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Real-Gas Effects on Mean Flow and Temporal
Stability of Binary-Species Mixing Layers

Nora Okong’o¤ and Josette Bellan†
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Real-gas effects on the mean �ow and inviscid stability of temporal mixing layers are examined for supercrit-

ical heptane/nitrogen and oxygen/hydrogen mixtures. The analysis is based on the compressible Navier–Stokes

equations for conservation of mass, momentum, total energy, and species mass, with heat and species-mass �uxes

derived from �uctuation-dissipation theory and incorporating Soret and Dufour effects. An approximate form

of the equations is used to obtain a system of similarity equations for the streamwise velocity, the temperature,

and the mass fraction. The similarity pro�les show important real-gas nonideal-mixture effects, particularly for

the temperature, in departing from the incompressible error-function similarity solution. Realistic Schmidt and

Prandtl numbers were found to be important to the similarity pro�les. A linear, inviscid stability analysis is then

performed using the similarity pro�le, as well as analytical error-function pro�les, as its basic �ow. The stability

analysis shows that the similarity pro�le has larger growth rates at a given wavelength and a shorter more unstable

wavelength than the error-function pro�les and than an incompressible �ow. The similarity pro�le also has a larger

range of unstable wavelengths than the error-function pro�les.

I. Introduction

S UPERCRITICAL �uids are of great interest in extraction pro-
cessesas well as in propulsiondevicessuchas liquidrocketsand

advanced gas-turbine and diesel engines. We here de�ne a binary
�uid mixture to be in a supercritical state when at a thermodynamic
pressure p or temperature T exceeding the critical (subscript c)
value (pc or Tc) (Ref. 1). This de�nition is consistentwith that for a
single-species�uid, where in the supercritical state only one phase
can exist.2 Sometimes the supercritical state is de�ned to be in the
region where both the pressureand temperatureare above their crit-
ical values3; however, there are many subtleties to the de�nition of
the supercritical region. For a single-species �uid, pc and Tc are
the maximum pressure and temperature at which two phases (liq-
uid and vapor) may exist,1;2 and therefore, the single-phase region
is well delineated (pr ´ p=pc > 1 or Tr ´ T=Tc > 1). The possible
complications of retrograde condensation near the critical point1;2

are not taken into account in this characterization. However, a bi-
nary mixture may have one or several critical loci, as shown by
Prausnitz et al.,1 who presented at least six types or classes of bi-
nary mixtures, with �ve having multiple critical loci. To avoid the
confusion that may be introduced for such mixtures having several
critical loci, these types of mixtures are not considered; instead the
focus is on simple mixtures, that is, those having a single critical
locus. The supercriticalregion is here de�ned as that for which only
a single phase is possible and one in which the transport properties
are generally pressure as well as temperature dependent. Because
the criterion of pr > 1 or Tr > 1 represents the thermodynamic re-
gion for which only a single phase is possible, it corresponds to our
de�nition of the supercritical region. This de�nition is consistent
with the utilization in the present study of a Peng–Robinson-type
real-gas equation of state. In the practical situations motivating the
present study, �uid enters a chamber that is pressurized above the
criticalpressureof the injected�uid. The injected�uid then mixes in
a highly turbulent manner with the chamber �uid and disintegrates
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into smaller parcels, which participate in subsequent ignition and
combustion.Clearly, �uid disintegrationand turbulent mixing play
a crucial role in determining the size and compositionof the parcels
of �uid and, consequently, the ef�ciency of combustion.

Many aspects of the �uid dynamics of interest can be examined
by considering the turbulent mixing layer. Generally, the mixing
layer is the region between two �uid streams of different veloc-
ity, temperature, and composition. For binary mixing layers, each
stream contains a pure species; for incompressible �ows, typically
only the�uid streamvelocitiesdiffer.A usefulmethodologyto study
turbulent �ows is direct numerical simulation (DNS) in which all
relevant scales are resolved. The high computational demands of
DNS presently limit it to transitionalReynolds numbers Re in geo-
metricallysimple con�gurations.One such con�gurationis the tem-
poral mixing layer, which embodies the shear dynamics essential to
turbulence, while simultaneously bene�ting from the simplicity of
periodicboundariesin the streamwise and spanwise directions.The
temporal mixing layer is in important ways akin to the physically
realizable spatial mixing layer, yet it allows simulations on a much
smaller physical domain. It is roughly equivalent to following a
small number of coherent structures as they grow in time, but does
not exhibit the stream asymmetry of the spatial mixing layer. For
temporal mixing layer simulations, judicious speci�cation of the
initial conditions, in particular, the imposition of perturbations at
speci�ed wavelengths on the given mean �ow, may accelerate the
attainment of a transitional state.

Moser and Rogers4 have done extensive work on incompressible
temporal mixing layers, particularlyinvestigatingthe form and am-
plitude of spanwise and streamwise perturbations.In their work, the
wavelengthused for the spanwise perturbationswas the most unsta-
ble wavelength from a linear inviscid stability analysis based on an
error functionmean velocitypro�le, which is the similarity solution
for theviscous incompressiblelayer.Metcalfeet al.5 haveperformed
similar simulations,but used hyperbolictangentmean pro�les, with
perturbations at the most unstable wavelength. For incompressible
�ow, Rayleigh’s in�ection point theorem (see Drazin and Reid6)
shows that a necessary condition for inviscid instability is that the
velocity pro�le has at least one in�ection point. Both the erf and the
tanh pro�les satisfy this condition. The justi�cation for using the
most unstable wavelength in turbulent�ow simulations is that it has
been observed to dominate in many experimental situations, that is,
spatial mixing layers, and that in the temporal mixing layer it would
have the fastest growth rate, hence, reach the transitional Re val-
ues fastest. Furthermore, at the Re values under consideration, the
development of the large structures will be governed by inviscid
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Table 1 Pure species properties

Species m, g/mol Tc, K pc , MPa vc,
a cm3/mol

H2 2.016 33.0 1.284 64.3
N2 28.013 126.3 3.399 89.8
O2 31.999 154.6 5.043 73.4
C7H16 100.205 540.2 2.74 432.0

aMolar volume at the critical point.

instabilities. Therefore, a possible application of similarity and
stability analyses is in determining mean �ow and unstable excita-
tion wavelengths, respectively,for DNS of mixing layers. However,
a more fundamental relevance of similarity and stability analyses
is in illuminating the effects of various �ow properties by studying
them in a simpli�ed context, without turbulence.

In the realm of compressible �ows, linear inviscid spatial stabil-
ity analyses have been performed by Jackson and Grosch,7;8 Shin
and Ferziger,9 Lu and Lele,10 and Kozusko et al.11 These analyses
have shown that the growth rates are sensitive to freestream factors
such as density ratio, species combination, and Mach number, as
well as to the mean pro�le. Jackson and Grosch showed multiple
modes for reacting �ows7 and quanti�ed the effect of various mean
�ow pro�les8 (speci�cally tanh, Lock, and Sutherland models) on
the stability characteristics, thereby formally justifying the use of
the tanh pro�le instead of the similarity pro�le (although they did
not use the erf pro�le in their studies). Shin and Ferziger9 derived
necessary conditions for instability and showed that, based on the
mean temperature pro�le for reacting �ow, more than one instabil-
ity mode may exist. The results of Kozusko et al.11 showed that a
signi�cant effect from the speci�cation of the transport properties
(viscosity, thermal conductivity, diffusivity) can occur; this effect
enters through the mean pro�les, which are based on viscous simi-
larity solutions, because the stability analysis itself is inviscid and
does not involve these properties.

