iter) do:

 {Evaluate fitness f of each particle
   0? () max_G t G exp t iter 

   1, , 1, ,

() min (()), () max (()),j j
j jN N

best t f x t worst t f x t
 

 

msum=0;

 for i =1 to N

 { (()) ()
() ; msum=msum ();

() ()

i
i i

f x t worst t
m t m t

best t worst t


 


 }

 for i =1 to N

 { () () msum;i iM t m t }

 for each particle i = 1 to N do:

 { for d = 1 to m do:

{  
1,

() ()
() () () ()

()

N
pi ajd d d

i j j i
j j i

ij

M t M t
F t rand G t x t x t

R t  


 



 () () ()d d

i i iia t F t M t

 (1) () ()d d d

i i i iv t rand v t a t  

 (1) () (1)d d d

i i ix t x t v t   

 }

 }

 % Applying LX-operator

 Select
1 ()x best t and

2 a randomparticlex 

1 1 1 2

2 2 1 2

, 1, ,

, 1, ,

d d d d

d

d d d d

d

y x x x d m

y x x x d m





   

   

 % random number
d follow Laplace distribution

 Replace
1 2,y y with worst particle if they have better

fitness

 }

 t=t+1

}

 Real Coded Genetic Algorithm Operators Embedded in Gravitational Search Algorithm for Continuous Optimization 5

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 1-22

Fig.3. Pseudo code PM-GSA

E. Proposed LX-PM-GSA

After the completion of each iteration of GSA, the

Lbest particle and a randomly selected particle are

selected as parents and Laplace crossover is applied to

produce two offsprings called
1y and

2y . If fitness of
1y

is better than the fitness of worst then, worst is replaced

by 1y and worst is updated. In either case, if fitness of

2y is better than the fitness of worst then, worst is

replaced by
2y and Lbest is updated if offsprings have

better fitness.

Then, Lbest particle is selected and the Power

Mutation is applied to produce a mutated offspring

called y . If fitness of y is better than the fitness of worst,

then worst is replaced by y and Lbest is updated if

offspring has better fitness. Then the iteration is

incremented. Fig. 4 shows the pseudo code of LX-PM-

GSA.

Fig.4. Pseudo code of LX-PM-GSA

Set number of particle=N

Set dimension of the problems = m

Set parameter value:
0 ,G 

Deploy N particles randomly in the search space

Let         1 , , , ,d m

i i i ix t x t x t x t be the position of

particle i at iteration t

Set maximum number of iteration = max_iter

t=0

while (tmax_iter) do:

 {Evaluate fitness f of each particle
   0? (m)ax_G t G exp t iter 

   1, , 1, ,

() min (()), () max (()),j j
j jN N

best t f x t worst t f x t
 

 

msum=0;

 for i =1 to N

 { (()) ()
() ; msum=msum ();

() ()

i
i i

f x t worst t
m t m t

best t worst t


 


}

 for i =1 to N

 { () () msum;i iM t m t }

 for each particle i = 1 to N do:

 { for d = 1 to m do:

{  
,

() ()
() () () ()

()

pi ajd d d

i j j i
j kbest j i

ij

M t M t
F t rand G t x t x t

R t  


 



 () () ()d d

i i iia t F t M t

 (1) () ()d d d

i i i iv t rand v t a t  

 (1) () (1)d d d

i i ix t x t v t   

 }

 }

 % Applying LX-operator

 Select
1 ()x best t and

2 a randomparticlex 

1 1 1 2

2 2 1 2

, 1, ,

, 1, ,

d d d d

d

d d d d

d

y x x x d m

y x x x d m





   

   

 % random number
d follow Laplace distribution

 Replace
1 2,y y with worst particle if they have better

fitness

 % Applying Power Mutation

 Select ()x best t

(),

(),

d

d d d

d lower d d

d d d

d upper d d

x w x x if t v
y

x w x x if t v

   
 

  

 1, ,d m

 %
dw is a random number follow power distribution,

dv is a uniformly distributed random number and

d d

lower
d d d

upper lower

x x
t

x x





, d

lowerx and d

upperx are lower and upper

bound of ith variable

 Replace y with worst particle if it has better fitness

 }

 t=t+1

}

Set number of particles = N

Set dimension of the problem = m

Set parameter value:
0 ,G 

Deploy N particles randomly in the search space

Let         1 , , , ,d m

i i i ix t x t x t x t be the position of

particle i at iteration t

Set maximum number of iteration = max_iter

t=0

while (tmax_iter) do:

 {Evaluate fitness f of each particle
   0? ()max_G t G exp t iter 

   1, , 1, ,

() min (()), () max (()),j j
j jN N

best t f x t worst t f x t
 

 

msum=0;

 for i =1 to N

 { (()) ()
() ; msum=msum ();

() ()

i
i i

f x t worst t
m t m t

best t worst t


 


}

 for i =1 to N

 { () () msum;i iM t m t }

 for i = 1 to N do:

 { for d = 1 to m do:

{  
,

() ()
() () () ()

()

pi ajd d d

i j j i
j kbest j i

ij

M t M t
F t rand G t x t x t

R t  


 



 () () ()d d

i i iia t F t M t

 (1) () ()d d d

i i i iv t rand v t a t  

 (1) () (1)d d d

i i ix t x t v t   

 }

 }

 % Applying Power Mutation

 Select ()x best t

(),

(),

d

d d d

d lower d d

d d d

d upper d d

x w x x if t v
y

x w x x if t v

   
 

  

 1, ,d m

 %
dw is a random number follow power distribution,

dv is a uniformly distributed random number and

d d

lower
d d d

upper lower

x x
t

x x





, d

lowerx and d

upperx are lower and upper

bound of ith variable

 Replace y with worst particle if it has better fitness

 }

 t=t+1

}

6 Real Coded Genetic Algorithm Operators Embedded in Gravitational Search Algorithm for Continuous Optimization

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 1-22

IV. BENCHMARK FUNCTIONS AND EXPERIMENTAL

RESULTS

To test the performance of proposed versions of GSA,

the same set of 23 benchmark function are selected as

considered in the first paper of GSA [17] and reproduced

in the APPENDIX A of this paper. This set consists

unimodal, multimodal, low dimensional and high

dimensional functions. Functions F1 to F7 are high

dimensional unimodal functions, F8 to F13 are high

dimensional multimodal functions and F14 to F23 are low

dimensional multimodal functions with fixed dimension.

Environment for running the experiments is processor:

Intel (R) Xeon (R) CPU @ 2.80GHz, RAM: 144.00 GB,

operating system: Window 7, Integrated Development

Environment: Matlab 2010. The parameters of the

algorithm are
0 100, 20, 0.25, 0, 0.35G p a b    

and population size = 50. To test the performance of the

algorithms, three experiments are performed. In

experiment I, the termination criteria is: maximum

iterations = 4000 for the function F1 to F13 and maximum

iterations = 2000 for F14 to F23. The GSA, LX-GSA, PM-

GSA and LX-PM-GSA are run 30 times each. In

experiment II, the termination criteria is: maximum

iterations = 4000 and absolutely error is less than 0.01 for

the function F1 to F13 and maximum iterations = 2000 and

absolutely error less than 0.01 for F14 to F23, where

absolute error is defined as the absolute difference

between the known objective function value and the

obtained objective function value by the algorithms. The

GSA, LX-GSA, PM-GSA and LX-PM-GSA are run 50

times each. A run is considered to be a success if best

objective function value in the population has error less

than 0.01 within above defined iterations. In experiment

III, algorithms are used to solve CEC2014 test problems.

For a fair comparison among the algorithms the first

randomly generated population is used for the first run of

all algorithm, second randomly generated population is

used for second run of all algorithm, and so on.

A. Analysis of Results based on Experiment I

Following the same performance measures as

considered in the first paper of GSA [17], the Average

best-so-far, Median best-so-far, Average mean fitness,

Best, Worst, standard deviation of the objective function

values of function F1 to F7 are shown in Table 1, for F8 to

F13 are shown in Table 2, for F14 to F23 are shown in

Table 3. The best entries are highlighted in bold in each

of the Table 1, 2 and 3.

