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Abstract—The objective of this paper is to propose three 

modified versions of the Gravitational Search Algorithm 

for continuous optimization problems. Although the 

Gravitational Search Algorithm is a recently introduced 

promising memory-less heuristic but its performance is 

not so satisfactory in multimodal problems particularly 

during the later iterations. With a view to improve the 

exploration and exploitation capabilities of GSA, it is 

hybridized with well-known real coded genetic algorithm 

operators. The first version is the hybridization of GSA 

with Laplace Crossover which was initially designed for 

real coded genetic algorithms. The second version is the 

hybridization of GSA with Power Mutation which also 

was initially designed for real coded genetic algorithms. 

The third version hybridizes the GSA with both the 

Laplace Crossover and the Power mutation. The 

performance of the original GSA and the three proposed 

variants is investigated over a set of 23 benchmark 

problems considered in the original paper of GSA. Next, 

all the four variants are implemented on 30 rotated and 

shifted benchmark problems of CEC 2014. The extensive 

numerical, graphical and statistical analysis of the results 

show that the third version incorporating the Laplace 

Crossover and Power mutation is a definite improvement 

over the other variants.  

 
Index Terms—Gravitational Search Algorithm, Real 

Coded Genetic Algorithm operators, Laplace Crossover, 

Power Mutation, continuous optimization. 

 

I.  INTRODUCTION 

Many real-world nonlinear optimization problems are 

possessing increased level of complexities. Their nature 

may be highly non-linear or high dimensional or non-

differential discontinuous or having large search space or 

their search space may increase exponentially with 

problem size. Although in literature many deterministic 

techniques are available but they are applicable to a 

restricted class of functions e.g. Lipchitz continuous 

functions, differentiable functions etc. On the other hand, 

probabilistic techniques are becoming increasingly 

popular due to their ease of use and wide applicability. 

Due to the No Free Lunch Theorem no single algorithm 

can solve problems of all complexities. Therefore, 

efficient and reliable optimization algorithms are always 

in demand. In the last few decades, more adaptable and 

flexible heuristic optimization algorithms have been 

developed to handle such problems, especially with 

imperfect or incomplete information. Deriving their 

inspiration from natural phenomenon like evolutionary 

process of living organisms and swarm behaviour, Nature 

Inspired Algorithms are one such category of popular 

algorithms which find numerous applications in 

clustering, pattern recognition, image processing, 

numerical and combinatorial optimization and many 

other problems arising in science, engineering, business, 

economics and finance.  

Ant Colony Optimization (ACO) [1], Artificial Bee 

Colony (ABC) [2], Artificial Immune System (AIS) [3], 

Bacterial Foraging Optimization Algorithm (BFOA) [4], 

Differential Evolution (DE) [5], Genetic Algorithm (GA) 

[6], Glowworm Swarm Optimization (GSO) [7,8], 

Particle Swarm Optimization (PSO) [9] are some of the 

biological-based stochastic nature inspired optimization 

algorithm. Simulated Annealing (SA) [10], Artificial 

Physics Optimization (APO) [11, 12], Central Force 

Optimization (CFO) [13], Harmony Search Algorithm 

(HS) [14], Space Gravitation optimization [15] etc. are 

physics inspired heuristic search algorithms [16]. These 

algorithms mimic physical behaviour and physical 

principals.  

To achieve efficient global and local search, a heuristic 

algorithm must have a good trade-off between 

exploration and exploitation. The exploration ability 

makes the algorithm to investigate the search space and 

explore new and better solutions, and exploitation ability 

make the algorithm to search the optimal solution near a 

good one. The ability of exploration and exploitation of 

heuristic algorithm is made by specific operators. Hence, 

new operators are designed or available operators are 

redesigned in order to add specific capabilities in 

heuristic algorithms to solve such problems. 
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Recently, a new physics based heuristic optimization 

algorithm, namely Gravitational Search Algorithm (GSA) 

has been introduced by Rashedi et al [17]. It mimics the 

characteristic of Newton’s law of gravitation and motion. 

GSA is popular as it has a small number of parameter to 

adjust and it is easy to implement. But like other 

heuristics GSA too has some demerits. It is not suitable 

for highly complex problems. It usually get stuck at local 

optimal solutions or non-optimal solutions, therefore it is 

unable to improve the quality of solutions in the latter 

iterations. To overcome these drawbacks many 

researchers have introduced new operator in it and also 

hybridized with other heuristic algorithms. 

Sarafrazi et al [18] defined a new operator 

“Disruption”, originating from astrophysics and 

Doraghinejad et al [19] defined a new operator “Black 

Hole”, inspired by some of the characteristics of the black 

hole as an astronomy phenomenon, for GSA to increase 

the exploration and exploitation ability. Based on the 

dynamics of Quantum, Mohadeseh Soleimanpour et al 

[20] proposed Quantum behaved GSA but it suffers with 

diversity loss problem in collecting the masses of objects. 

Later on, Improved Quantum behaved GSA is proposed 

in which fitness function of QGSA is replaced by new 

fitness function [21, 22]. Radu et al [23, 24] applied three 

modifications: define constraint regarding system, modify 

deprecation equation of gravitation constant and extended 

symmetrical method and proposed new GSA to reduce 

parametric sensitivity of fuzzy based control system for 

optimal tuning. Gao et al [25] proposed a chaotic GSA 

which combines GSA with chaos. Rashedi et al. [26] 

proposed Binary GSA for solving discrete optimization 

problems. Mirjalili et al [27] proposed PSOGSA in which 

particles update their velocity using PSO velocity update 

equation. Chengyi [28] proposed Simulated Annealing 

based GSA in which position of the particles updated 

according to Metropolis-principle. Xu et al [29] proposed 

Improved GSA which uses trial-and-error method to 

update the optimal agent during the whole search process. 

GSA is memory less algorithm. Hence, for enhancing 

particle memory ability and improve its search accuracy, 

Gu et al [30] uses the idea of local optimum solution and 

global optimum solution from PSO and proposed 

modified GSA. Jiang et al [31] proposed an improved 

GSA, in which the chaos operator and memory strategy 

are applied. 

GSA has also been successfully applied to solve 

constrained as well as multi-objective optimization 

problems. Yadav et al [32] used GSA to solve 

constrained optimization problems and [33] also 

hybridized it with Differential Evolution. Nobahari et al 

[34] extend GSA and proposed non-dominated sorting 

GSA for multi-objective optimization problems. 

Hassanzadeh et al [35] also proposed another variant for 

multi-objective problems. It used pareto optimality 

function with standard GSA.  

In this paper, an attempt is made to hybridize GSA 

with well-known real coded crossover operators. Three 

versions are proposed. First, GSA is hybridized with 

Laplace Crossover (LX) Operator, second GSA is 

hybridized with Power Mutation (PM) Operator and 

thirdly it is hybridized with both LX and PM. The 

motivation behind this hybridization is that the 

exploration and exploitation capabilities of GSA can be 

enhanced by the LX and PM operators of Real Coded 

Genetic Algorithms. 

The remaining paper is composed as follows: In 

section II, the Gravitational Search Algorithm is 

explained. In section III, the three proposed versions of 

GSA are described. In section IV, the numerical results 

are analysed. In section V, the performance of the four 

algorithms is demonstrated on the rotated and shifted 

benchmark collection as given in CEC 2014. Finally in 

section VI the conclusions are drawn. 

 

II.  GRAVITATIONAL SEARCH ALGORITHM 

Gravitational Search Algorithm (GSA) is a new 

addition in the class of nature inspired optimization 

techniques based on gravitational interaction between 

masses [17]. GSA artificially simulates the Newton's 

Theory, Newtonian laws of gravitation and motion. 

Newton’s law of gravity states that every particle attracts 

other particle by means of some gravitational force and 

the gravitational force between two particles is directly 

proportional to the product of their masses and inversely 

proportional to the square of the distance between them. 

Law of motion states that the current velocity of any mass 

is equal to the sum of the fraction of its previous velocity 

and the variation in the velocity. Variation in the velocity 

or acceleration of any mass is equal to the force acted on 

the system divided by mass of inertia.  

In GSA, agents are considered as particles and every 

particles represent a candidate solution. Their fitness is 

measured by their masses, heavy masses correspond to 

good solution. Due to gravitational force, these particles 

attract each other and moves towards the heavy mass 

objects. Hence, gravitational force guide the masses. 

Heavy masses move slowly than lighter masses 

(exploitation). 