The compressibleinvestigationslisted were all devoted to perfect
gases (PG) and ideal mixtures. However, our interest is in real-gas
nonideal (RGNI) mixtures, such as those found in liquid rockets
and gas-turbine and diesel engines. For high-pressure conditions,
a real-gas equation of state (EOS) is essential to describe the mix-
ture thermodynamics,as is the enlarged transport matrix containing
Soret and Dufour effects. Moreover, consideration must be given
to the possibly large density strati�cation for binary mixing lay-
ers at high pressures, and to the Schmidt and Prandtl number de-
pendence on the thermodynamic state. In this paper, we present
similarity solutions and linear stability analyses of RGNI temporal
mixing layers. We �rst display the conservation equations suitable
for three-dimensionalsimulations of RGNI temporal mixing layers
and then derive approximate equations to compute similarity so-
lutions. These similarity solutions are compared to the erf pro�le,
and both pro�le types are used as mean �ow pro�les in the stabil-
ity analysis. From linear inviscid stability analyses, we determine
the unstable compressible wavelengths, which are compared with
the incompressiblemost unstablewavelengths.All resultspresented
herein are for supercritical heptane/nitrogen and oxygen/hydrogen
mixtures; the critical properties of these species are presented
in Table 1.

II. Governing Equations

The governing equations for the situation of interest have pre-
viously been published for heptane/nitrogen (Refs. 12–14) and
oxygen/hydrogen (Ref. 15), where they were used for DNS of
temporal transitional mixing layers. They are brie�y summa-
rized here to establish the context for the similarity and stability
analyses.

A. Conservation Equations

The conservationequationsoriginatefromKeizer’s16 �uctuation-
dissipation (FD) theory, which is consistent with nonequilibrium
thermodynamics, converges to kinetic theory in the low-pressure
limit, and relates �uxes and forces from �rst principles. For a non-

reacting mixture, the conservationequations are

@½

@t
C @.½u j /

@x j

D 0 (1)

@.½u i /

@t
C @.½u i u j C p±i j /

@x j

D @¿i j

@x j

(2)

@.½Y®/

@t
C @.½Y® u j /

@x j

D ¡ @ j® j

@x j

; ® D 1; N (3)

@.½et /

@t
C @[.½et C p/u j ]

@x j

D ¡ @qIK j

@x j

C @¿i j ui

@x j

(4)

where x is a Cartesian coordinate, t is the time, ½ is the density,
u i is the i th component of the velocity, et D e C ui ui =2 is the total
energy, that is, internal energy e plus kinetic energy, Y® is the mass
fraction of species ®, and j® is its mass �ux vector

N
X

® D 1

Y® D 1;

N
X

® D 1

j® j D 0

for a mixture of N species. In the binary (N D 2) mixing layer
con�guration, the lighter (molar weight) species (subscript 1) will
be in the upper stream, and the other species (subscript2) will be in
the lower stream. (See Table 1 for the molar weights.) Furthermore,
qIK is the Irwing–Kirkwood (IK) form of the heat �ux vector (see
Sarman and Evans17 ), and ¿i j is the Newtonian viscous stress tensor

¿i j D ¹

³

@u i

@x j

C @u j

@xi

¡ 2

3

@uk

@xk

±i j

´

(5)

where ±i j is the Kronecker delta function, and ¹ is the mixture
viscosity that is in general a function of the thermodynamic state
variables. The mass �ux and heat �ux are given by

j2 j D ¡
µ

j 0
2 j

C .®IK ¡ ®h/Y2Y1

½ D

T

@T

@x j

¶

(6)

qIK j D ¡¸0
IK

@T

@x j

¡ ®IK Ru T
m

m2m1

j 0
2 j

(7)

j 0
2 j

D ½ D

µ

®D

@Y2

@x j

C Y2Y1

Ru T

m2m1

m

³

v;2

m2

¡ v;1

m1

´

@p

@ x j

¶

(8)

®h D 1

Ru T

m2m1

m

³

h ;2

m2

¡ h ;1

m1

´

(9)

The notation in Eqs. (6–9) is as follows: D is the binary diffusion
coef�cient, ®D is the mass diffusion factor, m® is the molar mass of
species ®,

m D
N

X

® D 1

m® X®

is the mixture molar mass where the molar fraction X® D mY®=m® ,
v;® D .@v=@ X® /T ;p;X¯ .¯ 6D ®/ is the partial molar volume, h ;® D
.@h=@ X®/T ;p;X¯ .¯ 6D ®/ is the partial molar enthalpy,

v D
N

X

® D 1

X® v;®

is the molar volume related to the density by v D m=½,

h D
N

X

® D 1

X®h ;®
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OKONG’O AND BELLAN 2431

Table 2 Transport properties for binary mixtures

System

Propertya C7H16 /N2 O2 /H2

Y2 C7H16 mass fraction O2 mass fraction
¹ D ¹R.T=TR/n n D 0:7 n D 0:75

Sc ´ ¹=.½®D D/ 1:5 ¡ Y2

¡

1:334¡ 0:668Y2 ¡ 0:186Y 2
2

¡ 0:268Y 6
2

¢

[1 C .88:6=T /1:5]

Pr ´ ¹Cp =.m¸/ 0:5Sc= exp.¡1:5Y2/ 1:335=T 0:1

®IK or ®BK ®IK D 0:1 (Ref. 18) ®BK D 0:2 (Refs. 20 and 21)
T range, K 500–1100 200–800
p range, atm 40–80 »100

aReference temperature TR D .T1 C T2/=2, T in Kelvin.

is the molar enthalpy, Ru is the universal gas constant, and ¸0
IK is a

thermal conductivityde�ned from the transport matrix through

¸0
IK D ¸ C X1 X2 ®IK®BK Ru½D=m (10)

with limp ! 0 ¸ D ¸KT as discussed by Harstad and Bellan,18 where
KT refers to kinetic theory. The transport coef�cients associated
with the Soret (in the molar �uxes) and the Dufour (in the heat �ux)
terms of the transport matrix are ®BK and ®IK , which are the two
forms of the thermal diffusion factor corresponding to the IK and
the Bearman–Kirkwood (BK) forms of the heat �ux (see Sarman
and Evans17). These transport coef�cients are characteristicof each
particular species pairs, and they obey the relationship18

®BK D ®IK ¡ ®h (11)

Additionally, limp ! 0 ®IK 6D ®KT and limp ! 0 ®BK D ®KT.

B. Equation of State

The pressure is calculated from the well-known Peng–Robinson
(PR) EOS, given T and the PR molar volume vPR, as

p D Ru T

.vPR ¡ bm/
¡ am

¡

v2
PR

C 2bm vPR ¡ b2
m

¢ (12)

where am and bm are functions of T and X® (details in Ref. 12).
At high pressures, vPR may differ signi�cantly from the actual mo-
lar volume v (Ref. 1). Both vPR and the volume shift vS D v ¡ vPR

can be calculated from the PR EOS given p, T , and X® (Ref. 19),
althoughfor theC7H16/N2 systemvS is negligible.All of the thermo-
dynamic properties of interest are calculated in a consistentmanner
from the same EOS12;14;15; these properties are the molar enthalpy
h, the constant pressure molar heat capacity C p D .@h=@T /p;X ,
and the speed of sound as D 1=

p
.½·s/. The isentropic compress-

ibility ·s is related to the expansivity ®v D .1=v/.@v=@T /p;X , and
the isothermal compressibility ·T D ¡.1=v/.@v=@p/T ;X through
·s D ·T ¡ vT ®2

v =Cp . The mass diffusion factor ®D is calculated
from the fugacity coef�cients ’® (which are related to the Gibbs
energy) using ®D D 1 C X®[@. ’®/=@ X®] and portrays departures
from mixture ideality, that is, ®D D 1.

