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Abstract. This paper presents an iterative method for calculating the effective contact ratio and the bending
tooth stress for a pair of plastic/plastic and plastic/steel spur gears with an involute profile. In this method, the
pinion and the gear are modeled, at each moment of the mesh cycle, as equivalent springs in parallel undergoing
the same displacement along the line of action. This leads to the calculation of the bending stress by taking into
account the number of teeth initially in contact and those which enter in contact prematurely. We also
investigate the influence of certain gear parameters, such as, the number of teeth, the pressure angle, and the
module on the behavior of a pair of meshed gears. In addition, the variation of the bending stress at the tooth
fillet is investigated for a pair of plastic/plastic and a pair of plastic/steel spur gears, in order to determine the
critical configurations for which the bending stress is maximum. In general, the results obtained from the present
method also show that the stress variation in plastic/plastic gears differs markedly from that in plastic/steel
gears.
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1 Introduction

Plastic gears are commonly used in many applications,
such as, in motor vehicles, office machines, home
appliances, and other pertinent systems and devices.
However, the fundamental knowledge of the real behavior
of plastic spur gears under loading does not seem to have
kept pace with the increasing number of gear applications.
Gear teeth are deformed under load, causing the real
contact ratio of loaded gears to be higher than the
theoretical contact ratio used to model stress conditions
according to ISO 6336 [1].

Among the earlier research undertaken on the behavior
of plastic gears, one finds the works by Hall et al. [2] and
Cornelius et al. [3]. In these works, high speed photography
of an acetal/acetal gear pair transmitting load, and
measurements of contact ratios show that several teeth
carry the load at all times. Based on this, Yelle [4]
developed a method for the design of thermoplastic gears.
A recent literature review shows a keen interest in the
study of the structural analysis of plastic/plastic spur gears
[5–12]. This is an addition to the development of analytical-

iterative methods [13–15] to calculate the tooth root stress
of plastic spur gears meshed with steel gears by taking the
real contact ratio into consideration.

The objective of this paper is to predict the behavior of
plastic spur gears under loading. To this end, we propose a
method to calculate the real contact ratio and tooth
bending stress of a pair of plastic/plastic and plastic/steel
gears subjected to an applied torque T. The results
obtained from the suggested method are validated by the
finite element method (FEM). The effects of the gear
parameters, on the contact ratio and on the tooth root
stress, are then investigated.

2 Mechanics of a pair of loaded plastic gears

For plastic gears, the materials are not rigid. Consequently,
the teeth will deform under the applied load. Consider for
example Figure 1 which shows teeth i1 and i2 in contact and
teeth k1 and k2 about to make contact. The torque applied
on the driving gear will cause it to rotate an angle Du due to
deformation of teeth i1 and i2. At a certain point of
engagement, the deformation of tooth pair i1i2 will be
sufficient to cause premature contact of tooth pair q1 q2,
before the ideal engagement at point A, and of teeth pair* e-mail: tjabbour@isae.edu.lb
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k1 k2, after the ideal engagement at point B. This situation
is represented by the dotted lines in Figure 1.

Since each tooth pair can be replaced by a pair of
springs in series (of compliance w1+w2), the pinion and the
gear could be modeled as equivalent springs in parallel
undergoing the same displacement Rb1Du along the line of
action [16]. If this displacement is greater than the
separation distance DSq, then the tooth pair q1q2 could
enter in contact prematurely (see Fig. 1). If this
displacement is greater than DSk then the tooth pair k1k2
could also enter in contact. Consequently, with plastic
gears, it is possible for several pairs of teeth to enter in
contact prematurely.

To calculate the real contact ratio, one must determine,
at every position of the pinion and the gear during the
meshing cycle, the value of the angle of twist Du, to
compare the value of Rb1Du with the distances separating
the tooth pairs not in contact. This gives the positions of
points A0 (beginning of contact) and B0 (end of contact)
along the line of action.

3 Calculation method

To gain a better appreciation of the problem, let us consider
the case of a spur pinion meshing with a gear.

Let Du be the rotation of the pinion produced by the
applied torque T (see Fig. 1). This results in a deformation
of the teeth which are in contact between the pinion and the
gear.

It has been shown by Jabbour and Asmar [16], that the
deflection of a point P of the teeth in contact, is constant
along the line of action which is also the direction of the
transverse loadWtr. The value of this deflection is given by
Rb1Du. Two cases are considered
– The load carried by a pair of teeth i which are initially in
contact is

W tri ¼
Rb1Du

wi

ð1Þ

where wi is the compliance of the pair of teeth in contact.
This compliance varies according to the position of the
point of contact on the line of action.
– The load carried by tooth pair k1 k2 which enter in
contact prematurely is

W 0
trk ¼

Rb1Du � DSk

wk

ð2Þ

where DSk is the separation distance of the tooth pair k1 k2
before they enter in contact prematurely.

For the moment, assume that the values of DS and the
compliance w can be calculated for various engagement
positions of a particular gear pair.