Table 1. Objective Function Values for High Dimensional Unimodal Functions

Pro. D. Algorithm
Average

best so far

Median

best so far

Average

mean

fitness

Best Worse STD

F1 30 GSA 2.79E-18 2.92E-18 9.77E-18 1.16E-18 5.16E-18 9.78E-19

 LX-GSA 1.85E-18 1.91E-18 8.37E-18 8.59E-19 2.76E-18 5.54E-19

 PM-GSA 2.94E-18 2.84E-18 1.01E-17 1.79E-18 4.38E-18 6.62E-19

 LX-PM-GSA 2.09E-18 2.1E-18 8.45E-18 1.33E-18 3.11E-18 3.8E-19

F2 30 GSA 7.66E-09 7.35E-09 1.34E-08 5.36E-09 1.06E-08 1.44E-09

 LX-GSA 5.97E-09 5.79E-09 1.2E-08 3.66E-09 7.85E-09 1.01E-09

 PM-GSA 7.79E-09 7.44E-09 1.34E-08 5.32E-09 1.27E-08 1.67E-09

 LX-PM-GSA 5.72E-09 5.59E-09 1.16E-08 3.77E-09 9.06E-09 1.11E-09

F3 30 GSA 3.217619 2.005779 3.217619 0.268354 11.72383 3.264068

 LX-GSA 0.001277 3.5E-17 0.001278 1.49E-17 0.016613 0.003443

 PM-GSA 3.254921 2.602324 3.254921 0.245432 10.32525 2.622834

 LX-PM-GSA 9.28E-05 3.46E-17 9.3E-05 1.06E-17 0.000898 0.000248

F4 30 GSA 1.65E-09 1.65E-09 2.49E-09 1.14E-09 2.36E-09 2.79E-10

 LX-GSA 1.23E-09 1.23E-09 2.1E-09 9.2E-10 1.67E-09 1.98E-10

 PM-GSA 1.56E-09 1.58E-09 2.31E-09 9.53E-10 2.5E-09 3.35E-10

 LX-PM-GSA 1.19E-09 1.16E-09 2.09E-09 6.82E-10 1.7E-09 2.56E-10

F5 30 GSA 21.7292 21.7113 21.7292 21.25285 22.24311 0.25062

 LX-GSA 20.52656 20.5155 20.52668 20.1799 20.8962 0.176059

 PM-GSA 23.57698 21.69065 23.57698 21.27451 78.65698 10.40432

 LX-PM-GSA 20.75712 20.56332 20.75742 20.18272 26.30862 1.067888

F6 30 GSA 0 0 0 0 0 0

 LX-GSA 0 0 0 0 0 0

 PM-GSA 0 0 0 0 0 0

 LX-PM-GSA 0 0 0 0 0 0

F7 30 GSA 0.014339 0.013506 0.571078 0.008935 0.026754 0.00419

 LX-GSA 0.005872 0.006013 0.500762 0.00293 0.011902 0.002062

 PM-GSA 0.014988 0.014736 0.572144 0.008304 0.024337 0.003888

 LX-PM-GSA 0.005549 0.005666 0.49244 0.002206 0.007877 0.001834

 Real Coded Genetic Algorithm Operators Embedded in Gravitational Search Algorithm for Continuous Optimization 7

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 1-22

On observing the results presented in Table 1, it is

observed that out of the 7 problems considered in this

category LX-PM-GSA performed the best in 4 problems,

whereas LX-GSA performed best in 2 problems. Also, all

algorithms are able to solve one problem, namely F6. It

may be thus be concluded that the performance of LX-

PM-GSA is the best for high dimensional unimodal

functions.

On observing the results of Table 2, it is observed that

out of the 6 problems considered in this category LX-PM-

GSA performed the best in 5 problems, whereas PM-

GSA performed best in 1 problems. It may be thus be

concluded that the performance of LX-PM-GSA is the

best for high dimensional multimodal functions.

On observing the results of Table 3, it is observed that

out of the 10 problems considered in this category LX-

PM-GSA performed the best in 4 problems and LX-GSA

performed best in one problem and the performance of

LX-GSA and LX-PM-GSA is same on one problem,

namely F19, whereas all algorithms are able to solve 4

problems, namely F16, F17, F18 and F23. It may be thus be

concluded that the performance of LX-PM-GSA is the

best for low dimensional multimodal functions with fixed

dimensions.

In order to observe the behaviour of the objective

function value with a passage of iterations the

convergence plots of the F3, F4, F5, F6, F7, F8, F9, F11, F12,

F13, F14, F15, F16, F17, F18, F19, F20, F21, F22, and F23

functions are shown in Fig. 5-6. On the horizontal axis

the iterations are shown whereas on the vertical axis the

average best-so-far is shown. Average best-so-far is the

average value of objective function in each iteration over

30 runs. From the plots it is concluded that LX-PM-GSA

is converging fast towards optima in comparison to other

algorithms. The plots of the remaining functions is not

shown due to scaling issues.

Table 2. Objective Function Values for High Dimensional Multimodal Functions

Pro. Dim. Algorithm
Average best

so far

Median best

so far

Average

mean fitness
Best Worse STD

F8 30 GSA -2626.2 -2624.98 -1072.92 -3373.13 -2132.9 346.3529

 LX-GSA -6284 -6191.93 -6284 -7673.59 -4849.59 676.326

 PM-GSA -5149.57 -5045.6 -1100.67 -6070.94 -4234.38 491.3833

 LX-PM-GSA -8360.99 -8216.68 -8343.59 -9983.04 -6785.44 805.5085

F9 30 GSA 15.65402 13.92943 15.65402 8.954632 28.85379 4.494877

 LX-GSA 18.87105 16.9143 18.87105 9.949591 31.83867 4.670301

 PM-GSA 13.86309 13.92942 13.86309 8.954632 21.88909 3.294037

 LX-PM-GSA 20.36349 18.90422 20.36349 9.949591 43.77816 7.347434

F10 30 GSA 1.37E-09 1.36E-09 2.38E-09 1.03E-09 1.98E-09 2.09E-10

 LX-GSA 1.14E-09 1.14E-09 2.24E-09 8.14E-10 1.55E-09 1.64E-10

 PM-GSA 1.4E-09 1.4E-09 2.39E-09 1.09E-09 1.92E-09 1.94E-10

 LX-PM-GSA 1.13E-09 1.13E-09 2.26E-09 7.47E-10 1.41E-09 1.44E-10

F11 30 GSA 0.001805 0 0.001805 0 0.027061 0.005955

 LX-GSA 0.007624 0 0.007624 0 0.041665 0.011918

 PM-GSA 0.007687 0 0.007687 0 0.068846 0.018361

 LX-PM-GSA 0.001298 0 0.001298 0 0.012316 0.003279

F12 30 GSA 0.002616 2E-20 0.003456 8.14E-21 0.078488 0.01433

 LX-GSA 1.29E-20 1.2E-20 5.76E-20 7.95E-21 2.32E-20 3.69E-21

 PM-GSA 0.010367 2.24E-20 0.010367 1.27E-20 0.103669 0.031632

 LX-PM-GSA 1.21E-20 1.19E-20 5.76E-20 6.8E-21 2.04E-20 3.08E-21

F13 30 GSA 3.39E-19 3.1E-19 1.06E-18 1.42E-19 5.75E-19 1.07E-19

 LX-GSA 2.03E-19 1.9E-19 9.15E-19 9.45E-20 3.43E-19 6.29E-20

 PM-GSA 3.42E-19 3.48E-19 1.03E-18 1.33E-19 6.04E-19 1.19E-19

 LX-PM-GSA 1.86E-19 1.75E-19 8.72E-19 9E-20 3.76E-19 6.17E-20

Statistically the comparison of the proposed versions

with respect to the original GSA is performed using t-test.

A pairwise one tailed t-test is applied with 290 of freedom

at 0.05 level of significance over the objective function

value of all the problems considered. The null hypothesis

is assumed that “there is no difference between

algorithms” and alternative hypothesis is “there is

difference”. The pairwise mean, standard deviation,

standard error mean, p-value along with conclusion of the

test are listed in Table 4. A+ shows that version 2 is

significantly better than version 1, A shows the version 2

is alike version 1, A- shows that version 2 is marginally

better than version 1, B+ shows that version 2 is

significantly worse than version 1 and B- shows that

version 2 is marginally worst than version 1. The best

values are highlighted in bold in Table 4.

On observing the results shown in Table 4, it can be

concluded that if GSA vs LX-GSA is considered then 10

out of the 13 problems show that LX-GSA is significantly

better than GSA. If GSA vs PM-GSA is considered then

8 Real Coded Genetic Algorithm Operators Embedded in Gravitational Search Algorithm for Continuous Optimization

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 1-22

7 out of the 13 problems show that PM-GSA is

significantly better than GSA. If GSA vs LX-PM-GSA is

considered then 10 out of the 13 problems show that LX-

PM-GSA is significantly better than GSA.

Table 3. Objective Function Values for Low Dimensional Multimodal Functions

Pro.

