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ABSTRACT: An elegant solution to characterise the residual errors in radar precipitation estimates is to generate an
ensemble of precipitation fields. The paper proposes a radar ensemble generator designed for usage in the Alps using
LU decomposition (REAL), and presents first results from a real-time implementation coupling the radar ensemble with a
semi-distributed rainfall–runoff model for flash flood modelling in a steep Alpine catchment. Each member of the radar
ensemble is a possible realisation of the unknown true precipitation field given the observed radar field and knowledge
of the space–time error structure of radar precipitation estimates. Feeding the alternative realisations into a hydrological
model yields a distribution of response values, the spread of which represents the sensitivity of runoff to uncertainties in
the input radar precipitation field.

The presented ensemble generator is based on singular value decomposition of the error covariance matrix, stochastic
simulation using the LU decomposition algorithm, and autoregressive filtering. It allows full representation of spatial
dependence of the mean and covariances of radar errors. This is of particular importance in a mountainous region with
large uncertainty in radar precipitation estimates and strong dependence of error structure on location. The real-time
implementation of the radar ensemble generator coupled with a semi-distributed hydrological model in the framework of
the forecast demonstration project MAP D-PHASE is one of the first experiments of this type worldwide, and is a fully
novel contribution to this evolving area of applied research. Copyright c© 2009 Royal Meteorological Society
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1. Introduction

The idea of using reflectivity measurements to esti-
mate precipitation at the ground is appealing given the
high space–time resolution of weather radar observa-
tions. However, there are many sources of error which
require both careful system design and sophisticated data
processing (Austin, 1987; Joss and Waldvogel, 1990;
Yuter, 2002). We have to deal with beam shielding
and the vertical profile of reflectivity (Joss and Wald-
vogel, 1990; Kitchen, 1995; Joss and Lee, 1995; Pel-
larin et al., 2002; German and Joss, 2002; Bellon et al.,
2007), beam smoothing and post-detection integration
(Zawadzki, 1982), variability in raindrop size distribu-
tions and related uncertainty in the relation between
reflectivity and rain rate (Joss and Gori, 1978; Lee and
Zawadzki, 2005), attenuation by water on the radome
(Germann, 1999), attenuation in heavy rain and hail (Del-
rou et al., 2000), and overestimation in hail (Austin,
1987). Illingworth (2004) discusses to what extent polari-
metric measurements can improve the accuracy of radar
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precipitation estimates, Friedrich et al. (2007) investigate
the sensitivity of polarimetric rainfall estimation to partial
beam shielding, Gabella et al. (2001) promote weighted
multiple regression for radar–rain-gauge merging, Mitter-
maier et al. (2004) use mesoscale model winds to correct
wind-drift errors, and Wesson and Pegram (2006) propose
using geostatistics for proper interpolation and extrapola-
tion. Of course the design of error correction depends on
the site, climate and application. The best solution for a
cold climate (Koistinen et al., 2004) may differ from that
found for a mountainous region (Germann et al., 2006b).

This list of error sources and approaches for correction
is far from complete, but illustrates both the range of
problems and the large efforts that have been dedicated
to improve quantitative precipitation estimates by radar.
In spite of significant progress, the residual errors are still
large and need to be taken into account, in particular in
the context of operational hydrogeological applications
such as issuing river runoff forecasts or flash flood and
debris flow warnings.

A complete description of radar data quality includes
various types of descriptor, such as system status reports,
hardware monitoring messages, visibility and ground
clutter maps, plausibility checks and verification statistics
(Hollemann et al., 2006). For hydrological applications,

Copyright c© 2009 Royal Meteorological Society



446 U. GERMANN ET AL.

we may think of a probability density function (pdf)
that describes the range of possible values in space and
time for each radar estimate. One single pdf per pixel,
however, is not sufficient as errors are correlated in
space and time, and one would need a pdf conditional
on the values in the neighbourhood, or alternatively the
full error variance–covariance matrix, the dimension of
which corresponds to the total number of pixels in space
and time. In practice, neither the conditional pdf nor the
full error covariance matrix can be directly used in present
hydrological models.

A promising solution to express the residual uncer-
tainties in radar estimates is to generate an ensemble
of precipitation fields, (e.g. Krajewski and Georgakakos,
1985). Each ensemble member is a possible realisation
given the reflectivity measurements and knowledge on
the radar error structure (Germann et al., 2006a; Lee
et al., 2007). The original (deterministic) radar precip-
itation field is perturbed with a stochastic component,
which has the correct space–time covariance structure
as defined by the radar error covariance matrix. The
advantage of the ensemble as opposed to more classical
approaches is the simple interface with hydrology: each
member can directly be fed into the hydrological model.
Instead of running the hydrological model only once, we
run it several times. We thus get an ensemble of possible
hydrological outputs, the spread of which represents the
sensitivity of the hydrological system to the uncertainty
in the radar precipitation fields on input.

The idea to express uncertainty by adding a stochastic
component has already been explored for radar precipita-
tion nowcasting by Seed (2003) and Bowler et al. (2006),
and evaluated in a hydrological context by Berenguer
et al. (2005, 2006). The use of a pdf to express the uncer-
tainty in radar nowcasts, on the other hand, was proposed
in Germann and Zawadzki (2004). As a next step, from
the pdf nowcasts one may calculate an ensemble which
is in agreement with the individual pdfs of all pixels.
A prerequisite of these stochastic nowcasting approaches
is a rigorous study of the sources of uncertainty and their
relative importance (e.g. Germann and Zawadzki, 2006).
Clark and Slater (2006) and Bellerby and Sun (2007) pro-
vide examples of ensemble techniques for rain-gauge and
satellite data.