Since the sum of all torques is equal to the total applied
torque T, we can write

T ¼
Xn1

i¼1

T i þ
Xn2

k¼1

T k ¼
Xn1

i¼1

W triRb1 þ
Xn2

k¼1

W 0
trkR

0
b1k ð3Þ

where n1 and n2 are, respectively, the number of teeth
initially in contact and those which become prematurely in
contact, and R0

b1k is an equivalent radius from which the
torque of the loadW 0

trk, with respect to the pinion center, is
obtained. The method of calculation of R0

b1k is given in the
appendix.

Now from equations (1) through (3), we can relate the
twisting angle Du to the total torque T as follows

Du ¼

T þ
Xn2

k¼1

R0
b1kDSk

wk

R2

b1

Xn1

i¼1

1

wi

þ
Xn2

k¼1

R0
b1k

Rb1wk

 ! ð4Þ

Equation (4) enables one to determine the distribution
of the load on each line which is initially in contact.
Combining equations (1) and (4), and taking into account
that the total transmitted load between the pair of gears is
W tot ¼

T
Rb1

, we get

W tri ¼

W tot þ
Xn2

k¼1

R0
b1kDSk

Rb1wk

Xn1

i¼1

1

wi

þ
Xn2

k¼1

R0
b1k

Rb1wk

1

wi

ð5Þ

The procedure to determine the real contact ratio is to
assume, first, that there are no other teeth in contact
except those which were in contact initially, i.e. n2=0.
Equation (4) gives the value of Du resulting from the
deflection of teeth. This value of Rb1Du must then be
compared with the separation distance DS of the pairs of
teeth just before and just behind the teeth initially in
contact. If Rb1Du exceeds either or both of these values, we
conclude that these pairs of teeth are likely to be in contact,
i.e. n2 is equal to 1 or 2. Therefore, equation (4) must be
solved again using the compliances of the pairs of teeth
which enter in contact prematurely, and the new value of

Fig. 1. Deformations of the profiles of the teeth under the effect
of the applied torque.
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Rb1Du is obtained. If this new value of Rb1Du exceeds the
values of the separation distance of the teeth which are just
before of and behind the teeth which became in contact
prematurely, the procedure must be repeated by increasing
the value of n2 by 1 or 2. The process stops when it becomes
no longer possible to find teeth which enter in contact
prematurely. In this case, we conclude that for this value of
Du, no new teeth will be in contact.

Once the value of Du is obtained, we calculate the loads
at each point of contact using equations (2) and (5). In this
way, the load and stress distributions on the initial lines of
contact can be determined, as well as the total number of
contact teeth on the pair of gears.

The results of such calculation can be summarized as
shown in Figure 2. This considers the behavior of a pair of
20° pressure angle Nylon 66 plastic gears with 60 teeth
each (Z1=Z2=60) with a torque of 400N.m. The ideal gear
pair can be modeled, as shown in Figure 2a, by a rigid cam
having a displacementRb1Du and moving horizontally over
rigid springs. The springs represent the tooth pairs and are
therefore spaced by one normal pitch pn. A spring coming in
contact with the cam profile represents the formation of a
tooth pairs while a spring leaving contact with the cam
profile represents the parting of a tooth pair. The straight
part of the cam AB represents the line of action of the gear
pair. The cam profile outside the straight portion AB
represents the separation distance DS between teeth and it
describes the manner in which teeth approach and recede
from each other.

As the contact starts at the bottom of tooth a1a2 at the
start of the meshing cycle (position ○1 ), the separation
distance DSd of the tooth pair d1d2 is too small for this pair
of teeth to enter in contact prematurely, at position ○2 ,
under the applied torque. This contact lasts until an S
value of 1.38pn is reached, and for which DSd of tooth pair
d1d2 becomes greater than the cam vertical displacement,
Rb1Du, at position○4 . At this instant of time, the gears have
two pairs of teeth in contact, lasting until S/pn becomes
equal to 1.40pn, for which Rb1Du becomes greater than DSc
of tooth pair c1c2. The latter enters in premature contact at
position○5 . The pair of teeth, c1c2 come into full contact at
position ○1 , and the cycle is repeated. Figure 2b shows
positions ○1 , ○3 and ○5 of the gears, as well as the
intermediate position, between positions ○3 and ○4 , where
only two pairs of teeth are in contact. Figure 2b also shows
that c1c2, at position ○5 , enter in contact prematurely.

Subsequently, we can determine the real contact ratio
by considering (see Fig. 2), that the real point of the
beginning and at the end of contact will be point A0 (with
the highest S1max measured on the line of action to the left
of pitch point P) and B0 (with the highest S2max on the line
of action to the right of P), rather than points A and
B which are the theoretical points at the beginning and
the end of contact, respectively. The real contact ratio will
then be

er ¼
S1max þ S2max

pb
ð6Þ

Fig. 2. Behavior of a Nylon 66 pair of plastic gears with 60 teeth each with an applied torque of 400Nm.
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The real contact ratio in this case is 2.94, compared to
the ideal contact ratio of 1.78 given by the abscissa length
AB.