The continuous nonlinear optimization problem is 

defined as: 

 

  Minimize f x                      (1) 

Subject to 

 

  lower upperx x x   

 

Consider a system of N particles and the position of 

particle i is represented as: 

 
1 2( , ,..., ,... ) for 1,2,...,d m

i i i i ix x x x x i N          (2) 

 

where 
d

ix is the position of particle i in dimension d. the 

total force of attraction exerted by the ith particle at time t 

in d dimension is given by Eq. (3) 
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   
 

   
  ,?

( ) ( )
     ( ? )

 

pi ajd d d

i j j i
j kbest j i

ij

M t M t
t rand G t x t x tF

R t  

 


 

(3) 

 

 

Fig.1. Pseudo code of GSA 

Where 
jrand  is a random number in the interval [0, 1], 

( )piM t  is the passive gravitation mass related to ith particle 

mass at time t, ( )a jM t  is the active gravitational mass 

related to jth particle at time t, ( )i jR t  is Euclidean 

distance between particles i and j,   is a small constant, 

jkbest  is the set of first K particles arranged in 

decreasing order according to their fitness. ( )G t  is the 

gravitational constant at time t and the value of ( )G t is 

calculated by 

 

   0 exp / max_ iterG t atG               (4) 

 

Here,   is a constant and 
0G  is initial value. 

The gravitational mass and inertia mass for each 

particle are calculated as follows 

 

( ) ( ) ( ) ( )pi ai ii iM t M t M t M t                 (5) 

 

( ( )) ( )
( ) , 1,2,...,

( ) ( )

i

i

f x t worst t
m t i N

best t worst t


 


       (6) 

 

1

( ) ( ) ( )
N

i i j
j

M t m t m t


                       (7) 

 

where ( ( ))if x t is the fitness of ith particle at time t. The 

acceleration of particle i in dimension d at a specific time 

t is 

 

 
 

    
( )

d

id

i

ii

t

M

F
t

t
a                                 (8) 

 

The next velocity of a particle i is a fraction of its 

current velocity added to its acceleration. 

 

( 1) ( ) ( )d d d

i i iv t rand v t a t                    (9) 

 

The next position of particle i is updated by 

 

( 1) ( ) ( 1)d d d

i i ix t x t v t                 (10) 

 

In the initial population, a particle having best fitness 

value is set to Lbest and in successive iteration the fitness 

of Lbest is compared with the best particle’s fitness in 

each iteration, if it has better fitness than Lbest is updated 

otherwise Lbest remains same. Fig. 1 show the pseudo 

code of GSA. 

 

III.  THREE PROPOSED HYBRID VERSIONS OF GSA 

In the present study, an effort is made to enhance the 

exploration and exploitation ability of GSA by 

hybridizing it with two well-known operators of Real 

Coded Genetic Algorithms, namely Laplace Crossover 

and Power Mutation. First these two operators are 

explained below. 

A.  Laplace Crossover 

Laplace Crossover (LX) is introduced by Deep and 

Thakur [36] based on Laplace distribution. It generates a 

pair of offspring  1 2

1 1 1 1, ,..., my y y y  and  1 2

2 2 2 2, ,..., my y y y  from 

a pair of parents  1 2

1 1 1 1, ,..., mx x x x  and  1 2

2 2 2 2, ,..., mx x x x  in 

the following way. First, two uniformly distributed 

random numbers , [0,1]i ir s   are generated and a random 

number 
i , following Laplace distribution, is generated 

as: 

 

log ( ), 0.5

log ( ), 0.5

e i i

i

e i i

a b r s

a b r s


 
 

 
                  (11) 

 

Then offspring are created by the equations:

Set number of particles = N 

Set dimension of the problem = m 

Set parameter value: 
0 ,G   

Deploy N particles randomly in the search space 

Let         1 , , , ,d m

i i i ix t x t x t x t be the position of particle 

i at iteration t 

Set maximum number of iteration = max_iter  

t=0 

while (tmax_iter ) do: 

     {Evaluate fitness f of each particle 
        0? (  )  max_G t G exp t iter   

       
   1, , 1, ,

( ) min ( ( )), ( ) max ( ( )),j j
j jN N

best t f x t worst t f x t
 

   

msum=0;  

        for i =1 to N 

               { ( ( )) ( )
( ) ; msum=msum ( );

( ) ( )

i
i i

f x t worst t
m t m t

best t worst t


 


 } 

        for i =1 to N 

           { ( ) ( ) msum;i iM t m t } 

        for each particle i = 1 to N do: 

           {    for d = 1 to m do: 

                

{  
,

( ) ( )
( ) ( ) ( ) ( )

( )

pi ajd d d

i j j i
j kbest j i

ij

M t M t
F t rand G t x t x t

R t  


 


   

                 ( ) ( ) ( )d d

i i iia t F t M t  

                ( 1) ( ) ( )d d d

i i i iv t rand v t a t    

                ( 1) ( ) ( 1)d d d

i i ix t x t v t     

                } 

           } 

         t=t+1 

} 
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1 1 1 2

2 2 1 2

,

,

i i i i

i

i i i i

i

y x x x

y x x x





  

  
                      (12) 

 

Let i

lowerx  and i

upperx  to be the lower and upper bounds 

of the unknown variables
ix . If i i

lowerx x  or i i

upperx x  for 

some i , then ix  is assigned a random value in the 

interval [ , ]i i

lower upperx x . 

B.  Power Mutation 

Power Mutation (PM) operator introduced by Deep and 

Thakur [37] based on power distribution. PM operator 

creates a solution  in the vicinity of a parent solution x  

in the following manner. First, a uniformly distributed 

random number [0,1]r  is generated. Then a random 

number w  following power distribution, is generated by 
1/ pw r , where p is the index of distribution. Offspring  

is created by the formula: 

 

( ),

( ),
lower

upper

x w x x if t v
y

x w x x if t v

  
    

                (13) 

 

Where [0,1]v  is a uniformly distributed random 

number, 
lower

upper lower

x x
t

x x





 and 

lowerx  and 
upperx  are lower 

and upper bound of decision variables. For small value of 

p, it achieves less perturbation and for large value of p, it 

achieves more diversity in the solution. 

The hybridization of GSA is performed with the above 

defined Laplace Crossover, which is a real coded 

crossover operator for real coded genetic algorithm and 

the above defined power mutation, which is a real coded 

mutation operator for real coded genetic algorithm. The 

motivation behind this hybridization is that the mass of 

particles may decrease with the passage of time due to 

environment change. Hence, the exploration and 

exploitation of GSA may improve with the 

implementation of real coded genetic algorithm operators. 

With a view to enhance the performance of GSA, the 

following three proposed variants of GSA are designed. 

C.  Proposed LX-GSA 

After the completion of each iteration of GSA, the 

Lbest particle and a randomly selected particle are 

selected as parents and Laplace crossover is applied to 

produce two offsprings called 
1y and

2y . If fitness of 
1y  

is better than the fitness of worst particle then, worst is 

replaced by 
1y  and worst is updated. In either case, if 

fitness of 
2y  is better than the fitness of worst then, 

worst is replaced by 
2y  and Lbest is updated if 

offsprings have better fitness. Then the iteration is 

incremented. Fig. 2 shows the pseudo code of LX-GSA. 

 

 

 

D.  Proposed PM-GSA 

After the completion of each iteration of GSA, the 

Lbest particle is selected and the Power Mutation is 

applied to produce a mutated offspring called y . If fitness 

of y is better than the fitness of worst, then worst is 

replaced by y  and Lbest is updated if offspring has better 

fitness. Then the iteration is incremented. Fig. 3 shows 

the pseudo code of PM-GSA.  

 

 

Fig.2. Pseudo code of LX-GSA

Set number of particles = N 

Set dimension of the problem = m 

Set parameter value: 
0 ,G   

Deploy N particles randomly in the search space 

Let         1 , , , ,d m

i i i ix t x t x t x t be the position of 

particle i at iteration t 

Set maximum number of iteration = max_iter  

t=0 

while (tmax_iter) do: 

     {Evaluate fitness f of each particle 
        0? (  )  max_G t G exp t iter   

      
   1, , 1, ,

( ) min ( ( )), ( ) max ( ( )),j j
j jN N

best t f x t worst t f x t
 

   

msum=0;  

        for i =1 to N 

               { ( ( )) ( )
( ) ; msum=msum ( );

( ) ( )

i
i i

f x t worst t
m t m t

best t worst t


 


 } 

        for i =1 to N 

           { ( ) ( ) msum;i iM t m t } 

         for each particle i = 1 to N do: 

          {    for d = 1 to m do: 

                

{  
1,

( ) ( )
( ) ( ) ( ) ( )

( )

N
pi ajd d d

i j j i
j j i

ij

M t M t
F t rand G t x t x t

R t  


 


  

                  ( ) ( ) ( )d d

i i iia t F t M t   

                  ( 1) ( ) ( )d d d

i i i iv t rand v t a t    

                  ( 1) ( ) ( 1)d d d

i i ix t x t v t     

                } 

          } 

                   % Applying LX-operator 

          Select 
1 ( )x best t and 

2 a randomparticlex    

          
1 1 1 2

2 2 1 2

, 1, ,

, 1, ,

d d d d

d

d d d d

d

y x x x d m

y x x x d m





   

   
   

        % random number 
d  follow Laplace distribution 

         Replace 
1 2,y y with worst particle if they have better 

fitness 

          } 

          t=t+1 

} 
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Fig.3. Pseudo code PM-GSA 

E.  Proposed LX-PM-GSA 

After the completion of each iteration of GSA, the 

Lbest particle and a randomly selected particle are 

selected as parents and Laplace crossover is applied to 

produce two offsprings called 
1y  and

2y . If fitness of 
1y  

is better than the fitness of worst then, worst is replaced 

by 1y  and worst is updated. In either case, if fitness of 

2y is better than the fitness of worst then, worst is 

replaced by 
2y  and Lbest is updated if offsprings have 

better fitness.  