There is an important difference between the stochas-
tic ensemble proposed here, and the dynamic ensemble
used in numerical weather prediction models (Palmer,
2002). Here, each ensemble member is the sum of the
deterministic radar precipitation field and a stochastic per-
turbation. The stochastic term represents the measurement
uncertainty and is generated such that it has the cor-
rect space–time covariance structure as defined by the
radar error covariance matrix. In the case of an ensem-
ble system of a numerical weather prediction model, on
the other hand, we have a highly nonlinear dynamic sys-
tem of equations, and the initial conditions are usually
perturbed such that the resulting trajectories exhibit max-
imum perturbation growth in phase space. The size of the
ensemble is limited because of limited computing time.

1.1. Outline

This paper discusses a powerful solution to gener-
ate ensembles of radar precipitation field time series,
demonstrates its applicability for the mountainous con-
text of Switzerland, and presents first results of a pro-
totype implementation for real-time radar ensemble rain-
fall–runoff modelling in the southern Alps. The scheme is
referred to as REAL (Radar Ensemble generator designed
for usage in the Alps using LU decomposition). The
concept has already been presented by Germann et al.
(2006a). The stochastic simulation technique selected
here, as opposed to other approaches, offers full flexi-
bility regarding variances and covariances; i.e. we do not
assume second-order stationarity of residual uncertainties
in radar precipitation estimates. This allows us to take
into account the strong dependence of radar errors on
location. The prototype implementation (briefly presented
in Zappa et al., 2008) is, as far as the authors know, the
first real-time experiment of this type in a mountainous
region, and is a fully novel contribution to this evolving
area of applied research. A hydrological verification will
be presented in a later paper.

Section 2 presents the Alps as an ideal test site for
developing and testing a radar ensemble generator. The
core of the generator is desribed in section 3. The
subsequent sections 4 and 5 explain how to estimate the
mean and covariances of radar errors, and how to generate
perturbation fields with the correct statistical properties,
respectively. Section 6 presents the implementation and
first results of the prototype generator coupled with a
semi-distributed rainfall–runoff model. Discussion and
outlook are given in section 7.

2. Test site: the Alps

The Swiss Alps are an ideal site for developing and
testing a prototype radar ensemble generator for sev-
eral reasons. First, MeteoSwiss has a long tradition in
the operational usage of weather radar technology in
a mountainous region (Joss and Waldvogel, 1990), and
has implemented a systematic approach for the devel-
opment, validation and deployment of algorithms (Ger-
mann et al., 2006b). This includes detailed studies of the
residual uncertainty of radar precipitation estimates and
its space–time dependence and correlation, which is a
prerequisite for generating ensembles. For the ensemble
discussed in this paper, all algorithms presented in Ger-
mann et al. (2006b) including local bias correction were
implemented for real-time radar precipitation estimation.

Second, uncertainties in radar precipitation fields in an
Alpine region are large because of severe shielding of
the radar beam by mountains, orographic precipitation
mechanisms not fully seen by the radar, and strong moun-
tain returns, i.e. clutter. As a result, radar errors exhibit
complex structure with strong dependence on the loca-
tion. This is an ideal set-up to explore the benefits of the
ensemble compared with a simpler approach. In Switzer-
land, 98% of all cluttered pixels are eliminated with the
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standard procedure (Joss and Lee, 1995; Germann, 2000;
Germann et al., 2006b). The remaining 2% correspond
to 0.07% of the whole radar volume. For hydrological
applications these are further reduced by about a factor
of ten by means of additional statistical filters. Clutter
is thus not a serious problem any more. The dominant
components of the total residual error in the operational
Swiss radar precipitation fields are related to beam shield-
ing not fully corrected with the profile correction scheme,
orographic enhancement not seen by the radar (Germann
and Joss, 2002), and, to some extent, beam smoothing,
attenuation and uncertainty in the Z–R relation caused
by variability of the drop size distribution. It is the super-
position of the space–time structure of these types of
residual errors which needs to be modelled with the radar
ensemble generator. The ensemble is the most promising
solution to incorporate this complex error structure into
present hydrological applications.

Third, strong and persistent orographic precipitation
combined with rapid runoff in steep mountainous
catchments often leads to flash flood events causing
considerable damage. There is a strong need for more
accurate runoff nowcasts which include quantitative
assessment of the uncertainty.

Finally, in the Swiss Alps, there is a high-resolution
network of quality-checked rain-gauges (Figure 1). Aver-
age spacing between two rain-gauges is 25 km for the
automatic network with 10 mins resolution, and, 10 km
for the climate network with daily reports. These sur-
face measurements are used as a reference to determine
the radar error covariance matrix, which is needed in the
ensemble generator.