Equation (6) can also be obtained by replacing pb by
pm cos ’ and S by Rb1c (Eq. (9) in the appendix), where c
stands for the tooth position relative to the center-to-center
line of the gear pair, as shown in Figure 20 in the appendix,
and Rb1=N1m cos’/2.

This enables one to write

er ¼
jc1maxj þ jc2maxj

2p

N1

ð60Þ

The effective contact ratio is then defined, as shown in
equation (60), as a ratio of the rotation angle between the
first and last tooth contact points to the pinion angular
pitch. The accuracy of the proposed method for calculating
real contact ratio depends on the method used to calculate
separation distance DS and the compliance w of a tooth
pair. First consider the calculation of separation distance.

4 Method of calculation of the separation
distance DS

The proposed method, in this paper, for the calculation of
the separation distance between teeth which are not
initially in contact, can also be used to calculate the radii of
contact between the pinion and the gear after the pinion
has rotated an angle Du. For this to happen, two cases are
considered:
– The case where the head of the gear tooth enters in
contact prematurely with the root of the pinion tooth.
This is represented by q1q2 in Figure 1.

– The case where head of the pinion enters in contact with
the root of the gear tooth. This is represented by k1k2 in
Figure 1.

The suggested method to calculate the separation
distance is shown in the appendix. This separation distance
varies as a function of the module, the number of teeth and
the pressure angle, as depicted in Figure 3a–c. Figure 3-a
shows the variation of the separation distance for 25/25,

Fig. 3. Effects of the gear parameters on the variation of the separation distance DS.

4 T. Jabbour et al.: Mechanics & Industry 22, 30 (2021)



40/40 and 60/60 gears, all with a 5-mm module and a 20°
pressure angle. Figure 3b also shows the variation of DS for
module values of 4, 6 and 8mm, for a 40/40 pair of gears
and a pressure angle of 20°. Figure 3c shows the variation of
DS with pressure angle values of 14.5°, 20° and 25° for a 40/
40 gear pair and module of 4mm. The abscissa in these
figures is the distance (S – S2)/pn where S is the distance,
along the line of action, from the contact point to the
primitive pointP (see Fig. 20 in the appendix), and S2 is the
distance from the theoretical contact point located to the
right of point P (point B in Fig. 2).

5 Compliance of a tooth pair

In ISO standard 6336 [1,2] as well as in other works [14–17],
only a simplified model of the tooth is considered for the
calculation of the deflection of the tooth profile. This model
of tooth represents a trapezoidal rack tooth with the same
standard basic rack tooth profile as the gear. In other works
[18,19], the potential energy method is employed to
evaluate the meshing stiffness while in some works [5,20]
finite element analysis is used for the tooth stiffness
estimation. The adopted tooth model, in this paper, is
based on the work of Yelle and Burns [4] which, itself, is
based of the results found by Timoshenko and Baud [17]
and further verified experimentally by Furrow and Mabie
[21].

The compliance, at each position of the point of contact
on the pair of meshing teeth, can be expressed as:

w ¼ wt1 þ wt2

where

wt1 ¼ wb1 þ ws1 þ wa1

and

wt2 ¼ wb2 þ ws2 þ wa2

wt1 and wt2 are the tooth compliance of the driving and
driven gears, which includes the bend compliance wb, the
shear compliance ws and the axial compressive compliance
wa, where subscripts 1 and 2 denote the driving and driven
gears. More detailed descriptions for wb, ws and wa

considering can be found in reference [4].
The compliances of a pair of contacting teeth vary as a

function of the position of this pair along the line of action.
Figure 4a, shows the variation of the compliance by
increasing the number of the teeth of the pinion and the
gear. We have here a 4-mm module, a 20° pressure angle
and a face width of 30mm, for a Nylon 66 material with a
modulus of elasticity of 3.08MPa [22]. The abscissa in this
plot is the normalized value S/pn. Figure 4-a also shows, in
dashed line, the compliance of the teeth which could enter
in contact prematurely to the left and right of the primitive
point P, at values of S/pn > 0.8 or S/pn < –0.8. Figure 4b
shows the variation of the compliance (for Nylon 66) by
varying the pressure angle, taking the module to be 4mm,
considering a 40/40 gear ratio and assuming a face width of
30mm. Since the gears are identical, the tooth pair
compliance w curve is symmetrical about S/pn=0. One
can see from these figures that the compliance decreases
when the number of pinion and gear teeth increases and
when the pressure angle increases.

We show also in Figure 5 the variation of the
compliance for a case where the pinion is made of plastic
and the gear is made of steel. Here, the module is 4mm, the
pressure angle is 20°, the face width is 30mm and the gear
ratio is 20/30. One notices that the much larger modulus of
steel makes it reasonable to assume that it is perfectly rigid,
i.e. w2 ∼ 0, and the total compliance curve represents that
of a plastic tooth.

