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REAL DIVISORS ON REAL CURVES

MARGHERITA ROGGERO

Let C be an af�ne or projective smooth real algebraic curve, that is, a
smooth complex curve in A

n
C
or P

n
C
de�ned by real equations, having a non

empty real part. Then every divisor E on C, which is linearly equivalent to its
conjugate Ec , is also equivalent to a divisor supported on a set of real points
of C.

1. Introduction.

Let C be a smooth connected algebraic curve in the complex projective
space P

n
C
(or in the complex af�ne space A

n
C
); we say that C is a real curve if it

is invariant by conjugation that is, if it can be de�ned by real equations. If the
set of the real points C(R) of C is not empty, then C(R) is actually a curve in
P
n(R) (or A

n(R)), since isolated points of C(R) must be singular points of C.

In the present paper we study linear equivalence between divisors on C

with regard to the action of conjugation and in particular to divisors supported
on C(R). By the term �divisors� we will always mean Weil divisors; but we
could consider Cartier divisors or linear vector bundles as well, because of the
natural isomorphism between the groups of classes modulo linear equivalence
Cl(C), CaCl(C) and Pic(C) (see [6], Ch.II, n.6).
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Looking at the real structure of C, we can consider the following subgroups
of Cl(C):

Cl(C)+ classes of divisors D equivalent to the conjugate Dc ,
Cl(C)c classes of real divisors i.e. divisors D = Dc ,
Cl(C)R classes of divisors supported on C(R),
with the natural inclusions: Cl(C) ⊇ Cl(C)+ ⊇ Cl(C)c ⊇ Cl(C)R .
In our hypotheses, the two intermediate groups are equal (see [5], Proposi-

tion 2.2 or [3], Proposition 2.7.4); the main result of the present paper (Theorem
5.1) states that, moreover, the fourth group is equal to the two former ones.

In order to prove this, we construct linear systems on C, that map C onto
plane curves which satisfy suitable conditions of reality, that is, meeting enough
real lines in many real points. Those linear systems allow us to �nd a large set
of real divisors equivalent to divisors supported on C(R); �nally, by means of
topological properties of C as a Riemann surface, we conclude that every real
divisor D on C is linearly equivalent to a divisor E supported on C(R).

We want to stress that such a divisor E is not in general an effective divisor,
even if D is. In fact, if we consider the (smallest) effective real divisors P + Pc

for every point P on C−C(R), they are equivalent to pairs of real points R1+R2

if and only if C is a rational or an elliptic curve. If C is hyperelliptic, then we
have only one g12 (linear system of dimension 1 and degree 2: see [6], Ch. IV,
Proposition 5.3) and then we can have a linear equivalence as above, only for
some, but not for all, points P on C − C(R).

Stronger results hold in dimension greater than 1. Let V be a complex
variety, non singular in codimension 1, invariant by conjugation and such that
its real part V (R) is Zariski dense in V . If V is af�ne, then every effective
divisor D = Dc on V is linearly equivalent to an effective irreducible divisor E
such that E ∩V (R) is Zariski dense in E ; if V is projective, then every effective
divisor D = Dc is equivalent to a divisor of the type E − kH (k integer), where
E and H are irreducible, E ∩ V (R) and H ∩ V (R) are Zariski dense in E and
H respectively and H is cut by a hyperplane (see [8], Proposition 2.5 (proof),
Theorem 4.3 and Corollary 4.6).

The main difference between dimension 1 and greater than 1 arises exactly
from some good properties of the hyperplane sections, true in dimension greater
than 1, but not for curves (see also Remark 5.2). If dim(V ) > 1, by Bertini�s
theorem, a general real hyperplane section passing through a general point of
V (R) cuts on V an irreducible divisor, having a dense real part. If V = C

is a curve, which is not a line, then all its hyperplane sections are reducible;
furthermore, it may happen that no hyperplane section has a dense real part: in
Example 5.3 we produce a smooth real curve C in P2

C
of degree 4, with a non

empty real part, that meets every line in less than 4 real points.
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In the last section of the paper we extend the previous result to the divisor
class group Cl(R[C]) of an integrally closed domain R[C] of real polynomial
functions on C.