Uncertainties in radar precipitation estimates depend
on location, especially in a mountainous region (e.g. Fig-
ures 8 and 10 in Germann et al., 2006b). This reflects the
strong relation between radar errors and factors such as
distance from the antenna, radar horizon and orographic
precipitation regimes. This space-dependence needs to be
taken into account when generating an ensemble of radar
precipitation fields. The next question is to what extent
an error at a given location and time is correlated with
the error at a different location and time. Hydrological
applications typically combine many radar pixels such as
a time series of all measurements over a given catch-
ment. The sensitivity of the hydrological system to radar
errors thus strongly depends on the autocorrelation of
radar errors. If radar errors are completely uncorrelated in
space and time, the impact on the output of the hydrolog-
ical model will be relatively small, as errors average out
when many samples of rainfall estimates are integrated in
time and space to simulate runoff in a basin. However, if
radar errors exhibit high autocorrelation at the character-
istic scales of the catchment, we have to expect a large
impact on the hydrological simulation. The dependence
of radar errors on location is widely accepted. A pre-
liminary study based on a large-sample radar–rain-gauge
comparison shows that spatial autocorrelation of radar
errors also depends on the location with respect to the
radar and the orography (Germann et al., 2006a). Auto-
correlation for a station in the eastern Swiss Alps (Chur,
Figure 1) exhibits high correlation with many locations
in the Alpine bow and the Jura mountains in western
Switzerland, whereas autocorrelation for a station in the
relatively flat Swiss plateau (Reckenholz, near Zurich,

Figure 1. Situation plan of MeteoSwiss radar and rain-gauge networks. The three operational C-band radars are located on mountain tops near
Zurich (Albis radar, 925 m), Geneva (La Dôle radar, 1675 m) and Lugano (Monte Lema radar, 1625 m). The white circles and small white
squares indicate the locations of the automatic and climate rain-gauge networks, respectively. Levels of shading correspond to terrain height
below 700 m (white), between 700 and 1000 m (light grey), between 1000 and 2000 m (dark grey), and above 2000 m (black). The three-digit
and four-digit numbers indicate heights of some lakes and mountain peaks, respectively. All heights are in metres above sea level. The ensemble
generator presented in this paper was implemented for a catchment in the southern Alps (in the square box north of the Lema radar), shown in

Figure 3.
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Figure 1) rapidly decreases with distance from the station
and shows no remote correlation at all. Autocorrelation
for Reckenholz is approximately isotropic with a decor-
relation length of about 30 km. Autocorrelation for Chur
is clearly anisotropic with regions with high correlation
well beyond 100 km. To model the spatial autocorrela-
tion pattern of Chur with a simple distance-dependent
isotropic or anisotropic variogram approach would not
be satisfactory.

3. Ensemble generator

The task of the ensemble generator is to model a
number of realistic error perturbation fields, δt,i , and to
superimpose these onto the original unperturbed radar
precipitation field

"t,i︸︷︷︸
probabilistic

= Rt︸︷︷︸
deterministic

+ δt,i︸︷︷︸
stochastic

, (1)

where Rt is the original unperturbed radar precipitation
field at time t , δt,i is the perturbation field for ensemble
member i, and "t,i is the resulting precipitation field
for ensemble member i. By precipitation we mean either
precipitation rates in mm h−1, or precipitation amounts
in mm accumulated over a pre-defined period. Rt is
a vector that contains the original unperturbed radar
precipitation estimates at time t and locations xT =
(x1, x2, x3, . . . , xM):

Rt
T = (Rt,x1 , Rt,x2 , Rt,x3 , . . . , Rt,xM

). (2)

M is the number of locations (typically radar pixels) in
the study area ! (typically a catchment). Analogously,
"t,i and δt,i are vectors the components of which
are "t,xk,i and δt,xk,i for all M locations x in !. R
and δ are henceforth referred to as the ‘deterministic’
and the ‘stochastic’ component, respectively. The result
is an ensemble of precipitation fields "t,i with i =
1, . . . , N , each member i of which is in agreement with
the deterministic component Rt and our knowledge of
the space–time structure of radar uncertainties, which
goes into the stochastic component δt,i . The output
"t,i is ‘probabilistic’ in the sense that for a given
area ! and time period T we have N realisations of
precipitation field time series, on the basis of which one
can calculate probability density of precipitation rates for
that space–time window. Let ! be a catchment and T
the corresponding rainfall–runoff response time. Then,
the alternative N realisations "t,i can be assimilated in a
rainfall–runoff model, yielding a distribution of response
values, the spread of which represents the sensitivity of
runoff to uncertainties in the input radar precipitation
field. Of course, N needs to be large enough so that "
adequately samples the range of uncertainties.

As most radar errors are multiplicative, it is sensible to
define the residual errors ε in dB

εt ≡ 10 log(St /Rt ) (3)

where St is the true (unknown) precipitation field, which
has the same units as the radar precipitation field Rt . Cor-
respondingly, perturbations are added in the logarithmic
domain and Equation (1) is replaced by

10 log["t,i] = 10 log[Rt ] + δt,i , (4)

where δ is now a perturbation in dB. An obvious example
of a multiplicative type of error is signal attenuation
caused by a water film on the radome, the protection
sphere around the antenna. The water film attenuates
all radar measurements in terms of received power or
equivalent rain rates along a ray by the same reduction
factor, hence the term multiplicative. Another example
of a source of multiplicative errors are fluctuations of
the Z–R relation (Lee et al., 2007, and references
therein). Similarly, partial shielding of the radar beam
by the horizon, attenuation by strong precipitation or
hail, losses or instabilities in the receiver, and growth
of precipitation below the lowest radar measurement to a
first approximation all result in multiplicative errors.