6 Finite element modeling and calculation

In addition to the analytical method, the finite element
method is used for the calculation of the real contact ratio
and the tooth root stress, caused by the applied torque.
This allows load-induced displacements to be taken into

Fig. 4. Effects of increasing the number of teeth and the pressure angle on the compliance of plastic gear pairs.
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account, assuming the appropriate boundary conditions
are chosen. The method of generation of the finite element
model can be described as follows:
– The geometry of each of the two gears, as well as their
assembly, is created using Solidworks®. A joint gear is
associated to enable the simultaneous rotation of the two
gears with consistent gear ratio and direction of rotation.
This allows performing finite element calculation in
accordance with the kinematics of the pair of gears in
contact.

– The simulation software integrated in SolidWorks® is
used to create the mesh and to perform the stress
analysis. It has also the capability of simulating large
displacements in the elastic range. The FEM results, thus
obtained, are used to validate those obtained from the
analytical model.

The finite element solution has been obtained via
Solidworks which meshes the gears using 10-noded
tetrahedral elements (one node at each of the four corners
and six mid-side nodes). The element possesses three DOF
at each node. This 3-dimensional model should adequately
represent the behavior of the meshed gears, particularly, as
regards bending of the tooth. The program, also, enables
one to manually track, through an internal algorithm,
called “Trend Tracker”, the variation of the Von Mises

stress for each iteration. Afterwards, if the stress does not
converge to the desired value, the mesh is refined,
particularly, at locations of high stress gradients near
the fillet and at the gear contact area, and a new iteration is
started. The convergence of the solution is deemed
satisfactory when a flat curve in a Von Mises stress vs.
number of iterations plot is obtained. It can be seen from
Figure 6, for the 40/40 pair of gears, that the curve almost
flattens (at a stress= 75MPa) following the sixth iteration
resulting in an element size of 0.2mm, keeping a constant
aspect ratio of 1. It should also be mentioned that 177,785
tetrahedral elements are used to mesh the gears at the sixth
iteration.

Figure 7 shows an example of the finite element model
of the 40/40 pair of gears in contact obtained by this
method for a particular position of the teeth during a
meshing cycle.

7 Results

A computer program using MATLAB is developed to
assess the validity of the proposed method. In this study,
the NYLON 66 is chosen as a material of reference. This
material has a tensile yield strength of 120MPa [22]. On the
other hand, a parametric investigation is carried out to

Fig. 5. Variation of the compliance for the 20/30 plastic/steel gear pair.

Fig. 6. Convergence of the values of the Von Mises stress for the 40/40 pair of gears.
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study the effect of increasing the number of teeth of both
the pinion and the gear, of the module and of the pressure
angle on the variation of the real contact ratio and on the
variation of the bending stress.

7.1 Real contact ratio

7.1.1 Validation of the proposed method

In Section 3, we discussed the proposed method for
analyzing the real behavior of a pair of meshed plastic
gears. The method yielded results which were verified by
finite element calculations.

Figure 8 depicts the real behavior of a pair of 25/25
gears, obtained by the proposed method, under a torque of
300Nm. The module and the face width are equal to 4mm
and 30mm, respectively. For a meshing cycle which begins
at the outset of contact between teeth a1a2, equation (4)
shows that, between positions ○1 and ○2 , the vertical
displacement of the cam is less than the separation

distances DSc and DSd between the tooth pairs c1c2 and
d1d2. Consequently, there are two pairs of teeth in contact
(a1a2 and b1b2) between these positions. When the tooth
pair c1c2 reach position ○3 , the value of Rb1Du becomes
greater than the separation distance DSc between this
tooth pair which enter in contact prematurely. At position
○5 , the tooth pair b1b2 completely disengage while the tooth
pair c1c2 reach position○4 and, subsequently, come into full
contact at position ○1 , and the cycle is repeated. Figure 8
shows that between positions ○3 and ○4 , there are three
tooth pairs in contact. However, between positions○1 to○2 ,
and○4 to○1 , two pairs are in contact. At position○3 , S1max is
18.4mm, whereas, S2max is 16.9mm at position○5 . The real
contact ratio, calculated from equation (6), is 2.34
compared to 1.71 for the ideal gear pair.

The same results obtained by FEM can be seen in
Figure 9 for the 5 aforementioned positions. This figure
shows positions ○1 , ○3 and ○5 , as well as the intermediate
position, between positions○4 and○1 , where only two pairs

Fig. 7. Regions of local meshing of a 40/40 pair of gears.

Fig. 8. Behavior of a Nylon 66 pair of plastic gears with 25 teeth each with an applied.
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of teeth are in contact. Figure 9 also shows that c1c2, at
position ○3 , enters in contact prematurely.

The value of c1max, pertaining to c1c2 (position ○3 in
Fig. 10), is 17.12° whereas the value c2max, pertaining to
b1b2 (position ○5 in Fig. 10) is 14.42°. The aforementioned
values correspond to a real contact ratio of 2.18, obtained
from equation (60). This ratio is close to the one calculated
using the analytical method, which validates the proposed
method.