Observe that R[C] is also the ring of polynomial functions on C(R).
Several rings of functions de�ned over a real variety V (R) have been studied,
namely real global analytic, Nash, rational regular and, �nally, polynomial
functions. In the paper [2] the divisor class groups of analytic, Nash and rational
regular functions are well described in geometrical terms, by homology classes,
while very little was known about Cl(R[V ]), because of its �less geometrical�
nature (see [2], section 7). So, in [8] we studied the divisor class group
Cl(R[V ]) for a real variety V of dimension greater than 1 using algebraic tools.
On the other hand, in the present paper we essentially use geometrical tools,
but our geometrical object is the complex curve C (or the complex variety V )
de�ned over R, while in [2] the geometrical object was a real manifold that is
the real part V (R) of V .

2. Notations.

We will denote the �elds of the real numbers and of the complex numbers
by R and C respectively and by xc, �(x) and �(x) the conjugation, the real
part and the imaginary part of x respectively.

Let C be a projective curve in P
n
C
, de�ned by real equations and let C(R)

be its real part, that is, the collection of the real points of C. In this paper we
will always suppose C smooth and C(R) not empty: so C(R) is a �true� curve
in the real projective space P

n(R).

We will denote by A and B respectively the coordinate ring of C as a
variety de�ned over R and over C, so that B = A ⊗R C.

In a natural way, A and B are graded rings and we will always consider
homogeneous elements in them, without further notices. In particular, k(A) will
be the degree zero quotient �eld of A, that is, the real rational functions �eld of
C.

For any element f in A (or B ), div( f ) is the Weil divisor cut on C

by f ; in a similar way, if x ∈ k(A), that is x = f · g−1, f, g ∈ A, then
div(x) = div( f ) − div(g).

Finally, we will denote the complex curve C as a real manifold with the
Euclidean topology (Riemann surface) by S. We recall that S is connected and
compact; moreover, in our hypothesis, S − C(R) has only one or two connected
components and, in the second case, they are exchanged by conjugation (see [7]
or [3], Proposition 2.7.10).
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3. Linear systems on C.

In the present section we construct, for any given point P on C, a dimen-
sion 2 linear system LP satisfying suitable �conditions of reality�. In more
concrete language this means that we can �nd, for any point P on C, a suitable
birational real map φ , that sends C to a real plane curve C

� . Moreover, we can
choose φ so that φ(P) is a smooth point of C

� and the real line l passing through
φ(P) and φ(Pc) (respectively the tangent line to C

� at φ(P), if P = Pc) cuts
out deg(C�) − 2 more real points on C

�. Finally, we prove that, in such a sit-
uation, every line �suf�ciently close� to l cuts out on C

� divisors of the same
type.

Lemma 3.1. Let P be a point on C. Then there is a linear system LP = P2
C
,

without base points, satisfying the following properties:
i) for a generic point Q on C (in particular for Q = P), Q + Qc imposes

two independent conditions on LP ;
ii) LP = {div(λ f + µg + νh) − H , (λ, µ, ν)∈ P

2
C
} where f, g, h ∈ A and

H is the common divisor of div( f ), div(g), div(h);
iii) div( f ) = P + Pc + R1 + ..Rt + H , where the Ri are distinct real points

and neither P nor each Ri are contained in H .

Proof. Let�s choose t real distinct points R1, .., Rt such that the divisor D =

P + Pc + R1 + .. + Rt be very ample (see [6], Chapter IV, Corollary 3.2). Let
|D| = P

k
C
be the complete linear system of the effective divisors equivalent to

D and let x0 be the point in P
k
C
corresponding to D. Since D is very ample, the

divisors containing any two distinct points of D make up a P
k−2
C

⊂ P
k
C
which

contains x0. So we can choose a P2
C
in P

k
C
containing x0 and meeting these

(k − 2)-planes only in x0; such a linear system P
2
C

= LP has no base points
and any two points of D impose two independent conditions on it.

The map ϕ : C −→ P
2
C
associated to LP is a birational transformation,

since it is of degree 1 at each point of D. Therefore, Q + Qc imposes two
independent conditions to LP , for almost all points Q in C. Moreover, D is a
divisor in LP , because we have chosen a plane in |D| = P

k
C
containing x0. So

we have i).
The complete linear system |D| may be obtained as

{div(λ0 f0 + .. + λk fk ) − H, (λ0, .., λk) ∈ P
k
C}

where fi ∈ B and H is the common divisor of all div( fi ). We can suppose that
x0 = (1, 0, .., 0), that is div( f0) = P + Pc + R1 + .. + Rt + H .