C. Transport Coef�cients

For the heptane/nitrogen and oxygen/hydrogen mixtures to be
studied, the viscosity, the Schmidt number Sc, and the Prandtl num-
ber Pr , were calculatedfrom high-pressuresingle-speciestransport
properties using mixing rules, as by Harstad and Bellan.20 The cal-
culated values were correlated, as summarized in Table 2, and these
correlationswere thenused to computethe transportproperties¹, D,
and ¸. The thermaldiffusionfactors in Table 2 are from Refs. 18, 20,
and 21. The temperaturesT1 (upper,H2 or N2 , stream)and T2 (lower,
O2 or C7H16 , stream) correspond to the freestream temperatures for
mixing layer simulations.Typically,for DNS, the value of the refer-
ence viscosity ¹R is determined by the speci�ed value of the initial
Reynolds number Re0 [see Eq. (14)]. One of the thermal diffusion
factors is speci�ed, and then the other is calculated from Eq. (11).

D. Con�guration and Boundary Conditions

The temporally developing mixing layer con�guration is given
in Fig. 1 for C7H16/N2, as an example, showing the de�nition of
the streamwise, x1 , cross-stream, x2, and spanwise, x3, coordinates.

Fig. 1 Shear layer con�gu-

ration.

In the DNS of Refs. 14 and 15, the layer was not symmetric in
extent in the x2 direction, to accommodate the larger layer growth
in the lighter �uid (H2 or N2) side. The freestream density ½1 or ½2

is calculated for each pure species at its freestream temperature T1

or T2 and at the initial uniform pressure p0. The vorticity thickness
is de�ned as ±!.t/ D 1U0=.@ Nu1=@x2/max, where Nu1 is the (x1, x3)
planar average of the streamwise velocity and 1U0 D U1 ¡U2 is
the velocity difference across the layer.

For the present study, the freestream velocity is calculated using
the relations of Papamoschou and Roshko,22

U1 D 2Mc;0as1

£

1 C
¡

as1

¯

as2

¢
p

½1=½2

¤¡1
; U2 D ¡

p

½1=½2U1

(13)

which lead to a convective velocity Uc close to zero (Appendix A).
Here Mc;0 is the convective Mach number, whose speci�cation,
therefore, determines 1U0. Given the initial streamwise velocity
pro�le u1 basedonU1 andU2 , .@ Nu1=@x2/max and,hence,±!;0 ´ ±!.0/

are calculated;¹R is calculated from the speci�ed value of Re0 ,

Re0 D 0:5.½1 C ½2/1U0±!;0=¹R (14)

In the temporal mixing layer con�guration, periodic boundary
conditions are used for the streamwise and spanwise directions,
and nonre�ecting out�ow conditions are used in the cross-stream
direction.13 The choice of Uc ’ 0 results in the largest scale vorti-
cal structures being approximately stationary in the computational
domain.15

E. Primitive Form of Conservation Equations

Some of the analysis to bepresentedwill makeuse of theprimitive
form of Eqs. (1–4) for N D 2:

@½

@t
C ½

@u j

@x j

C u j

@½

@x j

D 0 (15)

@u i

@t
C u j

@u i

@x j

C 1

½

@p

@xi

D 1

½

@¿i j

@x j

(16)

@Y2

@t
C u j

@Y2

@x j

D ¡ 1

½

@ j2 j

@x j

(17)
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@T

@t
C u j

@T

@x j

C
³

·T

·s

¡ 1

´

1

®v

@u j

@x j

D m

½C p

·T

·s

2
X

® D 1

µ

h®

m®

C
³

·s

·T

¡ 1

´

Cp

m®v

³

½
v®

m®

´¶

@ j® j

@ x j

C m

½C p

·T

·s

µ

¡ @qIK j

@x j

C ¿i j

@u i

@x j

¶

(18)

@p

@t
C u j

@p

@x j

C 1

·s

@u j

@x j

D m®v

½C p·s

2
X

® D 1

µ

h®

m®

¡ C p

m®v

³

½
v®

m®

´¶

@ j® j

@x j

C m®v

½C p·s

µ

¡ @qIK j

@ x j

C ¿i j

@u i

@x j

¶

(19)

[Note that because only three thermodynamic variables are
needed to specify a thermodynamic state, one of the equations in
the set of Eqs. (15) and (17–19) is redundant.]

III. Similarity Solution

As discussed in the Introduction, mixing-layer DNS typically
uses erf or tanh pro�les as the basic �ow. Although the basic
�ow solution should satisfy the conservation equations with the
given boundary conditions, in many cases such a solution is not
available because of the complicated form of the equations. In
these situations,an approximatesolutionis consideredappropriate.6

One such approximate solution is the similarity solution, consis-
tent with experimental observations that, at large downstream dis-
tances, the spatial mixing layer becomes self-similar.23 The interest
here is to elucidate if and how the RGNI similarity pro�les dif-
fer from the incompressible or PG pro�les, in view of the impor-
tance of the thermodynamic variables and/or the Soret and Dufour
effects.

A. Similarity Equations

Similarity equations are here derived from Eqs. (16–19) by as-
suming one-dimensional �ow (all variables being functions of x2

and t only), null spanwise velocity, u3 D 0, and constant pres-
sure, then neglecting the convective terms and considering that
.@u1=@x2/

2 À . 4

3
/.@u2=@x2/

2 . This last assumption is made to al-
low the similarity transformation, with the expectation that, in the
cross-stream direction, the variation of u2 is considerably smaller
than that of u1 . We choose the similarity variable as ´ D t¡1=2x2 to
satisfy

@´

@ t
D f .´/

³

@´

@x2

´2

(20)

so that u1, T , and Y2 will be functions of ´ only. This leads to the
similarity equations for u1, T , and Y2:

1

½

d

d´

³

¹
du1

d´

´

C ´

2

du1

d´
D 0 (21)

1

½

d

d´

³

½D®D

dY2

d´
C ®BKY2Y1

½ D

T

dT

d´

´

C ´

2

dY2
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D 0 (22)

m

C p

µ

1

½

d

d´

³

¸0
IK

dT

d´
C ®IK RuT

m

m2m1

½D®D

dY2
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´¶

C m

C p

µ³

h ;2
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¡ h ;1
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´

´

2

dY2

d´
C ¹

½

³

du1

d´

´2¶

C ´

2

dT

d´
D 0 (23)

and a nonsimilar equation for u2 (from the pressure equation)

@u2

@´
D ¡ ´

2

1

t1=2

»

®v

dT

d´
C ½

³

v;2

m2

¡ v;1

m1

´

dY2

d´

¼

(24)

B. Results

The similarity equations are solved by using a fourth-order �-
nite difference relaxation method. The range of ´ depended on the
species system and temperature conditions. The solution was veri-
�ed to be independent of the resolution using 1601 and 3201 grid
points. For ease of comparison, all pro�les were scaled to have the
same vorticity thickness ±! ,

±! D 1U0

.@u1=@x2/max

D t 1=2 1U0

.du1=d´/max

(25)

in the physical coordinate (x2 D ´t 1=2 ), from which the time t was
computed.At the selected t, . 4

3
/.@u2=@x2/

2 is two orders of magni-

tude smaller than .@u1=@x2/2 for all simulations considered; there-
fore, the former term was justi�ably neglectedin the similarity anal-
ysis. Furthermore, the incompressiblesolution for u1 is proportional
to erf[

p
.½=¹/´=2] D erf[

p
.¼/x2=±!]:

u1.x2/ D u1.¡1/ C U
£

erf
¡p

¼x2

¯

±!

