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Real Hilbertianity and the

Field of Totally Real Numbers

MICHAEL D. FRIED∗†, DAN HARAN∗‡

AND HELMUT VÖLKLEIN∗•

Abstract. We use moduli spaces for covers of the Riemann sphere to solve

regular embedding problems, with prescribed extendability of orderings,

over PRC fields. As a corollary we show that the elementary theory of Qtr

is decidable. Since the ring of integers of Qtr is undecidable, this gives a

natural undecidable ring whose quotient field is decidable.

Introduction

The theory and use in [F] of moduli spaces of covers of the Riemann sphere

with prescribed ramification data has been further developed in [FV1]. There

the main theme is that K-rational points of the moduli spaces correspond to

covers defined over K. Furthermore, [FV2] notes a correspondence between

existence of K-rational points on certain related spaces and the solvability of

regular embedding problems over K. Thus, using moduli spaces allows us to

prove solvability of regular embedding problems over fields K suitably large for

such varieties to have the requisite K-rational points.

This principle appears in [FV2] to show that the absolute Galois group of a

countable Hilbertian PAC field of characteristic 0 is free. The natural extension

of this to the (larger) class of Hilbertian PRC fields appears in [FV3].

Recall [FJ, p. 129] that K is PAC (pseudo algebraically closed) if every

absolutely irreducible variety V defined over K has a K-rational point. Fur-

thermore [P2], K is PRC (pseudo real closed) if every absolutely irreducible
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variety V defined over K has a K-rational point, provided that V has a non-

singular point over each real closure of K. The latter condition on V is equivalent

to the following one: the function field K(V ) of V is a totally real extension of

K, that is, every ordering on K extends to K(V ).

The field Qtr of all totally real algebraic numbers is the fixed field of all

involutions in the absolute Galois group G(Q) of Q. From Pop [P], Qtr is PRC.

By Weissauer’s theorem [FJ, Proposition 12.4] every proper finite extension of

Qtr is Hilbertian. Also, by Prestel’s extension theorem [P2, Theorem 3.1] every

algebraic extension of Qtr is PRC. Hence, the absolute Galois group of a proper

finite extension of Qtr is known [FV3]. The field Qtr, however, is not Hilbertian.

For example, Z2 − (a2 + 1) is reducible over Qtr for every a ∈ Qtr.

In [FHV] we cover also the case of Qtr. The key observation is that Qtr

satisfies a certain weakening of the Hilbertian property. This allows specializing

Galois extensions of K(x) whose Galois group is generated by real involutions

to obtain Galois extensions of K with the same Galois group. As a result we

determine the absolute Galois group of Qtr.

In the present paper we extend the methods and results of [FV3]. This

solves regular embedding problems over a PRC field K so that the orderings

of K extend to prescribed subfields (Theorem 5.2). Thus, Theorem 5.3 gives

new information about the absolute Galois group of the field K(x) of rational

functions over K .

The first 5 sections setup the proof of Theorem 5.2. We need an approximation

theorem for varieties over PRC fields (section 1), supplements about the moduli

spaces (section 2), group-theoretic lemmas (section 3), and the determination of

the real involutions in Galois groups over R(x) (section 4).

In section 6 we define the concept of totally real Hilbertian, and show that Qtr

has this property. Section 7 combines these results to determine the absolute

Galois group of a countable totally real Hilbertian PRC field satisfying these

properties: it has no proper totally real algebraic extensions; and its space of

orderings has no isolated points. This group is the free product of groups of

order 2, indexed by the Cantor set Xω (Theorem 7.6). In particular, G(Qtr) =

Aut(Q̃/Qtr) is isomorphic to this group.

As a corollary we introduce the notion of real Frobenius fields: Qtr is an

example (Corollary 8.3). Following the Galois stratification procedure of [FJ,

Chap. 25] and [HL] we show that the elementary theory of real Frobenius fields

allows elimination of quantifiers in the appropriate language. In particular, Qtr

is primitive recursively decidable (Theorem 10.1). On the other hand the ring

of integers of Qtr is undecidable (A. Prestel pointed us to Julia Robinson’s proof

of this [R2].) Thus we obtain a natural example of an undecidable ring with a

decidable quotient field. Compare this with the possibility that Q is decidable

(cf. Robinson [R1, p. 951]). Furthermore, we give (Corollary 10.5) a system of

axioms for the theory of Qtr.

Affirmations. We are grateful to Moshe Jarden for numerous suggestions
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that led to an improved presentation of this paper.

F. Pop told us the characterization of G(Qtr) also follows from his “ 1
2 Riemann

existence theorem.” His method uses rigid analytic geometry, versus our use of

the classical Riemann existence theorem. We look forward to seeing a written

account.

This paper corresponds to a portion of the talk of the first author at the Tempe

conference on Arithmetic Geometry, March 1993. Appropos the theme of the

Tempe conference, this paper uses profinite ideas of Iwasawa for characterizing

absolute Galois groups of fields. The remainder of the talk discussed regular

realizations of dihedral groups. It considered the dihedral groups Dpn of order

2pn with p an odd prime and realization of these as Galois groups over Q(x) with

a bounded numbers of branch points [DF2, section 5.2]. The talk emphasized

the relation with rational points on modular curves. Extension of these ideas

with a general group G replacing Dp will appear under the title Modular stacks

and the Inverse Galois Problem.

1. Ordered fields and an approximation theorem for PRC fields

Let K be a field of characteristic 0, and let G(K) be its absolute Galois group.

Recall [P1, §6] that the set of orderings X(K) of K is a boolean topological space

in its natural Harrison topology. This topology is given by a subbase consisting

of sets of the form H(c) = {P ∈ X(K)| c ∈ P}, for c ∈ K×. Here P denotes the

positive elements in an ordering.

By Artin-Schreier theory [L, XI,§2], the real closures of K (inside a fixed

algebraic closure K̃ of K) are the fixed fields of the involutions in G(K). This

identifies the set X̂ of real closures of K with a topological subspace of G(K). It

is a boolean space, since the set of involutions is closed in G(K). Observe that

H(z) = {R ∈ X̂ | z ∈ R} is open in X̂ , for each z ∈ K̃×.

For each R ∈ X̂ let π(R) be the restriction of the unique ordering of R to K.

Then π(R1) = π(R2) if and only if R1 and R2 are conjugate by an automorphism

of K̃ over K. The map π: X̂ → X(K) is continuous: π−1(H(c)) = H(
√

c).

Moreover, there exists a closed subset X of X̂ such that π: X → X(K) is

a homeomorphism [HJ1, Corollary 9.2]. The corresponding closed subset of

involutions in G(K) contains exactly one representative from each conjugacy

class of involutions. Having fixed such X , identify X(K) with it.

Remark 1.1. Comments on orderings.

(a) If K is PRC, then every clopen subset of X(K) is of the form H(c) for a

suitable c ∈ K× [P2, Proposition 1.3].

(b) Let R be a real closed field, and let a ∈ R, c ∈ R×. If either c < 0 or

a > 0, then the system Y 2 + cZ2 = a, Y �= 0 has a solution in R.

(c) For X = (X1, . . . , Xn) put ‖X‖2 =
∑n

i=1 X2
i . Let K be an ordered field,

and let a,b, c ∈ Kn and ν ∈ K×. From the triangle inequality (over the

real closure of K), if ‖a − b‖2, ‖b − c‖2 < (ν
2 )2 then ‖a − c‖2 < ν2.



4 FRIED, HARAN AND VÖLKLEIN

Proposition 1.2. Let K be a PRC field, and let V ⊆ An be an absolutely

irreducible affine variety defined over K. Let X be a closed set of real closures of

K, one for each ordering of K. Let X1, . . . ,Xm be disjoint clopen subsets of X
that cover X . Let x1, . . . ,xm be nonsingular points on V such that xj ∈ V (R)

for every R ∈ Xj , for j = 1, . . . , m. Let ν1, . . . , νm ∈ K×. Then there is

x ∈ V (K) such that for each 1 ≤ j ≤ m

(1) ‖x − xj‖2 < ν2
j in R, for every R ∈ Xj .

Proof. Fix j and put L = K(xj). Let R ∈ Xj . Then L ⊆ R. As K is dense

in R [P2, Proposition 1.4], there is aj ∈ Kn such that

(2) ‖xj − aj‖2 <
(νj

2

)2

in R.

This aj depends on R, but if R′ ∈ Xj is sufficiently close to R, then (2) holds

also with R′ instead of R. Indeed, the restriction Xj → X(L) is continuous, and

(2) describes a basic open set in X(L). Use compactness of Xj to partition Xj

into smaller clopen subsets (and thereby increase m). Associate with each of

them the original point xj such that (2) holds with suitable aj for all R ∈ Xj .

By Remark 1.1(a), for each j there is cj ∈ K× such that Xj = H(cj). Suppose

that V is defined by f1(X), . . . , fr(X) ∈ K[X1, . . . , Xn]. These together with

the additional polynomials

fr+j(X,Y,Z) =
(νj

2

)2

− ‖X − aj‖2 − Y 2
j − cjZ

2
j , j = 1, . . . , m

define an absolutely irreducible variety W ⊆ An+2m of dimension dimV + m.

Indeed, by induction on m we may assume that m = 1. Let x be the generic

point of V over K̃, that is, the image of X in in the integral domain K̃[V ] =

K̃[X]/(f1, . . . , fr). Let u =
(

ν1

2

)2 −‖x−a1‖2, and let y1 be transcendental over

K̃(V ). Observe that u �= 0, since, by (2),
(

ν1

2

)2 − ‖x1 − a1‖2 �= 0. Therefore

fr+1(x, y1, Z1) = u − y2
1 − c1Z

2
1 is irreducible over K̃(V )(y1). Let z1 be its root

in the algebraic closure M of K̃(V )(y1). Clearly

K̃[W ] = K̃[X, Y1, Z1]/(f1, . . . , fr, fr+1) ≡ K̃[V ][y1, z1] ⊆ M.

It follows that K̃[W ] is an integral domain, and tr.deg.(W ) = tr.deg.(V ) + 1.

Thus W is absolutely irreducible and dimW = dimV + 1.

Let R ∈ X . With no loss, assume R ∈ X1, and hence R /∈ X2, . . . ,Xm. Thus,

c1 is positive, and c2, . . . , cm are negative in R. Apply (2) and Remark 1.1(b)

to complete the x1 to a point (x1,y, z) ∈ W (R) with yj �= 0 for each 1 ≤ j ≤ m.

In particular,
∂fr+j

∂Yj
(x1,y, z) �= 0: (x1,y, z) is a nonsingular point on W .

By the PRC property of K there exists a point (x,y, z) ∈ W (K). Clearly

x ∈ V (K), and for each j we have ‖x−aj‖2 ≤ (
νj

2 )2 in R, for each R ∈ Xj . This

and (2) imply (1), by Remark 1.1(c).
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Applying Proposition 1.2 to V = A1 yields the Block Approximation Lemma of

[P3, p. 354]:

Corollary 1.3. Let K be a PRC field. Let H1, . . . , Hm be disjoint clopen

subsets of X(K), and let x1, . . . , xm ∈ K, and ν1, . . . , νm ∈ K×. Then there is

x ∈ K such that for every j (x − xj)
2 ≤P ν2

j for every P ∈ Hj .

Definition 1.4. Let K̃ be algebraically closed with ι ∈ Aut(K̃) of order 2.

(a) For c ∈ K̃ let |c|2ι = c · ι(c).
(b) For z ∈ K̃n let ‖z‖2

ι =
∑n

i=1 |zi|2ι .
(c) For a K̃-linear morphism f : An → Am given by a matrix A = (aij) ∈

Mm×n(K̃) let ‖f‖2
ι =

∑
i,j |aij |2ι .

In the above definition, the fixed field R of ι is real closed, and ||c|2ι , ‖z‖2
ι , ‖f‖2

ι

are nonnegative elements of R. If z ∈ Rn then ‖z‖2
ι = ‖z‖2. Also, in the unique

ordering of R, for all z ∈ K̃n the Schwartz inequality gives

(3) ‖f(z)‖2
ι ≤ ‖f‖2

ι · ‖z‖2
ι .

Remark 1.5. The space X(Qtr) is homeomorphic to Xω = {0, 1}ℵ0 , the

universal Boolean space of weight ℵ0 (cf. the concluding Remark of [FV3]). In

particular it has no isolated points.

Lemma 1.6. If K is a finitely generated field, then the set Xa(K) of archi-

median orderings on K is dense in X(K).