Then, Lbest particle is selected and the Power 

Mutation is applied to produce a mutated offspring 

called y . If fitness of y is better than the fitness of worst, 

then worst is replaced by y and Lbest is updated if 

offspring has better fitness. Then the iteration is 

incremented. Fig. 4 shows the pseudo code of LX-PM-

GSA. 

 

 

Fig.4. Pseudo code of LX-PM-GSA

Set number of particle=N 

Set dimension of the problems = m 

Set parameter value: 
0 ,G   

Deploy N particles randomly in the search space 

Let         1 , , , ,d m

i i i ix t x t x t x t be the position of 

particle i at iteration t 

Set maximum number of iteration = max_iter  

t=0 

while (tmax_iter) do: 

     {Evaluate fitness f of each particle 
        0? ( m )ax_G t G exp t iter   

      
   1, , 1, ,

( ) min ( ( )), ( ) max ( ( )),j j
j jN N

best t f x t worst t f x t
 

   

msum=0;  

        for i =1 to N 

               { ( ( )) ( )
( ) ; msum=msum ( );

( ) ( )

i
i i

f x t worst t
m t m t

best t worst t


 


} 

        for i =1 to N 

           { ( ) ( ) msum;i iM t m t }  

        for each particle i = 1 to N do: 

          {   for d = 1 to m do: 

                 

{  
,

( ) ( )
( ) ( ) ( ) ( )

( )

pi ajd d d

i j j i
j kbest j i

ij

M t M t
F t rand G t x t x t

R t  


 


  

                  ( ) ( ) ( )d d

i i iia t F t M t   

                  ( 1) ( ) ( )d d d

i i i iv t rand v t a t    

                  ( 1) ( ) ( 1)d d d

i i ix t x t v t     

                 } 

          } 

           % Applying LX-operator 

          Select 
1 ( )x best t and 

2 a randomparticlex    

          
1 1 1 2

2 2 1 2

, 1, ,

, 1, ,

d d d d

d

d d d d

d

y x x x d m

y x x x d m





   

   
 

         % random number 
d  follow Laplace distribution 

         Replace 
1 2,y y with worst particle if they have better 

fitness 

         % Applying Power Mutation  

            Select ( )x best t  

          
( ),

( ),

d

d d d

d lower d d

d d d

d upper d d

x w x x if t v
y

x w x x if t v

   
 

  

   1, ,d m  

      % 
dw  is a random number follow power distribution, 

dv  is a uniformly distributed random number   and 

d d

lower
d d d

upper lower

x x
t

x x





, d

lowerx and d

upperx are lower and upper 

bound of ith variable 

          Replace y with worst particle if it has better fitness 

              } 

         t=t+1 

} 

Set number of particles = N 

Set dimension of the problem = m 

Set parameter value: 
0 ,G   

Deploy N particles randomly in the search space 

Let         1 , , , ,d m

i i i ix t x t x t x t be the position of 

particle i at iteration t 

Set maximum number of iteration = max_iter  

t=0 

while (tmax_iter ) do: 

     {Evaluate fitness f of each particle 
        0?  ( )max_G t G exp t iter   

      
   1, , 1, ,

( ) min ( ( )), ( ) max ( ( )),j j
j jN N

best t f x t worst t f x t
 

   

msum=0;  

        for i =1 to N 

               { ( ( )) ( )
( ) ; msum=msum ( );

( ) ( )

i
i i

f x t worst t
m t m t

best t worst t


 


} 

        for i =1 to N 

           { ( ) ( ) msum;i iM t m t } 

        for i = 1 to N do: 

           {   for d = 1 to m do: 

                 

{  
,

( ) ( )
( ) ( ) ( ) ( )

( )

pi ajd d d

i j j i
j kbest j i

ij

M t M t
F t rand G t x t x t

R t  


 


 

                  ( ) ( ) ( )d d

i i iia t F t M t   

                  ( 1) ( ) ( )d d d

i i i iv t rand v t a t    

                  ( 1) ( ) ( 1)d d d

i i ix t x t v t     

                 } 

           }      

                   % Applying Power Mutation      

          Select ( )x best t   

          
( ),

( ),

d

d d d

d lower d d

d d d

d upper d d

x w x x if t v
y

x w x x if t v

   
 

  

   1, ,d m  

      % 
dw  is a random number follow power distribution, 

dv  is a uniformly distributed random number   and 

d d

lower
d d d

upper lower

x x
t

x x





, d

lowerx and d

upperx are lower and upper 

bound of ith variable 

          Replace y with worst particle if it has better fitness 

              } 

         t=t+1 

} 
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IV.  BENCHMARK FUNCTIONS AND EXPERIMENTAL 

RESULTS 

To test the performance of proposed versions of GSA, 

the same set of 23 benchmark function are selected as 

considered in the first paper of GSA [17] and reproduced 

in the APPENDIX A of this paper. This set consists 

unimodal, multimodal, low dimensional and high 

dimensional functions. Functions F1 to F7 are high 

dimensional unimodal functions, F8 to F13 are high 

dimensional multimodal functions and F14 to F23 are low 

dimensional multimodal functions with fixed dimension. 

Environment for running the experiments is processor: 

Intel (R) Xeon (R) CPU @ 2.80GHz, RAM: 144.00 GB, 

operating system: Window 7, Integrated Development 

Environment: Matlab 2010. The parameters of the 

algorithm are 
0 100, 20, 0.25, 0, 0.35G p a b      

and population size = 50. To test the performance of the 

algorithms, three experiments are performed. In 

experiment I, the termination criteria is: maximum 

iterations = 4000 for the function F1 to F13 and maximum 

iterations = 2000 for F14 to F23. The GSA, LX-GSA, PM-

GSA and LX-PM-GSA are run 30 times each. In 

experiment II, the termination criteria is: maximum 

iterations = 4000 and absolutely error is less than 0.01 for 

the function F1 to F13 and maximum iterations = 2000 and 

absolutely error less than 0.01 for F14 to F23, where 

absolute error is defined as the absolute difference 

between the known objective function value and the 

obtained objective function value by the algorithms. The 

GSA, LX-GSA, PM-GSA and LX-PM-GSA are run 50 

times each. A run is considered to be a success if best 

objective function value in the population has error less 

than 0.01 within above defined iterations. In experiment 

III, algorithms are used to solve CEC2014 test problems. 

For a fair comparison among the algorithms the first 

randomly generated population is used for the first run of 

all algorithm, second randomly generated population is 

used for second run of all algorithm, and so on.   

A.  Analysis of Results based on Experiment I 

Following the same performance measures as 

considered in the first paper of GSA [17], the Average 

best-so-far, Median best-so-far, Average mean fitness, 

Best, Worst, standard deviation of the objective function 

values of function F1 to F7 are shown in Table 1, for F8 to 

F13 are shown in Table 2, for F14 to F23 are shown in 

Table 3. The best entries are highlighted in bold in each 

of the Table 1, 2 and 3. 