Dim. Algorithm
Average

 best so far

Median

 best so far

Average mean

fitness
Best Worse STD

F14 2 GSA 2.276057 2.001888 11.14483 0.998004 5.968449 1.19968

 LX-GSA 1.263078 0.998004 1.263078 0.998004 1.992031 0.44709

 PM-GSA 0.998004 0.998004 11.97185 0.998004 0.998004 1.14E-09

 LX-PM-GSA 0.998004 0.998004 0.998004 0.998004 0.998004 0

F15 4 GSA 0.003154 0.00216 0.759498 0.001598 0.008348 0.001833

 LX-GSA 0.000951 0.000781 0.001147 0.000488 0.001869 0.000347

 PM-GSA 0.001448 0.001603 0.745155 0.000542 0.002252 0.000533

 LX-PM-GSA 0.001 0.001003 0.001065 0.000663 0.001236 0.000216

F16 2 GSA -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 6.18E-16

 LX-GSA -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 6.25E-16

 PM-GSA -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 6.39E-16

 LX-PM-GSA -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 6.45E-16

F17 2 GSA 0.397887 0.397887 0.397887 0.397887 0.397887 0

 LX-GSA 0.397887 0.397887 0.397887 0.397887 0.397887 0

 PM-GSA 0.397887 0.397887 0.397887 0.397887 0.397887 0

 LX-PM-GSA 0.397887 0.397887 0.397887 0.397887 0.397887 0

F18 2 GSA 3 3 3 3 3 1.78E-15

 LX-GSA 3 3 3 3 3 1.71E-15

 PM-GSA 3 3 3 3 3 1.61E-15

 LX-PM-GSA 3 3 3 3 3 2.91E-15

F19 3 GSA -3.85648 -3.8549 -3.85648 -3.86278 -3.8549 0.003205

 LX-GSA -3.86278 -3.86278 -3.86278 -3.86278 -3.86278 3.16E-15

 PM-GSA -3.86075 -3.86269 -3.85648 -3.86278 -3.8549 0.003324

 LX-PM-GSA -3.86278 -3.86278 -3.86278 -3.86278 -3.86278 3.16E-15

F20 6 GSA -2.06163 -2.02263 -1.29549 -3.0769 -0.83909 0.602156

 LX-GSA -3.27449 -3.32237 -3.27449 -3.32237 -3.1974 0.059645

 PM-GSA -3.12652 -3.13681 -1.24446 -3.32237 -2.80401 0.159813

 LX-PM-GSA -3.28641 -3.32237 -3.28641 -3.32237 -3.1974 0.055868

F21 4 GSA -4.91606 -5.0552 -4.91606 -5.0552 -0.88098 0.762104

 LX-GSA -6.05559 -5.0552 -6.05557 -10.1532 -5.0552 2.037327

 PM-GSA -6.63124 -5.0552 -5.08599 -10.1532 -2.64875 2.479425

 LX-PM-GSA -6.92447 -5.0552 -6.92447 -10.1532 -5.0552 2.498697

F22 4 GSA -6.68225 -5.08767 -6.68225 -10.4029 -5.08767 2.477402

 LX-GSA -9.16271 -10.4029 -9.16271 -10.4029 -5.08767 2.286539

 PM-GSA -8.09966 -10.4029 -8.09966 -10.4029 -5.08767 2.678932

 LX-PM-GSA -9.51706 -10.4029 -9.51706 -10.4029 -5.08767 2.014747

F23 4 GSA -10.5364 -10.5364 -10.5364 -10.5364 -10.5364 1.55E-15

 LX-GSA -10.5364 -10.5364 -10.5364 -10.5364 -10.5364 1.58E-15

 PM-GSA -10.5364 -10.5364 -10.5364 -10.5364 -10.5364 1.75E-15

 LX-PM-GSA -10.5364 -10.5364 -10.5364 -10.5364 -10.5364 1.62E-15

 Real Coded Genetic Algorithm Operators Embedded in Gravitational Search Algorithm for Continuous Optimization 9

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 1-22

0 500 1000 1500 2000 2500 3000 3500 4000

10
0

10
5

Iteration

A
v

e
r
a

g
e
 b

e
s
t-

s
o

-f
a

r

F3

GSA

LX-GSA

PM-GSA

LX-PM-GSA

0 50 100 150 200 250 300 350 400 450 500

10
0

10
1

Iteration

A
v
e
r
a
g
e
 b

e
s
t-

s
o
-f

a
r

F4

GSA

LX-GSA

PM-GSA

LX-PM-GSA

0 100 200 300 400 500 600 700 800 900 1000

10
2

10
3

10
4

10
5

Iteration

A
v

e
r
a

g
e
 b

e
s
t-

s
o

-f
a

r

F5

GSA

LX-GSA

PM-GSA

LX-PM-GSA

0 50 100 150 200 250 300 350 400

10
0

10
2

10
4

Iteration

A
v
e
r
a
g
e
 b

e
s
t-

s
o
-f

a
r

F6

GSA

LX-GSA

PM-GSA

LX-PM-GSA

0 500 1000 1500 2000 2500 3000 3500 4000

10
-2

10
0

10
2

Iteration

A
v
e
r
a
g
e
 b

e
s
t-

s
o
-f

a
r

F7

GSA

LX-GSA

PM-GSA

LX-PM-GSA

0 500 1000 1500 2000 2500 3000 3500 4000

-8000

-7000

-6000

-5000

-4000

-3000

Iteration

A
v

e
r
a

g
e
 b

e
s
t-

s
o

-f
a

r

F8

GSA

LX-GSA

PM-GSA

LX-PM-GSA

0 500 1000 1500 2000 2500 3000 3500 4000

10
2

Iteration

A
v

e
r
a

g
e
 b

e
s
t-

s
o

-f
a

r

F9

GSA

LX-GSA

PM-GSA

LX-PM-GSA

0 500 1000 1500 2000 2500 3000 3500 4000

10
-2

10
0

10
2

Iteration

A
v

e
r
a

g
e
 b

e
st

-s
o

-f
a

r

F11

GSA

LX-GSA

PM-GSA

LX-PM-GSA

0 500 1000 1500 2000 2500 3000 3500 4000
10

-20

10
-10

10
0

Iteration

A
v

e
r
a

g
e
 b

e
s
t-

s
o

-f
a

r

F12

GSA

LX-GSA

PM-GSA

LX-PM-GSA

100 200 300 400 500 600 700 800 900

10
-2

10
0

10
2

10
4

Iteration

A
v

e
r
a

g
e
 b

e
s
t-

s
o

-f
a

r

F13

GSA

LX-GSA

PM-GSA

LX-PM-GSA

Fig.5. Iteration wise convergence Plot of Average Best-So-Far for Functions F3 to F9 and F11 to F13

10 Real Coded Genetic Algorithm Operators Embedded in Gravitational Search Algorithm for Continuous Optimization

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 1-22

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

0

10
1

Iteration

A
v

e
r
a

g
e
 b

e
s
t-

s
o

-f
a

r

F14

GSA

LX-GSA

PM-GSA

LX-PM-GSA

0 200 400 600 800 1000 1200 1400 1600 1800 2000

10
-3

10
-2

Iteration

A
v
e
r
a
g
e
 b

e
s
t-

s
o
-f

a
r

F15

GSA

LX-GSA

PM-GSA

LX-PM-GSA

0 50 100 150 200 250 300

-1

-0.8

-0.6

-0.4

-0.2

0

Iteration

A
v

e
r
a

g
e
 b

e
st

-s
o

-f
a

r

F16

GSA

LX-GSA

PM-GSA

LX-PM-GSA

0 20 40 60 80 100 120 140 160 180 200

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Iteration

A
v
e
r
a
g
e
 b

e
s
t-

s
o
-f

a
r

F17

GSA

LX-GSA

PM-GSA

LX-PM-GSA

0 50 100 150 200 250 300

5

10

15

20

25

30

35

40

Iteration

A
v
e
r
a
g
e
 b

e
st

-s
o
-f

a
r

F18

GSA

LX-GSA

PM-GSA

LX-PM-GSA

0 100 200 300 400 500 600

-3.85

-3.8

-3.75

-3.7

-3.65

-3.6

-3.55

-3.5

Iteration

A
v
e
r
a
g
e
 b

e
s
t-

s
o
-f

a
r

F19

GSA

LX-GSA

PM-GSA

LX-PM-GSA

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-3.2

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

Iteration

A
v
e
r
a
g
e
 b

e
s
t-

s
o
-f

a
r

F20

GSA

LX-GSA

PM-GSA

LX-PM-GSA

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-7

-6

-5

-4

-3

-2

-1

Iteration

A
v
e
r
a
g
e
 b

e
s
t-

s
o
-f

a
r

F21

GSA

LX-GSA

PM-GSA

LX-PM-GSA

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-9

-8

-7

-6

-5

-4

-3

-2

-1

Iteration

A
v
e
r
a
g
e
 b

e
s
t-

s
o
-f

a
r

F22

GSA

LX-GSA

PM-GSA

LX-PM-GSA

0 50 100 150 200 250 300 350 400 450 500

-10

-8

-6

-4

-2

Iteration

A
v
e
r
a
g
e
 b

e
s
t-

s
o
-f

a
r

F23

GSA

LX-GSA

PM-GSA

LX-PM-GSA

Fig.6. Iteration wise Convergence Plot of Average Best-So-Far for Functions F14 to F23.

 Real Coded Genetic Algorithm Operators Embedded in Gravitational Search Algorithm for Continuous Optimization 11

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 1-22

Table 4. Pairwise T-Test Results of Objective Function Values With 95% Confidence Interval at 0.05 Level of Significance

Version 1 vs Version 2 Pro. Mean
Standard
Deviation

Standard
 error mean

p-value Conclusion

GSA vs LX-GSA F3 3.21634 3.26429 0.59598 0 A+

 F5 1.20263 0.30630 0.05592 0 A+

 F7 0.00847 0.00362 0.00066 0 A+

 F8 3657.80391 659.10395 120.33537 0 A+

 F9 -3.21703 5.89311 1.07593 0.003 B+

 F11 -0.00582 0.01404 0.00256 0.0155 B+

 F12 0.00262 0.01433 0.00262 0.163 A-

 F14 1.01298 1.16672 0.21301 0 A+

 F15 0.00220 0.00170 0.00031 0 A+

 F19 0.00630 0.00321 0.00059 0 A+

 F20 1.21286 0.60346 0.11018 0 A+

 F21 1.13953 2.10796 0.38486 0.003 A+

 F22 2.48046 3.34230 0.61022 0 A+

GSA vs PM-GSA F3 -0.03730 2.61039 0.47659 0.469 B-

 F5 -1.84778 10.45474 1.90877 0.1705 B-

 F7 -0.00065 0.00602 0.00110 0.2795 B-

 F8 2523.37149 649.08325 118.50585 0 A+

 F9 1.79092 6.34346 1.15815 0.0665 A-

 F11 -0.00588 0.01787 0.00326 0.041 B+

 F12 -0.00775 0.03553 0.00649 0.121 B-

 F14 1.27805 1.19968 0.21903 0 A+

 F15 0.00171 0.00194 0.00035 0 A+

 F19 0.00427 0.00483 0.00088 0 A+

 F20 1.06489 0.60345 0.11017 0 A+

 F21 1.71518 2.77532 0.50670 0.001 A+

 F22 1.41740 3.10036 0.56604 0.009 A+

GSA vs LX-PM-GSA F3 3.21753 3.26398 0.59592 0 A+

 F5 0.97208 1.12065 0.20460 0 A+

 F7 0.00879 0.00475 0.00087 0 A+

 F8 5734.79118 959.53312 175.18598 0 A+

 F9 -4.70947 9.19697 1.67913 0.0045 B+

 F11 0.00051 0.00650 0.00119 0.3365 A-

 F12 0.00262 0.01433 0.00262 0.163 A-

 F14 1.27805 1.19968 0.21903 0 A+

 F15 0.00215 0.00194 0.00035 0 A+

 F19 0.00630 0.00321 0.00059 0 A+

 F20 1.22478 0.59786 0.10915 0 A+

 F21 2.00841 2.50722 0.45775 0 A+

 F22 2.83481 3.03686 0.55445 0 A+

12 Real Coded Genetic Algorithm Operators Embedded in Gravitational Search Algorithm for Continuous Optimization

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 1-22

Table 5. Success rate, Average Function Evaluation of Successful Run and Average Execution Time of Successful Run of GSA, LX-GSA, PM-GSA
and LX-PM-GSA