Proof. By induction on the number of generators of K/Q it suffices to show

the following. Let K/K0 be a simple extension of countable fields, let P ∈ X(K),

and let P0 = resK0
P ∈ X(K0). If P0 is in the closure of Xa(K0), then P is in

the closure of Xa(K).

The restriction X(K) → X(K0) is open [ELW, 4.bis], hence we may assume

that P0 is archimedian. If K/K0 is algebraic, then P is also archimedian. Oth-

erwise K is the field of rational functions in one variable t over K0. Replace

(K0, P0) by its real closure (cf. [C, Lemma 8]) to assume that K0 is real closed.

By [C, Corollary 9(c)], every neighborhood U of P in X(K) contains a set

of the form {Q ∈ X(K)| a < t < b in Q}, where a, b ∈ K0 and a < b in P0.

As P0 is archimedian, we can embed K0 into R. Since K0 is countable, there is

c ∈ R�K0 in the interval (a, b) in R. This c is then transcendental over K0. The

K0-embedding K → R given by t �→ c induces an archimedian ordering Q on K,

and a < t < b in Q. Thus Q ∈ U .

For a subset I of a group G let ConG(I) =
⋃

σ∈G Iσ. We say that I is a

conjugacy domain, if I is closed under the conjugation, that is, I = ConG(I).

Definition 1.7. Let F/E be a Galois extension of fields with F not formally

real. We say an involution ǫ ∈ G(F/E) is real if its fixed field F (ǫ) in F is

formally real. Equivalently, ǫ is the restriction of an involution in the absolute

Galois group G(E) of E. Let I(F/E) be the set of real involutions of G(F/E).
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Furthermore, assume that E is a totally real extension of a field K, and let

P ∈ X(K). Denote the involutions ǫ ∈ G(F/E) for which P extends to an

ordering of F (ǫ) by IP (F/E). For X ⊆ X(K), let IX(F/E) =
⋃

P∈X IP (F/E).

If F is the algebraic closure of E, write IP (E) for IP (F/E), etc.

Remark 1.8. (a) If E = K, then IP (F/E) is a conjugacy class in G(F/E).

In the general case IP (F/E) is a conjugacy domain in G(F/E); in fact,

IP (F/E) =
⋂

Q∈X(E)
Q⊇P

IQ(F/E).

(b) If M/N is a finitely generated extension of fields, then the restriction

map of orderings X(M) → X(N) is closed and open [ELW, Theorem 4.1 and

4.bis]. In particular, let I be a set of involutions in G(F/E), and assume that

F/K is finitely generated. Then so is F (ǫ)/K, for every involution ǫ ∈ G(F/E).

Hence the set {P ′ ∈ X(K)| IP (F/E) = I} is closed and open in X(K).

Lemma 1.9. Let (K, P ) ⊆ (K ′, P ′) be an extension of ordered fields. Let x

be transcendental over K ′, and put E = K(x) and E′ = K ′(x). Furthermore,

let F/E and F ′/E′ be Galois extensions with F ′ = F · E. Assume that F , and

hence also F ′, is not formally real. Then IP (F/E) = ConG(F/E) resF IP ′(F ′/E′).

Proof. We have IP (F/E) =
⋂

Q∈X(E)
Q⊇P

IQ(F/E). Also,

IP ′(F ′/E′) =
⋂

Q′∈X(E′)

Q′⊇P ′

IQ′(F ′/E′).

As E and K ′ are linearly disjoint over K, each extension Q of P to E extends

to an ordering Q′ of E′ that extends P ′. Thus it suffices to show

IQ(F/E) = ConG(F/E) resF IQ′(F ′/E′)

for each ordering Q of E and for each extension Q′ of Q to E′.

Let ǫ′ ∈ IQ′(F ′/E′) and ǫ = resF ǫ′. There is an ordering R′ of F ′(ǫ′) that

extends Q′. Its restriction to F (ǫ) is an extension of Q, and hence ǫ ∈ IQ(F/E).

Since IQ(F/E) is a conjugacy class in G(F/E), the assertion follows.

2. Moduli spaces for covers of the Riemann sphere

In this section we add remarks to the notation and results from [FV1] in the

form to be used later. Let G be a finite group, and r ≥ 3 an integer.

(2.1) Covers of the sphere. Let P1 = C∪{∞} denote the Riemann sphere.

We consider covers χ: X → P1 of compact (connected) Riemann surfaces. Call

two such covers χ: X → P1 and χ′: X ′ → P1 equivalent if there exists an

isomorphism α: X → X ′ with χ′ ◦ α = χ. Let Aut(X/P1) denote the group of

automorphisms α of X with χ ◦α = χ. We say that χ is Galois if Aut(X/P1) is

transitive on the fibers of χ. From now on χ will always denote a Galois cover.

All but finitely many points of P1 have the same number of inverse images under

χ. These finitely many exceptional points are called the branch points of χ.
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(2.2) Punctured spheres. Let a1, . . . , ar ∈ P1 be the branch points of (the

Galois cover) χ: X → P1, and set a = {a1, . . . , ar}. Then χ restricts to an

(unramified) topological covering of the punctured sphere P1�a. Choose a base

point a0 on this punctured sphere, and consider the (topological) fundamental

group Γ = Π1(P
1�a, a0), based at a0 (with the composition law: γ1γ2 is the

path γ1 followed by γ2).

Depending on the choice of a base point p0 ∈ χ−1(a0), we get an epimorphism

ι: Γ → Aut(X/P1) as follows. For each path γ representing an element [γ] of Γ,

let p1 be the endpoint of the unique lift of γ to X�χ−1(a) with initial point p0.

Then, ι sends [γ] to the unique element α of Aut(X/P1) with α(p0) = p1.

(2.3) Related equivalence classes of covers. Let Hab = Hr(G)ab be the

set of equivalence classes [χ] of all Galois covers χ: X → P1 with r branch points

and with Aut(X/P1) ≡ G. Let Hin = Hr(G)in be the set of equivalence classes

[χ, h] of pairs (χ, h) where χ: X → P1 is a Galois cover with r branch points, and

h: Aut(X/P1) → G is an isomorphism. Here (χ, h) and (χ′: X ′ → P1, h′) are

equivalent if there is an isomorphism δ: X → X ′ with χ′ ◦ δ = χ and h′ ◦ δ∗ = h,

where δ∗: Aut(X/P1) → Aut(X ′/P1) is the isomorphism α �→ δ ◦ α ◦ δ−1. Let

Λ: Hin → Hab be the map sending [χ, h] to [χ].

(2.4) G-covers. Think of points of Hin as equivalence classes [a, a0, f ] of

triples (a, a0, f). Here a = {a1, . . . , ar} is a set of r points of P1, and a0 ∈ P1�a,

and f : Γ = Π1(P
1�a, a0) → G is an epimorphism that does not factor through

the canonical map Γ → Π1((P
1�a) ∪ {ai}, a0), for any i. (The latter condition

means that the corresponding cover χ has exactly r branch points). Call two

such triples (a, a0, f) and (ã, ã0, f̃) equivalent if a = ã and there is a path ω from

a0 to ã0 in P1�a such that f̃ ◦ ω∗ = f . Here ω∗: Π1(P
1�a, a0) → Π1(P

1�a, ã0)

is the isomorphism γ �→ ω−1γω.

(2.5) Covers versus cycle descriptions. Here is the correspondence be-

tween the above pairs and triples [FV1, §1.2]. Given [χ, h] ∈ Hin, with

χ: X → P1 as above, let a be the set of branch points of χ, and choose a0 ∈ P1�a

and p0 ∈ χ−1(a0). Set Γ = Π1(P
1�a, a0) as above, and define f : Γ → G as

f = h ◦ ι, where ι: Γ → Aut(X/P1) is the map from (2.2). Recall that ι is

canonical up to composition with inner automorphisms of Aut(X/P1). Thus h

and f determine each other up to inner automorphisms of G. This is compatible

with the equivalence of pairs (resp., triples).

(2.6) The topology on Hin. To specify a neighborhood N of the point

[a, a0, f ] of Hin, where a = {a1, . . . , ar}, choose pairwise disjoint open discs

D1, . . . , Dr around a1, . . . , ar, with a0 �∈ D1 ∪ · · · ∪ Dr. Then N consists of

all points [ã, a0, f̃ ] such that ã has exactly one point in each Di, and f̃ is the

composition of the canonical isomorphisms

Π1(P
1�ã, a0) ≡ Π1(P

1�(D1 ∪ · · · ∪ Dr), a0) ≡ Π1(P
1�a, a0)
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with f . These N form a basis for the topology. They are connected. The sets

Λ(N ) form a basis for a topology on Hab, such that Λ: Hin → Hab becomes an

(unramified) covering.

(2.7) r-tuples of unordered branch points. Let Ur denote the space of

all subsets of cardinality r of the Riemann sphere P1. It has a natural structure

of algebraic variety defined over Q [FV1, §1.1]; it is isomorphic to Pr�D, where

D, the discriminant locus, is a hypersurface in Pr. In particular, Ur is an affine

variety. Furthermore, if K is a subfield of C and a = {a1, . . . , ar} ∈ Ur with

a1, . . . , ar �= ∞, then a is K-rational if and only if
∏r

i=1(X − ai) ∈ K[X]. As

a complex manifold, the topology of Ur has a basis consisting of sets D of the

following form: Given pairwise disjoint open discs D1, . . . , Dr on P1, let D be

the set of all a ∈ Ur with |a ∩ Di| = 1 for i = 1, . . . , r.

(2.8) Maps to Ur. Define Ψ: Hin → Ur and Ψ̄: Hab → Ur by sending

[χ, h] and [χ], respectively, to the set of branch points of χ. These maps are

(unramified) coverings and Ψ̄ ◦ Λ = Ψ. Through these coverings the spaces Hab

and Hin inherit a structure of complex manifold from Ur.

(2.9) The algebraic structure on covers. Each cover χ: X → P1 as

above is an algebraic morphism of algebraic varieties over C, compatible with

its analytic structure (Riemann’s existence theorem). An automorphism β of C

defines an automorphism β∗ of P1 by (x0 : x1) �→ (β−1(x0) : β−1(x1)). Consider

the cover β(χ): β(X) → P1 obtained from χ: X → P1 through base change with

β∗. Furthermore, for each α ∈ Aut(X/P1) let β∗(α) = β(α) ∈ Aut(β(X)/P1) be

the morphism obtained by the same base change.

(2.10) The algebraic structure on Hin. The spaces Hab and Hin have a

unique structure of (the set of complex points of) a (reducible) algebraic variety

defined over Q [FV1, Theorem 1]. This variety structure is compatible with

the analytic structure of Hab and Hin, and it makes the maps Ψ, Ψ̄ and Λ into

algebraic morphisms defined over Q. Also, each automorphism β of C—in its

natural action (x1, . . . , xn) �→ (β(x1), . . . , β(xn)) on the complex points of (the

affine pieces of) a variety defined over Q—sends the point [χ] ∈ Hab to [β(χ)]

and the point [χ, h] ∈ Hin to [β(χ), h ◦ β−1
∗ ].

(2.11) Complex conjugation acting on Hin. We can describe the action

of complex conjugation c on the triples of (2.4) that compose Hin. Namely,

c naturally acts on paths in P1. Thus, it induces a map Π1(P
1�a, a0) →

Π1(P
1�c(a), c(a0)). Denote this map by γ �→ cγ.

Lemma. If p = [a, a0, f ] ∈ Hin, then c(p) = [c(a), c(a0), cf ]. Here (cf)(cγ) =

f(γ) for each γ ∈ Π1(P
1�a, a0).

Proof. Write p as p = [χ, h]. Then c(p) = [c(χ), h ◦ c−1
∗ ]. It remains

to show that this point is represented by the triple (c(a), c(a0), cf). This is a

straightforward consequence of the definitions (cf. [DF1, Lemma 2.1]).
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(2.12) r-tuples of all conjugacy classes of G. Let b = {b1, . . . , br} ∈ Ur

such that 0 /∈ b. We can choose generators γ1, . . . , γr for the fundamental group

Π1(P
1�b, 0) so that γ1 · · · γr = 1 is the only relation among them. Indeed,

assume that bj = ζj , for j = 1, . . . , r, where ζ = e
2πi

r . Otherwise apply a

homeomorphism P1 → P1 that maps 0 onto itself and bj onto ζj . Let γ̃j be a

path starting at 0, going up on a straight line to a neighborhood of bj , traversing

a small disk around bj in the counterclockwise direction, and following the same

straight line back to 0. Then γ̃1, . . . , γ̃r do not intersect except at 0. Let γj be the

homotopy class of γ̃j . Then γ1, . . . , γr generate Π1(P
1�b, 0) and γ1 · · · γr = 1.