¢

C 1
¤

(26)

where the reference velocity is U D [u1.1/ ¡ u1.¡1/]=2 D
1U0=2.

In Figs. 2 and 3 the solutions u1 , Y2 , and T as functions of
´ and x2 are shown, obtained from simulations with Re0 D 800
and ±! D 6:859 £ 10¡3 m. The complete freestream conditions
are listed in Table 3 for heptane/nitrogen (HN) and for oxygen/
hydrogen (OH). Computations at Re0 D 400 revealed that the sim-
ilarity pro�les in the x2 coordinate are independent of Reynolds
number when all pro�les are rescaled to have the same vorticity
thickness. (The values Re0 D 400 and Re0 D 800 bracket the range
used in the DNS of Refs. 14 and 15). All simulations are performed
in a thermodynamic regime supercritical for the freestream �uid
(see criticalconditionsin Table 1). Because of the disparatespecies-
system thermodynamics, it was not possible to match the density
strati�cation of the HN and OH layers within the range of valid-
ity of their EOS and transport properties that also corresponds to
regimes of practical interest.The solutionsare compared eitherwith
erf[

p
.½=¹/´=2], or with erf[

p
.¼/x2=±!].

For HN (Fig. 2), we note that all pro�les have an in�ection point
and assume erf-like pro�les in both coordinates, but none of the
solutions conforms exactly to erf. When comparing the solutions
in both coordinates, we note that the erf is fuller than all of the
similarity solutions, with the u1 pro�le being closest to erf. The
T pro�le is always more relaxed than that of Y2 , consistent with
an effective Lewis number much larger than unity at supercritical
conditions (see Ref. 24). The nonmonotonicbehavior of T near the
heptane freestream region is due both to EOS effects and to Sc and
Pr variations. For OH (Fig. 3), the u1 and Y2 pro�les are similar
to those of HN in being close to, but more relaxed than, the erf.
However, the T pro�le is fuller than the erf and is also fuller than
the u1 and Y2 pro�les. Also, nonmonotonic behavior is observed
for the T pro�le near both the oxygen and hydrogen freestreams.
Becasue the hydrogen stream is close to a PG (Table 3 and Fig. 4),
the T behavior is a manifestation of the varying Sc and Pr .

To ascertain the degree of mixture nonideality and real-gas ef-
fects, Z and ®D for the conditions of Figs. 2 and 3 are plotted in
Fig. 4, where Z D p=.½T Ru=m/ is the compression factor portray-
ing departures from the PG behavior, that is, Z D 1. The OHa layer
is close to a perfect gas, ideal mixture (which would have ®D D 1),
whereas OHb and OHc are close to ideal mixtures but not so close
to being PG. The HNb and HNc layers show signi�cant departures
from mixture ideality and PG behavior,with Z as low as 0.5 and ®D

as low as 0.6.
This analysis shows that the real-gas EOS play an essential role

in depicting the physics of the problem. Also, realistic Sc and Pr

are important in determining the details of the similarity pro�les.
It should be kept in mind that real-gas effects involve not only the
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a)

c)

e)

b)

d)

f)

Fig. 2 Similarity pro�les of u1 (meters per second), T (degrees Kelvin), and Y2 for (a and b) HNa, (c and d) HNb, and (e and f) HNc vs
(a, c, and e) the similarity variable and (b, d, and f) the physical variables; Re0 = 800.

EOS, Sc and Pr , but also mixturenonidealityand Soret and Dufour
effects (thermal diffusion). All of these effects need to be retained
for thermodynamicconsistency in real-gas behavior. Because all of
these effects strongly interact, PG/ideal mixture simulations with
constant diffusion coef�cients, that is, constant Sc and Pr , are in-
appropriate for revealing the separate impact of the EOS, that is,
without accounting for transport properties.

IV. Three-Dimensional Inviscid Temporal
Stability Analysis

In conducting the temporal stability analysis of the supercritical
mixing layer, our interest is focusedon determining the most unsta-

ble wavelengthfor futuresimulationsof turbulentthree-dimensional
layers. When turbulence is achieved, the molecular diffusionalpro-
cesses are unimportant from the viewpoint of the large-scale dy-
namics, and the memory of the initial conditions is entirely lost. It
is well known that the stability characteristicsof �ows with a single
in�ection point are much less sensitive to the form of the basic �ow
than are other �ows (Ref. 6, p. 211), and therefore, mixing layers
use erf or tanh mean pro�les. This representationis also justi�ed by
the results of Shin and Ferziger,9 who studiedboth the temporal and
spatial stability of compressible�ows with and without heat release
and found that for nonreactingconditionsthe basic�ow has a single
in�ection point and that the effect of the initial velocity pro�le on
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a)

c)

e)

b)

d)

f)

Fig. 3 Similarity pro�les of u1 (meters per second), T (degrees Kelvin), and Y2 for (a and b) OHa, (c and d) OHb, and (e and f) OHc vs

(a, c, and e) the similarity variable and (b, d, and f) the physical variables; Re0 = 800.

the growth rate is very small. (The rates obtained with the similar-
ity solution were compared to those obtained with a tanh pro�le.)
Similar results were found (for the erf) by Lu and Lele10 from a spa-
tial stability analysis in the range of freestream temperature ratios
studied here.

Following well-accepted methods for studying �ow instabilities
(e.g., Refs. 6, 9, and 11), we conduct a linear, inviscid analysis
of the conservation equations. [Viscous effects are of higher order
because Re ¸ O.102/ and are, therefore,con�ned to the basic �ow.]
The present stability analysis uses, for the mean �ow, either the
similarity pro�les (Figs. 2 and 3) or erf pro�les. The interest is in
determiningwhether the stability characteristicsof RGNI layers are
similar to well-studied incompressibleor PG layers.