Moreover we can choose f0 ∈ A (for this, if f0 /∈ A, we multiply every
fi by f c0 ); hence H = div( f0) − D is invariant by conjugation, then H is
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also the common divisor of div(�( fi )) and of div(�( fi )), for i = 1, .., k. If
we choose k + 1 linearly independent elements f �

0 = f0, f �
1, . . . , f �

k in the set
{ f0, �( f1), �( f1), .., �( fk ), �( fk)}, we get the linear system |D| by means of
elements of A.

Finally, we can choose the plane LP in |D| = P
k
C
satisfying the previous

properties and moreover, having real equations: for such a linear system LP i)
and ii) hold.

We still have to prove that the elements f = f0, g, h de�ning LP can be
chosen so that their common divisor H does not contain any point of D.

We can suppose |H | very ample (for this, we multiply f, g, h by an
element of A of suf�ciently high degree) and take a divisor H � equivalent to H ,
invariant by conjugation and not containing any point of D. If x ∈ k(A) is such
that div(x) = H � − H , then x f, xg, xh belong to A, since div(x f ), div(xg)

and div(xh) are effective; so we can get LP by div(λx f + µxg + νxh) − H �

and iii) is also satis�ed. �

Notation 3.2. We will denote by D(λ,µ,ν) the divisor div(λ f +µg+νh)−H of
the linear system LP = {div(λ f + µg + νh) − H, (λ, µ, ν)∈ P

2
C
} as de�ned

in the previous lemma.

Lemma 3.3. Let P ∈ C − C(R) and LP be as in Lemma 3.1 and let (µ, ν) be
any element in R2 such that �(µ, ν)� < � for a suitable � > 0. Then :

a) D(1,µ,ν) consists of a pair of non real conjugate points and of further
real points;

b) if (µ�, ν�) �= (µ, ν) and �(µ�, ν�)� < � , then the pairs of non real
conjugate points in D(1,µ,ν) and D(1,µ�,ν �) are distinct.

Proof. Let M ⊂ P
2
C

= LP be the closed algebraic subset of divisors
containing some multiple points. So M is a proper subset of LP , by Bertini�s
theorem, and D(1,0,0) /∈ M , by construction. If we consider the af�ne real plane
A

2(R) = {(1, µ, ν), µ, ν ∈ R} ⊂ P
2
C
, then the Euclidean distance d between

(1, 0, 0) and M ∩ A2(R) is strictly positive.
Therefore, if �(µ, ν)� < d , then D(1,µ,ν) contains exactly two non-real

conjugate points and deg(LP)−2 real points. In fact, when we move (1, µ�, ν�)

in the line interval [(1, 0, 0), (1, µ, ν)], the number of real points in D(1,µ�,ν �)

can change only if D(1,µ�,ν �) moves through a divisor containing a double real
point.

By construction, {Q ∈ C s.t. Q + Qc imposes only one condition on LP}

is a �nite set (see Lemma 3.1.i) and moreover (1, 0, 0) doesn�t belong to the
lines r1, ..., rs on P2

C
= LP corresponding to these points. Thus, the distance

d � between (1, 0, 0) and (∪ri ) ∩ A2(R) is strictly positive.
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If we choose a positive number � < min{d, d �}, then both a) and b) are
satis�ed. �

4. The main result.

Let S be the Riemann surface corresponding to C with the Euclidean
topology. In the present section we will consider the following equivalence
among points of S:

P ∼R Q if the divisor P + Pc − Q − Qc is linearly equivalent to a divisor
lying on C(R).

We want to show that all pairs of points on S are equivalent. So, we �rst
prove that U ∩ S − C(R) is an Euclidean open set of S for every equivalence
class U, which implies, by topological properties of S , that there is an equiv-
alence class U1 containing the whole S − C(R). On the other hand, the real
part C(R) is completely contained in a class U2, thus we will conclude that
S = U1 = U2 by proving that U1 ∩ U2 is not empty.

Lemma 4.1. Let P be any point of S − C(R) and let U be the equivalence
class of P modulo ∼R . Then the set U∩S − C(R) contains an Euclidean open
neighbourhood of P .

Proof. Let P , LP and � be as in the previous lemmas. Consider the algebraic
real set Y ⊆ P2(R) × S :

Y = {((λ, µ, ν), Q) s.t . Q ∈ D(λ,µ,ν)}

and set Z = Y ∩ (B� × (S − C(R))) where B� = {(1, µ, ν)/�(µ, ν)� < �};
then Z is a semialgebraic real subset of Y ( see [1] Ch. 2).