Represent a point p ∈ Ψ−1(b) by a triple (b, 0, f). The r-tuple (σ1, . . . , σr) =

(f(γ1), . . . , f(γr)) determines the epimorphism f : Π1(P
1�b, 0) → G. It has the

following properties: σ1 · · ·σr = 1, σ1, . . . , σr generate G, and σj �= 1 for all j

[FV1, §1.3]. Let Er denote the set of such r-tuples (σ1, . . . , σr). Clearly, each

(σ1, . . . , σr) ∈ Er arises in the above way from some p ∈ Ψ−1(b). Let L(G)

be the collection of conjugacy classes �= {1} of G, and let E(r) be all r-tuples

(σ1, . . . , σr) ∈ Er where each C ∈ L(G) is represented exactly r/|L(G)| times

among σ1, . . . , σr.

(2.13) When commutators generate the Schur multiplier of G. For

the rest of section 2 assume that r is a multiple of |L(G)| and suitably large

[FV1, Appendix], and the Schur multiplier of G is generated by commutators.

We explain the latter condition. Let R be a group of maximal order with the

property that R has a subgroup M ≤ R′ ∩ Z(R) satisfying R/M ≡ G. Then

M ∩ {g−1h−1gh| g, h ∈ R} generates M , the Schur multiplier of G.

Fix b ∈ Ur and γ1, . . . , γr as above. By [FV1, §1.3] there is a (unique)

connected component H of Hin containing {[b, 0, f ]| (f(γ1), . . . , f(γr)) ∈ E(r)}.
Let H̄ = Λ(H) be its image in Hab. We call H and H̄ Hurwitz spaces. By

[FV1, Thm. 1] they are absolutely irreducible algebraic varieties defined over Q.

Moreover, since Ψ: H → Ur and Ψ̄: H̄ → Ur are finite normal covers of an affine

variety, H and H̄ are affine [H, Exc. III.4.1].

(2.14) Automorphisms of Hin → Hab. For A ∈ Aut(G) (acting from the

left on G), let δA: H → H be the map sending the point [χ, h] to [χ, A ◦ h].

Then δA is an automorphism of the covering Λ: H → H̄. It depends only on the

class of A modulo Inn(G). In fact, Λ is a Galois covering, and the map A �→ δA

induces an isomorphism δ: Out(G) = Aut(G)/Inn(G) → Aut(H/H̄) [FV1, §6.1].

Furthermore, δA is a morphism defined over Q [FV1, §6.2]. In the description

of Hin in (2.4), δA sends the point [a, a0, f ] to [a, a0, A ◦ f ]. As Λ: Hin → Hab is

an unramified covering (2.8), δA has no fixed points.

For the rest of this section assume that G has trivial center. Accordingly,

identify G with the subgroup Inn(G) of Aut(G) (acting from the left on G). Let

p ∈ H and let K ⊆ L be subfields of C such that Λ(p) ∈ H̄(K) and L = K(p).

(2.15) Fields of definition of covers. Write p as p = [χ, h]. Then, the

cover χ: X → P1 can be defined over L (in a unique way) such that all auto-
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morphisms of χ are defined over L [FV1, Cor. 1]. Thus, there is a unique cover

χL: XL → P1
L such that base change with the embedding L → C gives χ from

χL and the automorphisms of χ from the automorphisms of χL.

(2.16) Fields of definition of automorphisms. We recall some facts from

[FV1, §6.3]. The function field F = L(XL) is regular over L, and the exten-

sion F/L(x) induced by χ is Galois. Here, x is the identity function on P1.

The group G(F/L(x)) (acting from the left on F ) is canonically isomorphic to

Aut(X/P1), via the map that sends α ∈ Aut(X/P1) to the element g �→ g ◦ α−1

of G(F/L(x)). Let h0: G(F/L(x)) → G be the composition of this isomorphism

with h: Aut(X/P1) → G.

(2.17) Indentification of automorphisms of G. Furthermore, L/K and

F/K(x) are Galois extensions, and the centralizer of G(F/L(x)) in G(F/K(x))

is trivial. This implies h0 extends to a unique embedding h1: G(F/K(x)) →
Aut(G). [FV1, Proposition 3] says: H := h1(G(F/K(x))) equals

{A ∈ Aut(G)| δA(p) is conjugate to p under G(L/K)}.
(2.18) Action by autmorphisms of C. Let β be an automorphism of C,

and let K and K ′ be two subfields of C such that β(K) ⊆ K ′. Put p′ = β(p) and

L′ = K ′(p′). Then β(L) ⊆ L′, and Λ(p′) ∈ H̄(K ′). Let F ′/L′(x) be the Galois

extension associated to K ′ and the point p′ of H, and let h′
1: G(F ′/K ′(x)) →

Aut(G) be the associated embedding. Then the following holds:

Let β: L(x) → L′(x) be the extension of β (fixing x). This map extends further

to β: F → F ′ such that canonically

(1) F ′ ≡ β(F ) ⊗β(L) L′ ≡ F ⊗L L′.

Consider restriction β∗: G(F ′/K ′(x)) → G(F/K(x)): σ ∈ G(F ′/K ′(x)) goes

to β−1σ|β(F )β. It is injective and it gives an isomorphism G(F ′/L′(x)) →
G(F/L(x)). Further, it makes the following diagram commutative:

(2)

G(F ′/K ′(x)) ✲β∗

G(F/K(x))
◗

◗
◗�h′

1

✑
✑

✑✰ h1

Aut(G)

Proof (2) commutes. We have p′ = [β(χ), h ◦ β−1
∗ ] by (2.10). The natural

action of β ∈ Aut(C) on functions defined over L extends β to a map from

F = L(X) to F ′ = L(β(X)). Then (1) follows from the fact that F is regular over

L, and [F ′: L′(x)] = [F : L(x)] (= deg(χ)). The proof of (2) is straightforward

from the definitions.

(2.19) Conclusion from (2.18). In (2.18) and Lemma 1.9 we have

h′
1(IP ′(F ′/E′)) ⊆ h1(IP (F/E)) and ConH h′

1(IP ′(F ′/E′)) = h1(IP (F/E)),

where H is the image of h1 in Aut(G). If the ‘restriction’ map β∗: G(F ′/K ′(x)) →
G(F/K(x)) is an isomorphism, then h′

1(IP ′(F ′/E′)) = h1(IP (F/E)). Indeed,
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without loss of generality assume that the map β: K → K ′ is an inclusion

of fields. Hence β∗ = resF . In the commutative diagram (2) we may replace

Aut(G) by H, so that h1 is an isomorphism. The assertions follow from the

commutativity of that diagram.

3. Group-theoretic lemmas

For a group G and r ≥ 0 put Ġ = G�{1}. Let L(G) be the nontrivial

conjugacy classes of G, and put l = |L(G)|. For an r-tuple σσσ = (σ1, . . . , σr) ∈ Ġr

and C ∈ L(G), let nC(σσσ) be the number of indices, 1 ≤ i ≤ r, with σi ∈ C. Then∑
C∈L(G) nC(σσσ) = r.

Lemma 3.1. Let G be a finite group. Every sufficiently large multiple r of

4l satisfies the following. Let ǫ ∈ Aut(G) be of order 2 and let I be involutions

in (G×|〈ǫ〉)�G with ǫ ∈ I. Let e = 8 · |G|! if |I| ≥ 2, and e = 0 if |I| = 1. Put

m = r − e. Then there are sequences σσσ ∈ Ġe, τττ ∈ Ġm with these properties:

(a1) σǫ
i = σ1 · · ·σi−1σ

−1
i σ−1

i−1 · · ·σ−1
1 , for each 1 ≤ i ≤ e;

(a2) τ ǫ
j = τ−1

m+1−j for each 1 ≤ j ≤ m;

(b) I = {ǫ, ǫσ1, ǫσ1σ2, . . . , ǫσ1σ2 · · ·σe};
(c) (σσσ, τττ) ∈ E(r)(G); or 〈σ1, . . . , σe, τ1, . . . , τm〉 = G, σ1 · · ·σeτ1 · · · τm = 1,

and nC(σσσ, τττ) = r/l for each C ∈ L(G).

Proof. We may consider ǫ ∈ Aut(G), |ǫ| = 2, and one set I of involutions.

A. Separation of σσσ from τττ . Define an equivalence relation on L(G): the

class [C] is {C, C−1, Cǫ, C−ǫ}. Part B constructs σσσ ∈ Ġe with (a1), (b),

(c1) σ1 · · ·σe = 1; and

(d1) for each [C] there is μ[C] ≥ 0 such that nC(σσσ) = 4μ[C].

Observe that e =
∑

C∈L(G) nC(σσσ) = 4
∑

C∈L(G) μ[C]. Also, for each [C] let ν[C]

be a positive integer and m = 4
∑

C∈L(G) ν[C]. Part C shows there is τττ ∈ Ġm

satisfying (a2),

(c2) 〈τ1, . . . , τm〉 = G and τ1 · · · τm = 1, and

(d2) nC(τττ) = 4ν[C], for each C.

Let n = r
4l , and assume n > μ[C] for each [C]. In the last step with ν[C] = n−μ[C],

e + m = 4
∑

C∈L(G)

μ[C] + 4
∑

C∈L(G)

ν[C] = 4
∑

C∈L(G)

n = 4ln = r.

Substituting (c1), (c2), (d1), and (d2) in the expressions for (c) shows (c) holds.

In fact, nC(σσσ, τττ) = 4n = r
l for each C ∈ L(G).

B. Construction of σσσ. If I = {ǫ}, let e = 0 and σσσ = (). Otherwise put

σσσ = (ǫ1ǫ2, ǫ2ǫ3, . . . , ǫeǫ1), where ǫ1 = ǫ, ǫ2, . . . , ǫe ∈ I, not necessarily distinct,

but ǫ1 �= ǫ2 �= · · · �= ǫe �= ǫ1. Then σσσ satisfies (a1) and (c1). Furthermore,

if I = {ǫ1, . . . , ǫe}, then σσσ also satisfies (b). To construct such ǫ1, . . . , ǫe, let

n′ = e
2|I�{ǫ}| . Note: n′ is an integer divisible by 4, because |I�{ǫ}| < |G|. Let
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ǫi = ǫ for odd i, and choose ǫ2, ǫ4, . . . , ǫe so that each element of I�{ǫ} occurs

in this sequence exactly n′ times.

Let g ∈ G, and let ng(σσσ) be the number of indices 1 ≤ i ≤ e for which σi = g.

From the above, 4|ng(σσσ). Moreover, σǫ
2i−1 = ǫ(ǫǫ2i)ǫ = σ−1

2i−1 = σ2i, for each

1 ≤ i ≤ e/2. Hence, ng(σσσ) = ng−1(σσσ) = ngǫ(σσσ) = ng−ǫ(σσσ). This yields (d1).

C. Construction of τττ . For each [C] let ν[C] be a positive integer. Choose

k and g = (g1, . . . , gk) ∈ Ġk such that nC(g) = ν[C], for each C. In particu-

lar, g contains an entry from each C ∈ L(G). A proper subgroup of G misses

some conjugacy classes of G [FJ, Lemma 12.4]. Therefore, G = 〈g1, . . . , gk〉.
Furthermore, k =

∑
C∈L(G) ν[C] = m

4 . Put

τττ = (g1, g
−1
1 , . . . , gk, g−1

k , gǫ
k, g−ǫ

k , . . . , gǫ
1, g

−ǫ
1 ).

This choice satisfies (a2) and (c2), and, for each C,

nC(τττ) = nC(g) + nC−1(g) + nCǫ(g) + nC−ǫ(g) = 4ν[C].

Lemma 3.2. Let 1 → G → H
π−→C → 1 be an exact sequence of finite groups,

and let I be a set of involutions in H�G. There exists a commutative diagram

(1)

1 ✲ G̃ ✲ H̃ ✲
π̃

C ✲ 1

❄ ❄






1 ✲ G ✲ H ✲

π C ✲ 1

with exact rows and surjective vertical maps such that the Schur multiplier of

G̃ is generated by commutators and CH̃(G̃) = 1. Finally, every involution in I

lifts to at least two involutions in H̃.