The technique for generating the perturbation fields δt,i

can be summarised as follows. δt,i is modelled using
multivariate statistical simulation. The mathematical core
is based on pre-multiplying a Gaussian random vector
with zero mean and unit variance with the ‘square root’
of the error covariance matrix C and adding the mean
error µ. The technique is known as ‘the LU decom-
position algorithm’ (Goovaerts, 1997), or ‘the Cholesky
(decomposition) method’ (Ripley, 1987; Cressie, 1993)
or ‘variate generation’ (Johnson, 1987). The square root
of the symmetric covariance matrix C is obtained by
matrix decomposition using Cholesky factorisation or sin-
gular value decomposition (SVD; Press et al., 1992). The
resulting perturbation fields δt,i are correlated Gaussian
with pre-defined mean and covariances. Given the loga-
rithmic definition of ε in Equation (3), residual errors in
radar precipitation fields R are assumed to be correlated
Gaussian if expressed in dB.

If the distribution of residual errors expressed in dB
can not be satisfactorily assumed Gaussian, we can add
a normal score transform (e.g. Goovaerts, 1997). This is
based on matching cumulative probabilities and converts
the empirical distribution into Gaussian and vice versa. C
is then calculated and imposed in normal space, i.e. after
normal score transform. This way, the ensemble generator
correctly reproduces the space–time error structure as
defined in the normal space.

Residual errors in R are expected to be correlated both
in space and time. Correlation in space is simulated by
means of the LU decomposition algorithm, as described
above. We propose two solutions to add error correlation
in time:

1. LU decomposition algorithm. Extend the dimension
of the vector µ and the matrix C to include time,
and model temporal correlation in the same way as
spatial correlation, i.e. using the LU decomposition
algorithm. The dimensions of µ and C become
MQ and MQ × MQ, respectively, with M being
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the number of locations and Q being the number
of time steps. This solution allows us to specify
the mean and variance of errors for any arbitrary
point in space and time (x1, t1), as well as the error
covariance for any arbitrary pair of points (x1, t1)
and (x2, t2). It is a powerful approach, but matrix
decomposition puts an upper limit to the size of
MQ.

2. Auto-regressive filtering. Let Ct be the M × M
error covariance matrix in space at time t , and µt be
a vector of dimension M holding the mean error at
locations x for the same time, t . Add correlation in
time using temporal filtering techniques, i.e. we first
generate δt,i for given time t independently of δ of
other time steps by means of the LU decomposition
algorithm, and then impose temporal correlation
by filtering δ using, for instance, a second-order
autoregressive model AR(2) (Priestley, 1981). For
using AR(2) we need to estimate two parameters,
the lag-1 and lag-2 error correlations in time,
r1 and r2. As solution 1, this approach allows
full flexibility for specifying the covariances in
space. To model temporal correlation, however, it
uses for all locations the same two parameters, r1
and r2. With this solution the perturbation fields
can be calculated step-by-step, which simplifies
implementation in a real-time application. A similar
application of an autoregressive AR(2) model was
proposed by Seed et al. (1999) and Seed (2003).

We start by assuming temporal correlation of residual
errors to be invariant in space, and adopt the second
solution from above to add time, i.e. AR(2) auto-
regressive filtering. For simplicity, we further assume µ,
C, r1 and r2 to be invariant in time. These parameters can
all be calculated once offline and then saved in look-up
tables. Given these assumptions, µ and C are defined as

µk ≡ E
{
εxk

}
,

Ckk ≡ Var
{
εxk

}
,

Ckl ≡ Cov
{
εxk

, εxl

}
,

(5)

where εxk
is the residual error at location xk , and

E {}, Var {} and Cov {} are the expectation, variance
and covariance operators, respectively. Note that the
motivation for the above assumptions is of practical rather
than theoretical nature: they simplify both coding of the
prototype implementation and notation in the remaining
part of the paper. The method can easily be extended such
that the model parameters also depend on time t .

Table I summarises the two main steps of the ensemble
generator. The steps are discussed in more detail in the
following two sections.

4. Estimation of space–time structure of errors

There are two fundamentally different approaches to
characterize the mean µ and covariance matrix C of
residual errors εt in radar precipitation estimates.

1. Comparison with ground reference. µ and C are
determined by comparing radar precipitation esti-
mates Rt with independent ground reference, such
as rain-gauge measurements Gt . This approach is
relatively simple and fast, and provides a direct
estimate of the overall uncertainty in Rt of the
operational radar product. The resulting µ and C
may, however, overestimate the real uncertainty εt ,
as the disagreement between Rt and Gt includes
also rain-gauge and representativeness errors. A
comprehensive analysis of radar uncertainties based
on comparison against rain-gauge measurements
can be found in Ciach et al. (2007) and ref-
erences therein. To underline the fact that this
approach directly gives an estimate of the total
uncertainty in the operational radar product, Ciach
et al. (2007) introduce the term ‘product-error-
driven uncertainty model’.

2. Systematic analysis of error sources. First, all rel-
evant sources of residual error in Rt are identified
and quantified individually by combining measure-
ment theory, physical concepts, sample data and
statistical simulation (e.g. Sempere-Torres et al.,
1994; Bellon et al., 2005; Lee and Zawadzki, 2005;
Lee et al., 2007; Berenguer and Zawadzki, 2008).
Second, the results of the individual error analyses
are superimposed in order to determine the overall
µ and C. The superposition is not trivial, because
the different types of residual errors are expected
to be correlated in a complex manner.