Figure 11 shows the effect of changing the gear ratio
from 25/25 to 40/40 under a torque of 500Nm. A
comparison of Figures 8 and 11 reveals that the two pairs
of gears behave differently. At the start of the meshing

cycle, when the pairs of teeth a1a2 and d1d2 are at positions
○1 and○2 , respectively, Rb1Du is such that the cam’s profile
makes contact with d1d2 at position ○2 . The pair of Teeth
d1d2 remain in contact until reaching position ○3 , at which
point, the deflection of pairs a1a2 and b1b2 becomes less than
the separation distance DSd of tooth pair d1d2 which ceases
contact at this position. When the pair c1c2 reach position
○5 , DSc becomes less than the vertical displacement of the
cam. Consequently, this pair of teeth enter in contact
prematurely. This contact lasts until reaching position ○1 .
The cycle is then repeated. Figure 11 also shows that, there
are three pairs of teeth in contact between positions ○1 to
○3 , and○5 to○1 . This is despite the fact that, at position○2 ,
the pair of teeth d1d2 has overshot point B located at the
end of the line of action. In addition, Figure 11 shows that
only two pairs of teeth remain in contact between positions
○3 and ○4 . The real contact ratio, calculated from equation
(6), is 2.96 compared to 1.78 for the ideal gear pair.

The same results obtained by FEM can be seen in
Figure 12, for the 5 aforementioned positions. The real
contact ratio, calculated from equation (60), is 2.87.

Figure 13 shows the effect of keeping the gear ratio at
40/40 but using steel for the driven gear. The much larger
modulus of steel makes it reasonable to assume that is
perfectly rigid, i.e., w2=0, and the total compliance curve
reduces to that of the plastic tooth. Figure 13 also shows
the behavior of this plastic/steel gear pair. In this case the
real contact ratio is 2.47 compared to 2.96 for the
equivalent plastic/plastic gear pair. For this plastic/steel
combination and load, one still has as many as 3 tooth
pairs in contact but the duration of such contact is less
than that experienced by the equivalent plastic/plastic
gear pair.

Fig. 9. Results obtained by the FEM for the pair of 25/25 plastic gear pair.

Fig. 10. Values of c1max and c2max obtained by FE of the 25/25
pair of plastic gears.
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7.1.2 Effect of gear parameters on the contact ratio

From Figure 2 and Figures 8 through 13, it is clear that the
real contact ratio varies depending on the number of teeth
of the meshing gears and on the applied torque. Similarly,
the change of module, and of the pressure angle also have
the effect of changing the value of the real contact ratio. For
this reason, the effect of number of teeth, module, and
pressure angle variation are discussed in the following
where different types of gears are considered whose
characteristics were mentioned in Sections 4 and 5.

Figure 14a shows the variation of the real contact
ratio obtained as a function of the applied torque for 25/25,
40/40 and 60/60 gears, all with a 4-mm module and a 20°
pressure angle. In this figure, it can be seen that the real
contact ratio increases with the increase in the number of
teeth of the pinion and of the gear. This increase can be

explained by the fact that the increase in the number of
teeth of gear will cause the increase of its outer radius and
the decrease of the separation distance DS as shown in
Figure 3a. This increase of the outer radius and this
decrease of DS will compensate for the decrease in the
torsion angle Du due to the increase in stiffness with the
increase in the number of teeth as shown in Figure 4a.

Figure 14d shows the variation of the real contact ratio
in the case where the pinion is made of plastic and the gear
is made of steel (with a Young’s modulus of 210GPa). It
can be seen from this figure that the same behavior exists in
the case of plastic/plastic gears, but the contact ratio is
lower. This result may be justified by the fact that the
increase in the stiffness of the teeth of the gear is due to the
increase in its modulus of elasticity which has the effect of
reducing the number of teeth that come into contact
prematurely.

Fig. 11. Behavior of a Nylon 66 pair of plastic gears with 40 teeth each with an applied torque of 500Nm.

Fig. 12. Results obtained by the FEM for the pair of 40/40 plastic gear pair.
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As for the effect of the variation of the module m on the
behavior of the plastic spur gears, three values of the
module of 4mm, 6mm and 8mm are considered and the
values of the real contact ratio is determined as a function
of the applied torque. The results obtained are shown in
Figure 14b. It can be noticed, in this figure, that the real

contact ratio increases with an increase of the module. This
can be explained by the decrease of the separation distance
DS as shown in Figure 3c.

The effect of the variation of the pressure angle w, on
the behavior of plastic spur gears is also studied. Figure 14c
shows the variation of the real contact ratio, for a 40/40

Fig. 13. Behavior the 40/40 plastic/steel gear gear for an applied torque of 500Nm.