Table 1. Objective Function Values for High Dimensional Unimodal Functions 

Pro. D. Algorithm 
Average 

best so far 

Median 

best so far 

Average 

mean 

fitness 

Best Worse STD 

F1 30 GSA 2.79E-18 2.92E-18 9.77E-18 1.16E-18 5.16E-18 9.78E-19 

 
 LX-GSA 1.85E-18 1.91E-18 8.37E-18 8.59E-19 2.76E-18 5.54E-19 

 
 PM-GSA 2.94E-18 2.84E-18 1.01E-17 1.79E-18 4.38E-18 6.62E-19 

 
 LX-PM-GSA 2.09E-18 2.1E-18 8.45E-18 1.33E-18 3.11E-18 3.8E-19 

F2 30 GSA 7.66E-09 7.35E-09 1.34E-08 5.36E-09 1.06E-08 1.44E-09 

 
 LX-GSA 5.97E-09 5.79E-09 1.2E-08 3.66E-09 7.85E-09 1.01E-09 

 
 PM-GSA 7.79E-09 7.44E-09 1.34E-08 5.32E-09 1.27E-08 1.67E-09 

 
 LX-PM-GSA 5.72E-09 5.59E-09 1.16E-08 3.77E-09 9.06E-09 1.11E-09 

F3 30 GSA 3.217619 2.005779 3.217619 0.268354 11.72383 3.264068 

 
 LX-GSA 0.001277 3.5E-17 0.001278 1.49E-17 0.016613 0.003443 

 
 PM-GSA 3.254921 2.602324 3.254921 0.245432 10.32525 2.622834 

 
 LX-PM-GSA 9.28E-05 3.46E-17 9.3E-05 1.06E-17 0.000898 0.000248 

F4 30 GSA 1.65E-09 1.65E-09 2.49E-09 1.14E-09 2.36E-09 2.79E-10 

 
 LX-GSA 1.23E-09 1.23E-09 2.1E-09 9.2E-10 1.67E-09 1.98E-10 

 
 PM-GSA 1.56E-09 1.58E-09 2.31E-09 9.53E-10 2.5E-09 3.35E-10 

 
 LX-PM-GSA 1.19E-09 1.16E-09 2.09E-09 6.82E-10 1.7E-09 2.56E-10 

F5 30 GSA 21.7292 21.7113 21.7292 21.25285 22.24311 0.25062 

 
 LX-GSA 20.52656 20.5155 20.52668 20.1799 20.8962 0.176059 

 
 PM-GSA 23.57698 21.69065 23.57698 21.27451 78.65698 10.40432 

 
 LX-PM-GSA 20.75712 20.56332 20.75742 20.18272 26.30862 1.067888 

F6 30 GSA 0 0 0 0 0 0 

 
 LX-GSA 0 0 0 0 0 0 

 
 PM-GSA 0 0 0 0 0 0 

 
 LX-PM-GSA 0 0 0 0 0 0 

F7 30 GSA 0.014339 0.013506 0.571078 0.008935 0.026754 0.00419 

 
 LX-GSA 0.005872 0.006013 0.500762 0.00293 0.011902 0.002062 

 
 PM-GSA 0.014988 0.014736 0.572144 0.008304 0.024337 0.003888 

 
 LX-PM-GSA 0.005549 0.005666 0.49244 0.002206 0.007877 0.001834 
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On observing the results presented in Table 1, it is 

observed that out of the 7 problems considered in this 

category LX-PM-GSA performed the best in 4 problems, 

whereas LX-GSA performed best in 2 problems. Also, all 

algorithms are able to solve one problem, namely F6. It 

may be thus be concluded that the performance of LX-

PM-GSA is the best for high dimensional unimodal 

functions. 

On observing the results of Table 2, it is observed that 

out of the 6 problems considered in this category LX-PM-

GSA performed the best in 5 problems, whereas PM-

GSA performed best in 1 problems. It may be thus be 

concluded that the performance of LX-PM-GSA is the 

best for high dimensional multimodal functions. 

On observing the results of Table 3, it is observed that 

out of the 10 problems considered in this category LX-

PM-GSA performed the best in 4 problems and LX-GSA 

performed best in one problem and the performance of 

LX-GSA and LX-PM-GSA is same on one problem, 

namely F19, whereas all algorithms are able to solve 4 

problems, namely F16, F17, F18 and F23. It may be thus be 

concluded that the performance of LX-PM-GSA is the 

best for low dimensional multimodal functions with fixed 

dimensions. 

In order to observe the behaviour of the objective 

function value with a passage of iterations the 

convergence plots of the F3, F4, F5, F6, F7, F8, F9, F11, F12, 

F13, F14, F15, F16, F17, F18, F19, F20, F21, F22, and F23 

functions are shown in Fig. 5-6. On the horizontal axis 

the iterations are shown whereas on the vertical axis the 

average best-so-far is shown. Average best-so-far is the 

average value of objective function in each iteration over 

30 runs. From the plots it is concluded that LX-PM-GSA 

is converging fast towards optima in comparison to other 

algorithms. The plots of the remaining functions is not 

shown due to scaling issues. 

Table 2. Objective Function Values for High Dimensional Multimodal Functions 

Pro. Dim. Algorithm 
Average best 

so far 

Median best 

so far 

Average 

mean fitness 
Best Worse STD 

F8 30 GSA -2626.2 -2624.98 -1072.92 -3373.13 -2132.9 346.3529 

 
 LX-GSA -6284 -6191.93 -6284 -7673.59 -4849.59 676.326 

 
 PM-GSA -5149.57 -5045.6 -1100.67 -6070.94 -4234.38 491.3833 

 
 LX-PM-GSA -8360.99 -8216.68 -8343.59 -9983.04 -6785.44 805.5085 

F9 30 GSA 15.65402 13.92943 15.65402 8.954632 28.85379 4.494877 

 
 LX-GSA 18.87105 16.9143 18.87105 9.949591 31.83867 4.670301 

 
 PM-GSA 13.86309 13.92942 13.86309 8.954632 21.88909 3.294037 

 
 LX-PM-GSA 20.36349 18.90422 20.36349 9.949591 43.77816 7.347434 

F10 30 GSA 1.37E-09 1.36E-09 2.38E-09 1.03E-09 1.98E-09 2.09E-10 

 
 LX-GSA 1.14E-09 1.14E-09 2.24E-09 8.14E-10 1.55E-09 1.64E-10 

 
 PM-GSA 1.4E-09 1.4E-09 2.39E-09 1.09E-09 1.92E-09 1.94E-10 

 
 LX-PM-GSA 1.13E-09 1.13E-09 2.26E-09 7.47E-10 1.41E-09 1.44E-10 

F11 30 GSA 0.001805 0 0.001805 0 0.027061 0.005955 

 
 LX-GSA 0.007624 0 0.007624 0 0.041665 0.011918 

 
 PM-GSA 0.007687 0 0.007687 0 0.068846 0.018361 

 
 LX-PM-GSA 0.001298 0 0.001298 0 0.012316 0.003279 

F12 30 GSA 0.002616 2E-20 0.003456 8.14E-21 0.078488 0.01433 

 
 LX-GSA 1.29E-20 1.2E-20 5.76E-20 7.95E-21 2.32E-20 3.69E-21 

 
 PM-GSA 0.010367 2.24E-20 0.010367 1.27E-20 0.103669 0.031632 

 
 LX-PM-GSA 1.21E-20 1.19E-20 5.76E-20 6.8E-21 2.04E-20 3.08E-21 

F13 30 GSA 3.39E-19 3.1E-19 1.06E-18 1.42E-19 5.75E-19 1.07E-19 

 
 LX-GSA 2.03E-19 1.9E-19 9.15E-19 9.45E-20 3.43E-19 6.29E-20 

 
 PM-GSA 3.42E-19 3.48E-19 1.03E-18 1.33E-19 6.04E-19 1.19E-19 

 
 LX-PM-GSA 1.86E-19 1.75E-19 8.72E-19 9E-20 3.76E-19 6.17E-20 

 

Statistically the comparison of the proposed versions 

with respect to the original GSA is performed using t-test. 

A pairwise one tailed t-test is applied with 290 of freedom 

at 0.05 level of significance over the objective function 

value of all the problems considered. The null hypothesis 

is assumed that “there is no difference between 

algorithms” and alternative hypothesis is “there is 

difference”. The pairwise mean, standard deviation, 

standard error mean, p-value along with conclusion of the 

test are listed in Table 4. A+ shows that version 2 is 

significantly better than version 1, A shows the version 2 

is alike version 1, A- shows that version 2 is marginally 

better than version 1, B+ shows that version 2 is 

significantly worse than version 1 and B- shows that 

version 2 is marginally worst than version 1. The best 

values are highlighted in bold in Table 4. 

On observing the results shown in Table 4, it can be 

concluded that if GSA vs LX-GSA is considered then 10 

out of the 13 problems show that LX-GSA is significantly 

better than GSA. If GSA vs PM-GSA is considered then 
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7 out of the 13 problems show that PM-GSA is 

significantly better than GSA. If GSA vs LX-PM-GSA is 

considered then 10 out of the 13 problems show that LX-

PM-GSA is significantly better than GSA. 