 Success rate
Average function evaluation of successful

run
Average execution time of successful run

Proble

m
GSA

LX-

GSA

PM-

GSA

LX-
PM-

GSA

GSA
LX-

GSA

PM-

GSA

LX-PM-

GSA
GSA

LX-

GSA

PM-

GSA

LX-PM-

GSA

F1 100 100 100 100 43173 44262 44128 45105 8.47 8.99 8.80 9.02

F2 100 100 100 100 79907 82585 81601 84113 13.90 16.31 15.40 17.58

F3 0 100 0 100 - 88899 - 78421 - 26.34 - 24.35

F4 100 100 100 100 57397 58840 58640 60117 10.38 11.64 11.09 12.26

F5 0 0 0 0 - - - - - - - -

F6 100 100 100 100 18009 17882 18625 18369 3.46 3.57 3.60 3.66

F7 22 96 16 100 39104 49547 40250 49705 8.21 12.27 9.28 12.64

F8 0 0 0 0 - - - - - - - -

F9 0 0 0 0 - - - - - - - -

F10 100 100 100 100 62910 65031 64345 66258 11.51 13.28 12.58 14.03

F11 80 74 80 80 30023 28620 30734 31799 6.06 6.46 6.47 7.31

F12 94 100 96 100 21129 20203 21677 20408 5.01 4.96 5.26 5.02

F13 98 100 100 100 34539 34867 35455 35129 7.94 8.25 8.36 8.54

F14 8 86 18 100 2812 14739 1976 5424 0.75 4.19 0.55 1.58

F15 100 100 98 100 1452 1783 1743 1856 0.25 0.29 0.30 0.32

F16 100 100 100 100 7874 7857 7297 8257 1.22 1.18 1.09 1.26

F17 100 100 100 100 6800 7357 7708 7767 1.05 1.12 1.19 1.21

F18 100 100 100 100 18675 19154 19222 19455 2.75 2.91 2.87 3.06

F19 100 100 100 100 19433 18703 19769 19539 3.19 3.16 3.22 3.30

F20 0 72 2 68 - 24634 23204 25368 - 4.689 4.36 5.0869

F21 0 24 0 30 - 25807 - 26157 - 5.31 - 5.55

F22 44 72 52 82 24811 25833.3 25808 26745 4.22 4.92 4.75 5.16

F23 100 100 100 100 24897 25742 25392 26650 5.67 6.02 5.83 6.22

GSA LX-GSA PM-GSA LX-PM-GSA

0

20

40

60

80

100

Algorithms

F1-F7

S
u

c
c
e
ss

 R
a
te

(a)

GSA LX-GSA PM-GSA LX-PM-GSA

2

3

4

5

6

7

8

x 10
4

Algorithms

A
v

e
r
a

g
e
 F

u
n

c
ti

o
n

 E
v

a
lu

a
ti

o
n

(b)

GSA LX-GSA PM-GSA LX-PM-GSA

4

6

8

10

12

14

16

18

Algorithms

A
v
er

a
g
e

E
x
ec

u
ti

o
n

 T
im

e

(c)

Fig.7. Boxplot Corresponding to (a) Success Rate, (b) Average Function
Evaluations, (c) Average Execution Time of Functions F1-F7

The p-value of F1, F2, F4, F6, F10, F13, F16, F17 and F18

could not be evaluated because the standard error of the

difference is 0. Hence on the basis of t-tests it can be

concluded that LX-PM-GSA is definitely a winner over

GSA, LX-GSA and PM-GSA.

B. Analysis of Results based on Experiment II

In order to observe the reliability, computational cost

and convergence rate of the algorithms considered,

 Real Coded Genetic Algorithm Operators Embedded in Gravitational Search Algorithm for Continuous Optimization 13

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 1-22

Success Rate (SR), Average Function Evaluation (AFE)

and Average Execution Time (AET) of all algorithms are

recorded in Table 5. The best values are highlighted in

bold in Table 5.

From this table it is observed that out of 4 algorithms,

there is no algorithm which can solve all 23 problems

with 100 % success. GSA and PM-GSA solve 11

problems with 100 % success, LX-GSA solve 14

problems with 100 % success and LX-PM-GSA solve 16

problems with 100 % success. None of them could solve

3 problems with 100 % success. Another observation is

that the majority of the problems have been solve by LX-

PM-GSA but in most of the problems, GSA takes less

average function evaluation and average execution time.

The boxplot of success rate, average function evaluation

of successful run and average execution time of

successful run of each algorithm is plotted in Fig.7 for

high dimensional unimodal functions namely F1-F7, Fig.

8 for high dimensional multimodal functions namely F8-

F13 and Fig. 9 for low dimensional multimodal functions

namely F14-F23. For the fair comparison, a function is not

added in the boxplot of average function evaluation and

average execution time if it is not solved by least one

algorithm.

GSA LX-GSA PM-GSA LX-PM-GSA

0

20

40

60

80

100

Algorithms

F8-F13

S
u

cc
es

s
R

a
te

(a)

GSA LX-GSA PM-GSA LX-PM-GSA
1

2

3

4

5

6

x 10
4

Algorithms

A
v
e
r
a
g
e
 F

u
n

c
ti

o
n

 E
v
a
lu

a
ti

o
n

(b)

GSA LX-GSA PM-GSA LX-PM-GSA

4

6

8

10

12

14

Algorithms

A
v
er

a
g
e

E
x

ec
u

ti
o
n

 T
im

e

(c)

Fig.8. Boxplot Corresponding to (a) Success Rate, (b) Average Function
Evaluations, (c) Average Execution Time Of Functions F8-F13

If all criteria (SR, AFE, AET) are taken together, then

it is difficult to say which one is the best among all. In

order to analyse the consolidated effect of the SR, AFE

and AET, a comparison among them is made on the basis

of the Performance Index (PI) plot. The purpose of the

analysis is to observe if the proposed strategies show an

improvement over the existing ones or not. The design of

PI is such that specified weighted importance is given to

the success rate, number of function evaluations of

successful runs and computational time of successful runs.

The value of Performance Index PIj for jth algorithm is

evaluated by:

1 1 2 2 3 3
1

1
()

N
i i i

j
i

PI w w w
N

  


   (14)

Where

GSA LX-GSA PM-GSA LX-PM-GSA

0

20

40

60

80

100

Algorithms

F14-F23

S
u

c
c
e
ss

 R
a
te

(a)

GSA LX-GSA PM-GSA LX-PM-GSA

0.5

1

1.5

2

2.5

x 10
4

Algorithms

A
v

e
r
a

g
e
 F

u
n

c
ti

o
n

 E
v

a
lu

a
ti

o
n

(b)

GSA LX-GSA PM-GSA LX-PM-GSA
0

1

2

3

4

5

6

Algorithms

A
v
e
r
a
g
e
 E

x
e
c
u

ti
o
n

 T
im

e

(c)

Fig.9. Boxplot Corresponding to (a) Success Rate, (b) Average Function
Evaluations, (c) Average Execution Time of Functions F14-F23

1

i
i

i

Sr

Tr
  (15)

2

0

0 0

i
i

ii

i

Mf
if Sr

Af

if Sr






 




 (16)

14 Real Coded Genetic Algorithm Operators Embedded in Gravitational Search Algorithm for Continuous Optimization

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 1-22

3

0

0 0

i
i

i i

i

Mt
if Sr

At

if Sr






 
 

 (17)

Here, N is the total number of considered problems

and 1, ,i N  . iTr represents the total number of times

the problem i is solved and iSr is the number of times

problem i is solved successfully. iAf is the average

number of function evaluations used by algorithm j to

obtain the optimal solution of problem i in case of

successful runs, and iMf is the minimum of the average

number of function evaluation of successful run.

Similarly, iAt is average time required by algorithm j to

obtain the optimal solution of problem i in case of

successful runs, and iMt is minimum of the average time

by all the algorithms under comparison to obtain the

optimal solution of problem i. Further
1 2,w w and

3w are

nonnegative assigned weight to the percentage of success,

average number of function evaluations used in

successful run and the average execution time of

successful runs respectively with
1 2 3 1w w w   .

Algorithm having largest PI is the winner, amongst the

considered algorithms. In order to analyse the relative

performance of GSA, LX-GSA, PM-GSA and LX-PM-

GSA. Equal weights are assigned to two terms (
1 2,w w

and
3w) at a time. Therefore

jPI becomes a function of

single variable. Following three cases are possible

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Weight(w)

P
e
r
fo

r
m

a
n

c
e
 I

n
d

e
x
 (

P
I)

GSA

LX-GSA

PM-GSA

LX-PM-GSA

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Weight(w)

P
e
r
fo

r
m

a
n

c
e
 I

n
d

e
x

 (
P

I)

GSA

LX-GSA

PM-GSA

LX-PM-GSA

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Weight(w)

P
er

fo
rm

a
n

ce
 I

n
d

ex
 (

P
I)

GSA

LX-GSA

PM-GSA

LX-PM-GSA

(c)

Fig.10. Performance Index of GSA, LX-GSA, PM-GSA and LX-PM-
GSA on F1-F7 when (a) w1 varies, (b) when w2 varies and (c) w3 varies.