Proof. Choose a presentation 1 → R → F → H → 1, where F is the free

product of a free group of finite rank with finitely many groups of order 2, say

〈δ1〉, . . . , 〈δe〉, such that {δ1, . . . , δe} maps onto I. The inverse image F1 of G

in F contains no conjugates of δ1, . . . , δe. By the Kurosh Subgroup Theorem

[M, Theorem VII.5.1 and Proposition VII.5.3] it is a free of finite rank. Let

N = [F1,R] be the group generated by commutators [f, r] with f ∈ F1, r ∈ R.

Set F = F/N , F1 = F1/N , and R = R/N . Then 1 → R → F1 → G → 1 is a

central extension.

Schur multiplier theory [Hu, Kap.5, §23] shows R is the direct product of

the Schur multiplier M(G) = R ∩ (F1)
′ and a free abelian group A. Let A0 be

the intersection of all the F -conjugates of A. Then A0 ⊳ F . Since (R : A) =

|M(G)| < ∞, also (F : A0) < ∞. Set H̃ = F/A0, G̃ = F1/A0, and S = R/A0,

to get diagram (1). The image Ĩ of {δ1, . . . , δe} in H̃ maps onto I. Notice that

S is the direct product of S ∩ (G̃)′ ≡ M(G) and A/A0. As in the proof of [FV3,

Lemma 2] the Schur multiplier of G̃ is generated by commutators.

Replace G, H, and I by G̃, H̃, and Ĩ, to assume that the Schur multiplier

of G is generated by commutators. Let T be a non-abelian finite simple group

with trivial Schur multiplier. For example, take T = SL2(8) [Hu, Satz 25.7].
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Form the regular wreath product H̃ of H with T (e.g., [Hu, Def. 15.6]). Thus

H̃ = T j×|H, with j = |H|, and H acts on T j by permuting the factors in its

regular representation. Let G̃ be T j×|G ≤ H̃. Clearly, CH̃(T j) = 1, and hence

CH̃(G̃) = 1. If ǫ ∈ I and τ ∈ T j , then τ−1ǫτ is an involution in H̃ that maps to

ǫ. This proves the last assertion of the lemma.

Since M(T ) = 1, every central extension of T splits. This implies that every

representation group of G̃ has a normal subgroup isomorphic to T j such that the

quotient by this subgroup is a representation group of G. Therefore, M(G̃) ≡
M(G) is generated by commutators.

Lemma 3.3. Let π: H → H be an epimorphism of finite groups, and let

I1, . . . , Im ⊆ H and I1, . . . , Im ⊆ H be sets of involutions such that π(Ij) = Ij .

Then there exists a finite group H̃, a surjection ρ: H̃ → H, and sets of involutions

Ĩ1, . . . , Ĩm ⊆ H̃ such that ρ(Ĩj) = Ij for every j, and every automorphism ᾱ of

H that satisfies ᾱ(Ij) = Ij for all j, lifts to an automorphism α̃ of H̃ (that is,

(π ◦ ρ) ◦ α̃ = ᾱ ◦ (π ◦ ρ) ) that satisfies α̃(Ĩj) = Ĩj for all j. Moreover, if the Ij

are conjugacy domains in H, then the Ĩj can be taken conjugacy domains in H̃.

Proof. Let K be a set of cardinality Ker(π). Consider the free product

H̃ = (
∏
∗

h∈H

k∈K

〈xh,k〉) ∗ (
∏
∗

ǭ∈I

k∈K

〈ǫ̃ǭ,k,1〉) ∗ (
∏
∗

ǭ∈I

k∈K

〈ǫ̃ǭ,k,2〉) ∗ · · · ∗ (
∏
∗

ǭ∈I

k∈K

〈ǫ̃ǭ,k,m〉),

of cyclic groups. Here 〈xh,k〉 ≡ Z and 〈ǫ̃ǭ,k,j〉 ≡ Z/2Z, and let Ĩj = {ǫ̃ǭ,k,j | ǭ ∈
Ij , k ∈ K}. (Of course, H̃ is not yet finite.) Define a surjection ρ: H̃ → H

by mapping {xh,k| k ∈ K} onto {h ∈ H| π(h) = h} and {ǫ̃ǭ,k,j | ǭ ∈ Ij} onto

{ǫ ∈ Ij | π(ǫ) = ǭ}. Then ρ(Ĩj) = Ij . Every automorphism ᾱ of H that satisfies

ᾱ(Ij) = Ij for all j, lifts to an automorphism α̃ of H̃ defined by xh,k �→ xᾱ(h),k

and ǫ̃ǭ,k,j �→ ǫ̃ᾱ(ǭ),k,j . Clearly α̃(Ĩj) = Ĩj . If Ij and Ij are conjugacy domains,

we can replace Ĩj by the conjugacy domain that it generates in H̃.

Thus H̃ satisfies the requirements of the lemma, except that it is not finite.

To make H̃ finite, replace it by its quotient H̃/N , and ρ by the induced quotient

map, where N is a characteristic subgroup of finite index in H̃, contained in

Ker(ρ). For example, take N to be the intersection of all normal subgroups M

of H̃ with H̃/M ≡ H.

4. Points over ordered fields

Let G be a finite group with a trivial center such that the Schur multiplier of

G is generated by commutators. Identify G with the subgroup Inn(G) of Aut(G).

Fix a sufficiently large integer r that satisfies (2.13) and the assertions of Lemma

3.1. Associate with G and r the moduli spaces Hin and Hab from (2.3).

Our aim is to choose Hurwitz spaces H and H̄ and some points q = [b, 0, f0]

on H as in (2.4). First, let e = 8 · |G|! and m = r−e
2 , so r = e + 2m. Define the
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base point b = {b1, . . . , br} in Ur by

b1 = 1, . . . , be = e, and be+j = −3 + (2m + 1 − 2j)
√
−1, for j = e, . . . , 2m.

Next, fix generators of Π1(P
1�b, 0). For each 1 ≤ j ≤ r let Dj be the disc of

diameter 1
2 around bj (so that D1, . . . , Dr are disjoint). Define loops γ1, . . . , γr

in the complex plane with the initial and final point 0 in the following way:

(1) γ1 = β1, γ2 = β−1
1 β2, . . . , γe = β−1

e−1βe, where βj is the circle in the

counterclockwise direction with diameter [0, bj + 1
2 ] on the real axis;

(2) for e < j ≤ r the path γj goes on a straight line from 0 towards bj ,

then travels on a circle of diameter 1
2 < ρ < 1 in the counterclockwise

direction around bj , and returns on a straight line to 0.
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These loops are homotopic to the loops those from (2.12). Therefore they

represent generators of the fundamental group Π1(P
1�

⋂
Dj , 0), subject only

to the relation γ1 · · · γr = 1. If a is an r-tuple with |a ∩ Dj | = 1 for j =

1, . . . , r, then γ1, . . . , γr also represent generators of Γ = Π1(P
1�a, 0). In-

deed, Π1(P
1�

⋂
Dj , 0) ≡ Γ via the inclusion P1�

⋂
Dj → P1�a. Furthermore,

for such a, we may use γ1, . . . , γr also to represent free generators of Γ̃ =

Π1(P
1�(a ∪ {∞}), 0). The canonical epimorphism λ∗: Γ̃ → Γ induced by the

inclusion λ: P1�(a∪{∞}) → P1�a maps the class of γj in Γ̃ onto the class of γj

in Γ. Using b and γ1, . . . , γr, define the Hurwitz spaces H and H̄ and the maps

Λ, Ψ, and Ψ̄ as in (2.13).
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Finally, assume G has a non-inner automorphism ǫ of order 2. Let G×|〈ǫ〉 be

the subgroup of Aut(G) generated by G and ǫ. In particular, the centralizer of

G in G×|〈ǫ〉 is trivial. Let I ⊆ G×|〈ǫ〉�G be a set of involutions, with ǫ ∈ I and

|I| ≥ 2. Lemma 3.1 (with m replaced by 2m) produces an r-tuple (σ1, . . . , σr) ∈
E(r)(G) (see (2.12)) with the following properties:

(3) σǫ
j = σ1 · · ·σj−1σ

−1
j σ−1

j−1 · · ·σ−1
1 , for each 1 ≤ j ≤ e;

(4) σǫ
e+j = σ−1

e+(2m+1−j) for j = 1, . . . , 2m;

(5) I = {ǫ, ǫσ1, ǫσ1σ2, . . . , ǫσ1σ2 · · ·σe}.
Fix (for each ǫ and each I) such an r-tuple (σ1, . . . , σr). As σ1 · · ·σr = 1, there is

a unique epimorphism f0: Π1(P
1�b, 0) → G with f0(γj) = σj , for j = 1, . . . , r.

Definition 4.1. The point q = [b, 0, f0] ∈ H is called the basic point

associated with G, ǫ, and I. The neighborhood

N = {p = [a, 0, f ] ∈ Hin| |a ∩ Dj | = 1, f(γj) = f0(γj) = σj , for j = 1, . . . , r}

of q in H is called the basic neighborhood of q.

Remark 4.2. Properties of a basic neighborhood.

(a) A priori, N is a neighborhood of q in Hin (see (2.6)). Yet, N is connected.

Hence, N ⊆ H.

(b) The point b is Q-rational (2.7). Hence q is algebraic over Q.

(c) Let p ∈ N , and let a = {a1, . . . , ar} = Ψ(p). Then without loss of gen-

erality aj ∈ Dj , for j = 1, . . . , r. If a is R-rational (i.e., (X−a1) · · · (X−
ar) ∈ R[X]), then a1 < · · · < ae are real, and ae+(2m+1−j) is the complex

conjugate of ae+j , for j = 1, . . . , m.

(d) Let c be the complex conjugation. As H is an affine variety, we may

embed it in a fixed affine space An. Then the complex topology on it

is given by the norm || − ||c defined in Definition 1.4. There are only

finitely many choices of ǫ and I. Hence there are only finitely many basic

points associated with G. Thus there is a positive rational number ν

(that depends only on G) such that if q is a basic point, p ∈ H, and

||p − q||c2 < ν2, then p is in the basic neighborhood N of q.

Lemma 4.3. Let p ∈ N such that Ψ(p) is R-rational. Then δǫ(p) = c(p),

where c is complex conjugation.

Proof. Write p as [a, 0, f ]. Then a = Ψ(p). We have δǫ(p) = [a, 0, ǫ ◦ f ]

by (2.14) and c(p) = [c(a), 0, cf ] = [a, 0, cf ] by (2.11). It remains to show that

cf = ǫ ◦ f .

Observe that cβj = β−1
j , for j = 1, . . . , e. Recursively:

(6) cγ1 = γ−1
1 , cγ2 = γ1γ

−1
2 γ−1

1 , . . . , cγe = γ1 · · · γe−1γ
−1
e γ−1

e−1 · · · γ−1
1 .

Furthermore,

(7) cγe+j = γ−1
e+(2m+1−j), for j = 1, . . . , 2m.
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Recall that (cf)(cγ) = f(γ). Combine (6) and (7) with (3) and (4) to get

cf(γj) = f(cγj) = σǫ
j = (ǫ ◦ f)(γj), for each 1 ≤ j ≤ r.

Proposition 4.4. Let (K, P ) be an ordered field and ι an involution in G(K)

inducing P on K. Assume K̃ ⊆ C. Let λ ∈ G(Q) and p ∈ H(K̃) with

(8) ||p − λ(q)||ι2 < ν2 in K̃(ι),

and p̄ = Λ(p) is K-rational. Let h1: G(F/K(x)) → Aut(G) be the embedding

corresponding to p over K with F/K(x) Galois as given in (2.17). Put L = K(p)

and let H be the image of h1. The following hold:

(a) δǫ(p) = ι(p);

(b) P does not extend to L; in particular, P does not extend to F ;

(c) G×|〈ǫ〉 ≤ H, and therefore I ⊆ H;

(d) h1(IP (F/K(x))) = ConH(I).

Proof. By (2.14), δǫ(p) �= p. Therefore (a) implies ι(p) �= p. Hence L �⊆
K̃(ι), and this implies (b). Furthermore, the criterion of (2.17) implies that

ǫ ∈ H. Since G ≤ H, G×|〈ǫ〉 ≤ H. So it suffices to prove (a) and (d).