A. Equations

The point of departure for the temporal stability analysis is the
primitive form of the equations (Sec. II.E). The neglect of the vis-
cous terms uncouples Eq. (17) from the remaining equations (and,
therefore, the Y2 equation is not considered), and leaves the three-
dimensional inviscid equations for ½ , ui , and p. The perturbed �ow
variablesÃ D .½; ui ; p/ are givenby Ã D NÃ C 1Ã , where the over-
bar denotes the mean �ow variables,which are functionsof x2 only,
with the perturbationsgiven by

1Ã D OÃ.x2/ exp[i®.x1 cos Á C x3 sin Á ¡ ct/] (27)

where the caret denotes the perturbation amplitudes and, for tem-
poral analysis, ® is real and c is complex. The functional form
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Table 3 Mean �ow properties for mixing layers, Mc;0 = 0.4

Case HNa HNb HNc OHa OHb OHc

½2=½1 1 10.38 12.93 24.40 24.51 38.87
1U0 DU1 ¡ U2 144.406 305.09 330.73 932.73 683.90 645.53
j½2U2j=j½1U1 j 1 3.222 3.596 4.940 4.951 6.235
Stream 1 species C7H16 N2 N2 H2 H2 H2

Stream 2 species C7H16 C7H16 C7H16 O2 O2 O2

U1, m/s 72.203 232.83 258.77 775.71 568.97 556.30
U2, m/s ¡72.203 ¡72.268 ¡71.954 ¡157.02 ¡114.93 ¡89.225
as1 , m/s 180.508 582.59 644.714 1915.38 1381.95 1447.53
as2 , m/s 180.508 180.508 180.508 397.52 295.99 214.64

½1 , kg/m3 259.46 24.997 20.060 3.965 8.050 7.2526

½2 , kg/m3 259.46 259.46 259.46 96.764 197.32 281.93
T1 , K 600 800 1000 600 287 320
T2 , K 600 600 600 400 235 200
Stream 1 Y2 1 0 0 0 0 0
Stream 2 Y2 1 1 1 1 1 1
Z1 0.4707 1.0243 1.0211 1.0327 1.0634 1.0586
Z2 0.4707 0.4707 0.4707 1.0075 0.9382 0.6916
p0, atm 60 60 60 100 100 100
pr1 D p=pc1 2.22 1.79 1.79 7.89 7.89 7.89
pr2 D p=pc2 2.22 2.22 2.22 2.01 2.01 2.01

a)

b)

Fig. 4 Similarity pro�les for all layers of a) Z and b) ®D .

of the perturbation in the (x1, x3) plane is chosen so that the
unit vector makes an angle Á with the streamwise direction. The
streamwise and spanwise wavelengths are ¸1 D 2¼=.® cos Á/ and
¸3 D 2¼=.® sin Á/, respectively (¸3=¸1 D 1= tan Á). Within the pro-
tocol of the stabilityanalysis, the physicalquantitiesare obtainedby
taking the real part of the complex quantities. Substituting the ex-
pressionsfor the�ow variables,linearizing,neglectingperturbations
in the �uid properties (including in as ), and assuming streamwise
mean �ow, that is, Nu2 D Nu3 D 0, with uniform mean pressure Np D p0

yields coupled differential equations for the perturbations, which
when further manipulated become

d2 Op
dx2

2

¡
³

1

N½
d N½
dx2

C 2 cos Á

. Nu1 cos Á ¡ c/

d Nu1

dx2

´

d Op
dx2

¡ .1 ¡ M 2/®2 Op D 0

(28)

M.x2/ D Nu1 cos Á ¡ c

as

(29)

with boundary conditions

x2 ! §1 : Op D 0 (30)

The other perturbationsare given by

Ou2 D ¡ 1

. Nu1 cosÁ ¡ c/i®

1

N½
d Op
dx2

(31)

Ou1 D ¡ 1

. Nu1 cosÁ ¡ c/i®

µ

Ou2

d Nu1

dx2

C Op
N½
i® cos Á

¶

(32)

Ou3 D ¡ 1

. Nu1 cos Á ¡ c/

Op
N½ sin Á (33)

O½ D Op
a2

s

¡ 1

. Nu1 cos Á ¡ c/i®

d N½
dx2

Ou2 (34)

Equation (28) shows that the three-dimensional instability
problem with mean �ow Nu1 corresponds to a two-dimensional
(Á D 0) problem with mean �ow Nu1 cos Á, so in general the three-
dimensional eigenvalue for mean �ow Nu1 cannot be obtained
by solving a two-dimensional problem using the same mean
�ow Nu1.

The incompressibleform of the equationscan be foundby setting
as ! 1 and N½ constant, leading to M D 0 and d N½=dx2 D 0, in which
case Eq. (28) becomes

d2 Op
dx2

2

¡ 2

. Nu1 ¡ c=cosÁ/

d Nu1

dx2

d Op
dx2

¡ ®2 Op D 0 (35)

and, thus, for incompressible �ow, given the two-dimensional
(Á D 0) eigenvaluec for mean �ow Nu1 , the three-dimensionaleigen-
value for mean �ow Nu1 is simply c= cos Á. In other words, the three-
dimensional compressible stability problem depends on u1 cos Á,
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and therefore, as in the incompressible case, any oblique wave
is related to a two-dimensional wave with a different mean �ow
magnitude. In the incompressiblecase, the eigenvalue of the three-
dimensional problem can be determined from the eigenvalueof the
two-dimensionalproblem,which is not the case for thecompressible
problem, due to the .u1 cos Á ¡ c/=as term.

B. Numerical Method

Equation (28) speci�es an eigenvalueproblem:Given Nu1 , N½ , ®, as ,
and Á, a solutionmust be found for Op and c. The eigenvalueproblem
is solved numericallyby matching the asymptotic solutions at �nite

a)

c)

e)

b)

d)

f)

Fig. 5 Mean streamwise velocity pro�les for all layers, where the u1 pro�les for erf (½; as) and erf (T; Y2) are identical for each layer: a) HNa, b) OHa,

c) HNb, d) OHb, e) HNc, and f) OHc.

x2, which are derived by setting the boundaries in a region where
the mean �ow gradients are null so that M is constant. Denoting
" D p

.1 ¡ M2/ (a complex constantwith value "¡ at ¡1 and value
"C at C1), then

x2 ! §1 :
d2 Op
dx2

2

¡ ."§®/2 Op D 0 (36)

x2 ! ¡1 : Op D a1 exp."¡®x2/ C a2 exp.¡"¡®x2/ (37)

x2 ! 1 : Op D b1 exp.¡"C®x2/ C b2 exp."C®x2/ (38)
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where a1, a2 , b1 , and b2 are complex constants,which dependingon
"§ , may be set to zero to keep Op bounded to satisfy the boundary
conditions(30). Becauseany multipleof a solutionis also a solution,
the nonzerovaluesof a1 and a2 are set equal to .1; ¡1/. The valuesof
b1 and b2 are eliminated from the boundary condition speci�cation
by relating Op and its derivative.

C. Two-Dimensional Results of the Stability Analysis

The ordinary differential equation for Op [Eq. (28) with
Á D 0] is solved in dimensionless form, with the reference
length and velocity for nondimensionalization being ±! and

a)

c)

e)

b)

d)

f)

Fig. 6 Mean density (kilograms per cubic meter) pro�les for all layers in Fig. 5.

U D 1U0=2. The results obtained with three mean pro�le types are
compared:

1) For Re0 D 800, similarity pro�le of Sec. III is used.
2) For erf(½, as ), the mean velocity is given by an erf [Eq. (26)],

where Nu1.1/ DU1 and Nu1.¡1/ D U2 as given by Eq. (13). The
same erf form is used for as and 1= N½. This form for N½ and as does
not depend on the EOS, and because N½ and as appear explicitly in
the stability problem [Eq. (28)], specifying their form allows us to
conveniently take the constant density and incompressible limits.

3) For erf(T , Y2), the mean velocity is given by an erf [Eq. (26)].
The same erf form is used for NT and NY2; along with a uniform
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pressure, the equation of state is used to calculate as and N½ from NT
and NY2 .