Table 3. Objective Function Values for Low Dimensional Multimodal Functions 

Pro. 
 

Dim. Algorithm 
Average 

 best so far 

Median 

 best so far 

Average mean 

fitness 
Best  Worse STD 

F14 2 GSA 2.276057 2.001888 11.14483 0.998004 5.968449 1.19968 

 
 LX-GSA 1.263078 0.998004 1.263078 0.998004 1.992031 0.44709 

 
 PM-GSA 0.998004 0.998004 11.97185 0.998004 0.998004 1.14E-09 

 
 LX-PM-GSA 0.998004 0.998004 0.998004 0.998004 0.998004 0 

F15 4 GSA 0.003154 0.00216 0.759498 0.001598 0.008348 0.001833 

 
 LX-GSA 0.000951 0.000781 0.001147 0.000488 0.001869 0.000347 

 
 PM-GSA 0.001448 0.001603 0.745155 0.000542 0.002252 0.000533 

 
 LX-PM-GSA 0.001 0.001003 0.001065 0.000663 0.001236 0.000216 

F16 2 GSA -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 6.18E-16 

 
 LX-GSA -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 6.25E-16 

 
 PM-GSA -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 6.39E-16 

 
 LX-PM-GSA -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 6.45E-16 

F17 2 GSA 0.397887 0.397887 0.397887 0.397887 0.397887 0 

 
 LX-GSA 0.397887 0.397887 0.397887 0.397887 0.397887 0 

 
 PM-GSA 0.397887 0.397887 0.397887 0.397887 0.397887 0 

 
 LX-PM-GSA 0.397887 0.397887 0.397887 0.397887 0.397887 0 

F18 2 GSA 3 3 3 3 3 1.78E-15 

 
 LX-GSA 3 3 3 3 3 1.71E-15 

 
 PM-GSA 3 3 3 3 3 1.61E-15 

 
 LX-PM-GSA 3 3 3 3 3 2.91E-15 

F19 3 GSA -3.85648 -3.8549 -3.85648 -3.86278 -3.8549 0.003205 

 
 LX-GSA -3.86278 -3.86278 -3.86278 -3.86278 -3.86278 3.16E-15 

 
 PM-GSA -3.86075 -3.86269 -3.85648 -3.86278 -3.8549 0.003324 

 
 LX-PM-GSA -3.86278 -3.86278 -3.86278 -3.86278 -3.86278 3.16E-15 

F20 6 GSA -2.06163 -2.02263 -1.29549 -3.0769 -0.83909 0.602156 

 
 LX-GSA -3.27449 -3.32237 -3.27449 -3.32237 -3.1974 0.059645 

 
 PM-GSA -3.12652 -3.13681 -1.24446 -3.32237 -2.80401 0.159813 

 
 LX-PM-GSA -3.28641 -3.32237 -3.28641 -3.32237 -3.1974 0.055868 

F21 4 GSA -4.91606 -5.0552 -4.91606 -5.0552 -0.88098 0.762104 

 
 LX-GSA -6.05559 -5.0552 -6.05557 -10.1532 -5.0552 2.037327 

 
 PM-GSA -6.63124 -5.0552 -5.08599 -10.1532 -2.64875 2.479425 

 
 LX-PM-GSA -6.92447 -5.0552 -6.92447 -10.1532 -5.0552 2.498697 

F22 4 GSA -6.68225 -5.08767 -6.68225 -10.4029 -5.08767 2.477402 

 
 LX-GSA -9.16271 -10.4029 -9.16271 -10.4029 -5.08767 2.286539 

 
 PM-GSA -8.09966 -10.4029 -8.09966 -10.4029 -5.08767 2.678932 

 
 LX-PM-GSA -9.51706 -10.4029 -9.51706 -10.4029 -5.08767 2.014747 

F23 4 GSA -10.5364 -10.5364 -10.5364 -10.5364 -10.5364 1.55E-15 

 
 LX-GSA -10.5364 -10.5364 -10.5364 -10.5364 -10.5364 1.58E-15 

 
 PM-GSA -10.5364 -10.5364 -10.5364 -10.5364 -10.5364 1.75E-15 

 
 LX-PM-GSA -10.5364 -10.5364 -10.5364 -10.5364 -10.5364 1.62E-15 
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Fig.5. Iteration wise convergence Plot of Average Best-So-Far for Functions F3 to F9 and F11 to F13 
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Fig.6. Iteration wise Convergence Plot of Average Best-So-Far for Functions F14 to F23. 
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Table 4. Pairwise T-Test Results of Objective Function Values With 95% Confidence Interval at 0.05 Level of Significance 

Version 1 vs Version 2 Pro. Mean 
Standard 
Deviation 

Standard 
 error mean 

p-value Conclusion 

GSA vs LX-GSA F3 3.21634 3.26429 0.59598 0 A+ 

 F5 1.20263 0.30630 0.05592 0 A+ 

 F7 0.00847 0.00362 0.00066 0 A+ 

 F8 3657.80391 659.10395 120.33537 0 A+ 

 F9 -3.21703 5.89311 1.07593 0.003 B+ 

 F11 -0.00582 0.01404 0.00256 0.0155 B+ 

 F12 0.00262 0.01433 0.00262 0.163 A- 

 F14 1.01298 1.16672 0.21301 0 A+ 

 F15 0.00220 0.00170 0.00031 0 A+ 

 F19 0.00630 0.00321 0.00059 0 A+ 

 F20 1.21286 0.60346 0.11018 0 A+ 

 F21 1.13953 2.10796 0.38486 0.003 A+ 

 F22 2.48046 3.34230 0.61022 0 A+ 

GSA vs PM-GSA F3 -0.03730 2.61039 0.47659 0.469 B- 

 F5 -1.84778 10.45474 1.90877 0.1705 B- 

 F7 -0.00065 0.00602 0.00110 0.2795 B- 

 F8 2523.37149 649.08325 118.50585 0 A+ 

 F9 1.79092 6.34346 1.15815 0.0665 A- 

 F11 -0.00588 0.01787 0.00326 0.041 B+ 

 F12 -0.00775 0.03553 0.00649 0.121 B- 

 F14 1.27805 1.19968 0.21903 0 A+ 

 F15 0.00171 0.00194 0.00035 0 A+ 

 F19 0.00427 0.00483 0.00088 0 A+ 

 F20 1.06489 0.60345 0.11017 0 A+ 

 F21 1.71518 2.77532 0.50670 0.001 A+ 

 F22 1.41740 3.10036 0.56604 0.009 A+ 

GSA vs LX-PM-GSA F3 3.21753 3.26398 0.59592 0 A+ 

 F5 0.97208 1.12065 0.20460 0 A+ 

 F7 0.00879 0.00475 0.00087 0 A+ 

 F8 5734.79118 959.53312 175.18598 0 A+ 

 F9 -4.70947 9.19697 1.67913 0.0045 B+ 

 F11 0.00051 0.00650 0.00119 0.3365 A- 

 F12 0.00262 0.01433 0.00262 0.163 A- 

 F14 1.27805 1.19968 0.21903 0 A+ 

 F15 0.00215 0.00194 0.00035 0 A+ 

 F19 0.00630 0.00321 0.00059 0 A+ 

 F20 1.22478 0.59786 0.10915 0 A+ 

 F21 2.00841 2.50722 0.45775 0 A+ 

 F22 2.83481 3.03686 0.55445 0 A+ 
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Table 5. Success rate, Average Function Evaluation of Successful Run and Average Execution Time of Successful Run of GSA, LX-GSA, PM-GSA 
and LX-PM-GSA 