1 2 3

2 1 3

3 1 2

() , (1) / 2;0 1

() , (1) / 2;0 1

() , (1) / 2;0 1

i w w w w w w

ii w w w w w w

ii w w w w w w

     

     

     

 (18)

Fig. 10 shows the Performance Index graphs

corresponding to each of these three cases on high

dimensional unimodal function. Fig. 10(a) corresponds to

weight assigned for success rate w is varied. Fig. 10(b)

corresponds to weight assign for average function

evaluations w is varied and Fig. 10(c) corresponds to

weight assigned for average time of the successful runs

w is varied. It is clear from the figures, proposed

algorithms are significantly better in comparison to GSA

and LX-PM-GSA is best among them.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.62

0.64

0.66

0.68

0.7

0.72

0.74

Weight(w)

P
er

fo
rm

a
n

ce
 I

n
d

ex
 (

P
I)

GSA

LX-GSA

PM-GSA

LX-PM-GSA

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.64

0.65

0.66

0.67

0.68

0.69

0.7

Weight(w)

P
er

fo
rm

a
n

ce
 I

n
d

ex
 (

P
I)

GSA

LX-GSA

PM-GSA

LX-PM-GSA

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.64

0.66

0.68

0.7

0.72

0.74

0.76

Weight(w)

P
e
r
fo

rm
a

n
c
e
 I

n
d

e
x

 (
P

I)

GSA

LX-GSA

PM-GSA

LX-PM-GSA

(c)

Fig.11. Performance Index of GSA, LX-GSA, PM-GSA and LX-PM-
GSA on F8-F13 when (a) w1 varies, (b) when w2 varies and (c) w3

varies.

Similarly, Fig. 11 shows the Performance Index graphs

corresponding to each of these three cases on high

dimensional multimodal function and Fig. 12 shows the

Performance Index graphs corresponding to each of these

three cases on low dimensional multimodal function. Fig.

11(a) and 12(a) correspond to weight assigned for success

rate w is varied. Fig. 11(b) and 12(b) correspond to

weight assign for average function evaluations w is

varied and Fig. 11(c) and 12(c) correspond to weight

assigned for average time of the successful runs w is

varied. It is clear from the figures, proposed algorithms

are significantly better in comparison to GSA. LX-PM-

GSA is best among them on high dimensional

 Real Coded Genetic Algorithm Operators Embedded in Gravitational Search Algorithm for Continuous Optimization 15

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 1-22

multimodal function while LX-GSA is little bit less

costly as compared to LX-PM-GSA on low dimensional

multimodal function.

V. EXPERIMENT - III: PERFORMANCE ON CEC 2014

BENCHMARKS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.6

0.8

1

1.2

1.4

1.6

1.8

Weight(w)

P
er

fo
rm

a
n

ce
 I

n
d

ex
 (

P
I)

GSA

LX-GSA

PM-GSA

LX-PM-GSA

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.6

0.8

1

1.2

1.4

1.6

1.8

Weight(w)

P
er

fo
rm

a
n

ce
 I

n
d

ex
 (

P
I)

GSA

LX-GSA

PM-GSA

LX-PM-GSA

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.6

0.8

1

1.2

1.4

1.6

1.8

Weight(w)

P
er

fo
rm

a
n

ce
 I

n
d

ex
 (

P
I)

GSA

LX-GSA

PM-GSA

LX-PM-GSA

(c)

Fig.12. Performance Index of GSA, LX-GSA, PM-GSA and LX-PM-
GSA on F14-F23 when (a) w1 varies, (b) when w2 varies and (c) w3 varies.

The performance of the algorithms is also investigated

on shifted and rotated problems. Therefore, in experiment

III, the CEC 2014 Benchmark is considered, which

contains a number of shifted and rotated problems. The

details of the problems can be found in Liang et al [38].

The other parameters and criteria are kept as in Liang et

al [38]. Problems considered are of dimension 30.

The termination criteria is set as maximum number of

function evaluation = 30 x 104 or if error value is smaller

than 10-8. All the considered algorithms are run 51 times.

The best, worst, median, mean and standard variance of

the objective function error of 51 runs are listed in Table

6. As desired in CEC 2014 criteria, error value smaller

than 10-8 is taken as zero. The best values are highlighted

in bold.

From the Table 6, it is observed that out 30 problems,

in 11 problems, namely in Problem no. 1, 3, 8, 10, 14, 16,

18, 21, 22, 26, 30, LX-PM-GSA is better than the other

three algorithms. In 9 problems, namely Problem no. 6, 7,

11, 12, 15, 19, 23, 28, 29, GSA is better than LX-GSA,

PM-GSA and LX-PM-GSA. There are 2 problems in

which performance of PM-GSA is better. In Problems no

2, PM-GSA finds the best solution in comparison to the

other algorithms but worst, median, mean, STD are better

of LX-GSA. In 4 problems, namely Problem no. 5, 13, 20,

24, LX-GSA is better than other algorithm. In problem no.

17, LX-GSA find better solution but worst, median, mean,

STD are better of LX-PM-GSA. Problem no. 3 is solved

by LX-PM-GSA however GSA and LXGSA also find

optimal but their success rate is not 100%. Problem no. 4

is solved by all the algorithms. Problem no 7 is solved by

GSA and LX-GSA, PM-GSA LX-PM-GSA also find

optimal but their success rate is not 100%. In problem no

25 all algorithms find same function error. Overall

speaking it can be concluded that the performance of LX-

PM-GSA is the best in comparison to the remaining three

algorithms.

Table 6. Comparison of the objective function values of the 30-dimensional CEC 2014 Benchmark problems

Pro. Algorithm Best Worst Median Mean STD

1 GSA 44.45694617 8797.88912532 1933.96707685 2690.67684839 2110.85690853

LX-GSA 0.53772610 2193.06456601 95.08381296 264.46096610 457.13320027

PM-GSA 135.15494725 11281.14399315 2340.86021306 2946.95941802 2592.63940594

LX-PM-GSA 0.00035500 1987.58977808 168.85177483 309.29514874 405.55946607

2 GSA 4.19194950 25133.49337662 5899.50394061 7887.48694152 7173.98763828

LX-GSA 966.72807201 12055.44610866 3670.91145243 3954.06344255 2229.88880704

PM-GSA 2.01852409 24496.97609157 10486.94101169 9695.41660955 6954.00625290

LX-PM-GSA 1253.92122313 18657.37559197 5168.20300469 6086.43898631 3980.37550516

3 GSA 0.00000000 646.55249364 79.52679031 106.50385531 112.97962917

LX-GSA 0.00000000 0.00247129 0.00002745 0.00026217 0.00054524

PM-GSA 0.18889025 679.73460278 43.67145920 86.62865794 132.31660846

LX-PM-GSA 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

16 Real Coded Genetic Algorithm Operators Embedded in Gravitational Search Algorithm for Continuous Optimization

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 1-22

4 GSA 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

LX-GSA 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

PM-GSA 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

LX-PM-GSA 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

5 GSA 19.99996146 20.05173018 19.99999968 20.00110380 0.00726033

LX-GSA 19.99725077 19.99997369 19.99949381 19.99925684 0.00065387

PM-GSA 19.99980577 20.02234066 19.99999920 20.00055467 0.00316249

LX-PM-GSA 19.99857877 19.99999993 19.99974857 19.99963320 0.00040356

6 GSA 4.57635183 13.72905548 9.22905548 9.10253310 1.99106089

LX-GSA 9.15270369 18.38176705 15.07635187 14.16880086 2.40204131

PM-GSA 6.00000006 12.30540735 9.15270371 9.19749369 1.84704731

LX-PM-GSA 9.00001434 23.07537646 14.00783663 14.22331542 2.75445731

7 GSA 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

LX-GSA 0.00000000 0.03192282 0.00986467 0.01023446 0.00851100

PM-GSA 0.00000000 0.00985728 0.00000000 0.00019329 0.00138029

LX-PM-GSA 0.00000000 0.03685749 0.00985728 0.01139410 0.01057767

8 GSA 68.53666156 126.27343656 103.47552508 104.78988762 11.67724409

LX-GSA 51.73782059 99.49565854 75.61674714 76.39711054 12.02590023

PM-GSA 78.60165967 121.43291933 98.50073484 99.94572346 10.91987546

LX-PM-GSA 44.77312230 101.48562717 66.66217114 66.95479011 12.14383033

9 GSA 76.61164543 121.38466679 99.49564320 99.90528666 11.62551089

LX-GSA 99.49559777 175.11193937 147.25328298 146.06327599 16.52580719

PM-GSA 58.70250876 120.38954561 94.52084791 94.32574852 11.28124400

LX-PM-GSA 95.51578677 171.13218970 136.30875350 135.17732143 18.05337708

10 GSA 1667.93386404 3621.63461825 2371.00591394 2412.53373892 427.57340393

LX-GSA 475.24564602 1249.80825699 599.06359377 671.47966058 148.19107197

PM-GSA 1666.75085536 3403.34488561 2399.13786177 2465.80096772 378.46032943

LX-PM-GSA 243.92021300 933.56567515 597.04173310 595.45511103 141.36495066

 11 GSA 1159.91225293 3647.65955754 2439.25781339 2464.59361529 492.02522169

LX-GSA 2461.31880669 4438.09829440 3464.36909069 3509.10443232 478.07071489

PM-GSA 1376.20249902 3408.39155647 2482.46529013 2464.05810836 447.53198836

LX-PM-GSA 2222.77037633 4212.66619676 3408.79639568 3363.34204378 473.58205175

12 GSA 0.00000000 0.00052441 0.00000000 0.00001029 0.00007343

LX-GSA 0.00020424 0.01939696 0.00277420 0.00369199 0.00354131

PM-GSA 0.00000000 0.00060942 0.00000000 0.00002032 0.00010318

LX-PM-GSA 0.00060626 0.01221719 0.00374224 0.00447374 0.00295698

13 GSA 0.09976242 0.18708589 0.14987836 0.15078579 0.01715804

LX-GSA 0.04064954 0.15821064 0.07794236 0.07757955 0.02060423

PM-GSA 0.10933441 0.18609381 0.15120802 0.14978877 0.01910357

LX-PM-GSA 0.04169572 0.17293137 0.09177251 0.09525115 0.02921056

14 GSA 0.23434911 0.47528128 0.38864801 0.37442219 0.05273033

 Real Coded Genetic Algorithm Operators Embedded in Gravitational Search Algorithm for Continuous Optimization 17