Both approaches give only approximate estimates of
the real unknown µ and C. We opted for the first approach
for two reasons:
(i) in the study area in southern Switzerland there is a
dense and well-maintained rain-gauge network, and
(ii) in a mountainous region such as the European Alps,
several sources of error in radar precipitation estimates
need to be considered, and estimation and superposition
of individual error covariance matrices is not obvious.
Thus we are more likely to get a sensible estimate of µ
and C by opting for the first solution and comparing Rt

against Gt .
Principally µ, C, r1 and r2 can be updated in real time,

if corresponding information is available. For instance,
if the uncertainty in radar estimates exhibits significant
dependence on the height of the melting layer and beam
propagation, the model parameters can be conditioned to
the vertical temperature and humidity profile.

In the absence of ground reference in the area under
consideration, one needs a physical-statistical model
(e.g. Gabella et al., 2001) that allows us to estimate
the radar error structure for any given location using
predictors such as distance from the radar, radar visibility,
terrain height, and height of melting layer. A systematic
analysis of error sources mentioned above would help
substantially to construct the physical-statistical error
model. One difficulty lies in the fact that we would need
a model of the structure of residual errors.
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Table I. Ensemble generator.

Step 1: Estimate space–time structure of errors
Estimate the error mean vector µ and error covariance matrix C for all M locations x in the study area !.
The dimension of µ is M , and the dimension of C is M × M .
Decompose C into C = LLT using Cholesky factorisation or SVD.
Estimate the temporal lag-1 and lag-2 error correlation r1 and r2, averaged over the whole domain !.

Step 2: Generate perturbations and build ensemble
Generate the perturbations δt,i using Gaussian random white noise, the LU decomposition algorithm with µ and L,
and auto-regressive AR(2) filtering with the two parameters r1 and r2.
Add δt,i to deterministic radar precipitation field Rt , and build N-member ensemble "t,i by repeating step 2
for all ensemble members i = 1, . . . , N .

Here, µ, C, r1 and r2 are initialised once using
radar–rain-gauge data from the past and are then kept
constant. By doing this, they represent the error character-
istics averaged over the selected calibration dataset, and
decomposition of C needs to be done only once offline.
We thus assume uncertainties to be independent of pre-
cipitation rates.

εt,xk
, µk and Ckl can be estimated at the rain-gauge

locations using

ε̂t,xk
= 10 log(Gt,xk

/Rt,xk
),

µ̂k = 1
∑Q

t=1 ωt,xk

Q∑

t=1

ωt,xk
ε̂t,xk

,

Ĉkk = 1
∑Q

t=1 ω2
t,xk

Q∑

t=1

ω2
t,xk

(̂εt,xk
− µ̂k)

2,

Ĉkl =
∑Q

t=1ωt,xk
ωt,xl

(̂εt,xk
− µ̂k)(̂ε t,xl

− µ̂l)∑Q
t=1 ωt,xk

ωt,xl

,

(6)

where ωt,xk
is a weight for time t and rain-gauge location

xk , and Q is the number of time steps. The hat over ε, µ
and C denotes that these equations are estimators.

Samples with either G = 0 (false alarms) or R = 0
(misses) are excluded from the dataset. This is correct,
as the task of the ensemble generator is to model
uncertainty in radar observations of existing precipitation
areas. Misses and false alarms have quite different error
structures, and including them in the dataset would make
little sense both from a conceptual and a statistical point
of view. Fortunately misses and false alarms are rare
during convective summer rainfall in Switzerland.

Weighting is necessary to avoid irrelevant samples
erroneously having large influence. By setting the weight
to the observed precipitation, ωt,xk

= Rt,xk
, we force the

expected value of the ensemble for a given location to
be equal to the original unperturbed component at that
location. That is, the ensemble generator is bias-free in
terms of water amounts. Strictly speaking, this presumes
that εt,xk

is Gaussian, or was transformed to Gaussian
using the normal score transform.

Figure 2 depicts cumulative distribution of residual
errors ε̂ for hourly precipitation in southern Switzerland.
Each ε̂t,xk

(plotted on the abscissa) is weighted by the
corresponding Rt,xk

(see ordinate). Gaussian distributions
are also shown. It can be seen that ε̂t,xk

weighted by

Figure 2. Residual errors in radar precipitation estimates expressed in
dB and weighted by observed precipitation (thick solid s-shaped line)
roughly follow a Gaussian distribution (thin s-shaped curves). Data
shown here are radar–rain-gauge agreement for hourly accumulations
from a 6-month calibration dataset. The two thin s-shaped lines are
Gaussian distributions using different fitting techniques: the solid line
is a Gauss fit using classical mean and standard deviation, whereas the
dashed line is a Gauss fit using the median and the distance between the
16% and 84% percentiles. This type of error diagram was introduced
by Joss and Waldvogel (1990) and further refined by Germann et al.

(2006b).

Rt,xk
can be approximated by a Gaussian function. For

precise reproduction of the observed error distribution,
it is recommended to apply the normal score transform
mentioned previously. Equation (6) needs to be extended
if normal score transform is applied.

Equation (6) provides estimates of µ̂k and Ĉkl at rain-
gauge locations only. In order to calculate perturbations
δ for all M locations in ! we need to interpolate between
the rain-gauge locations. Interpolation can be done either
at the level of µ̂ and Ĉ, or alternatively at the level
of δ after invoking the LU decomposition algorithm to
generate the perturbations at the rain-gauge locations. We
tested both solutions. Interpolation is done linearly using
the Delaunay triangulation.