 Success rate 
Average function evaluation of successful 

run 
Average execution time of successful run 

Proble

m 
GSA 

LX-

GSA 

PM-

GSA 

LX-
PM-

GSA 

GSA 
LX-

GSA 

PM-

GSA 

LX-PM-

GSA 
GSA 

LX-

GSA 

PM-

GSA 

LX-PM-

GSA 

F1 100 100 100 100 43173 44262 44128 45105 8.47 8.99 8.80 9.02 

F2 100 100 100 100 79907 82585 81601 84113 13.90 16.31 15.40 17.58 

F3 0 100 0 100 - 88899 - 78421 - 26.34 - 24.35 

F4 100 100 100 100 57397 58840 58640 60117 10.38 11.64 11.09 12.26 

F5 0 0 0 0 - - - - - - - - 

F6 100 100 100 100 18009 17882 18625 18369 3.46 3.57 3.60 3.66 

F7 22 96 16 100 39104 49547 40250 49705 8.21 12.27 9.28 12.64 

F8 0 0 0 0 - - - - - - - - 

F9 0 0 0 0 - - - - - - - - 

F10 100 100 100 100 62910 65031 64345 66258 11.51 13.28 12.58 14.03 

F11 80 74 80 80 30023 28620 30734 31799 6.06 6.46 6.47 7.31 

F12 94 100 96 100 21129 20203 21677 20408 5.01 4.96 5.26 5.02 

F13 98 100 100 100 34539 34867 35455 35129 7.94 8.25 8.36 8.54 

F14 8 86 18 100 2812 14739 1976 5424 0.75 4.19 0.55 1.58 

F15 100 100 98 100 1452 1783 1743 1856 0.25 0.29 0.30 0.32 

F16 100 100 100 100 7874 7857 7297 8257 1.22 1.18 1.09 1.26 

F17 100 100 100 100 6800 7357 7708 7767 1.05 1.12 1.19 1.21 

F18 100 100 100 100 18675 19154 19222 19455 2.75 2.91 2.87 3.06 

F19 100 100 100 100 19433 18703 19769 19539 3.19 3.16 3.22 3.30 

F20 0 72 2 68 - 24634 23204 25368 - 4.689 4.36 5.0869 

F21 0 24 0 30 - 25807 - 26157 - 5.31 - 5.55 

F22 44 72 52 82 24811 25833.3 25808 26745 4.22 4.92 4.75 5.16 

F23 100 100 100 100 24897 25742 25392 26650 5.67 6.02 5.83 6.22 
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Fig.7. Boxplot Corresponding to (a) Success Rate, (b) Average Function 
Evaluations, (c) Average Execution Time of Functions F1-F7 

The p-value of F1, F2, F4, F6, F10, F13, F16, F17 and F18 

could not be evaluated because the standard error of the 

difference is 0. Hence on the basis of t-tests it can be 

concluded that LX-PM-GSA is definitely a winner over 

GSA, LX-GSA and PM-GSA. 

B.  Analysis of Results based on Experiment II 

In order to observe the reliability, computational cost 

and convergence rate of the algorithms considered, 
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Success Rate (SR), Average Function Evaluation (AFE) 

and Average Execution Time (AET) of all algorithms are 

recorded in Table 5. The best values are highlighted in 

bold in Table 5. 

From this table it is observed that out of 4 algorithms, 

there is no algorithm which can solve all 23 problems 

with 100 % success. GSA and PM-GSA solve 11 

problems with 100 % success, LX-GSA solve 14 

problems with 100 % success and LX-PM-GSA solve 16 

problems with 100 % success. None of them could solve 

3 problems with 100 % success. Another observation is 

that the majority of the problems have been solve by LX-

PM-GSA but in most of the problems, GSA takes less 

average function evaluation and average execution time. 

The boxplot of success rate, average function evaluation 

of successful run and average execution time of 

successful run of each algorithm is plotted in Fig.7 for 

high dimensional unimodal functions namely F1-F7, Fig. 

8 for high dimensional multimodal functions namely F8-

F13 and Fig. 9 for low dimensional multimodal functions 

namely F14-F23. For the fair comparison, a function is not 

added in the boxplot of average function evaluation and 

average execution time if it is not solved by least one 

algorithm.  
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Fig.8. Boxplot Corresponding to (a) Success Rate, (b) Average Function 
Evaluations, (c) Average Execution Time Of Functions F8-F13 

If all criteria (SR, AFE, AET) are taken together, then 

it is difficult to say which one is the best among all. In 

order to analyse the consolidated effect of the SR, AFE 

and AET, a comparison among them is made on the basis 

of the Performance Index (PI) plot. The purpose of the 

analysis is to observe if the proposed strategies show an 

improvement over the existing ones or not. The design of 

PI is such that specified weighted importance is given to 

the success rate, number of function evaluations of 

successful runs and computational time of successful runs. 

The value of Performance Index PIj for jth algorithm is 

evaluated by: 

 

1 1 2 2 3 3
1

1
( )

N
i i i

j
i

PI w w w
N

  


                 (14) 
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Fig.9. Boxplot Corresponding to (a) Success Rate, (b) Average Function 
Evaluations, (c) Average Execution Time of Functions F14-F23 
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Here, N  is the total number of considered problems 

and 1, ,i N  . iTr  represents the total number of times 

the problem i is solved and iSr is the number of times 

problem i is solved successfully. iAf is the average 

number of function evaluations used by algorithm j to 

obtain the optimal solution of problem i in case of 

successful runs, and iMf is the minimum of the average 

number of function evaluation of successful run. 

Similarly, iAt is average time required by algorithm j to 

obtain the optimal solution of problem i in case of 

successful runs, and iMt  is minimum of the average time 

by all the algorithms under comparison to obtain the 

optimal solution of problem i. Further 
1 2,w w and 

3w are 

nonnegative assigned weight to the percentage of success, 

average number of function evaluations used in 

successful run and the average execution time of 

successful runs respectively with
1 2 3 1w w w   . 

Algorithm having largest PI is the winner, amongst the 

considered algorithms. In order to analyse the relative 

performance of GSA, LX-GSA, PM-GSA and LX-PM-

GSA. Equal weights are assigned to two terms (
1 2,w w  

and
3w ) at a time.  Therefore 

jPI becomes a function of 

single variable. Following three cases are possible  
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Fig.10. Performance Index of GSA, LX-GSA, PM-GSA and LX-PM-
GSA on F1-F7 when (a) w1 varies, (b) when w2 varies and (c) w3 varies. 
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Fig. 10 shows the Performance Index graphs 

corresponding to each of these three cases on high 

dimensional unimodal function. Fig. 10(a) corresponds to 

weight assigned for success rate w  is varied. Fig. 10(b) 

corresponds to weight assign for average function 

evaluations w is varied and Fig. 10(c) corresponds to 

weight assigned for average time of the successful runs 

w is varied. It is clear from the figures, proposed 

algorithms are significantly better in comparison to GSA 

and LX-PM-GSA is best among them. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.62

0.64

0.66

0.68

0.7

0.72

0.74

Weight(w)

P
er

fo
rm

a
n

ce
 I

n
d

ex
 (

P
I)

 

 

GSA

LX-GSA

PM-GSA

LX-PM-GSA

 
(a) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.64

0.65

0.66

0.67

0.68

0.69

0.7

Weight(w)

P
er

fo
rm

a
n

ce
 I

n
d

ex
 (

P
I)

 

 

GSA

LX-GSA

PM-GSA

LX-PM-GSA

 
(b) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.64

0.66

0.68

0.7

0.72

0.74

0.76

Weight(w)

P
e
r
fo

rm
a

n
c
e
 I

n
d

e
x

 (
P

I)

 

 

GSA

LX-GSA

PM-GSA

LX-PM-GSA

 
(c) 

Fig.11. Performance Index of GSA, LX-GSA, PM-GSA and LX-PM-
GSA on F8-F13 when (a) w1 varies, (b) when w2 varies and (c) w3 

varies. 

Similarly, Fig. 11 shows the Performance Index graphs 

corresponding to each of these three cases on high 

dimensional multimodal function and Fig. 12 shows the 

Performance Index graphs corresponding to each of these 

three cases on low dimensional multimodal function. Fig. 

11(a) and 12(a) correspond to weight assigned for success 

rate w  is varied. Fig. 11(b) and 12(b) correspond to 

weight assign for average function evaluations w is 

varied and Fig. 11(c) and 12(c) correspond to weight 

assigned for average time of the successful runs w is 

varied. It is clear from the figures, proposed algorithms 

are significantly better in comparison to GSA. LX-PM-

GSA is best among them on high dimensional 
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multimodal function while LX-GSA is little bit less 

costly as compared to LX-PM-GSA on low dimensional 

multimodal function. 

 

V.  EXPERIMENT - III: PERFORMANCE ON CEC 2014 
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Fig.12. Performance Index of GSA, LX-GSA, PM-GSA and LX-PM-
GSA on F14-F23 when (a) w1 varies, (b) when w2 varies and (c) w3 varies. 

The performance of the algorithms is also investigated 

on shifted and rotated problems. Therefore, in experiment 

III, the CEC 2014 Benchmark is considered, which 

contains a number of shifted and rotated problems. The 

details of the problems can be found in Liang et al [38]. 

The other parameters and criteria are kept as in Liang et 

al [38]. Problems considered are of dimension 30.  

The termination criteria is set as maximum number of 

function evaluation = 30 x 104 or if error value is smaller 

than 10-8. All the considered algorithms are run 51 times. 

The best, worst, median, mean and standard variance of 

the objective function error of 51 runs are listed in Table 

6. As desired in CEC 2014 criteria, error value smaller 

than 10-8 is taken as zero. The best values are highlighted 

in bold. 