The freestream values of the mean quantities used in the cal-
culations are given in Table 3, whereas Figs. 5–7 show the mean
pro�les. As mentioned in Sec. III, the similarity Nu1 (Fig. 5) is more
relaxed than erf. Also, for both HN and OH layers, the two types
of erf pro�les lead to ½ pro�les (Fig. 6) that are nearly alike. The
erf-based as pro�les are very close for HN, whereas for OH layers,
some differences are evident (Fig. 7).

Equation(28) is solvedusinga fourth-orderRunge–Kutta integra-
tor over the range x¤

2;min · x¤
2 ´ x2=±! · x¤

2;max, starting at x¤
2;min and

marching to x¤
2;max, where x¤

2;min and x¤
2;max are selected large enough

a)

c)

e)

b)

d)

f)

Fig. 7 Mean speed of sound pro�les for all layers in Fig. 5.

to be in a region where the asymptotic solution [Eqs. (36–38)] is
valid. The range of x¤

2 is less than for the similarity solutionbecause
excessively large values of x¤

2;min and x¤
2;max create numerical errors

that destabilize the integration of Eq. (28). The starting values for
the perturbation and its derivative at x¤

2;min are obtained from the
asymptotic solution, Eqs. (36–38). A steepest-descentoptimizer is
used to solve the eigenvalue problem for each ® by adjusting c so
that the asymptoticrelationsbetween the perturbationand its deriva-
tive at x¤

2;max [derived from Eq. (38)] are satis�ed. The integration
interval has twice the grid spacing of the similarity solution; the
results obtained are the same when doubling the grid resolution, or
when doublingthe integrationinterval.For marching in ®, the initial
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Table 4 Most unstable and shortest unstable wavelengths for C7H16/N2 layers, two-dimensional analysis (see Table 3 for freestream

conditions HNa, HNb, and HNc)

Most unstable wavelength Shortest unstable wavelength

Case Pro�le type ½2=½1 ®±! ®±!ci =U cr =U ¸1=±! ®±! ®±!ci =U cr =U ¸1=±!

HNa Incompressible 1 0.86 0.3830 ¡0.0000 7.31 1.79 0.0357 ¡0.0000 3.51
HNa erf (½; as ) 1 0.80 0.3151 ¡0.0000 7.85 1.62 0.0324 ¡0.0000 3.88
HNa erf (T ; Y2) 1 0.80 0.3151 ¡0.0000 7.85 1.62 0.0324 ¡0.0000 3.88
HNa Similarity, Re0 D 400 1 0.80 0.3151 ¡0.0000 7.85 1.61 0.0392 ¡0.0000 3.91
HNa Similarity, Re0 D 800 1 0.80 0.3151 ¡0.0000 7.85 1.61 0.0392 ¡0.0000 3.91
HNb erf (½; as ) 10.38 0.74 0.2607 0.5369 8.49 1.48 0.0340 0.5265 4.24
HNb erf (T ; Y2) 10.38 0.74 0.2606 0.5376 8.49 1.48 0.0360 0.5267 4.24
HNb Similarity, Re0 D 800 10.38 0.88 0.2342 ¡0.0841 7.14 1.97 0.0809 ¡0.1546 3.19
HNc erf (½; as ) 12.93 0.72 0.2481 0.5854 8.72 1.41 0.0567 0.5650 4.46
HNc erf (T ; Y2) 12.93 0.72 0.2475 0.5866 8.73 1.38 0.0631 0.5668 4.55
HNc Similarity, Re0 D 800 12.93 0.87 0.2227 ¡0.0681 7.22 1.88 0.0994 0.1358 3.34

Table 5 Most unstable and shortest unstable wavelengths for O2/H2 layers, two-dimensional analysis (see Table 3 for freestream

conditions OHa, OHb, and OHc)

Most unstable wavelength Shortest unstable wavelength

Case Pro�le type ½2=½1 ®±! ®±!ci =U cr =U ¸1=±! ®±! ®±!ci =U cr =U ¸1=±!

OHa erf (½; as ) 24.40 0.60 0.1283 ¡0.0713 10.47 1.33 0.0279 ¡0.1032 4.72
OHa erf (T ; Y2) 24.40 0.74 0.1545 ¡0.0712 8.49 1.58 0.0325 ¡0.0853 3.98
OHa Similarity, Re0 D 400 24.40 1.33 0.2218 ¡0.1151 4.72 2.53 0.1420 ¡0.1370 2.48
OHa Similarity, Re0 D 800 24.40 1.33 0.2218 ¡0.1151 4.72 2.53 0.1420 ¡0.1370 2.48
OHb erf (½; as ) 24.51 0.61 0.1280 ¡0.0704 10.30 1.46 0.0044 ¡0.1092 4.30
OHb erf (T ; Y2) 24.51 0.68 0.1420 ¡0.0692 9.24 1.43 0.0298 ¡0.0856 4.39
OHb Similarity, Re0 D 800 24.51 1.43 0.2283 ¡0.1223 4.39 2.27 0.1908 ¡0.1330 2.77
OHc erf (½; as ) 38.87 0.55 0.0985 ¡0.0672 11.42 1.25 0.0235 ¡0.0983 5.03
OHc erf (T ; Y2) 38.87 0.71 0.1247 ¡0.0613 8.85 1.45 ¡0.0630 0.032 4.33
OHc Similarity, Re0 D 800 38.87 1.67 0.2008 ¡0.1251 3.76 2.33 0.1878 ¡0.1327 2.70

guess for c is the ® D 0 analytical solution derived in Appendix B.
The derivationof conditionson c similar to the Howard’s semicircle
theorem for incompressible�ows (e.g., Ref. 6) is also presented in
Appendix B.

Figures 8 and 9 show the nondimensionalgrowth rate, ®ci ±!=U ,
vs the wave number for the cases in Table 3. Additionally, in Fig. 8a
is the incompressible solution [obtained by the compressible for-
mulation using N½.1/ D N½.¡1/ and as D 106 and con�rmed by a
separate solution of Eq. (35)]. Tables 4 and 5 show the values of
the most unstable wavelength (the wavelength with the maximum
growth rate ®ci ), as well as the shortest (obtained) unstable wave-
length for each case. From Fig. 8, which shows the effect of mean
pro�le for each layer, it is clear that the growth rates of the lay-
ers are independent of pro�le shape at small wave numbers (long
wavelengths). At shorter wavelengths, the growth rate is sensitive
to the pro�le shape, with signi�cantly higher growth rates for the
similarity pro�le. The stability curves of the two HN erf pro�le
typesoverlap,whereas those for OH do not, showing the EOS effect
through as . The EOS effect is also seen in comparing the constant
densityand incompressible�ow results; the incompressible�ow has
highergrowth rate and wider rangeof unstablewave numbers.From
Table 4, the most unstablewavelengthis longer for the constantden-
sity than the incompressible �ows. The incompressible �ow most
unstable wavelength, ¸1=±! D 7:31, compares favorably with the
value of 7.29 used by Moser and Rogers.4 Figure 8, in conjunction
with Figs. 5–7, shows that there is not a straightforwardrelation be-
tween Nu1, N½ , and Nas pro�le shapes and the resulting stability curve.
This is because the three pro�les interact to determine the stabil-
ity characteristics, and therefore, detailed calculations rather than
visual inspection are required to quantify the stability features of
the �ow.