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 1-22

LX-GSA 0.14037486 0.39819757 0.28568495 0.27746557 0.05398024

PM-GSA 0.29028381 0.47709730 0.37748020 0.38200794 0.04979223

LX-PM-GSA 0.11566866 0.32604107 0.22264482 0.21679213 0.05590145

15 GSA 1.04896756 5.79565772 4.35697246 4.10927610 1.12304503

LX-GSA 1.74328553 5.53130445 3.18826501 3.27537153 0.67176970

PM-GSA 1.16054715 6.11721215 4.41401616 4.20810756 1.21403970

LX-PM-GSA 2.12676995 5.02183146 3.09948777 3.23239395 0.73837986

16 GSA 11.81623634 13.69412500 13.03803058 12.96334854 0.37823237

LX-GSA 10.27464066 12.31243680 11.21481973 11.24991437 0.49636110

PM-GSA 12.06885161 13.12122677 12.49424675 12.50886129 0.25831868

LX-PM-GSA 9.87550407 12.32744923 11.12193307 11.13323947 0.55466157

17 GSA 1078.11634461 3755.76346560 2318.70315070 2324.59615807 638.03905918

LX-GSA 610.09503494 2715.57037870 1711.01753382 1671.62088089 489.20009532

PM-GSA 993.80496243 3639.58897556 2091.18866963 2122.01756437 558.10996058

LX-PM-GSA 761.73333807 2428.81166666 1460.41847784 1491.68952228 426.53067088

18 GSA 78.51065140 12477.08396251 521.95066594 1580.65267026 2421.85287250

LX-GSA 63.38554167 2994.27314165 336.53141175 573.97716106 657.09140861

PM-GSA 72.15482657 5490.80679303 634.05660257 1008.67087161 1182.06409955

LX-PM-GSA 53.14238414 5862.22234785 350.46063729 784.15605529 1197.85440465

19 GSA 3.52412568 9.02844169 4.49735257 5.24139961 1.19824924

LX-GSA 4.63714278 12.23234545 8.47692794 8.28954404 1.83204877

PM-GSA 3.54121646 8.94920732 4.44507522 5.15609836 1.23648997

LX-PM-GSA 3.67310804 69.95055911 7.65095504 8.78918877 8.96739718

20 GSA 759.94272244 15192.47668987 6009.45329027 6228.32841428 3733.98980045

LX-GSA 37.18133981 214.35599791 119.07986158 121.72250335 42.06837478

PM-GSA 1099.73256941 9305.13814381 3977.54398163 4143.85496757 2003.19563101

LX-PM-GSA 41.73302583 400.77557478 158.81643959 184.54238280 96.44981041

21 GSA 758.25532203 5257.42945587 2168.55115332 2472.81246136 1050.87524021

LX-GSA 216.42581693 1659.49722326 929.39057682 934.00622980 332.67946327

PM-GSA 1020.95481081 6191.20253391 2467.22366450 2895.51572571 1390.04939550

LX-PM-GSA 205.05547038 1900.52613358 604.75327244 615.55510029 277.39869836

22 GSA 395.38741943 1551.12247709 963.53248593 940.78655977 241.61046434

LX-GSA 409.18613370 1499.36979589 976.05864391 969.78032381 239.85373982

PM-GSA 132.46650534 753.36120642 492.48873435 480.17298341 136.21855464

LX-PM-GSA 48.44324611 696.88441082 403.18179616 394.64915810 151.63184399

23 GSA 200.00000002 315.24410219 315.24410219 270.05033663 56.82565670

LX-GSA 200.00000006 315.24410219 315.24410219 306.20534908 31.29158364

PM-GSA 200.00000006 315.24410219 315.24410219 267.79064837 57.28209499

LX-PM-GSA 200.00000013 315.24410219 315.24410219 312.98441391 16.13740209

24 GSA 200.00468387 200.01238616 200.00771603 200.00776655 0.00157987

LX-GSA 200.00028182 200.00120350 200.00062433 200.00064084 0.00021527

PM-GSA 200.00522246 200.01124244 200.00754599 200.00784071 0.00150095

18 Real Coded Genetic Algorithm Operators Embedded in Gravitational Search Algorithm for Continuous Optimization

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 1-22

LX-PM-GSA 200.00028594 222.14359753 200.00062856 200.43482446 3.10063299

25 GSA 200.00000000 200.00000000 200.00000000 200.00000000 0.00000000

LX-GSA 200.00000000 200.00000000 200.00000000 200.00000000 0.00000000

PM-GSA 200.00000000 200.00000000 200.00000000 200.00000000 0.00000000

LX-PM-GSA 200.00000000 207.32369984 200.00000000 200.28604969 1.42997448

26 GSA 100.14308006 200.01838846 200.00000000 162.03781555 47.44793832

LX-GSA 100.08298010 200.01324490 200.00000000 194.12382381 23.73970317

PM-GSA 100.13427554 200.00000000 104.52495733 105.43893355 13.83167487

LX-PM-GSA 100.00969865 200.00000000 100.43906329 110.15169914 29.91746209

27 GSA 388.58112453 2077.90627126 587.67863921 780.28633164 490.68424776

LX-GSA 400.00000000 976.06514967 723.70546657 654.50083590 200.65385776

PM-GSA 354.43179111 1534.96766826 601.42024393 645.36935330 262.84432600

LX-PM-GSA 400.45420214 1036.64123419 691.31617303 657.22815206 213.33414389

28 GSA 504.31277959 2927.33430986 1533.45627769 1584.90378500 554.70660877

LX-GSA 2032.32747548 4536.94969994 3426.99274766 3432.80831978 615.80689316

PM-GSA 813.34340128 2830.60805816 1578.10688336 1603.80119960 443.58661929

LX-PM-GSA 919.83825703 3937.63153437 1795.14457078 1988.71504049 790.43167568

29 GSA 200.02436494 1832.21169383 200.03267989 360.87781241 448.20920885

LX-GSA 200.05690077 1609.41675617 978.84816878 777.60337082 493.76020544

PM-GSA 200.06802124 1759.63215536 200.08076297 280.86980842 329.23817674

LX-PM-GSA 1004.82581376 8664467.69023 1680.20958150 1834172.46227 3528541.15112

30 GSA 909.32711677 2608.98973924 1708.67321798 1723.16276031 470.55457654

LX-GSA 955.16066664 2330.36142424 1533.70227729 1562.31770720 367.88483552

PM-GSA 1018.42795975 2940.01759776 1793.89635516 1854.01807034 480.96475034

LX-PM-GSA 815.19832891 3135.76326682 1717.80733718 1764.73445760 511.45347789

Further, according to the requirement of Liang et al [38]

the computational complexity of the four algorithms is

calculated and reported in Table 7. From this table it can

be observed that the computational complexity of GSA is

the minimum. Therefore, it may be concluded that the

performance of LX-PM-GSA is best but at the cost of

slightly higher computational complexity.

Table 7. Computational Complexity of the Algorithms Considered

Algo.
0T

1T
2T̂

2 1 0
ˆ(T -T)/T

GSA 0.221163 127.6977 906.3395 3520.6694

LX-GSA 0.221163 131.3610
917.5944

3
3554.9950

PM-GSA 0.221163 129.9013 916.3018 3555.7507

LX-PM-

GSA
0.221163 126.6480 922.7007 3599.3936

VI. CONCLUSIONS

The Gravitational Search Algorithm was introduced

based on the laws of physics. In spite of its advantage of

being a memory less nature inspired optimization

technique, it has a major drawback of slow convergence

during later iterations and poor performance on multi

modal problems. With an objective to improve its

performance the Laplace Crossover and Power Mutation,

earlier proposed for real coded genetic algorithms by one

of the authors are used to hybridize Gravitational Search

Algorithm in three different ways. In the first hybrid

version the Laplace Crossover is applied to the best and a

randomly selected particle after the iteration of

Gravitational Search Algorithm is over. In the second

hybrid version after each iteration of Gravitational Search

Algorithm the Power Mutation is applied. In the third

version both the Laplace a Crossover and Power

Mutation are applied at the end of each iteration. The

original Gravitational Search Algorithm along with the

three proposed hybrid versions are programmed in

MATLAB and used to solve a variety of unimodal and

multi modal problems having low and high

dimensionality. The numerical results are analysed and it

is concluded that the hybrid version incorporating both

the Laplace Crossover and Power Mutation surpasses the

original Gravitational Search Algorithm as well as the

other two proposed variants on a variety of benchmark

optimization problems including the CEC 2014

benchmark problems containing high dimensional

 Real Coded Genetic Algorithm Operators Embedded in Gravitational Search Algorithm for Continuous Optimization 19

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 1-22

unimodal functions, high dimensional multi modal

functions and low dimensional multi modal functions.