Part I. Reduction to K with archimedian orderings dense in X(K). Let K0

be a finitely generated subfield of K, containing the finitely generated subfield

Q(p̄) of K. Let P0 be the restriction of P to K0. This ordering is induced

from the restriction ι0 ∈ G(K0) of ι. Let F0/K0(x) be the Galois extension and

(h1)0: G(F0/K0(x)) → Aut(G) the embedding corresponding to p over K0. We

may assume that F = F0 · K from (2.18). If K0 is sufficiently large, then the

restriction map resF0 : G(F/K(x)) → G(F0/K0(x)) is an isomorphism. If we can

show that the assertions hold for K0, P0, ι0, (h1)0, then, by (2.19) and since

ι0(p) = ι(p), they also hold for K, P , ι, h1. Lemma 1.6(a) shows the set of

archimedian orderings on K0 is dense in X(K0). So we may assume that K

enjoys this property.

Part II. Reduction to P archimedian. By Remark 1.8, if P ′ is an (archime-

dian) ordering of K sufficiently near to P , then IP (F/K(x)) = IP ′(F/K(x)).

We may assume an involution ι′ ∈ G(K), so near to ι, induces P ′ that

||p − λ(q)||ι2 = ||p − λ(q)||ι′2 and ι(p) = ι′(p).

Thus we may replace P by P ′ and ι by ι′.

Part III. Reduction to K = R and λ = 1. Assume that P is archimedian.

Extend λ−1 to an automorphism β of C, and let ι′ = βιβ−1. Then β(K̃(ι)) =

(β(K̃))(ι′) is a real closure of (β(K), β(P )). Hence it is also archimedian. Thus

we may assume that (β(K̃))(ι′) ⊆ R. Hence βιβ−1 = ι′ = resβ(K̃)c, where c is

complex conjugation on C.

Since q is algebraic over Q, βλ(q) = q. So, application of β to (8) yields

(8′) ||β(p) − q||c2 < ν2 in R.
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As p̄ is K-rational, ι(p̄) = p̄. Thus, c(β(p̄)) = β(p̄) and β(p̄) is R-rational.

Also, as δǫ is defined over Q, it commutes with β. Therefore (a) is equivalent to

(a′) δǫ(β(p)) = c(β(p)).

Finally, let F ′/R(x) be the Galois extension and h′
1: G(F ′/R(x)) → Aut(G)

the embedding corresponding to β(p) over R, and let H ′ be the image of h′
1.

Then by (2.19), condition (d) follows from

(d′) h′
1(IP ′(F ′/R(x))) = ConH′(I),

where P ′ is the unique ordering of R. Thus, replacing K by R and p by β(p),

we may assume that K = R and λ = 1.

Part IV. K = R and λ = 1. By Remark 4.2(d) we have p ∈ N . Write p as

[a, 0, f ]. Then a = Ψ(p) = Ψ̄(p̄) is R-rational. Lemma 4.3 gives assertion (a).

Part V. Proof of (d). By (c)—follows from (a)—we have G×|〈ǫ〉 ≤ H. Check:

|G×|〈ǫ〉| = 2 · |G| = 2 · [F : C(x)] = [F : R(x)] = |H|.

So H = G×|〈ǫ〉.
Write p in the form p = [χ, h], with χ: X → P1 (2.1). Fix a point y ∈ χ−1(0).

Let Y0 = P1�(a∪{∞}), and let ψ: Ŷ0 → Y0 be the universal unramified covering

of Y0. Fix a point ŷ ∈ ψ−1(0). Put Y = χ−1(Y0) ⊆ X. As χ: Y → Y0 is

unramified, there exists a unique covering ϕ: Ŷ0 → Y such that χ ◦ ϕ = ψ and

ϕ(ŷ) = y. Let F̂ be the field of algebraic meromorphic functions on Ŷ0 (in the

sense of [KN, p. 199]). Then the field extension F̂ /C(x) induced by ψ is the

maximal extension of C(x) unramified in Y0.

Let F = C(X) = C(Y ). We identify G(F/C(x)) with G via h0, and G(F/R(x))

with H via h1 (see (2.16) and (2.17)). Then, h: Aut(X/P1) → G is the canon-

ical isomorphism Aut(X/P1) → G(F/C(x)) sending α ∈ Aut(X/P1) to the el-

ement f �→ f ◦ α−1 of G(F/C(x)). Similarly, let Ĝ = G(F̂ /C(x)), and let

ĥ: Aut(Ŷ0/Y0) → Ĝ be the canonical map sending α̂ to the element f̂ �→ f̂ ◦ α̂−1.

Let ι: Π1(P
1�a, 0) → Aut(X/P1) be the epimorphism associated to the point

y ∈ χ−1(0) (see (2.2)). Similarly define ι̂: Π1(Y0, 0) → Aut(Ŷ0/Y0), associated

to the point ŷ ∈ ψ−1(0). Then there is a commutative diagram

Π1(Y0, 0) ✲
ι̂

Aut(Ŷ0/Y0) ✲
ĥ

Ĝ

❄
λ∗

❄
ϕ∗

❄
resF

Π1(P
1�a, 0) ✲

ι Aut(X/P1) ✲
h

G

where λ∗ is induced from the inclusion λ: Y0 → P1�a.

Put σ̂j = ĥ ◦ ι̂(γj), for j = 1, . . . , r. Then

(9) resF σ̂j = h ◦ ι ◦ λ∗(γj) = f(γj) = σj , for j = 1, . . . , r.

Let n = (r + e)/2 = e + m. By Remark 4.2(c) we may assume a1 < · · · < ae

are real, and ae+(2m+1−j) is the complex conjugate of ae+j , for j = 1, . . . , m.
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Observe that F̂ is the maximal extension of R(x) unramified outside the primes

of R(x) induced by a1, . . . , ar,∞. In this situation the proof of [KN, Satz 2]

shows that there is ǫ̂ ∈ Ĥ = G(F̂ /R(x)) such that ǫ̂, σ̂1, . . . , σ̂n form a system

of generators for Ĥ with the defining relations

(10) ǫ̂2 = 1 and σ̂ǫ̂
j = σ̂−1

1 · · · σ̂−1
j−1σ̂

−1
j σ̂j−1 · · · σ̂1, for 1 ≤ j ≤ e.

Further, σ̂ǫ̂
e+j = σ̂−1

e+(2m+1−j) for j = 1, . . . , 2m. By (3) and (4) this implies that

resF ǫ̂ and ǫ act on G in the same way. Since H is a subgroup of Aut(G), this

implies that resF ǫ̂ = ǫ.

Each involution of Ĥ is conjugate to one of ǫ̂, σ̂1ǫ̂, σ̂2σ̂1ǫ̂, . . . , σ̂e · · · σ̂2σ̂1ǫ̂.

Indeed, by [HJ2, Lemma 4.2 (Part E)], Ĥ is the free profinite product of the

free profinite group 〈σ̂e+1, . . . , σ̂n〉 of rank n − e = m with e + 1 groups

〈ǫ̂〉, 〈σ̂1ǫ̂〉, 〈σ̂2σ̂1ǫ̂〉, . . . , 〈σ̂e · · · σ̂2σ̂1ǫ̂〉

that are of order two. Thus by [HR, Theorem A′] the elements of finite order in

Ĥ are the conjugates of the elements of these e + 1 subgroups.

By Lemma 4.5 below, all involutions of Ĥ are real. Using (9) and (5) conclude

I(F/R(x)) = resF I(F̂ /R(x)) = resF ConĤ({ǫ̂, σ̂1ǫ̂, . . . , σ̂e · · · σ̂1ǫ̂}) =

= ConH({ǫ, σ1ǫ, . . . , σe · · ·σ1ǫ}) = ConH(I).

Lemma 4.5. Let S be a finite set of finite prime divisors of the field R(x).

Let R(x)S be the maximal extension of R(x) unramified outside S ∪ {∞}, and

set GS = G(R(x)S/R(x)). Then all involutions of GS are real.

Proof. By [KN, Satz 3] the absolute Galois group G of R(x) has generators

{δ, τp | p a finite prime of R(x)/R} with the defining profinite relations

δ2 = 1 and τ δ
p

=
( ∏

p ′<p

τ−1
p ′

)
τ−1
p

( ∏

p ′<p

τ−1
p ′

)−1
for all real p.

Here
∏

p ′<p
τ−1
p ′ is the unique accumulation point of the products τ−1

p 1
· · · τ−1

p r
∈

G for real primes p1, . . . , pr with p1 < · · · < pr < p. Furthermore, [KN]

constructs this system of generators in such a way that for every finite set S of

finite primes and every finite prime p /∈ S the natural restriction map G → GS

maps τp onto 1 [KN, p. 207].

Let p1 < · · · < pe be the real, and pe+1, . . . , pn the complex primes of S. Let

σ̂j be the image of τp j
, for j = 1, . . . , n, and let ǫ̂ be the image of δ in GS . Then

ǫ̂, σ̂1, . . . , σ̂n generate GS and satisfy (10). These are in fact defining relations

for GS by [KN, Satz 2]. As in the last part of the proof of Proposition 4.4,

each involution of GS is conjugate to some σ̂j · · · σ̂1ǫ̂, where 0 ≤ j ≤ e. Thus it

suffices to show that each σ̂j · · · σ̂1ǫ̂ lifts to an involution of G. To this end put

δ0 = δ and δj =
( ∏

p ′≤p j

τ−1
p ′

)−1
δ = τp j

( ∏

p ′<p j

τ−1
p ′

)−1
δ
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for 1 ≤ j ≤ e. Then δj maps onto the involution σ̂j · · · σ̂1ǫ̂ in GS . In fact, given

another finite set S′ of finite primes of R(x) that contains S, the same argument

shows that δj restricts to an involution in GS′

. As G = lim←
S′

GS′

, we get that δj

is an involution in G.

5. The regular real embedding problem over a PRC field

Let K be a PRC field of characteristic 0, and let ν > 0 be a rational number.

We proceed as with PAC fields [FV2, Section 1] with some extra care.

Let X1, . . . , Xm be a partition of X(K) into disjoint clopen subsets. Fix

a closed system X of representatives of the conjugacy classes of involutions in

G(K); then {K̃(ι)| ι ∈ X} is a closed subset of real closures of K, one for each

ordering of K (see Section 1). Put Xj = X ∩ IXj
(K̃/K). Then X1, . . . ,Xm is a

partition of X into disjoint clopen subsets.

Lemma 5.1. Let Λ: H → H̄ be an unramified Galois cover of absolutely

irreducible, non-singular varieties defined over K. Assume that all the automor-

phisms of H/H̄ are defined over K. Let β: G(K) → Aut(H/H̄) be a homomor-

phism, and let L be the fixed field of ker(β). Assume that L is not formally real.

Let q1, . . . ,qm ∈ H(K̃) satisfy the following.

(1) ιqj = β(ι)(qj), for each ι ∈ Xj , for j = 1, . . . , m.

Then there exists p ∈ H(K̃) such that

(2) σp = β(σ)(p) for each σ ∈ G(K);

(3) ||p − qj ||2ι ≤ ν2 in K̃(ι), for each ι ∈ Xj , for j = 1, . . . , m;

(4) the point Λ(p) of H̄ is K-rational and K(p) = L.

Proof. First notice that (4) follows from (2). Indeed, an automorphism of

the unramified cover H → H̄ has no fixed points. If (2) holds, then for each

σ ∈ G(K) we have σ(Λ(p)) = Λ(σ(p)) = Λ(β(σ)(p)) = Λ(p) and

σ(p) = p ⇐⇒ β(σ)(p) = p ⇐⇒ β(σ) = 1 ⇐⇒ σ ∈ G(L).

The rest is a straightforward modification of the proof of [FV2, Lemma 1]. Apply

Weil’s descent [W, Theorem 3] to the maps fτ,ρ = β(τ) ◦β(ρ)−1 to get a variety

H′ defined over K, and a linear isomorphism f : H′ → H defined over L with

these properties. The map Λ◦f : H′ → H̄ is defined over K and σf = β(σ)◦f , for

each σ ∈ G(K). In particular, suppose that q′ ∈ H′(K̃) and q = f(q′) ∈ H(K̃).

Then, for every σ ∈ G(K)

β(σ)(q) = (β(σ) ◦ f)(q′) = (σf)(q′) = σ(f(σ−1q′)).

Conclude that

(5) σq = β(σ)(q) ⇐⇒ q′ = σq′ ⇐⇒ q′ ∈ H′(K̃(σ)).
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Use (5) and equation (3) of Section 1 to translate (1)–(3) via f from H to H′.

Let q′
j = f−1(qj) ∈ H′(K̃), for j = 1, . . . , m. Then,

(1′) q′
j ∈ H′(K̃(ι)), for each ι ∈ Xj , for j = 1, . . . , m.