From the Table 6, it is observed that out 30 problems, 

in 11 problems, namely in Problem no. 1, 3, 8, 10, 14, 16, 

18, 21, 22, 26, 30, LX-PM-GSA is better than the other 

three algorithms. In 9 problems, namely Problem no. 6, 7, 

11, 12, 15, 19, 23, 28, 29, GSA is better than LX-GSA, 

PM-GSA and LX-PM-GSA. There are 2 problems in 

which performance of PM-GSA is better. In Problems no 

2, PM-GSA finds the best solution in comparison to the 

other algorithms but worst, median, mean, STD are better 

of LX-GSA. In 4 problems, namely Problem no. 5, 13, 20, 

24, LX-GSA is better than other algorithm. In problem no. 

17, LX-GSA find better solution but worst, median, mean, 

STD are better of LX-PM-GSA. Problem no. 3 is solved 

by LX-PM-GSA however GSA and LXGSA also find 

optimal but their success rate is not 100%. Problem no. 4 

is solved by all the algorithms. Problem no 7 is solved by 

GSA and LX-GSA, PM-GSA LX-PM-GSA also find 

optimal but their success rate is not 100%. In problem no 

25 all algorithms find same function error. Overall 

speaking it can be concluded that the performance of LX-

PM-GSA is the best in comparison to the remaining three 

algorithms. 

Table 6. Comparison of the objective function values of the 30-dimensional CEC 2014 Benchmark problems 

Pro. Algorithm Best Worst Median Mean STD 

1 GSA 44.45694617 8797.88912532 1933.96707685 2690.67684839 2110.85690853 

 
LX-GSA 0.53772610 2193.06456601 95.08381296 264.46096610 457.13320027 

 
PM-GSA 135.15494725 11281.14399315 2340.86021306 2946.95941802 2592.63940594 

 
LX-PM-GSA 0.00035500 1987.58977808 168.85177483 309.29514874 405.55946607 

2 GSA 4.19194950 25133.49337662 5899.50394061 7887.48694152 7173.98763828 

 
LX-GSA 966.72807201 12055.44610866 3670.91145243 3954.06344255 2229.88880704 

 
PM-GSA 2.01852409 24496.97609157 10486.94101169 9695.41660955 6954.00625290 

 
LX-PM-GSA 1253.92122313 18657.37559197 5168.20300469 6086.43898631 3980.37550516 

3 GSA 0.00000000 646.55249364 79.52679031 106.50385531 112.97962917 

 
LX-GSA 0.00000000 0.00247129 0.00002745 0.00026217 0.00054524 

 
PM-GSA 0.18889025 679.73460278 43.67145920 86.62865794 132.31660846 

 
LX-PM-GSA 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 
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4 GSA 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

 
LX-GSA 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

 
PM-GSA 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

 
LX-PM-GSA 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

5 GSA 19.99996146 20.05173018 19.99999968 20.00110380 0.00726033 

 
LX-GSA 19.99725077 19.99997369 19.99949381 19.99925684 0.00065387 

 
PM-GSA 19.99980577 20.02234066 19.99999920 20.00055467 0.00316249 

 
LX-PM-GSA 19.99857877 19.99999993 19.99974857 19.99963320 0.00040356 

6 GSA 4.57635183 13.72905548 9.22905548 9.10253310 1.99106089 

 
LX-GSA 9.15270369 18.38176705 15.07635187 14.16880086 2.40204131 

 
PM-GSA 6.00000006 12.30540735 9.15270371 9.19749369 1.84704731 

 
LX-PM-GSA 9.00001434 23.07537646 14.00783663 14.22331542 2.75445731 

7 GSA 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 

 
LX-GSA 0.00000000 0.03192282 0.00986467 0.01023446 0.00851100 

 
PM-GSA 0.00000000 0.00985728 0.00000000 0.00019329 0.00138029 

 
LX-PM-GSA 0.00000000 0.03685749 0.00985728 0.01139410 0.01057767 

8 GSA 68.53666156 126.27343656 103.47552508 104.78988762 11.67724409 

 
LX-GSA 51.73782059 99.49565854 75.61674714 76.39711054 12.02590023 

 
PM-GSA 78.60165967 121.43291933 98.50073484 99.94572346 10.91987546 

 
LX-PM-GSA 44.77312230 101.48562717 66.66217114 66.95479011 12.14383033 

9 GSA 76.61164543 121.38466679 99.49564320 99.90528666 11.62551089 

 
LX-GSA 99.49559777 175.11193937 147.25328298 146.06327599 16.52580719 

 
PM-GSA 58.70250876 120.38954561 94.52084791 94.32574852 11.28124400 

 
LX-PM-GSA 95.51578677 171.13218970 136.30875350 135.17732143 18.05337708 

10 GSA 1667.93386404 3621.63461825 2371.00591394 2412.53373892 427.57340393 

 
LX-GSA 475.24564602 1249.80825699 599.06359377 671.47966058 148.19107197 

 
PM-GSA 1666.75085536 3403.34488561 2399.13786177 2465.80096772 378.46032943 

 
LX-PM-GSA 243.92021300 933.56567515 597.04173310 595.45511103 141.36495066 

 11 GSA 1159.91225293 3647.65955754 2439.25781339 2464.59361529 492.02522169 

 
LX-GSA 2461.31880669 4438.09829440 3464.36909069 3509.10443232 478.07071489 

 
PM-GSA 1376.20249902 3408.39155647 2482.46529013 2464.05810836 447.53198836 

 
LX-PM-GSA 2222.77037633 4212.66619676 3408.79639568 3363.34204378 473.58205175 

12 GSA 0.00000000 0.00052441 0.00000000 0.00001029 0.00007343 

 
LX-GSA 0.00020424 0.01939696 0.00277420 0.00369199 0.00354131 

 
PM-GSA 0.00000000 0.00060942 0.00000000 0.00002032 0.00010318 

 
LX-PM-GSA 0.00060626 0.01221719 0.00374224 0.00447374 0.00295698 

13 GSA 0.09976242 0.18708589 0.14987836 0.15078579 0.01715804 

 
LX-GSA 0.04064954 0.15821064 0.07794236 0.07757955 0.02060423 

 
PM-GSA 0.10933441 0.18609381 0.15120802 0.14978877 0.01910357 

 
LX-PM-GSA 0.04169572 0.17293137 0.09177251 0.09525115 0.02921056 

14 GSA 0.23434911 0.47528128 0.38864801 0.37442219 0.05273033 
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LX-GSA 0.14037486 0.39819757 0.28568495 0.27746557 0.05398024 