Fig. 14. Effect of gear parameters on the variation of the real contact ratio as a function of the applied torque.
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pair of plastic gears, as a function of the applied torque, for
values of the pressure angle ’ of 14.5°, 20° and 25°. It can be
seen, from this figure, that the real contact ratio decreases
with increasing pressure angle. The decrease of the real
contact ratio can be related to the rate of increase of the
stiffness of the tooth which is greater than the rate of
decrease of the separation distance DS as shown in
Figures 3b and 4b, which represent the variation of w
and the variation of DS for the three values of ’, mentioned
above.

It should be noted that the direct effect of the increase
in the real contact ratio is to reduce the loads on the teeth
that are initially in contact. The load on a line which is
initially in contact can be calculated from equation (1) after
calculating the distortion angle Du and the compliance w.
For this reason, during a meshing cycle on a tooth where
the contact begins at the lower point on the latter and ends
at its tip, it is possible to determine the variation of the
load by calculating the various values of Du by using
equation (4).

Figure 15a shows the variation of the load on a contact
line between the beginning and the end of contact in the
case where the pinion and the gear are made of plastic. The
two gears are 25/25, they have a modulus of 4mm and a
pressure angle of 20°. The abscissa of this load plot is
normalized as S/pn. This figure shows the variation of the
ratio of the load W on the total load transmitted by the
applied torque which is defined byWtot=T/Rb1. It may be
noted, from this figure, that for a torque of 500Nm, which
corresponds to a real contact ratio of 2.56, according to
Figure 15a, a line of contact supports at most about 60% of
the total normal load.

Figure 15b also shows the variation of the load on a line
of contact in the case where the pinion is made of plastic
and the wheel is made of steel. The two gears have a
modulus of 4mm, a pressure angle of 20° and a ratio of
number of teeth of 20/30. we note, here, that for a torque of
400N.m, corresponding to a real contact ratio of 2.2 (see
Fig. 14d), no teeth pair carries more than 80% of the total
normal load. This value is obtained near the area where the
value of the compliance w is minimal (see Figs. 5 and 15b).

7.2 Bending stress

7.2.1 Case of plastic/plastic spur gears

The calculation procedure proposed in this article makes it
possible to calculate the bending stress at each position of
the point of contact. This bending stress is obtained from
the equation used for a trapezoidal beam [1,4]

sF ¼
6W tr cosaFhF

FS2

F

where Wtr is the transverse load, aF is the load angle, hF is
the bending moment arm, F is the face width, and SF is the
thickness of the tooth at the critical section (whose tangent
to the root fillet forms an angle of 30° with the tooth
centerline).

For the same characteristics of the gears in the sections
4 and 5 and for a torque of 500N.m, Figure 16a through c
shows the variations of the bending stress on a line of
contact during a meshing cycle relative to the rotation of
the gear between the beginning and the end of contact on
this line. The plots in these figures are generated from both
the theoretical and the finite element model. Figure 16a
shows the effect of increasing the number of teeth of the
pinion and of the gear. Figure 16b shows the effect of
increasing the module, and Figure 16c shows the effect of
increasing the pressure angle. The general trend in these
figures is the same, although the bending stress values are
different; they are smaller for a larger module, larger
number of teeth and larger pressure angle. Note the very
good agreement obtained between the analytical and finite
element models.

From Figure 16a–c, we can see that the maximum
bending stress is located near the point of contact at the
middle of the path of the line of contact between
the primitive point P (S=0) and the end of contact on
the outer radius of the pinion (point B in Fig. 2 located at
the distance S2 to the right of the point P). Very similar
results were obtained from a study with several combina-
tions of gear parameters which do not necessarily have the
same number of teeth with the observation that the

Fig. 15. Load sharing for the 25/25 plastic gear pair and the 20/30 plastic/steel gear pair for different contact ratios.
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maximum stress is always located at a distance Sc to the
right of point P, approximately, corresponding to

Sc ¼ 0:5S2

Note that the distance S2 can be expressed by

S2 ¼ Rb1c

where c=tan u� tan’, u ¼ cos�1 Rb1

RO1
, and ’ is the pressure

angle.
In the case of low torques corresponding to a real

contact ratio less than 2, we can see, in Figure 17, that the
stress curve has a discontinuity between S= –0.19pn and

S=0.04pn. This is due to the fact that in this area the
number n1 of teeth that are initially in contact goes down
from 2 to 1 and then back up to 2 for S greater than 0.04pn.
This causes a sudden decrease in the overall stiffness of the
gear pair and, consequently, a sudden increase in bending
stress in this area attaining its maximum at Sc=0.05S2,
approximately.

Consequently, the critical tooth-root bending stress for
a pair of plastics gears may be computed from

sF ¼
6lðer;ScÞW tot cosaF ðScÞhF ðScÞ

FS2

F

ð7Þ

Fig. 16. Effect of gear parameters on the variation of the bending stress.
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where l(er, Sc)is the ratio of the applied load Wtrc
, at

the point of the critical bending stress, to the total applied
load.

lðer;ScÞ ¼
W trc

W tot

ð8Þ

Equation (8) is ascertained in Figure 15a and b which
shoe the load sharing distributions, where the value of l
depends on the position of the point of contact on the line of
action and on the real contact ratio. It is, therefore,
necessary to establish for each material the graph which

shows the variation of l as a function of the real contact
ratio. Figure 18 shows this variation of l for the 25/25
Nylon 66 gear pair determined by the proposed method.