We must find p′ ∈ H′(K̃) such that

(2′) p′ ∈ H′(K̃(σ)) for each σ ∈ G(K), that is, p′ ∈ H′(K);

(3′) ||p′ − q′
j ||2ι ≤ ν2/||f ||2ι in K̃(ι), for each ι ∈ Xj , for j = 1, . . . , m.

Suppose ι ∈ Xj for some 1 ≤ j ≤ m. As ||f ||2ι is algebraic over K, there

is aj ∈ K with a2
j > ||f ||2ι in K̃(ι). Replace X1, . . . ,Xm by a finer partition to

assume this is true for each ι ∈ Xj . Thus (3′) follows from a stronger statement:

(3′′) ||p′ − q′
j ||2ι ≤ ν2/a2

j in K̃(ι), for each ι ∈ Xj , for j = 1, . . . , m.

By Proposition 1.2 there is p′ ∈ H′(K) such that (3′′) holds.

Theorem 5.2. Let L/K be a finite Galois extension with L not formally

real and let π: H → G(L/K) be an epimorphism of finite groups. For each

1 ≤ j ≤ m let Ij ⊆ H be a conjugacy domain of involutions such that π(Ij) =

IXj
(L/K). Then there exists a regular extension F of L, Galois over K(x),

and an isomorphism h1: G(F/K(x)) → H that maps IXj
(F/K(x)) onto Ij . In

addition, the following diagram commutes.

G(F/K(x)) ✲h1 H
◗

◗
◗�

resL

✑
✑

✑✰
π

G(L/K)

In particular, h1 maps I(F/K(x)) onto
⋃

j Ij .

Proof. By Skolem-Löwenheim Principle [FJ, Proposition 6.4] we may as-

sume that K ⊆ C. We divide the proof into five parts.

Part 1. Weakening of commutativity. Let G = Ker(π). Instead of commuta-

tivity of the diagram it suffices to show that h1 maps G(F/L(x)) onto G. Indeed,

apply Lemma 3.3. This gives an epimorphism of finite groups ρ: H̃ → H and

conjugacy domains of involutions Ĩ1, . . . , Ĩm ⊆ H̃ with ρ(Ĩj) = Ij . In addition,

every automorphism of G(L/K) that preserves the IXj
(L/K) lifts (under ρ ◦ π)

to an automorphism of H̃ that preserves the Ĩj . Let G̃ = Ker(ρ ◦ π).

Assume that we can find a regular extension F̂ of L, Galois over K(x), and

an isomorphism ĥ1: G(F̂ /K(x)) → Ĥ that maps G(F̂ /L(x)) onto Ĝ and the

IXj
(F̂ /K(x)) onto the Îj . In particular, Ker(π ◦ ρ ◦ ĥ1) = G(F̂ /L(x)) =

Ker(resL). Hence there exists an automorphism α of G(L/K) such that α ◦
π ◦ ρ ◦ ĥ1 = resL and α preserves the IXj

(L/K). We can lift α to an automor-

phism α̂ of Ĥ that preserves the Îj . Thus, by composing h1 with α̂ we may

assume that (π ◦ ρ) ◦ ĥ1 = resL.

Now let F be the fixed field of Ker(ρ) in F̂ . Then h1 induces an isomorphism

h1: G(F/K(x)) → H with the required properties.
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Part 2. Reduce to commutators generate M(G), H ⊆ Aut(G), and |Ij | ≥ 2.

As L is not formally real, 1 /∈ IXj
(L/K) = π(Ij), for each 1 ≤ j ≤ m. Thus

Ij ⊆ H�G. Let H̃ and G̃ be as in Lemma 3.2, and let Ĩj be the inverse image of

Ij in the set of involutions of H̃. Suppose there is F̂ regular over L, with F̂ /K(x)

is Galois, and an isomorphism h̃: G(F̂ /K(x)) → H̃ that maps G(F̂ /L(x)) onto

G̃ and IXj
(F̂ /K(x)) onto Ĩj . As in Part 1, the subfield of F̂ corresponding to

the kernel of the map H̃ → H (sending G̃ to G) is the desired F .

Thus, assume that commutators generate M(G), CH(G) = 1, and |Ij | ≥ 2 for

each j. In particular, the conjugation action of H on G induces a monomorphism

H → Aut(G). Identify H with its image in Aut(G) (and G with Inn(G)). Then

G(L/K) is a subgroup of Out(G) = Aut(G)/Inn(G), and π: H → G(L/K) is

the restriction of the quotient map π: Aut(G) → Out(G) to H.

Part 3. Construction. Let Λ : H → H̄ be the cover of Hurwitz spaces,

associated with G, defined in Section 4. Let β: G(K) → Aut(H/H̄) be the

composition of the restriction G(K) → G(L/K) ≤ Out(G) with the isomorphism

δ: Out(G) → Aut(H/H̄) (2.14). Furthermore, let ν be as in Remark 4.2(d).

Let M be the field generated over Q by
√
−1 and the conjugates of basic

points associated with G, ǫ, and I as in Definition 4.1, for all possible ǫ and I.

This is a finite extension of Q (Remark 4.2(b)). Refine the partition X1, . . . , Xm

of X(K), and hence also the corresponding partition X1, . . . ,Xm of X , so that

for each 1 ≤ j ≤ m there are unique ǭj ∈ G(L/K) and ῑj ∈ G(M/Q) such that

resLXj = {ǭj} and resMXj = {ῑj}.
Fix 1 ≤ j ≤ m. Put I ′j = {ǫ ∈ Ij | π(ǫ) = ǭj} and choose ǫj ∈ I ′j . Then I ′j ⊆

G×|〈ǫj〉. Let q be the basic point associated with G, ǫj , and I ′j . Then Q(q) ⊆ M .

As the real involutions in G(M/Q) are conjugate, there is λj ∈ G(M/Q) with

λ−1
j ῑjλj = resMc: c is complex conjugation. Set qj = λj(q). By Lemma 4.3,

δǫ(q) = c(q). Therefore, δǫ(qj) = δǫλj(q)λjδǫ(q) = (λjcλ
−1
j )(qj) = ῑj(qj).

Let ι ∈ Xj . Then δǫj
= δ(π(ǫj)) = δ(ǭj) = (δ ◦ resL)(ι) = β(ι). So ι(qj) =

ῑj(qj) = δǫj
(qj) = β(ι)(qj). Thus q1, . . . ,qm satisfy (1). Therefore there

exists p ∈ H(K̃) that satisfies (2)-(4). Let F/K(x) be the Galois extension and

h1: G(F/K(x)) → Aut(G) the embedding associated with p over K (2.17).

Part 4. The image of h1. Let τ ∈ H. There is σ ∈ G(K) such that resLσ =

π(τ). By (2), σ(p) = δ(resLσ)(p) = δτ (p). Hence by the criterion of (2.17), τ is

in the image of h1. Thus H ≤ im(h1). But

|H| = |G| · |G(L/K)| = [F : L(x)] · [L : K] = [F : K(x)] = |im(h1)|,

and hence H = im(h1).

Part 5. h1(IXj
(F/K(x))) = Ij . Let 1 ≤ j ≤ m and P ∈ Xj . By Prop. 4.4(d),

h1(IP (F/K(x))) = ConH(I ′j). As ConG(K)(Xj) = IXj
(K̃/K), ConG(L/K)(ǭj) =

IXj
(L/K). Conclude: ConH(I ′j) = Ij . Thus h1(IP (F/K(x))) = Ij .
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Theorem 5.2 tells about the structure of the absolute Galois group of K(x).

For instance, every finite group is realizable over K(x). This isn’t new [DF2,

Theorem 5.7]. Still, the precise information about real involutions gives more.

Theorem 5.3. Let K be a formally real PRC field. Let G be a finite group,

and let G0 be a normal subgroup of G generated by involutions. There is a

Galois extension N/K(x) with Galois group G such that the fixed field of G0 in

N is the maximal totally real extension of K(x) in N .

Proof. Let 〈ǫ〉 be a group of order 2. Put H = G × 〈ǫ〉 and H0 = G0 × 〈ǫ〉,
and let π: H → G(K(

√
−1)/K) be the epimorphism with kernel G. The set I0 of

involutions in G0 generates G0. Therefore I1 = (I0 ∪{1})×{ǫ} generates H0. It

is a conjugacy domain in H. Theorem 5.2 (with m = 1) gives a Galois extension

F of E = K(x) that contains
√
−1 such that G(F/E) = H, G(F/E(

√
−1)) = G,

and I1 is the set of real involutions in G(F/E). Let N be the fixed field of ǫ

and N ′ the fixed field of H0 = 〈I1〉. The last condition means that N ′ is the

maximal totally real extension of E in F , and, thererefore, also in N . Clearly

G(N/E) ≡ G and N ′ is the fixed field of G0 in N .

6. Totally real Hilbertian fields

As in the preceding sections, all fields are of characteristic 0. Let S/R be

a Galois cover of rings [FJ, Definition 5.4] with F/E the corresponding Galois

extension of quotient fields. Thus R is an integrally closed domain and there is

z ∈ S integral over R such that S = R[z] and the discriminant dE(z) of z over

E is a unit of R. We call such z a primitive element for S/R. Assume S/R is

real [HL, Definition 4.2]: R is a regular ring and F is not formally real.

Lemma 6.1. The integral closure S′ of R in each intermediate extension F ′

of F/E is also a regular ring.

Proof. Observe that S/S′ is also a Galois cover. By [R, p. 75] it suffices to

show that S′/R is étale. i.e., flat and unramified. We have S = ⊕d−1
i=0 Rzi, where

d = [F : E], and so S/R is faithfully flat. Similarly S/S′ is faithfully flat. By

the descent property [Ma, (4.B)], S′/R is (faithfully) flat.

To show that S′/R is unramified, let q be a prime of S, and let p = q ∩ S′

and m = q ∩ R. Replace R, S′, and S by their localizations at these primes to

assume that they are local rings. Then S/S′ and S′/R are still faithfully flat.

As S/S′ is unramified, the field extension (S/q)/(R/m) is separable and finite.

Hence so is its subextension (S′/p)/(R/m). As S/R and S/S′ are unramified,

mS = q and pS = q . Thus (mS′)S ∩ S′ = pS ∩ S′. But S/S′ is faithfully

flat, hence [Ma, (4.C)], mS′ = p.

Let M be a field. Every homomorphism ϕ: R → M extends to a homomor-

phism ψ: S → M̃ , and ψ induces a group homomorphism ψ∗: G(M) → G(F/E):

(1) ψ
(
ψ∗(σ)(x)

)
= σ(x) for x ∈ S.
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[FJ, Lemma 5.5]. If ψ′ is another extension of ϕ, then ψ′∗ and ψ∗ differ by an

inner automorphism of G(F/E) [L, Corollary 1 on p. 247]. In particular, for

σ ∈ G(M) and a conjugacy domain I ⊆ G(F/E) we have ψ′∗(σ) ∈ I if and only

if ψ∗(σ) ∈ I. This allows us to abuse the notation and write ϕ∗(σ) ∈ I instead

of ψ∗(σ) ∈ I. (Cf. also [HL, Remark 4.1].)

Remark 6.2. Let S0/R0 be another real Galois cover of rings, with L/K the

corresponding extension of the quotient fields. Assume that R is finitely gener-

ated over R0, the field K is algebraically closed in E, and L is the algebraic clo-

sure of K in F . Furthermore, R0 ⊆ M and ϕ: R → M is an R0-homomorphism.

We may choose the extension ψ of ϕ to be an S0-homomorphism. From (1):

(a) Composition of ψ∗ with resL: G(F/E) → G(L/K) is the restriction map

resL: G(M) → G(L/K).

(b) For each P ∈ X(K), ϕ∗(IP (M)) ⊆ IP (F/E). Thus, ϕ∗(I(M)) ⊆
I(F/E).

Indeed, let ǫ ∈ IP (M), and let ψ: S → M̃ be an extension of ϕ. It follows

from (1) that ψ maps the integral closure S′ of R in F (ψ∗(ǫ)) into M̃(ǫ). The

latter field is real closed. Thus, by Knebusch’s Theorem [HL, Proposition 1.2],

P extends to an ordering on F (ψ∗(ǫ)).

Through this section and for an ambient field K consider the following setup:

x is transcendental over K, E = K(x) and R = K[x, h(x)−1]. Also, S is a real

Galois cover of R with F/E the corresponding extension of quotient fields.

(2) Let X1, . . . , Xm be a partition of X(K) into disjoint clopen subsets. For

each 1 ≤ j ≤ m, let Qj ∈ X(E) so that resKQj ∈ Xj .