APPENDIX A. BENCHMARK TEST FUNCTIONS

1. Sphere

2

1 1 1
1

() , 100 100, min() (0, ,0) 0.
n

i i
i

F x x x F F


     

2. Schwefel’s Problem 2.22

2
1 1

2 2

() , 10 10,

min() (0, ,0) 0.

nn

i i i
i i

F x x x x

F F
 

     

 

3. Schwefel’s Problem 1.2

2

3
1 1

3 3

() , 100 100,

min() (0, ,0) 0.

n i

j i
i j

F x x x

F F
 

 
     

 
 

4. Schwefel’s Problem 2.21

 4

4 4

() max ,1 30 , 100 100,

min() (0, ,0) 0.
i iF x x i x

F F

     

 

5. Generalized Rosenbrock’s function

   
1 2 22

5 1
1

5 5

() 100 1 , 30 30,

min() (1, ,1) 0.

n

i i i i
i

F x x x x x

F F






          
 

6. Step function

 
2

6
1

6 6

() 0.5 , 100 100,

min() (0, ,0) 0.

n

i i
i

F x x x

F F


       

 

7. Quartic function i.e Noise

4

7
1

7 7

() [0,1), 1.28 1.28,

min() (0, ,0) 0.

n

i i
i

F x ix random x

F F


    

 

8. Generalized Schwefel’s Problem 2.26

 8

1

8 8

() sin , 500 500,

min() (420.9687, ,420.9687) 12,569.48.

n

i i i

i

F x x x x

F F


    

  



9. Generalized Rastrigin’s function

2

9
1

9 9

() 10cos(2) 10 , 5.12 5.12,

min() (0, ,0) 0.

n

i i i
i

F x x x x

F F




        
 

10. Ackley’s function

2

10
1 1

10 10

1 1
() 20exp 0.2 exp cos 2 20 ,

32 32, min() (0, ,0) 0.

n n

i i
i i

i

F x x x e
n n

x F F


 

   
             

    

11. Generalized Griewank’s function

2

11
1 1

11 11

1
() cos 1,

4000
600 600 min() (0, ,0) 0.

nn
i

i
i i

i

x
F x x

i
x F F

 

 
     

 
    

12. Generalized Penalized function 1

 

 

1
2 2 2

1 1
112 2

1

10sin () (1) 1 10sin ()
()

1

,10,100,4 ,

n

i i
i

n
n

i
i

y y y
F x

n y

u x

 







        
   

 

Where

   
 1

1 1 , , , , 0
4 ()

m

i i

i i i i
m

i i

k x a x a
y x u x a k m a x a

k x a x a

  


      
    


,

12 1250 50 min() (1, ,1) 0.ix F F    

13. Generalized Penalized function 2

 
     

   

 

   

1 22 2

1 1
1

13 2 2

1

13 13

sin 3 1 1 sin 3
0.1

1 1 sin 2

,5,100,4 ,

50 50 min 1, ,1 0.

n

i i
i

n n

n

i
i

i

x x x
F x

x x

u x

x F F

 










       
      

 

    

14. Fifth function of De Jong

   

 

1
125 6 6

14 1 1 2 2
1

1 2 14 14

() 0.002 ,

65.53 , 65.53, min (32,32) 1

j j
j

F x j x a x a

x x F F






           
     

15. Kowalik function

 
2

2
11 1 2

15 1 2 3 42
1

3 4

() 5 , , , 5
i i

i
i

i i

x b b x
F x a x x x x

b b x x

 
     

   

 
15 15

min() 0.192833,0.190836,0.123117,0.135866

0.0003075

F F



16. Camel Back-6 Hump Problem

2 4 6 2 4

16 1 1 1 1 2 2 2

1 2 16 16

1
() 4 2.1 4 4 ,

3
5 , 5,min() (*) 1.0316285,
* (0.089842, 0.712656), (0.089842,0.712656)

F x x x x x x x x

x x F F x
x

     

     
  

17. Branin function

     

2

2

17 2 1 1 12

1 2 17 17

5.1 5 1
() 6 10 1 cos 10,

84
5

5 10 0 15, min() (*) ,
4

* ,12.275 , ,2.275 , 3 ,2.475

F x x x x x

x x F F x

x

 


  

   
         
   

      

 

18. Goldstein-Price’s function

   
   

2 2 2

18 1 2 1 1 2 1 2 2

2 2 2

1 2 1 1 2 1 2 2

() 1 1 19 14 3 14 6 3

30 2 3 18 32 12 48 36 27

F x x x x x x x x x

x x x x x x x x

         
 

       
 

1 2 18 18
5 , 5 min() (0, 1) 3.x x F F     

19. Hartman 3 function

20 Real Coded Genetic Algorithm Operators Embedded in Gravitational Search Algorithm for Continuous Optimization

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 1-22

   

 

4 3 2

19
1 1

19 19

() exp , 0 1, 1,2,3

min() 0.1140,0.556,0.852 3.862747

i ij j ij j
i j

F x c a x p x j

F F
 

 
         
  

20. Hartman 6 function

 
 

 

4 6 2

20
1 1

20 20

() exp ,

0 1, 1,2, ,6

0.201690,0.150011,0.476874,
min()

0.275332,0.311652,0.657301
3.322368

i ij j ij
i j

j

F x c a x p

x j

F F

 

 
      

  



 

21. Shekel function

  

 

15

21
1

21

() ,

0 10 1,2,3,4 min() 10.1532

T

i i i
i

i

F x x a x a c

x i F





     
 

    

22. Shekel function

  

 

17

22
1

22

() ,

0 10 1,2,3,4 min() 10.4028

T

i i i
i

i

F x x a x a c

x i F





     
 

    

23. Shekel function

  

 

110

23
1

23

() ,

0 10 1,2,3,4 min() 10.5363

T

i i i
i

i

F x x a x a c

x i F





     
 

    

APPENDIX B.

Table B1.
ija in

14F

   32 16 0 16 32 32 0 16 32
32 32 32 32 32 16 32 32 32ija
  


    

Table B2. ia and
ib in

15F

i 1 2 3 4 5 6

ia

1

ib
0.1957

0.25

0.1947

0.5

0.1735

1

0.1600

2

0.0844

4

0.0627

6

i 7 8 9 10 11 -

ia

1

ib

0.0456

8

0.0342

10

0.0323

12

0.0235

14

0.0246

16

-

Table B3. ija and
ic in

19F

i , 1,2,3ija j 
ic

1

2

3
4

3

0.1

3
0.1

10

10

10
10

30

35

30
35

1

1.2

3
3.2

Table B4.
ijp in

19F

i , 1,2,3ijp j 

1
2

3
4

0.3689
0.4699

0.1091
0.03815

0.1170
0.4387

0.8732
0.5743

0.2673
0.7470

0.5547
0.8828

Table B5.
ija and

ic in
20F

i , 1,2,3,4,5,6ija j 
ic

1

2
3

4

10

0.05
3

17

3

10
3.5

8

17

17
1.7

0.05

3.5

0.1
10

10

1.7

8
17

0.1

8

14
8

14

1

1.2
3

3.2

Table B6.
ijp in

20F

i , 1,2,3,4,5,6ijp j 

1

2

3
4

0.1312

0.2329

0.2348
0.4047

0.1696

0.4135

0.1451
0.8828

0.5569

0.8307

0.3522
0.8732

0.0124

0.3736

0.2883
0.5743

0.8283

0.1004

0.3047
0.1091

0.5886

0.9991

0.6650
0.0381

Table B7.
ija and

ic in
21 22 23, ,F F F

i , 1,2,3,4ija j 
ic

1

2

3
4

5

6
7

8
9

10

4

1

8
6

3

2
5

8
6

7

4

1

8
6

7

9
5

1
2

3.6

4

1

8
6

3

2
3

8
6

7

4

1

8
6

7

9
3

1
2

3.6

0.1

0.2

0.2
0.4

0.4

0.6
0.3

0.7
0.5

0.5

ACKNOWLEDGEMENT

The first author would like to thank Council for

Scientific and Industrial Research (CSIR), New Delhi,

India, for providing him the financial support vide grant

number 09/143(0824)/2012-EMR-I and ICC, Indian

Institute of Technology Roorkee, Roorkee for

computational facility.

REFERENCES

[1] M. Dorigo, G.D. Caro, “Ant colony optimization: a new

meta-heuristic,” in proceeding of the 1999 Congress on

Evolutionary Computation, Washington, DC, USA, 1999,

pp. 1470-1478.

[2] D. Karaboga, B. Basturk, “Artificial bee colony (ABC)

optimization algorithm for solving constrained

optimization problems,” Foundations of Fuzzy Logic and

Soft Computing, Springer Berlin Heidelberg, 2007, pp.

789-798.

[3] M. Basu, “Artificial immune system for dynamic

economic dispatch,” International Journal of Electrical

Power & Energy Systems, 2011, 33(1) pp. 131-136.

[4] S. Das, A. Biswas, S. Dasgupta, A. Abraham, “Bacterial

foraging optimization algorithm: theoretical foundations,

analysis, and applications,” In Foundations of

Computational Intelligence, Springer Berlin Heidelberg,

vol. 3, 2009, pp. 23-55.

[5] R. Storn, K. Price, “Differential evolution–a simple and

efficient heuristic for global optimization over continuous

spaces,” Journal of global optimization, 11(4), 1997, pp.

341-359.

[6] T. Back, Evolutionary Algorithms in Theory and Practice:

Evolution Strategies, Evolutionary Programming, Genetic

Algorithms, Oxford Univ. Press, New York, USA 1996.

[7] K. N. Krishnanand, D. Ghose, “Glowworm swarm

optimisation: a new method for optimising multi-modal

 Real Coded Genetic Algorithm Operators Embedded in Gravitational Search Algorithm for Continuous Optimization 21

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 1-22

functions,” International Journal of Computational

Intelligence Studies, 1(1), 2009, pp. 93-119.

[8] A. Singh, K. Deep, “How Improvements in Glowworm

Swarm Optimization Can Solve Real-Life Problems,” In

Proceedings of Fourth International Conference on Soft

Computing for Problem Solving, Springer India, 2015, pp.