7.2.2 Case of plastic/steel spur gears

To show the distribution of bending stress along the line of
contact of a pair of plastic/steel gears, firstly, we consider
the cases of 20/30, 20/40 and 20/60 gears ratios having a
module of 4mm, a pressure angle of 20° and a face width of
30mm. The applied torque is 600Nm. The distributions of
the tooth-root stress are shown in Figure 19.

Fig. 17. Variation of the bending stress at the tooth fillet for the 40/40 gear pair under low torque.

Fig. 18. Variation of l (at point Sc), as a function of er for the 25/25 Nylon 6 gear pair.

Fig. 19. Variation of the bending stress at the tooth fillet for the 20/30, 20/40 and 20/60 plastic/steel gear pairs.
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From Figure 19, it can be noticed that the shape of the
bending stress distribution in plastic/steel gear pair, is
different from the bending stress distribution in the case
where both gears are made of plastic. Note also, from
Figure 19, that the maximum bending stress is located
approximately at a distance S’c=0.3S1 to the left of the
primitive point P where S1 is the distance from the start
point of contact on the outer radius of the gear and the
point P (point A in Fig. 1). As in the previous case, very
similar results were obtained from a study with a lot of
combinations of gear parameters pointing to the maximum
stress being located at the distance S’c to the left of P. The
behavior of the plastic/steel gear pairs shown in Figure A.1
may be explained by the fact that compliance w is almost
equal to the compliance of the plastic gear as shown in
Figure 5. The minimum value of the compliance is in the
area to the left of the point P (S < 0). Therefore, the
maximum value of the applied load as well as the bending
stress, as can be seen in Figure 15b, tend to be located in
this area where the compliance is minimum.

The distance S1 can be expressed as

S1 ¼ Rb1c

wherec=tan u� tan ’, u ¼ cos�1 Rb1

RA1
, and ’ is the pressure

angle.
In the case of low torques corresponding to real contact

ratios close to the theoretical contact ratio, the behavior of
the gear pair is similar to that presented in Figure 17. This
can be explained, similarly, to the case of plastic gears and
S’c becomes equal to 0.05S2, in this case. It can, therefore,
be seen that the use of equations (7) and (8) is always
possible if we replace Sc by S’c after having determined l as
a function of er.

8 Conclusion

In this paper, we present a method which predicts the
behavior of a pair of plastic/plastic and plastic/steel spur
gears. This method enables the calculation of the contact
ratio and the bending stress at the tooth root. The results
obtained from this method have been further confirmed by
finite element calculations.

The modeling of the gear pair during the mashing cycle
of a line of contact leads to the calculation of the real
contact ratio and to the determination of the maximum
bending stress. A parametric study, by varying different
parameters such as the number of teeth, pressure angle,
and module, yields the effect of these parameters on the
contact ratio and the bending stress. In addition, the
modeling of the pair of gears in contact during a meshing
cycle leads to the following results:

For plastic/plastic spur gears the critical tooth-root
stress is obtained when the point of contact is located at a
distance Sc=0.5S2 and at a distance Sc=0.05S2 from the
primitive point P when the contact ratio is close to the
theoretical contact ratio. Whereas, in the case of plastic/
steel spur gears, the distribution of bending stress during
themeshing cycle is different from that of plastic gears. The
critical tooth-root stress, in this case, is obtained when the

point of contact is located at a distance S’c=0.3S1 and at a
distance S’c=0.05S2 from the primitive point P when the
contact ratio is close to the theoretical contact ratio.

These results can be used for preliminary designs of
plastic/plastic and plastic/steel spur gears. Additionally,
they can be incorporated in a proposal for ISO 6336 related
to stress calculation of plastic spur gears.

Notation

F Face width of the gear
m Module
Z Number of teeth
pb Base pitch on base circle
pn Normal base pitch
Rb Radius of the base cylinder
R Radius of the pitch circle
RO Radius of the addendum cylinder
RA Radius of the lowest point of contact
’ Pressure angle
Wtr Transverse load

Subscripts 1, 2 Designate, respectively, the pinion and the
gear

Appendix

Referring to Figure A.1, let S be the distance from the point
of contact to the primitive point of tangency, P, between
the pitch circles of the pinion and of the gear. We, then,
have

S ¼ jX � xj

with

X ¼ Rbtan u
and

x ¼ Rb tan’

Let

S ¼ Rbjtan u � tan’j ¼ Rbjtan u � tan’þ u � u þ ’� ’j

However, inv u=tan u� u and inv ’=tan’� ’, from
where

S ¼ Rbju � ’þ inv u � inv’j

From Figure A.1, we have

c ¼ u � ’þ inv u � inv ’

Therefore, we get

S ¼ Rbc ðA:1Þ
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Each point of contact can be characterized by its
position S in the plane of action relative to the primitive
point P. This position can be calculated knowing the angle
Dc between the center line and the point of intersection of
the profile of the tooth with the pitch circle of the gear.