Therefore, a ∈ K with h(a) �= 0 defines ϕa: R → K by x �→ a.

Lemma 6.3. In (2) let Q be an ordering on E with P its restriction to K.

Denote the real closure of (K, P ) by K. There exist branch points x1 < x2 in K

of the extension F/E with no other K branch points between them. They have

this property. For each a ∈ K in the interval (x1, x2), ϕ∗
a(IP (K)) ⊆ IQ(F/E).

Proof. Let ǫ ∈ IQ(F/E). Choose a primitive element y for F (ǫ)/E, integral

over K[x]. Let fǫ = irr(y, E) ∈ K[x, Y ] and S′ the integral closure of R in F (ǫ).

The sentence (∃X, Y )[fǫ(X, Y ) = 0∧ ∂f
∂Y (X, Y ) �= 0] holds in F (ǫ), and therefore

also in the real closure of (E, Q). By Tarski’s principle it is valid in K. Thus

there is a ∈ K such that fǫ(a, Y ) has a simple root in K. This certainly remains

true if a is replaced by a in the neighborhood U of a in K determined by nearest

branch points of F/E in K.

Let ι be the generator of G(K), and let S′ be the integral closure of R in

F (ǫ). Let a ∈ U ∩ K. Then ϕa: R → K ⊆ K extends to a homomorphism

ψ: S′ → K. It follows that its extension ψ: S → K̃ satisfies ψ∗(ι) = ǫ. As IP (K)

and IQ(F/E) are the conjugacy classes of ι and ǫ in the respective groups, we

have ϕ∗
a(IP (K)) ⊆ IQ(F/E).
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Definition 6.4. A formally real field K is totally real Hilbertian, if in

each setup (2) the following holds. When G(F/E) = 〈⋃m
j=1 IQj

(F/E)〉, then

there exists a K-homomorphism ϕ: R → K with ϕ∗(G(K)) = G(F/E) and

ϕ∗(IXj
(K)) = IQj

(F/E), for each 1 ≤ j ≤ m. Thus, ϕ∗(I(K)) = I(F/E).

Corollary 6.5. If K is a number field, then K is totally real Hilbertian.

Proof. Consider (2). For each j put Pj = resKQj . Since |X(K)| < ∞, we

may refine X1, . . . , Xm to assume Xj = {Pj}. As K is dense in each of its real

closures, Lemma 6.3 gives a nonempty open subset Uj of K (with respect to Pj)

so that ϕ∗
a(IPj

(K)) ⊆ IQj
(F/E) for each a ∈ Uj . Consider the Hilbert set

HK = {a ∈ K| h(a) �= 0 and ϕ∗
a(G(K)) = G(F/E)}

[FJ, Lemma 12.12]. By [G, Lemma 3.4], HK is dense in K in the product

topology induced by P1, . . . , Pn, that is, there is a ∈ HK ∩ U1 ∩ · · · ∩ Um.

Observe that IQj
(F/E) is a conjugacy class in G(F/E). The surjectivity of ϕ∗

a

implies that ϕ∗
a(IPj

(K)) = IQj
(F/E).

Proposition 6.6. Let K = Qtr. Then K is totally real Hilbertian.

Proof. Assume (2). Let z be a primitive element for the cover S/R. Let

K ′ ⊆ K be a number field such that h(x) ∈ K ′[x]. Put R′ = K ′[x, h(x)−1] and

S′ = R′[z], and let E′ and F ′ be their quotient fields. For each j let Q′
j be

the restriction of Qj to E′, and let X ′
j be the restriction of Xj to K ′. Take K ′

sufficiently large to assume the following.

(i) S′/R′ is a real Galois cover.

(ii) [F ′ : E′] = [F : E], and therefore K and F ′ are linearly disjoint over K ′.

(iii) The sets X ′
1, . . . , X ′

m are distinct.

Then X ′
1, . . . , X ′

m is a partition of X(K ′) and G(F ′/E′) ≡ G(F/E).

By Corollary 6.4 there exists a ∈ K ′ such that an extension ψ′: S′ → K̃

of ϕa: R′ → K ′ satisfies ψ′∗(IX′
j
(K)) = IQ′

j
(F ′/E′). Extend ϕa to the K-

homomorphism ϕa: R → K. As K and S′ are linearly disjoint over K ′, it is

possible to extend this ϕa and ψ′ to the same K-homomorphism ψ: S → K̃. By

(1), the following diagram commutes.

G(F/E) ✛
ψ∗ G(K) ✛ I(K)

❄
resF ′

❄ ❄

G(F ′/E′) ✛
ψ′∗ G(K ′) ✛ I(K ′)

From (ii), the left vertical map is an isomorphism. As K = Qtr, I(K) = I(Q) =

I(K ′). Thus, the right vertical inclusion is surjective and maps IXj
(K) onto

IX′
j
(K ′). Diagram chasing yields ψ∗(IXj

(K)) = IQj
(F/E). But G(F/E) =

〈⋃m
j=1 IQj

(F/E)〉, and hence ψ∗(G(K)) = G(F/E).
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7. Absolute Galois group of the totally real algebraic numbers

In this section we consider the following category. An involutory structure

is a pair (G, IG) = G for short, where G is a profinite group and IG is a closed

set of involutions in G. A morphism of involutory structures ϕ: G → H is a

continuous homomorphism of groups ϕ: G → H such that ϕ(IG) ⊆ IH . We say

that ϕ: G → H is an epimorphism if ϕ(G) = H and ϕ(IG) = IH .

Example 7.1(a). Let L/K be a Galois extension with L not formally real.

Then G(L/K) = (G(L/K), I(L/K)) is an involutory structure. Let E be an

extension of K, and let F/E be a Galois extension such that L ⊆ F . Then the

restriction resL: G(F/E) → G(L/K) is a morphism. Moreover, suppose that

E/K is regular and totally real: every ordering on K extends to E. Then resL

is an epimorphism (cf. [HJ1, Lemma 3.5]).

Example 7.1(b). Let S/R be a real Galois cover with F/E the correspond-

ing Galois extension of fields. Let M be a field and let ϕ: R → M be a ho-

momorphism. Extend ϕ to a homomorphism ψ: S → M̃ . Then the group

homomorphism ψ∗: G(M) → G(F/E) is a morphism of involutory structures

ψ∗: G(M) → G(F/E) (Remark 6.2(b)).

A finite image of G is a finite involutory structure H for which there exists

an epimorphism ϕ: G → H. Clearly, up to an isomorphism, it is of the form

(G/N, {ǫN/N | ǫ ∈ IG}), where N is an open normal subgroup of G not meeting

IG. Let ImG be the class of all finite images of G.

A finite embedding problem for G consists of an epimorphism π: H → A

of finite involutory structures, together with an epimorphism ϕ: G → A. A

solution is an epimorphism ψ: G → H such that π ◦ ψ = ϕ. We say that

G has the embedding property if every finite embedding problem (π: H →
A, ϕ: G → A) for G, in which H is a finite image of G, has a solution.

Example 7.2. Let D be the free profinite product
∏∗ x∈Xω

〈ǫx〉 of groups of

order 2 over Xω (Remark 1.5), and let I0
D = {ǫx| x ∈ Xω}. A finite involutory

structure (A, IA) is a finite image of (D, I0
D) if and only if A is generated by IA.

Furthermore, (D, I0
D) has the embedding property.

With D and I0
D as above, put D = (D, ID), where ID is the conjugacy domain

ConD(I0
D) of D generated by I0

D.

Lemma 7.3. (a) ID is all involutions in D, and D is of rank ℵ0.

(b) A finite involutory structure A is in ImD if and only if IA �= ∅ is a

conjugacy domain in A and A = 〈IA〉.
(c) D has the embedding property.

Proof of (a). See [HJ2, Corollary 3.2 and Lemma 2.2]

Proof of (b). Immediate from Example 7.2.
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Proof of (c). Let π: H → A, ϕ: D → A be a finite embedding problem

for D. Then IA ⊆ A and IH ⊆ H are conjugacy domains. Let I0
A = ϕ(I0

D) and

let I0
H = {ǫ ∈ IH | π(ǫ) ∈ I0

A}. As ConD(I0
D) = ID, we have ConA(I0

A) = IA; it

follows that ConH(I0
H) = IH .

By Example 7.2, I0
A generates A. But H ∈ ImD implies that IH generates H.

We have π(I0
H) = I0

A and ConH(I0
H) = IH . By an analogue of Gaschütz’ lemma

[HL, Lemma 3.3 with n = 0], I0
H generates H.

By Example 7.2 there is an epimorphism ψ: D → H such that π ◦ ψ = ϕ and

ψ(I0
D) = I0

H . Clearly ψ(ID) = IH .

Theorem 7.4. Let K be a totally real Hilbertian PRC field. Assume that K

has no proper totally real algebraic extensions and X(K) has no isolated points.

Put G = (G, IG), where G is the absolute Galois group of K and IG is the

conjugacy domain of all involutions in G. Then

(a) A finite embedding problem (π: H → A, ϕ: G → A) for G has a

solution, if (*) IH �= ∅ is a conjugacy domain in H and H = 〈IH〉.
(b) A finite involutory structure H is in ImG if and only if (*) holds.

(c) G has the embedding property.

Proof. The fixed field of IG in G is totally real over K. Thus G = 〈IG〉.
Proof of (a). As 1 �∈ IA = ϕ(IG), Ker(ϕ) ∩ IG = ∅. Therefore the fixed

field L of Ker(ϕ) is not formally real. Without loss of generality A = G(L/K)

and ϕ is the restriction map.

Theorem 5.2 (with m = 1, X1 = X(K), and I1 = IH) identifies π: H →
A with the restriction map resL: G(F/E) → G(L/K), where E is a simple

transcendental extension of K, and F is a Galois extension of E that contains L

and is regular over L.

Therefore, G(F/E) = 〈I(F/E)〉. Choose Q1, . . . , Qm ∈ X(E) with

I(F/E) =
m⋃

j=1

IQj
(F/E).

We may assume their restrictions P1, . . . , Pm ∈ X(K) to K are distinct. Indeed,

each Pj is not isolated in X(K), and hence there is P ∈ X(K) distinct from

P1, . . . , Pm and arbitrarily close to Pj . By Remark 1.8(b) we may assume that

IP (F/E) = IPj
(F/E). As IP (F/E) =

⋂
Q∈X(E)

Q⊇P

IQ(F/E), there is Q ∈ X(E)

above P such that IQ(F/E) = IQj
(F/E). We replace Qj by Q.

Let X1, . . . , Xm be a partition of X(K) into disjoint clopen sets such that

Pj ∈ Xj . This gives the setup (2) of Section 6. As K is totally real Hilbertian,

there is a ∈ K and an epimorphism ϕ∗
a: G(K) → G(F/E). By Remark 6.2(a),

ϕ∗
a is a solution to our embedding problem.

Proof of (b). Condition (*) is necessary, since IG �= ∅ is a conjugacy domain

in G and G = 〈IG〉. Conversely, assume (*). Let A = 〈a〉 = G(K(
√
−1)/K)

and A = (A, {a}), where a is the generator of A, and let ϕ: G → A be the
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restriction map. We construct below a finite involutory structure Ĥ that satisfies

(*), with epimorphisms Ĥ → H and π: Ĥ → A. By (a) there is an epimorphism

ψ: G → Ĥ, and hence H ∈ ImG.

If there is an epimorphism π: H → A, let Ĥ = H. If not, let Ĥ = (H ×
A, IH × {a}). Both A and H are quotients of Ĥ. Observe that (*) holds for

Ĥ. Otherwise IH × {a} generates a proper subgroup Γ of H × A such that the

projection H × A → H maps Γ onto H = 〈IH〉. Thus Γ = {(h, π(h))| h ∈ H},
where π: H → A is an epimorphism. As IH × {a} ⊆ Γ, we have π(IH) = a.

Thus π induces an epimorphism H → A, a contradiction.

Proof of (c). Clear from (a) and (b).

If, in addition to the assumptions of the theorem, K is countable, then G is

of rank at most ℵ0. Thus the involutory structures G and D are very similar,

by Lemma 7.3 and Theorem 7.4. In fact, we have the following straightforward

modification of [FJ, Lemma 24.1].

Lemma 7.5. Let G and H be involutory structures with embedding property,

such that G and H are of rank at most ℵ0. If ImG = ImH, then G ≡ H.