If some of the rain-gauges do not provide the tempo-
ral resolution desired for the ensemble, the corresponding
error variances and covariances need to be scaled down.
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This was the case when implementing the prototype gen-
erator in southern Switzerland. The temporal resolution of
the climate rain-gauge network used to study the depen-
dence of ε on location is 24 hours, whereas the desired
temporal resolution of the ensemble is 1 hour. Measure-
ments from eight automatic rain-gauges with 10-minute
resolution were used to investigate how variances and
covariances increase with increasing temporal resolution
in that region. In the 6-month calibration dataset used
later for the prototype implementation, variances and
covariances scale approximately linearly if plotted against
the logarithm of temporal resolution.

The high-resolution data from the automatic rain-
gauges were also used to estimate temporal lag-1 and
lag-2 error correlation averaged over domain !. Here we
provide the estimators for r1 and r2 for one single rain-
gauge location xk . The equations can be easily extended
to obtain domain-average estimates.

r̂1 =
∑Q−1

t=1 ωt,xk
ωt+1,xk

(̂εt,xk
−µ̂k)(̂ε t+1,xk

−µ̂k)

Ĉkk

∑Q−1
t=1 ωt,xk

ωt+1,xk

r̂2 =
∑Q−2

t=1 ωt,xk
ωt+2,xk

(̂εt,xk
−µ̂k)(̂ε t+2,xk

−µ̂k)

Ĉkk

∑Q−2
t=1 ωt,xk

ωt+2,xk

.

(7)

These two parameters are required for AR(2) filtering to
impose the correct temporal correlation on δt,i .

5. Generation of perturbation fields

There are different techniques to produce correlated
Gaussian fields, see e.g. the chapter on assessment of
spatial uncertainty in Goovaerts (1997), or the discussion
of multivariate distributions in Johnson (1987) and Rip-
ley (1987). The most versatile technique for the given
application is the LU decomposition algorithm briefly
explained in section 3. It offers full flexibility regarding
space–time dependence of errors, and allows for con-
ditioning (Goovaerts, 1997) if we wish to incorporate
additional external information. The possibility for condi-
tioning is attractive but is not part of this first-generation
ensemble generator. It will be explored in future work.

As the name says, the LU decomposition algorithm
starts by decomposing the symmetric positive definite
covariance matrix into a lower-triangular and an upper-
triangular matrix

C = LLT (8)

This can be done with the Cholesky algorithm or SVD
(Press et al. 1992). Cholesky is faster but may be
numerically unstable if the matrix is near to singular.
In order to increase numerical stability, we recommend
use of the modified Cholesky algorithm proposed by Gill
and Murray in 1974 (Gill et al., 1981). The advantages
of SVD are high stability and the possibility for matrix
reduction by eliminating negligibly small singular values
(e.g. Wesson and Pegram, 2004). Both modified Cholesky
and SVD including matrix reduction have been tested.

The LU decomposition algorithm is based on pre-
multiplying a Gaussian random vector yt,i by L and
adding µ:

δt,i = µ + Lyt,i (9)

yt,i is a zero-mean and unit-variance Gaussian random
vector of dimension M

yt,i = NM(0, I) (10)

and can be generated by M successive calls to a univariate
normal generator. The resulting δt,i is a multivariate
normal vector distributed NM(µ, C). Matrix reduction in
SVD reduces L to that part of the covariance structure
that is significant. This improves speed and prevents
introduction of spurious noise in Equation (9).

We then use AR(2) filtering (Priestley, 1981) to impose
the desired temporal structure. The AR(2) model calcu-
lates the perturbation field for time step t by combining
Lyt,i with the AR(2) filtered perturbation fields of the
previous two time steps t − 1 and t − 2. The procedure
is iterative and µ is added only at the end. Combining
AR(2) filtering with Equation (9) yields

δ′
t,i = Lyt,i − a1δ

′
t−1,i − a2δ

′
t−2,i , (11)

δt,i = µ + vδ′
t,i , (12)

with the AR(2) model parameters a1 and a2 estimated
by means of the Yule-Walker equations (Priestley, 1981),
and v, the square root of the AR(2) variance rescaling
factor:

a1 = r1
r2 − 1
1 − r2

1

a2 =
r2

1 − r2

1 − r2
1

v =
[

1 + a2

(1 − a2)(1 − a1 + a2)(1 + a1 + a2)

]−0.5

.

(13)

Note that AR(2) filtering changes the variance by a linear
factor that depends on the model parameters a1 and a2.
That is why we need to rescale the perturbations δ′

t,i with
the scaling factor v in Equation (12). The ensemble "t,i

is built by evaluating Equations (10), (11) and (12) for
all ensemble members i, and adding the resulting δt,i to
Rt using Equation (4).

Equations (4), (6), (7), (8), (10), (11), (12) and (13)
constitute the mathematical core of the ensemble gener-
ator. If space–time correlations of residual radar uncer-
tainties are assumed to be constant, Equations (6), (7),
(8) and (13) can be evaluated once offline and saved as
look-up tables. This helps to save computing time in a
real-time implementation.

6. Implementation

The ensemble generator was implemented, and coupled
with a semi-distributed rainfall–runoff model as part of
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the Mesoscale Alpine Programme (MAP) hydrometeoro-
logical forecast demonstration project MAP D-PHASE
(Zappa et al., 2008) and the European concerted
research action on the propagation of uncertainty in
advanced hydrometeorological forecast systems (COST-
731; http://cost731.bafg.de). This section briefly describes
the implementation and first results, and demonstrates the
applicability of the present approach to radar–hydrology
coupling in a mountainous region.