Now we observe that the �rst canonical projection π1 : Z −→ B�

is surjective and 2 : 1 (see Lemma 3.1); then Z is a 2-dimensional open
semialgebraic real set.

Moreover, the second canonical projection π2 : Z −→ S is injective (see
Lemma 3.3 b)); so π2(Z ) too is a 2-dimensional open semialgebraic real set,
containing P and contained in U. �

Theorem 4.2. Let D be a real divisor on C (that is D = Dc).
Then D is linearly equivalent to a divisor E completely supported on

C(R).

Proof. We can obtain any real divisor on C by summing up real points and pairs
of non real conjugate points. So, without losing in generality, we may prove the
assumption only for D = P + Pc , P ∈ S − C(R).
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Consider the equivalence ∼R among points of S and let U be an equiva-
lence class such that U∩S − C(R) is not empty. We can see, from Lemma 4.1,
that U ∩ S − C(R) is an Euclidean open subset of S , for it contains an open
neighbourhood of every point. So each connected component of S − C(R) is
completely contained in one of the equivalence classes U, together with its con-
jugate, since each class U is invariant by conjugation because of its construc-
tion. Moreover S − C(R) has only one or two connected components, which
are exchanged by conjugation in the second case (see [7] or [3], Proposition
2.7.10); so S − C(R) ⊂ U and then, for any pair of non real points P and Q ,
P + Pc − Q − Qc is linearly equivalent to a divisor completely supported on
C(R).

We have still to prove that there is a non real point Q such that Q + Qc is
linearly equivalent to a divisor supported on C(R).

Let P ∈ C(R) and LP be as in Lemma 3.1. The linear system LP gives a
birational morphism φ : C → C

� ⊂ P
2
C
such that LP corresponds to the linear

system L
� on C

� cut out by lines. By construction, φ and C
� are de�ned over

R, so that a general real point on C corresponds to a real point on C
� and vice

versa.
Consider an af�ne real plane A2(R) ⊂ P2

C
containing P � = φ(P). Under

a suitable coordinate transformation, we can suppose that P � is the origin
(0, 0), the tangent line to C

� at P � is y = 0, and C
� ∩ A2(R) is de�ned by

F(x , y) = y − x 2 + bxy + cy2+ (monomials of higher degree).
By the implicit function theorem applied to F(x , y) = 0, the curve

C
�(R) ∩ A2(R), restricted to a small open disk containing (0, 0), is the graph of

a real function y = ψ(x). If we expand y = ψ(x) near the origin, we �nd the
second degree Taylor polynomial T (x) = x 2.

Thus, there are no points (x0, y0) on C
�(R)∩A

2(R) near the origin, having
y0 < 0.

Let�s denote by Lµ the line in P
2
C
corresponding to the line y − µ = 0 in

A2(R). If µ is suf�ciently small, the line Lµ cuts on C
� a divisor, which is sum

of k + 2 distinct real points R�
1µ, . . . , R�

kµ , such that

lim
µ→0

(R�
iµ) = φ(Ri )

and of a pair of conjugate points Qµ + Qc
µ, such that

lim
µ→0

(Qµ + Qc
µ) = 2P �.

If µ is negative, Qµ and Qc
µ can not be real and then the divisor 2P � +

φ(R�
1) + .. + φ(R�

k) − R�
1µ − .. − R�

kµ , which is completely supported on C
�
R ,

is linearly equivalent to a pair of non real points Qµ + Qc
µ.
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Finally, using the inverse of the birational map φ , we can conclude that the
same result holds for the corresponding divisors on C. �

5. The divisor class group.

First of all, we observe that we can rephrase Theorem 4.2 in terms of the
Picard group of the curve C as follows: the subgroup Pic(C)+ = Pic(C)c of
Pic(C), containing classes of real divisors, is equal to the subgroup Pic(C)R ,
containing only classes of divisors whose support is on C(R).

On the other hand, we can give a purely algebraic de�nition of divisors. Let
Cl(A) be the divisor class group of the coordinate ring A of C, that is the free
abelian group generated by height 1 prime ideals of A, modulo the principal
divisors div(x), where x is any element of the total quotient �eld K (A) (see
[4] or [6]: note that Cl(A) = Cl(Spec(A)). We emphasise that K (A) is equal
to k(A), the �eld of real rational functions on C, if C is af�ne, while, if C is
projective, k(A) contains only the degree zero elements of K (A).