275-287.

[9] J. Kennedy, Particle swarm optimization, In Encyclopedia

of Machine Learning, Springer US, 2010, pp. 760-766.

[10] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by

Simulated annealing, Science 220 (4598), 1983, pp. 671-

680.

[11] Y. Wang, J. Zeng, Z. Cui, X. He, “A novel constraint

multi-objective artificial physics optimization algorithm

and its convergence,” Int. J. Innovat. Comput. Appl. 3(2),

2011, pp. 61-70.

[12] L. Xie, Y. Tan, J. Zeng, Z. Cui, “The convergence

analysis of artificial physics optimization algorithm,” Int.

J. Intell. Inform. Database Syst. 5 (6), 2011, pp. 536-555.

[13] R. A. Formato, “Central force optimization: a new nature

inspired computational framework for multidimensional

search and optimization,” Nature Inspired Cooperative

Strategies for Optimization (NICSO). Stud. Computa.

Intell., 129, 2008, pp. 221-238.

[14] Z. W. Geem, J. H. Kim, G. V. Loganathan, “A new

heuristic optimization algorithm: harmony search,”

Simulation 76 (2), 2001, pp. 60-68.

[15] Y. T. Hsiao, C. L. Chuang, J. A. Jiang, C. C. Chien, “A

novel optimization algorithm: space gravitational

optimization,” In Systems, Man and Cybernetics, 2005

IEEE International Conference on 3, 2005, pp. 2323-2328.

[16] A. Biswas, K. K. Mishra, S. Tiwari, A. K. Misra,

“Physics-inspired optimization algorithms: A survey,”

Journal of Optimization, 2013 <

http://www.hindawi.com/journals/jopti/2013/438152/ >.

[17] E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, “GSA: a

gravitational search algorithm,” Information sciences,

179(13), 2009, pp. 2232-2248.

[18] S. Sarafrazi, H. Nezamabadi-pour, S. Saryazdi,

“Disruption: A new operator in gravitational search

algorithm,” Scientia Iranica, 18 (3), 2011, pp. 539-548.

[19] M. Doraghinejad, H. Nezamabadi-pour, “Black Hole: A

New Operator for Gravitational Search Algorithm,”

International Journal of Computational Intelligence

Systems, 7(5), 2014, pp. 809-826.

[20] M. S. Moghadam, H. Nezamabadi-Pour, M. M. Farsangi,

“A Quantum Behaved Gravitational Search Algorithm,”

Intelligent Information Management 4, 2012, pp. 390-395.

[21] M. S. Moghadam, H. Nezamabadi-pour, “An improved

quantum behaved gravitational search algorithm,” 20th

Iranian Conference on Electrical Engineering (ICEE2012),

2012, pp. 711-715.

[22] N. M. Sabri, M. Puteh, M. R. Mahmood, A review of

gravitational search algorithm. Int. J. Advance. Soft

Comput. Appl. 5, (3), 2013, pp. 1-39.

[23] R. E. Precup, R. C. David, E. M. Petriu, S. Preitl, M. B.

Rădac, “Gravitational search algorithms in fuzzy control

systems tuning,” In Preprints of the 18th IFAC World

Congress, 2011, pp. 13624-13629.

[24] G. Sahoo, “A Review on Gravitational Search Algorithm

and its Applications to Data Clustering & Classification,”

I.J. Intelligent Systems and Applications, 06, 2014, pp.

79-93.

[25] S. Gao, C. Vairappan, Y. Wang, Q. Cao, Z. Tang,

“Gravitational search algorithm combined with chaos for

unconstrained numerical optimization,” Applied

Mathematics and Computation, 231, 2014, pp. 48-62.

[26] E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, “BGSA:

binary gravitational search algorithm,” Natural

Computing, 9 (3), 2010, pp. 727-745.

[27] S. Mirjalili, S. Z. M. Hashim, “A new hybrid PSOGSA

algorithm for function optimization,” International

conference on Computer and information application

(ICCIA2010), 2010, pp. 374-377.

[28] T. O. N. G. Chengyi, “Gravitational Search Algorithm

Based on Simulated Annealing,” Journal of Convergence

Information Technology (JCIT) 9 (2) 2014, pp. 231-237.

[29] B. C. Xu, Y. Y. Zhang, “An improved gravitational search

algorithm for dynamic neural network identification,”

International Journal of Automation and Computing,

11(4), 2014, pp. 434-440.

[30] B. Gu, F. Pan, “Modified Gravitational Search Algorithm

with Particle Memory Ability and its Application,”

International Journal of Innovative Computing,

Information and Control 9 (11), 2013, pp. 4531-4544.

[31] S. Jiang, Y. Wang, Z. Ji, “Convergence analysis and

performance of an improved gravitational search

algorithm,” Applied Soft Computing 24, 2014, pp. 363-

384.

[32] A. Yadav, K. Deep, “Constrained Optimization Using

Gravitational Search Algorithm,” National Academy

Science Letters 36 (5), 2013, pp. 527-534.

[33] A. Yadav, K. Deep, “A Novel Co-swarm Gravitational

Search Algorithm for Constrained Optimization,”

Proceedings of the Third International Conference on Soft

Computing for Problem Solving, Springer India, 2014, pp.

629-640.

[34] H. Nobahari, M. Nikusokhan, P. Siarry, “Non-dominated

sorting gravitational search algorithm,” In Proc. of the

2011 International Conference on Swarm Intelligence,

2011, pp. 1-10.

[35] H. R. Hassanzadeh, M. Rouhani, “A multi-objective

gravitational search algorithm,” Second International

Conference on Computational Intelligence,

Communication Systems and Networks (CICSyN), 2010,

pp. 7-12.

[36] K. Deep, M. Thakur, “A new crossover operator for real

coded genetic algorithms,” Applied Mathematics and

Computation, 188(1), 2007, pp. 895-911.

[37] K. Deep, M. Thakur, “A new mutation operator for real

coded genetic algorithms,” Applied mathematics and

Computation, 193(1), 2007, pp. 211-230.

[38] J.J. Liang, B.Y.Qu, P.N Suganthan, “Problem Definitions

and Evaluation Criteria for the CEC 2014. Special Session

and Competition on Single Objective Real-Parameter

Numerical Optimization,” Technical Report 201311,

Computational Intelligence Laboratory, Zhengzhou

University, Zhengzhou China and Technical Report,

Nanyang Technological University, Singapore, December

2013.

Authors’ Profiles

Mr. Amarjeet Singh, is a Research Scholar,

with the Department of Mathematics,

Indian Institute of Technology Roorkee,

India. Born on July 2, 1987, he pursued

B.Sc from C. C. S. University Meerut in

2006 and M.Sc from Indian Institute of

Technology Roorkee in 2010. He was

awarded ‘Shyam & Pushp Garg Annual Excellence Award’ for
outstanding academic, co-curricular and extra-curricular

22 Real Coded Genetic Algorithm Operators Embedded in Gravitational Search Algorithm for Continuous Optimization

Copyright © 2015 MECS I.J. Intelligent Systems and Applications, 2015, 12, 1-22

achievements in 2009. Presently, he is pursuing Ph.D. since
August 7, 2012.

His areas of specialization are numerical optimization and

their applications to engineering, science and industry.

Currently his research interests are Nature Inspired

Optimization Techniques, particularly, Gravitational Search

Algorithm, Glowworm Optimization, and their applications to

solve real life problems.

Dr. Kusum Deep, is a full Professor, with

the Department of Mathematics, Indian

Institute of Technology Roorkee, India.

Born on August 15, 1958, she pursued B.Sc

Hons and M.Sc Hons. School from Centre

for Advanced Studies, Panjab University,

Chandigarh. An M.Phil Gold Medalist, she

earned her PhD from IIT Roorkee in 1988, assisted by UGC

Scholarship throughout. She carried out Post-Doctoral Research

at Loughborough University, UK during 1993-94, under an

International Post Doctorate Bursary funded by Commission of

European Communities, Brussels. She was awarded the Khosla

Research Award in 1991; UGC Career Award in 2002; Starred

Performer of IIT – Roorkee Faculty continuously from 2001 to

2005; best paper, Railway Bulletin of Indian Railways, 2005;

special facilitation in memory of late Prof. M. C. Puri, 2007.

She has co-authored a book entitled "Optimization Techniques"

by New Age Publishers New Delhi in 2009 with an

International edition by New Age Science, UK.

Eleven students have been awarded PhD under her

supervision and six are in progress. She has 80 research

publications in refereed International Journals and 60 research

papers in International / National Conferences. She is on the

editorial board of a number of International and National

Journals. She is a Senior Member of Operations Research

Society of India, IEEE, Computer Society of India, Indian

Mathematical Society and Indian Society of Industrial

Mathematics. She is on the Expert Panel of the Department of

Science and Technology, Govt. of India. She is the Executive

Editor of International Journal of Swarm Intelligence,

Inderscience. She is the Founder President of Soft Computing

Research Society, India and the secretary of Forum of

Interdisciplinary Mathematics.

Her areas of specialization are numerical optimization and

their applications to engineering, science and industry.

Currently her research interests are Nature Inspired

Optimization Techniques, particularly, Genetic Algorithms,

Memetic Algorithms, Particle Swarm Optimization, Artificial

Bee Colony, Biogeographical Based Optimization, Glowworm

Optimization, and their applications to solve real life problems.

How to cite this paper: Amarjeet Singh, Kusum Deep,"Real

Coded Genetic Algorithm Operators Embedded in Gravitational

Search Algorithm for Continuous Optimization", International

Journal of Intelligent Systems and Applications (IJISA), vol.7,

no.12, pp.1-22, 2015. DOI: 10.5815/ijisa.2015.12.01