In Fig. 9, the stability curvesof Fig. 8 are replottedto illustratethe
densitystrati�cation and species system effect.Note that the growth
rate of each strati�ed �ow is smaller than that of the constantdensity
�ow and that, as the strati�cation decreases,the stabilitycurve tends

toward the constant density one, as it should. Comparing stability
curves for the same type of pro�le in each of Figs. 9a, 9b, and 9c,
we note that they do not have maxima at the same wave number and
thatthewavenumbercorrespondingto themostunstablewavelength
increases with decreasing strati�cation.

D. Three-Dimensional Results of the Stability Analysis

Similar to the two-dimensional study, we seek to investigate the
stability curve and search for the most unstablewavelength.The so-
lution of the stability equation (28) involves determining the eigen-
value c for given values of ® and Á (® > 0, 0 · Á < ¼=2). The three-
dimensional eigenvalue problem is solved in a similar manner to
the two-dimensional problem, but with the parameter Á. Typically
in three-dimensionalsimulations, it is desired to minimize both the
streamwise and the spanwise extent of the domain and, thereby, re-
duce computational costs. (Because three-dimensionalsimulations
are intrinsically different from two-dimensional simulations, it is
not surprising that the corresponding stability analyses might be
differently applied.) Therefore, we seek unstable solutions with Á

as large as possible for a given value of ®. From the geometry, for
a given ®, if the streamwise extent of the domain is decreased, the
spanwise extent must be increased, or for a given Á, if the stream-
wise extent of the domain is decreased, the spanwise extent must
also be decreased. However, the optimal domain size cannot be
determined entirely from geometric considerations because in this
eigenvalue problem only certain combinations of ® and Á will lead
to �ow instability. In fact for each ®, we have a range of unstable
Á, 0 · Á · Ámax , and for each Á, we have a range of unstable ®,
0 < ® · ®max.

The region of unstable three-dimensional solutions can be es-
timated from that of the unstable two-dimensional solutions by
considering ®max of the two-dimensional problem, ®2D;max, and
noting that, for a given wave number of the three-dimensional
problem, ®, its two-dimensional component is ®1 D ® cos Á, and
therefore, Á D cos¡1.®1=®/. Because for instability neither ®1
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a)

c)

e)

b)

d)

f)

Fig. 8 Stability curves showing the effect of u1 , ½, and as mean pro�le shape for a) HNa, b) OHa, c) HNb, d) OHb, e) HNc, and f) OHc: ?, overlapping

curves.

nor ® may exceed ®2D;max , we have Ámax.®1/ D cos¡1.®1=®2D;max/

and ®1;max.Á/ D ®2D;max cos Á. In particular, ®1 D ®2D;max implies
Ámax D 0, resulting in ¸3 being in�nite; on the other hand, we could
not �nd any purely spanwise .Á D ¼=2/ modes. In the context of ap-
plications to three-dimensional �ow simulations, this implies that
the ability to use a shorter wavelength in the streamwise direction
for the purpose of achieving pairing and rollup will be offset by
the need to use a longer wavelength in the spanwise direction. This
�ndingmay explainwhy, althoughthe streamwiseperturbationused
in most shear layer simulations corresponds to an eigenvalue solu-
tion, the spanwise perturbation (cf., Moser and Rogers4 ) is heuris-

tic and without equivalently established validity. In other words,
many DNS, although using most unstable two-dimensional modes
in two-dimensional calculations, do not use most unstable three-
dimensional modes for three-dimensional calculations, but rather
the most unstable two-dimensional mode plus heuristic spanwise
disturbances; therefore, in practice the selection of spanwise dis-
turbance wavelengths has not been based on similar considerations
as those used for selecting the streamwise wavelengths. This does
not constitute a shortcoming of the stability analysis, but merely
points to its perceived lack of utility in achieving the goals of three-
dimensional simulations.
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a)

b)

c)

Fig. 9 Stabilitycurves showing the effect of species system and density
strati�cation for a) similarity solution mean pro�le, b) erf(½; as), and

c) erf(T; Y2): ?, overlapping curves.

V. Conclusions

A similarity analysis was conducted followed by a temporal
stability analysis for conservation equations describing a tempo-
ral mixing layer at all pressures, including supercritical ones. One
of the peculiarities of these conservation equations is that addi-
tional to the traditional Fick and Fourier transport coef�cients,
there is a new transport coef�cient, the thermal diffusion factor,
which couples molar and heat �uxes. This coupling occurs through
the Soret term in the species equations and the Dufour term in
the energy equation. To close the system, the conservation equa-
tions were here complementedby a real-gas EOS. Furthermore, we

speci�ed transport coef�cients that depend on the thermodynamic
quantities.

The similarityanalysiswas performedundertheone-dimensional
assumption.The velocityandmass fractionsimilaritysolutionswere
shown to be close to the erf in the similarity variable, whereas the
temperaturedid not follow the erf variation.For HN layers, the tem-
perature adjacent to the colder (heptane) stream dropped below the
freestream temperature. For OH layers, the temperature near the
colder (oxygen) stream also droppedbelow the freestream tempera-
ture, but additionallythe temperaturenext to the warmer (hydrogen)

stream exceeded the freestream temperature. This temperature be-
havior was attributed to real-gas thermodynamics and to Schmidt
and Prandtl number variations.

The two-dimensional temporal inviscid stability analysis was
conductedusing the similarity solutionas the mean �ow and also by
adopting as an approximation an erf basic �ow. The results showed
that the unstable growth rates for the compressible�ow are smaller
at all wave numbers than the equivalent growth rates found from an
incompressibleanalysis.Also,with increasingdensitystrati�cation,
the most unstable wavelengths occurred at smaller wave numbers.
For given freestream conditions, the similarity pro�les were more
unstableand had shortermoreunstablewavelengthsthan the erf pro-
�les, as well as a wider range of unstable wave numbers. Constant
density layers were found to have different stability characteristics
than incompressible layers, indicating an EOS effect through the
speed of sound.

For the three-dimensional temporal stability analysis, additional
to the wavelength of the perturbation, the angle of the wave direc-
tion in the streamwise–spanwise plane must be speci�ed; however,
there is a maximum angle above which unstable wavelength pertur-
bations cannot be found. For the purpose of applications to three-
dimensional �ow simulations, this implies that the use of a shorter
wavelength in the streamwise direction will be counterbalancedby
the need to use a longer wavelength in the spanwise direction.