Following [9] and [8], we will call an ideal I of A a de�ning ideal if it
contains all the elements of A that vanish on a point of C(R). We will denote
by Cl(A)R the subgroup of Cl(A) containing only classes of de�ning ideals.

The following result generalises Theorem 4.2 to af�ne or projective curves
and also to their coordinate rings, with respect to a suitable embedding.

Theorem 5.1. Let C be an af�ne or projective smooth real curve such that C(R)

is Zariski dense in C. Then:

1) Cl(C)c is generated by classes of divisors D supported on C(R) i.e.
Cl(C)c = Cl(C)R .

2) If, moreover, the real coordinate ring A = R[C] is integrally closed,
then Cl(A) is generated by classes of de�ning ideals i.e. Cl(A) = Cl(A)R .

Proof. If C is projective, statement 1) follows by Theorem 4.2.

So, suppose C is af�ne. Let X be a projective smooth closure of C

and Z = X − C the hyperplane section at in�nity. Thus, we can easily
deduce 1) by applying the previous part to X and using the canonical surjective
homomorphism Cl(X ) −→ Cl(C) (see [6], II Proposition 6.5).

To prove claim 2), �rst we consider a projective curve C. So A is a graded
ring and Cl(A) can be generated by homogeneous prime ideals of height 1
(see [4], Proposition 10.2). There is a natural 1:1 correspondence between
homogeneous prime de�ning ideals of height 1 of A and real points on C and,
on the other hand, between homogeneous prime non de�ning ideals of height 1
of A and pairs of non real conjugate points on C.
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So, the free group on real divisors on C is, in a natural way, isomorphic to
Divh (A), the free group on the set of homogeneous height 1 prime ideals of A.

Moreover, two real divisors on C are linearly equivalent if and only if
the corresponding elements of Div(A) differ by a principal divisor div(x),
x ∈ k(A), and then, if and only if they are in the same class of Cl(A).

Thus we obtain a canonical surjective homomorphism Cl(C)c −→ Cl(A)

that sends Cl(C)R over Cl(A)R ; so 2) follows from 1).

In the af�ne case, the proof is quite similar, but easier, because Cl(C)c and
Cl(A) are actually isomorphic. �

Remark 5.2. Observe that the statement of Theorem 5.1 for real varieties of
higher dimension has been proved in [8], Corollario 4.6 and Teorema 4.3). We
consider an af�ne or projective complex variety V of dimension greater than 1,
de�ned by real equations so that V = V c and such that the subset of the real
points V (R) is Zariski dense in V . Moreover we suppose that V is normal so
that (choosing a suitable embedding, in the projective case) the real coordinate
ring A = R[V ] is integrally closed.

Under these assumptions, the divisor class group Cl(V ) of Weil divisors,
modulo linear equivalence, is well de�ned and, if V is locally factorial, it is
canonically isomorphic to the Picard group Pic(V ) (see [6], II,6).

The classes of real divisors, that is divisors D = Dc , form a subgroup
Cl(V )c of Cl(V ). The classes of real divisors D, such that D ∩V (R) is Zariski
dense in D, form a subgroup Cl(V )R of Cl(V )c . In our previous paper we
proved that Cl(V )c = Cl(V )R and that Cl(A) can be generated by classes
of prime de�ning ideals (that is ideals that vanish on codimension 1 algebraic
subsets of V (R)).

We observe that for a projective variety V , we have the exact sequence:

0 −→ Z −→ Cl(V )c −→ Cl(A) −→ 0

(see also [6], II Exercise 6.3) where the �rst map sends 1 to the class of a
hyperplane section.

If dim(V ) > 1 we can always �nd a hyperplane H such that H ∩ V (R) is
Zariski dense in H ∩V (see [8], Corollario 3.5), while that is not true in general
if V = C is a curve, as proved by the following example.

Example 5.3. Let C be the quartic plane curve in P2
C
de�ned by the equation:

(x 2 + y2)(x 2 + 2y2 + z2) + x z2(y + z) = 0. Easy calculations show that
C is smooth and, moreover, that the real part C(R) is not empty and does not
contain any in�ection point. More precisely, no tangent line meets C(R) with
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multiplicity greater than 2. So a real line can meet every oval of C(R) in at most
two real points.

Moreover, if we cut C by a line through the point (0, 0, 1) ∈ C(R), we �nd
only one more real point (and a pair of non real conjugate points); then C(R)

has only one oval.
Thus, every line intersects C(R) in at most 2 real points and then no

hyperplane section of C is completely supported on C(R).
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