The experiment is running in a steep Alpine
2800 km2 area enclosing the rivers Maggia, Verza-
sca, Ticino and Moesa (Figures 3 and 4). The
ensemble of precipitation field time series is fed
in real time into the semi-distributed precipita-
tion–runoff–evapotranspiration–hydrological response
unit model PREVAH. For more information on PRE-
VAH, the reader is referred to Zappa et al. (2003),
Wöhling et al. (2006), Ranzi et al. (2007) and Viviroli
et al. (2007).

The operational MeteoSwiss radar precipitation prod-
uct with a resolution of 1 km and 5 min is taken as the
deterministic component Rt . Germann et al. (2006b) pro-
vides a detailed description. Perturbations δt,i are gen-
erated at a resolution of 2 km and 1 h. Before evaluating
Equation (4), Rt is aggregated in time and space such that
it matches the resolution of δt,i . The number of ensemble
members N is set to 25, which is sufficiently large for a
proof of concept. The sensitivity of runoff modelling to
ensemble size will be studied later. In order to simplify
description, coding and verification of this experiment,
we start by assuming µ, C, a1, a2 and v to be invariant
in time, as discussed at the end of section 3. Thus, Equa-
tions (6), (7), (8) and (13) need to be evaluated only once

Figure 3. Test catchment ‘Maggia–Verzasca–Ticino–Moesa’ used for
prototype implementation of radar ensemble runoff modelling. Three-
and four-digit numbers are heights (m amsl) of lakes and mountain
peaks. Square boxes indicate location of rain-gauges used to estimate
mean and covariances of radar errors. The black star shows the location
of the river-gauge ‘Lavertezzo’. Figure 4 shows a vertical cross-section

along the thick dashed line.

Figure 4. Vertical cross-section of radar scan geometry over the test
catchment ‘Maggia–Verzasca–Ticino–Moesa’. The full radar volume
consisting of 20 elevation sweeps is updated every 5 minutes (Joss
and Lee, 1995). The horizontal white line indicates the location of the
test catchment. The cross-section clearly reveals severe shielding of the
radar beam by mountains and increasing pulse volume with increasing
distance from the radar antenna. As a consequence of beam blocking
and increasing pulse volume, we get a strong dependence of radar errors
on geographic location. The resulting spatial structure of radar errors

needs to be taken into account in the ensemble generator.

offline. The equations that remain to be executed in real
time are Equations (10), (11), (12) and (4).

µ and C are estimated for all M 2 km pixels (white
crosses in Figure 3) by interpolating the mean, variances
and covariances of εt,xk

(Equation (6)) of a 6-month
calibration dataset at 31 rain-gauge locations in the test
area (square boxes in Figure 3). C is decomposed into
C = LLT using SVD. Plotting the resulting singular
values shows that only about 29 are significant, whereas
the remaining M − 29 are negligibly small. This suggests

Figure 5. Temporal decorrelation of residual errors in radar
precipitaton estimates averaged over the test catchment ‘Mag-
gia–Verzasca–Ticino–Moesa’. Mean correlations are 0.34 and 0.18 for
1-hour and 2-hour time lags, respectively. These two numbers are used
to estimate the parameters for AR(2) filtering in the ensemble generator
(Equation (13)). The dotted line shows the temporal decorrelation of
the corresponding AR(2) model. The 14th and 86th percentiles (dashed)
give some idea of the spatial variability of temporal decorrelation within

the catchment.
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that a large part of the matrix L can be set to 0 by matrix
reduction (Wesson and Pegram, 2004), which speeds up
computation time significantly. The number 29 is not
surprising, as this is a little less than the number of rain-
gauges that were used to estimate C in the first place.
In fact, as pointed out in section 4, one can alternatively
evaluate µ, C L, and δ for the small number of rain-
gauge locations only, and determine the perturbations for
all M pixels in a second step by interpolation using δ
at the rain-gauge locations. The results are virtually the
same; the choice depends on practical aspects regarding
coding. The solution with the dimension of C being the
number of rain-gauge locations will be the preferred way
when we start to vary C in time.

The AR(2) parameters a1, a2 and v are estimated from
the temporal lag-1 and lag-2 correlation of radar–rain-
gauge agreement in the catchment (Equations (7) and
(13); Figure 5). In the area under consideration, spatial
and temporal decorrelation length, defined as the lag at
which correlation drops below 1/e, is roughly 1 hour
(Figure 5), and a few tens of km (between 10 and
40) depending on location and direction. Figure 6 gives
some idea of how δ changes in space, time and between
different ensemble members: it shows δt,i for three
consecutive time steps and three different randomly
chosen ensemble members.

A cross-validation experiment leaving out one rain-
gauge at a time was performed to assess the uncertainty in
our estimates of C given by the limited spatial resolution
of the rain-gauge network. For most rain-gauges, the
cross-validation difference is three to ten times smaller
than the variance at that location. Largest uncertainty
was found in regions with strongest radar beam shielding,
that is towards the northnortheast. This is not surprising,
as beam shielding results in strong spatial (azimuthal)
gradients in the radar error structure. Average spacing
between rain-gauges is 10 km, which is at the lower end
of values found for the spatial decorrelation length of ε.
We can conclude that the network with 31 rain-gauges is
sufficiently dense to capture the main spatial features of
the radar error structure.