Appendix A: Freestream Velocities

The method to be described for determining the freestream ve-
locitieswas proposedby Papamoschouand Roshko22 based on their
experimental results for PG mixtures. The essence of the method is
to use the isentropic relation

dh D
³

@h

@p

´

s

dp (A1)

and the energy balance

dh D ¡d
£

1
2
.u1 ¡ Uc/

2
¤

(A2)

to equate the static and stagnationpressures of the two streams. For
computationalpurposes, in particular to avoid the need to calculate
the entropy, Eq. (A1) is rewritten as

dh

dp
D

³

@h

@p

´

T

C
³

@h

@T

´

p

dT

dp
;

dT

dp
D

³

@T

@p

´

s

(A3)

where

³

@h

@p

´

T

D 1

½
.1 ¡ ®v T /;

³

@h

@T

´

p

D C p

m
(A4)

³

@T

@p

´

s

D v®v T

C p

D ®v T

½C p=m
(A5)

A. PG Velocities

For a PG (p D RuT=v), Eqs. (A2) and (A3) become

C p

m
dT D ¡d

µ

1

2
.u1 ¡ Uc/

2

¶

;
dp

p
D °

° ¡ 1

dT

T
(A6)
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Table A1 Estimated convection velocity

Case HNa HNb HNc OHa OHb OHc

U1;a m/s 72.203 232.83 258.77 775.71 568.97 556.30
U2;a m/s ¡72.203 ¡72.268 ¡71.954 ¡157.02 ¡114.93 ¡89.224
Uc;est,

b m/s 0 0 0 0 0 0
Uc ,c m/s 0 0 0.042 0 0.236 0.442
.Uc ¡ Uc;est/=.U1 ¡ U2/ 0 0 1.3 £ 10¡4 0 3.5 £ 10¡4 6.8 £ 10¡4

aFrom Eq. (13). bFrom Eq. (A9). cFrom Eqs. (A2) and (A3).

where

° D Cp=Cv; Cv D C p ¡ Ru (A7)

(See Ref. 13 for the PG relations.) Assuming Cp to be constant
(implies ° is constant) leads to

Tt

T
D 1 C 1

2

.u1 ¡ Uc/
2

.C p=m/T
;

pt

p
D

³

Tt

T

´° =.° ¡ 1/

(A8)

where Tt and pt are the stagnation temperature and pressure, re-
spectively. Equating the static and stagnation pressures of the two
streams

"

1 C 1

2

.U1 ¡ Uc/
2

¡

C p1

¯

m1

¢

T1

#°1=.°1 ¡ 1/

D

"

1 C 1

2

.U2 ¡ Uc/
2

¡

C p2

¯

m2

¢

T2

#°2=.°2 ¡ 1/

Supposing °1 D °2 (implies Cp1 D Cp2) leads to

Uc D
p

½1U1 C p
½2U2p

½1 C p
½2

(A9)

which is the same as Eq. (7) of Papamoschou and Roshko.22 Then,
for Uc D 0, we obtain Eq. (13):

U1 D 2Mcas1
£

1 C .as1=as2/
p

½1=½2

¤ ; U2 D ¡
r

½1

½2

U1 (A10)

FurthermanipulationofEq. (A9) usingthePG relationa2
s

D ° p=½

leads to Eq. (8) of Papamoschouand Roshko22; however, that equa-
tion restricts the convectiveMach numbers of the two streams to be
equal.

B. Real Gas Velocities

To assess the applicabilityof Eq. (A9) to real gases,Eqs. (A2) and
(A3) are solved using real-gas EOS. A fourth-order Runge–Kutta
scheme is used to integrate the system, which for the optimized
value of Uc will have the same stagnationpressure in both streams.
The values of U1 and U2 are obtained from Eq. (13) with Mc D 0:4
and determine the enthalpychange.The freestream(static) pressure
and temperatures are speci�ed and are the initial conditions for
the integration of Eq. (A3). The �nal conditions are the stagnation
pressure and temperatures, which satisfy the enthalpy change. The
optimum Uc is obtained using a bisection method. The results are
summarized in Table A1. For the cases considered,Eq. (A9) leads to
a convectionvelocitywithin 1% (relativeto 1U0) of the optimumUc

and, therefore,is clearly an excellentapproximationto the optimum
Uc for the RGNI mixtures considered.

Appendix B: Analysis of Stability Equation

To facilitate the analysis, Eq. (28) is rewritten as

d

dx2

µ

1

N½. Nu1 cos Á ¡ c/2

d Op
dx2

¶

¡
µ

1

N½. Nu1 cos Á ¡ c/2
¡ 1

N½a2
s

¶

®2 Op D 0

(B1)

A. Solution for ® = 0

For ® D 0, Eq. (B1) becomes

d

dx2

µ

1

N½. Nu1 cos Á ¡ c/2

d Op
dx2

¶

D 0

) 1

N½. Nu1 cos Á ¡ c/2

d Op
dx2

D A

) Op D
Z

A N½. Nu1 cos Á ¡ c/2 dx2 (B2)

where A is a constant of integration.When the boundary condition
is applied,

Op.1/ D
Z 1

¡1
N½. Nu1 cos Á ¡ c/2 dx2 D 0 (B3)

The real and imaginary parts of this expression are
Z 1

¡1
N½
£

. Nu1 cos Á ¡ cr /
2 ¡ c2

i

¤

dx2 D 0 (B4)

2ici

Z 1

¡1
N½. Nu1 cos Á ¡ cr / dx2 D 0 (B5)

If ci D 0, a quadratic equation for cr is obtained from Eq. (B4),
Z 1

¡1
N½. Nu1 cosÁ/2 dx2 ¡ 2cr

Z 1

¡1
N½ Nu1 cosÁ dx2 C c2

r

Z 1

¡1
N½ dx2 D 0

(B6)

When ci 6D 0 is supposed, Eq. (B5) yields
Z 1

¡1
N½. Nu1 cos Á ¡ cr / dx2 D 0

)
Z 1

¡1
N½ Nu1 cosÁ dx2 D cr

Z 1

¡1
N½ dx2 (B7)

When this result is substituted into Eq. (B4),
Z 1

¡1
N½. Nu1 cos Á/2 dx2 D

¡

c2
r

C c2
i

¢

Z 1

¡1
N½ dx2 (B8)

The solution for c is

cr D
R 1

¡1 N½ Nu1 cos Á dx2
R 1

¡1 N½ dx2

; c2
r

C c2
i

D
R 1

¡1 N½. Nu1 cosÁ/2 dx2
R 1

¡1 N½ dx2

(B9)

where for instability the positive root of ci is desired.

B. Range of cr

Multiplying Eq. (B1) by Op¤, the complex conjugate of Op, and
integrating
Z 1

¡1
Op¤ d

dx2

µ

1

N½. Nu1 cos Á ¡ c/2

d Op
dx2

¶

dx2

¡
Z 1

¡1

µ

1

N½. Nu1 cos Á ¡ c/2
¡ 1

N½a2
s

¶

®2j Opj2 dx2 D 0 (B10)
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Integrating the �rst term by parts,
Z 1

¡1
Op¤ d

dx2

µ

1

N½. Nu1 cos Á ¡ c/2

d Op
dx2

¶

dx2

D
µ

Op¤ 1

N½. Nu1 cos Á ¡ c/2

d Op
dx2

¶1

¡1

¡
Z 1

¡1

1

N½. Nu1 cos Á ¡ c/2

d Op
dx2

d Op¤

dx2

dx2 (B11)

Applying the boundary conditions Op¤.§1/ D 0 and substituting
into Eq. (B10):

Z 1

¡1

µ

1

N½. Nu1 cos Á ¡ c/2

³







d Op
dx2









2

C ®2j Opj2

´

¡ 1

N½a2
s

®2j Opj2

¶

dx2 D 0

(B12)

The imaginary part of this expression is

2ci

Z 1

¡1

µ

. Nu1 cos Á ¡ cr /
1



. Nu1 cosÁ ¡ c/2




2

1

N½

£
³







d Op
dx2









2

C ®2j Opj2

´¶

dx2 D 0 (B13)

Therefore ci D 0, or because . Nu1 cos Á ¡ cr / must change sign at
least once, cr lies in the range of Nu1 cos Á. There is a singularity in
Eq. (28) where Nu1 cos Á ¡ c D 0.
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