Let us start with the case where the head of the gear
tooth enters in contact prematurely with the root of the
pinion tooth. Figure A.2 shows a pinion meshing with a
gear. The angle that the pinion must rotate through so that
the tooth a1 comes into contact with the tooth a2, is equal to
(b1+V1� g1).

The position of the tooth a1 with respect to the point P
before rotation is equal to

S1 ¼ Rb1 b1 þ b0f

� �
ðA:2Þ

After rotation, its position is

S0
1
¼ Rb1 g1 �V1 þ b0f

� �
ðA:3Þ

The distance that the tooth a1must travel along the line
of action to come into contact with the tooth a2, is equal to

DS ¼ Rb1 b1 þV1 � g1ð Þ ðA:4Þ

Similar to the case of the pinion, the position of the
tooth (a2) of the gear, measured on the line of action, is
equal to (see Fig. A.2)

S2 ¼ Rb2 d2 þ d02ð Þ ðA:5Þ

We have, from Figure A.2,

b0f ¼ inv’

and

d02 ¼ inv’2 � b0f

where ’2=cos-1 Rb2

Ro2
and Rb2, RO2 are, respectively, the base

and the outer radii of the gear.

The angle b1 can be calculated from equations (A.1)
and (A.2), which give

b1 ¼ c� b0f ðA:6Þ

Now under non-slip rolling conditions, the following
relationship holds S1=S2

When the values of S1 and S2 are substituted in
equations (A.2) and (A.5), we get

Rb1 b1 þ b0f

� �
¼ Rb2 d2 þ d02ð Þ

The above equation gives

d2 ¼ b1 þ b0f

� �Z1

Z2

� d02

We also have, from Figure A.2

rc1

sin d2
¼

RO2

sin g1
and

R1 þR2 ¼ rc1 cos g1 þRO2 cos d2

The above two equations give

tan g1 ¼
RO2 sin d2

R1 þR2 �RO2 cos d2
ðA:7Þ

We can then write from Figure A.2

’1 ¼ cos
�1

Rb1

rc1
ðA:8Þ

Fig. A.2. Radius rc1 resulting from premature contact of a
pinion tooth with the tip of a gear tooth.

Fig.A.1. Definition of the distance S from the point of contact to
the primitive point P.
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and

V1 ¼ inv’1 ðA:9Þ

From the values of b1, V1 and g1 calculated from
equations (A.6), (A.7) and (A.9), we can calculate the
value of DS using equation (A.4).

In the case where the head of the pinion tooth enters in
contact prematurely with the root of the gear tooth, the
treatment is analogous to the foregoing, except that, in this
case, index 2, characterizing the gear, will be replaced by
index 1, characterizing the pinion.

Calculation of R 0
b1

Let us assume that a pair of teeth are in contact enter in
contact, prematurely, due to the applied torque on the
pinion. Let W’ be the resulting load on the teeth (see
Fig. A.3). The resisting torque about the pinion center, T’,
is given by

T 0 ¼ W 0R0
b1 ðA:10Þ

Two cases arise:
(1) If the pinion tooth is contacted at the root, the value

ofR0
b1 would be set equal toRb1 because the direction of the

load is parallel to the tangent of the base circle of the pinion
(see Fig. A.2). We, consequently, get

R0
b1 ¼ Rb1

(2) If the pinion tooth is contacted at its top, the torque
W’ (see Fig. A.3) is given by

T 0 ¼ W 0
pRO1

where

W 0
p ¼ W 0

cos z

Further, in triangle O2Q
0T0, we have

b
O2Q

0T 0 ¼
p

2
� ’2

ðA:11Þ

Also

b
O2Q

0Q ¼ e1 þ b2 þV2

ðA:12Þ

and

b
QQ0W 0 ¼

p

2
� z

ðA:13Þ

However,

b
O2Q

0T 0 ¼bO2Q
0Q þ
b
QQ0W 0 ðA:14Þ

Substituting bO2Q
0T 0

,
b
O2Q

0Q, and
b
QQ0W 0 from

equations (A.11)–(A.13) into equation (A.14), we get

p

2
� ’2 ¼ e1 þ b2 þV2 þ

p

2
� z

From where we get

z ¼ e1 þ b2 þV2 þ ’2

where

’2 ¼ cos
�1

Rb2

rc2

V2 ¼ inv’2

and

e1 ¼ sin
�1

rc2 sin ðb2 þV2

RO1

� �

Then the torque T0 would be given by

T 0 ¼ RO1 cos ðe1 þ b2 þV2 þ ’2ÞW
0 ðA:15Þ

From equations (A.10) and (A.15), we finally have

R0
b1 ¼ RO1 cos ðe1 þ b2 þV2 þ ’2Þ
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