The expected value of "t,xk,i for a given location xk is
equal to the determinstic component at that location Rt,xk

;
i.e. the ensemble generator is bias-free in terms of precip-
itation amounts (discussion of Equation (6) in section 4).
This can be verified numerically by evaluating E

{
"t,xk,i

}

for large N . Similarly, comparing the covariance matrix C
on input with the covariances calculated experimentally
from several thousands of simulated perturbation fields
confirms that the present ensemble generator correctly
reproduces the desired covariance structure of uncertain-
ties in radar precipitation estimates.

Figure 6. Example of perturbation field δt,i for three time steps (columns) and three randomly chosen ensemble members (rows).

Copyright c© 2009 Royal Meteorological Society Q. J. R. Meteorol. Soc. 135: 445–456 (2009)
DOI: 10.1002/qj



454 U. GERMANN ET AL.

The coupled radar ensemble runoff system is running
automatically and being updated in real time every hour
since May 2007. Figure 7 depicts an example of observed
versus modelled runoff at the river-gauge at Lavertezzo
(Verzasca river) for a major flood event in September
2008.

7. Discussion

The paper presents a novel probabilistic approach to
represent the uncertainty in radar precipitation fields
and to examine uncertainty propagation in a coupled
radar–hydrological forecast system. The methodology
was designed for a mountainous region with large uncer-
tainties in radar precipitation estimates and strong depen-
dence of uncertainty on geographic location. It assumes
radar errors to be correlated Gaussian if expressed as fac-
tors, a reasonable assumption given the fact that most
radar errors are actually multiplicative. The model allows
full representation of spatial dependence of error mean
and covariances and considers error correlation in space
and time.

A real-time experiment coupling the radar ensemble
with a rainfall runoff model for a 2800 km2 area in
the southern Alps demonstrates the applicability of the
method for a steep mountainous context. It is one of the
very first experiments of this type. Figure 7 shows an
example of the output at the end of the chain for the
Verzasca catchment. For this steep 186 km2 catchment the
time between a precipitation impulse and the main runoff
response at the outlet is of the order of 1 to 2 hours.
Hence, even if no precipitation forecast is available,
coupling radar observations with a runoff model results
in 1–2 hours lead time for predicting a flash flood peak.

A preliminary quantitative evaluation of modelled
versus observed runoff was performed for the Pincascia
river, a 44 km2 sub-catchment of the Verzasca river,
(Table II). The evaluation uses runoff data from the first
year of the real-time experiment and is based on bias and
scatter statistics as introduced in Germann et al. (2006b).
The results allow three important conclusions:

1. Accuracy of radar-driven runoff is comparable to
that of rain-gauge-driven runoff. As this result
represents average conditions for all seasons, we

Figure 7. Lower panel: ensemble hourly runoff nowcasting of a major flood event in the Verzasca catchment at the Lavertezzo river-gauge
(186 km2) in September 2008. The thick solid line indicates runoff observed at Lavertezzo. Thin lines are modelled runoff forced by interpolated
rain-gauge measurements (solid) and deterministic radar estimates (dashed). Grey shading shows modelled runoff forced by probabilistic radar
estimates (radar ensemble). Upper panel: hourly precipitation amounts from both radar and rain-gauge datasets for the same period. Plots of this

type have been routinely generated in real time since May 2007.
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Table II. Results from the first year of the real-time radar
ensemble runoff modelling experiment.

Pincascia river Radar Radar Rain-gauges
deterministic ensemble deterministic

Rt "t,i Gt

Bias (%) –16 –16 –29
Scatter ( dB) 2.1 2.2 2.0

Bias and scatter are evaluated for modelled versus
observed runoff.

expect radar to outperform rain-gauges for convec-
tive situations with strong spatial rainfall variabil-
ity. This is a remarkable result considering, on the
one hand, the difficulties in radar precipitation esti-
mation in a mountainous region and, on the other
hand, the relatively dense automatic rain-gauge net-
work in the area under consideration.

2. The scatter between observed runoff and runoff
driven by the radar ensemble ("t,i) is only slightly
larger than the scatter between observed runoff
and runoff driven by the deterministic radar field
(Rt ). That means, in terms of runoff, the ensemble
generator does not overstate the uncertainty that is
already present in the deterministic component.

3. "t,i has same bias as Rt . This confirms that the
presented generator is bias-free in terms of water
amounts (discussion of Equation 6 in section 4).

The probabilistic ensemble approach opens up new
possibilities to examine the propagation of uncertainty in
advanced hydrometeorological forecast systems. It allows
us to evaluate the sensitivity of runoff to uncertainties in
the radar precipitation field on input, and to represent the
final uncertainty at the end of the chain in an easy-to-
understand format.

Future work will include an extensive hydrological ver-
ification of the results of the real-time implementation,
and refinements of the ensemble generator. For instance,
we would like to stratify the error structure and make µ
and C conditional to additional external information, such
as the height of the melting layer or orographic enhance-
ment. Ciach et al. (2007) show dependence of errors on
precipitation expressed in mm. By stratifying errors using
physical factors mentioned above, the dependence on pre-
cipitation rates may already be captured. Another future
refinement of the generator deals with conservation of
variance at different scales. In the present implementa-
tion, the variance of the ensemble "t,i is greater than
that of the observed field Rt due to the variance that is
added by δt,i . From a practical point of view, however,
this seems to be of little importance, as shown by the pre-
liminary quantitative evaluation discussed above. Finally,
we plan to relax the restriction of temporal correlation
being invariant in space by applying also for time the
LU decomposition algorithm successfully implemented
for space.
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