 
PM-GSA 0.29028381 0.47709730 0.37748020 0.38200794 0.04979223 

 
LX-PM-GSA 0.11566866 0.32604107 0.22264482 0.21679213 0.05590145 

15 GSA 1.04896756 5.79565772 4.35697246 4.10927610 1.12304503 

 
LX-GSA 1.74328553 5.53130445 3.18826501 3.27537153 0.67176970 

 
PM-GSA 1.16054715 6.11721215 4.41401616 4.20810756 1.21403970 

 
LX-PM-GSA 2.12676995 5.02183146 3.09948777 3.23239395 0.73837986 

16 GSA 11.81623634 13.69412500 13.03803058 12.96334854 0.37823237 

 
LX-GSA 10.27464066 12.31243680 11.21481973 11.24991437 0.49636110 

 
PM-GSA 12.06885161 13.12122677 12.49424675 12.50886129 0.25831868 

 
LX-PM-GSA 9.87550407 12.32744923 11.12193307 11.13323947 0.55466157 

17 GSA 1078.11634461 3755.76346560 2318.70315070 2324.59615807 638.03905918 

 
LX-GSA 610.09503494 2715.57037870 1711.01753382 1671.62088089 489.20009532 

 
PM-GSA 993.80496243 3639.58897556 2091.18866963 2122.01756437 558.10996058 

 
LX-PM-GSA 761.73333807 2428.81166666 1460.41847784 1491.68952228 426.53067088 

18 GSA 78.51065140 12477.08396251 521.95066594 1580.65267026 2421.85287250 

 
LX-GSA 63.38554167 2994.27314165 336.53141175 573.97716106 657.09140861 

 
PM-GSA 72.15482657 5490.80679303 634.05660257 1008.67087161 1182.06409955 

 
LX-PM-GSA 53.14238414 5862.22234785 350.46063729 784.15605529 1197.85440465 

19 GSA 3.52412568 9.02844169 4.49735257 5.24139961 1.19824924 

 
LX-GSA 4.63714278 12.23234545 8.47692794 8.28954404 1.83204877 

 
PM-GSA 3.54121646 8.94920732 4.44507522 5.15609836 1.23648997 

 
LX-PM-GSA 3.67310804 69.95055911 7.65095504 8.78918877 8.96739718 

20 GSA 759.94272244 15192.47668987 6009.45329027 6228.32841428 3733.98980045 

 
LX-GSA 37.18133981 214.35599791 119.07986158 121.72250335 42.06837478 

 
PM-GSA 1099.73256941 9305.13814381 3977.54398163 4143.85496757 2003.19563101 

 
LX-PM-GSA 41.73302583 400.77557478 158.81643959 184.54238280 96.44981041 

21 GSA 758.25532203 5257.42945587 2168.55115332 2472.81246136 1050.87524021 

 
LX-GSA 216.42581693 1659.49722326 929.39057682 934.00622980 332.67946327 

 
PM-GSA 1020.95481081 6191.20253391 2467.22366450 2895.51572571 1390.04939550 

 
LX-PM-GSA 205.05547038 1900.52613358 604.75327244 615.55510029 277.39869836 

22 GSA 395.38741943 1551.12247709 963.53248593 940.78655977 241.61046434 

 
LX-GSA 409.18613370 1499.36979589 976.05864391 969.78032381 239.85373982 

 
PM-GSA 132.46650534 753.36120642 492.48873435 480.17298341 136.21855464 

 
LX-PM-GSA 48.44324611 696.88441082 403.18179616 394.64915810 151.63184399 

23 GSA 200.00000002 315.24410219 315.24410219 270.05033663 56.82565670 

 
LX-GSA 200.00000006 315.24410219 315.24410219 306.20534908 31.29158364 

 
PM-GSA 200.00000006 315.24410219 315.24410219 267.79064837 57.28209499 

 
LX-PM-GSA 200.00000013 315.24410219 315.24410219 312.98441391 16.13740209 

24 GSA 200.00468387 200.01238616 200.00771603 200.00776655 0.00157987 

 
LX-GSA 200.00028182 200.00120350 200.00062433 200.00064084 0.00021527 

 
PM-GSA 200.00522246 200.01124244 200.00754599 200.00784071 0.00150095 



18 Real Coded Genetic Algorithm Operators Embedded in Gravitational Search Algorithm for Continuous Optimization  

Copyright © 2015 MECS                                                             I.J. Intelligent Systems and Applications, 2015, 12, 1-22 

 
LX-PM-GSA 200.00028594 222.14359753 200.00062856 200.43482446 3.10063299 

25 GSA 200.00000000 200.00000000 200.00000000 200.00000000 0.00000000 

 
LX-GSA 200.00000000 200.00000000 200.00000000 200.00000000 0.00000000 

 
PM-GSA 200.00000000 200.00000000 200.00000000 200.00000000 0.00000000 

 
LX-PM-GSA 200.00000000 207.32369984 200.00000000 200.28604969 1.42997448 

26 GSA 100.14308006 200.01838846 200.00000000 162.03781555 47.44793832 

 
LX-GSA 100.08298010 200.01324490 200.00000000 194.12382381 23.73970317 

 
PM-GSA 100.13427554 200.00000000 104.52495733 105.43893355 13.83167487 

 
LX-PM-GSA 100.00969865 200.00000000 100.43906329 110.15169914 29.91746209 

27 GSA 388.58112453 2077.90627126 587.67863921 780.28633164 490.68424776 

 
LX-GSA 400.00000000 976.06514967 723.70546657 654.50083590 200.65385776 

 
PM-GSA 354.43179111 1534.96766826 601.42024393 645.36935330 262.84432600 

 
LX-PM-GSA 400.45420214 1036.64123419 691.31617303 657.22815206 213.33414389 

28 GSA 504.31277959 2927.33430986 1533.45627769 1584.90378500 554.70660877 

 
LX-GSA 2032.32747548 4536.94969994 3426.99274766 3432.80831978 615.80689316 

 
PM-GSA 813.34340128 2830.60805816 1578.10688336 1603.80119960 443.58661929 

 
LX-PM-GSA 919.83825703 3937.63153437 1795.14457078 1988.71504049 790.43167568 

29 GSA 200.02436494 1832.21169383 200.03267989 360.87781241 448.20920885 

 
LX-GSA 200.05690077 1609.41675617 978.84816878 777.60337082 493.76020544 

 
PM-GSA 200.06802124 1759.63215536 200.08076297 280.86980842 329.23817674 

 
LX-PM-GSA 1004.82581376 8664467.69023 1680.20958150 1834172.46227 3528541.15112 

30 GSA 909.32711677 2608.98973924 1708.67321798 1723.16276031 470.55457654 

 
LX-GSA 955.16066664 2330.36142424 1533.70227729 1562.31770720 367.88483552 

 
PM-GSA 1018.42795975 2940.01759776 1793.89635516 1854.01807034 480.96475034 

 
LX-PM-GSA 815.19832891 3135.76326682 1717.80733718 1764.73445760 511.45347789 

 

Further, according to the requirement of Liang et al [38] 

the computational complexity of the four algorithms is 

calculated and reported in Table 7. From this table it can 

be observed that the computational complexity of GSA is 

the minimum. Therefore, it may be concluded that the 

performance of LX-PM-GSA is best but at the cost of 

slightly higher computational complexity. 

Table 7. Computational Complexity of the Algorithms Considered 

Algo. 
0T  

1T  
2T̂  

2 1 0
ˆ(T -T )/T  

GSA 0.221163 127.6977 906.3395 3520.6694 

LX-GSA 0.221163 131.3610 
917.5944

3 
3554.9950 

PM-GSA 0.221163 129.9013 916.3018 3555.7507 

LX-PM-

GSA 
0.221163 126.6480 922.7007 3599.3936 

 

VI.  CONCLUSIONS 

The Gravitational Search Algorithm was introduced 

based on the laws of physics. In spite of its advantage of 

being a memory less nature inspired optimization 

technique, it has a major drawback of slow convergence 

during later iterations and poor performance on multi 

modal problems. With an objective to improve its 

performance the Laplace Crossover and Power Mutation, 

earlier proposed for real coded genetic algorithms by one 

of the authors are used to hybridize Gravitational Search 

Algorithm in three different ways. In the first hybrid 

version the Laplace Crossover is applied to the best and a 

randomly selected particle after the iteration of 

Gravitational Search Algorithm is over. In the second 

hybrid version after each iteration of Gravitational Search 

Algorithm the Power Mutation is applied. In the third 

version both the Laplace a Crossover and Power 

Mutation are applied at the end of each iteration. The 

original Gravitational Search Algorithm along with the 

three proposed hybrid versions are programmed in 

MATLAB and used to solve a variety of unimodal and 

multi modal problems having low and high 

dimensionality. The numerical results are analysed and it 

is concluded that the hybrid version incorporating both 

the Laplace Crossover and Power Mutation surpasses the 

original Gravitational Search Algorithm as well as the 

other two proposed variants on a variety of benchmark 

optimization problems including the CEC 2014 

benchmark problems containing high dimensional 
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unimodal functions, high dimensional multi modal 

functions and low dimensional multi modal functions. 
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0.03815 

0.1170 
0.4387 

0.8732 
0.5743 

0.2673 
0.7470 

0.5547 
0.8828 

 

Table B5. 
ija and 

ic in
20F  

i , 1,2,3,4,5,6ija j   
ic  

1 

2 
3 

4 

10 

0.05 
3 

17 

3 

10 
3.5 

8 

17 

17 
1.7 

0.05 

3.5 

0.1 
10 

10 

1.7 

8 
17 

0.1 

8 

14 
8 

14 

1 

1.2 
3 

3.2 

Table B6. 
ijp in

20F  

i , 1,2,3,4,5,6ijp j   

1 

2 

3 
4 

0.1312 

0.2329 

0.2348 
0.4047 

0.1696 

0.4135 

0.1451 
0.8828 

0.5569 

0.8307 

0.3522 
0.8732 

0.0124 

0.3736 

0.2883 
0.5743 

0.8283 

0.1004 

0.3047 
0.1091 

0.5886 

0.9991 

0.6650 
0.0381 

Table B7. 
ija and 

ic in
21 22 23, ,F F F  

i , 1,2,3,4ija j   
ic  

1 

2 

3 
4 

5 

6 
7 

8 
9 

10 

4 

1 

8 
6 

3 

2 
5 

8 
6 

7 

4 

1 

8 
6 

7 

9 
5 

1 
2 

3.6 

4 

1 

8 
6 

3 

2 
3 

8 
6 

7 

4 

1 

8 
6 

7 

9 
3 

1 
2 

3.6 

0.1 

0.2 

0.2 
0.4 

0.4 

0.6 
0.3 

0.7 
0.5 

0.5 
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