Theorem 7.6. Let K be a countable totally real Hilbertian PRC field. As-

sume that K has no proper totally real algebraic extensions and X(K) has no

isolated points. Then G(K) ≡ D, and hence G(K) ≡ D.

The field Qtr of totally real algebraic numbers is PRC by [P]. (We remark

that although Pop [P] states this result, he only gives the proof for an analog.

Therefore in all our results about Qtr the reference [P] should be replaced by a

subsequent version, where this omission will be remedied.) It is clearly countable.

By Proposition 6.6 it is totally real Hilbertian, and by Remark 1.5, X(Qtr) has

no isolated points. Therefore:

Corollary 7.7. The absolute Galois group of the field Qtr of totally real

algebraic numbers is the free profinite product D of groups of order 2 over the

universal Boolean space Xω = {0, 1}ℵ0 of weight ℵ0.

8. Real Frobenius fields

Let S/R be a real Galois ring cover, and let F/E be the corresponding field

extension. Let K be a subfield of R and L the algebraic closure of K in F .

The following definitions are valuable [HL, Definition 4.2].

(a) S/R is regular over K, if the extension E/K is regular. In that case

L/K is a finite Galois extension.

(b) S/R is finitely generated over K, if R and S are finitely generated

rings over K.

(c) F/E is amply real over K if E/K is a regular extension, the algebraic

closure L of K in F is not formally real, and the extension F (ǫ)/L(ǫ) is

totally real for every real involution ǫ ∈ G(F/E).
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Definition 8.1. A field M is said to be real Frobenius if it satisfies the

following condition: Let S/R be a real Galois ring cover, finitely generated and

regular over M , with F/E the corresponding field extension amply real over

M . Let N be the algebraic closure of M in F . Let H ≤ G(F/E) such that

H ∈ ImG(M) and resNH = G(N/M). Then there exists an M -homomorphism

ψ: S → M̃ such that ψ(R) = M and ψ∗(G(M)) = H.

Proposition 8.2. Let M be a PRC field. If G(M) has the embedding

property, then M is real Frobenius.

Proof. (Cf. [HL, Proposition 5.6].) Let S/R, F/E, N , and H be as in

Definition 8.1. The embedding property gives an epimorphism of involutory

structures h: G(M) → H with resN ◦ h = resN . Put L = M̃F . Then

G(L/E) = G(M̃E/E) ×G(NE/E) G(F/E) = G(M) ×G(N/M) G(F/E).

Let D be the fixed field of Δ = {(δ, h(δ))| δ ∈ G(M)} in L. Then D/M is

regular, DF = DM̃ = L, and D ∩ F = E [FJ, p. 354]. We show that D/M is

totally real. Let P be an ordering on M . There is ǫ ∈ I(M) such that P is the

restriction of Pǫ from M̃(ǫ). Then h(ǫ) ∈ IH ⊆ I(F/E). Observe that M̃(ǫ) and

F (h(ǫ)) are linearly disjoint over N(ǫ) and L(ǫ, h(ǫ)) = D(ǫ)F (h(ǫ)) contains D.

By assumption there is an ordering Q of F (h(ǫ)) such that resN(ǫ)Q = resN(ǫ)Pǫ.

Therefore Pǫ and Q extend to an ordering of L(ǫ, h(ǫ)) [J, p. 241]. The restriction

of this ordering to D extends P .

The integral closure U of R in D is finitely generated over M [FJ, p. 354] and

hence U is the coordinate ring of an absolutely irreducible variety V defined over

M . Since M is PRC, there exists an M -homomorphism ψ0: U → M . Extend

ψ0 to an M̃ -epimorphism M̃U → M̃ , and let ψ: S → M̃ be its restriction to S.

Then ψ(R) = M , and, by [FHJ, Remark on p. 9], we may arrange it so that

ψ∗: G(M) → G(F/E) coincides with h. Therefore ψ∗(G(M)) = H.

By Corollary 7.7 and Lemma 7.3(c), G(Qtr) has the embedding property. By

[P], Qtr is PRC. Therefore:

Corollary 8.3. Qtr is real Frobenius.

9. Real Galois Stratification

This section gives a quantifier elimination procedure for the theory of real

Frobenius fields in the language below. The procedure is similar to [FJ, Chapter

25] and almost the same as in [HL]. So we only comment on the differences.

A Galois ring/set cover C/A over a field K [FJ, p. 403] is real if A is

nonsingular, char(K) = 0, and K(C) is not formally real. Put G(C/A) =

G(K(C)/K(A)) (Example 7.1(a)) and let Sub[C/A] be the involutory substruc-

tures of G(C/A).

Let K ⊆ M be a field. Each a ∈ A(M) determines a K-homomorphism

ϕ: K[A] → M , and therefore (see Section 6) a homomorphism ϕ∗: G(M) →
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G(C/A) (unique up to an inner automorphism of G(C/A)). Example 7.1(b) says

that ϕ∗(G(M) ≤ G(C/A). Omitting the reference to C and M , define the Artin

symbol Ar(A,a) as the set {ϕ∗(G(M)σ| σ ∈ G(C/A)}. This is a conjugacy

class in Sub[C/A]. For properties of the Artin symbol see [FJ, Section 5.3].

For n ≥ 0 let π: An+1 → An be the projection on the first n coordinates. Let

A ⊆ An+1 and B ⊆ An be two non-singular basic sets [FJ, p. 244] such that

π(A) = B. Then K[B] ⊆ K[A]. Let x and (x, y) be generic points of B and A,

respectively. Then K(A) = K(B)(y). Furthermore, let C/A and D/B be real

Galois covers such that K(D) contains the algebraic closure of K(B) in K(C).

Definition 9.1 [HL, Definition 7.1]. Let M be a field extension of K. An

M -specialization of the pair (C/A, D/B) is a K-homomorphism ϕ from C into

an overfield of M with these properties: ϕ(K[B]) ⊆ M ; and if y is transcendental

over K(B), then ϕ(y) is transcendental over M .

For such a specialization put y′ = ϕ(y), N = M [ϕ(D)], R = M [ϕ(K[A])],

E = M(y′) (the quotient field of R), S = M [ϕ(C)], and F = E[ϕ(C)] (the

quotient field of S). Then ϕ induces an embedding ϕ∗: G(F/E) → G(C/A).

Assume that dim A = dimB + 1. The pair (C/A, D/B) is specializa-

tion compatible if the following properties hold for every M and each M -

specialization ϕ as above.

(i) K(D) is the algebraic closure of K(B) in K(C). and for every M and

each M -specialization ϕ as above [K(C) : K(D)(y)] = [F : N(y′)].

(ii) The cover K(C)/K(A) is amply real over K(B).

(iii) For each involution ǫ ∈ G(F/E) with ϕ∗(ǫ) real the extension F (ǫ)/N(ǫ)

is totally real.

Assume that dim A = dimB. The pair (C/A, D/B) is said to be specializa-

tion compatible if K[A] is integral over K[B] and C = D.

Lemma 9.2. Assume that dimA = dimB + 1 and that (C/A, D/B) is spe-

cialization compatible. Let Con(A) be a conjugacy domain in Sub[C/A], and let

S be a a set of (isomorphism types of) involutory structures. Define

Con(B) =

{
resK(D)(S ∩ Con(A)) if dimA = dimB + 1;

{Gσ| G ∈ Con(A), σ ∈ G(C/B)} if dimA = dimB.

Let M be a real Frobenius field that contains K, and let b ∈ B(M). Assume

ImG(M) ∩ Sub[C/A] = S. Then Ar(B,b) ⊆ Con(B) if and only if there is

a ∈ A(M) such that π(a) = b and Ar(A,a) ⊆ Con(A).

Proof. See [HL, Lemma 7.2] in case dim A = dimB + 1 and [HL, Lemma

7.3] in case dimA = dimB. (Replace everywhere the e-structures of [HL] by

our involutory structures.)

Lemma 9.3 [HL, Lemma 7.5]. Let K1 be a finite extension of K(D). There

are Zariski open subsets A′ ⊆ A, B′ ⊆ B and a specialization compatible pair of

real Galois covers (C ′/A′ , D′/B′) such that K(C) ⊆ K(C ′) and K1 ⊆ K(D′).



30 FRIED, HARAN AND VÖLKLEIN

From now on we can proceed exactly as in [FJ, Chapter 25]. Replace Galois

covers with real Galois covers, and conjugacy classes of subgroups of G(Ci/Ai)

with conjugacy classes of involutory substructures of G(Ci/Ai) (cf. [HL, Sec-

tions 8 and 9]).

This includes the definition of Galois stratification and Galois formulas [FJ,

p. 410]. Thus, a real Galois stratification

A = 〈An, Ci/Ai, Con(Ai)| i ∈ I〉,

is a partition of the affine space An over K as a finite disjoint union An =
⋃

i∈I Ai

of nonsingular K-basic sets, each of them equipped with a real Galois cover Ci/Ai

and a conjugacy domain Con(Ai) in Sub[Ci/Ai,P0]. The corresponding real

Galois formula is a formal expression Ar(A,X) ⊆ Con(A) with the following

interpretation. For be an extension M of K and a ∈ Mn write M |= Ar(A,a) ⊆
Con(A) if Ar(Ai,a) ⊆ Con(Ai) for the unique i such that a ∈ Ai(M).

If K is a presented field with elimination theory [FJ, Definition 17.9], we

get an effective elimination of quantifiers for the theory of real Frobenius fields

in this language. Moreover, every formula in the language L(K) of rings with

parameters from K is equivalent to a real Galois formula (cf. [FJ, Remark 25.8]).

The corresponding real Galois stratification may satisfy Ci = K[Ai][
√
−1], for

each i ∈ I. Conclude the following.

Proposition 9.4 [HL, Theorem 9.2(a)]. Let K be a presented field with

elimination theory, and let ϑ be a sentence in L(K). We can effectively find a

finite Galois extension L of K with
√
−1 ∈ L, a finite family H ⊇ Sub[L/K] of

(isomorphism types of) finite involutory structures, and for each S ⊆ H a con-

jugacy domain Con(S) in Sub[L/K] contained in S with the following property.

For every real Frobenius field M that contains K and satisfies ImG(M)∩H = S
we have M |= ϑ if and only if resLG(M) ∈ Con(S).

In particular, Proposition 9.4 holds for K = Q.

10. Model theoretic results.

Let K ′ be a given finite extension of Q, say as K ′ = Q[X]/(f), where f ∈
Z[X] is a given monic irreducible polynomial. Then K ′ is formally real (resp.

K ′ ⊆ Qtr) if and only if f has a root in R (resp. f splits over R). We can

effectively decide whether this condition holds [L, p. 276].

In particular, given a finite Galois extension L of Q, we can effectively find

the field L ∩ Qtr and the involutory structure G(L/L ∩ Qtr).

Let L(K) denote the elementary language of fields with parameters from K.

Theorem 10.1. The elementary theory of Qtr is effectively decidable.

Proof. Apply Proposition 9.4. The field Qtr is real Frobenius (Corollary

8.3) and ImG(Qtr) = ImD (Corollary 7.7) is the family of finite involutory

structures H in which IH �= ∅ is a conjugacy domain in H and H = 〈IH〉
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(Lemma 7.3(b)). Furthermore, if L/Q is a finite Galois extension and K ′ =

L∩Qtr, then Qtr/K ′ is totally real, and hence resK′X(Qtr) = X(K ′). Therefore

resLG(Qtr) = (G(L/K ′), I(L/K ′)) = G(L/K ′).

Let ϑ be a sentence in L(Q). Proposition 9.4 effectively gives a finite Galois

extension L of Q with
√
−1 ∈ L, a finite family H of (isomorphism types of)

finite involutory structures, and, for

S = {H ∈ H| IH �= ∅ is a conjugacy domain in H and H = 〈IH〉},
a conjugacy domain Con = Con(S) in Sub[L/Q] contained in S. For these,

Qtr |= ϑ if and only if G(L/L ∩ Qtr) ∈ Con. This condition is checkable, by the

remarks preceding this corollary.

Lemma 10.2. There is a formula θ(X1, . . . , Xn) ∈ L(Q) with the following

property. Let M be a PRC field, let a = (a1, . . . , an) ∈ Mn, and put f =

Zn + a1Z
n−1 + · · · + an ∈ M [Z]. Then M |= θ(a) if and only if

(∗) f has a root α in M̃ such that M(α) is formally real.

Proof. Condition (∗) is equivalent to this: There is an ordering P on M

such that f has a root in the real closure of (M, P ). By Tarski’s principle [HL,

Proposition 1.4] this is equivalent to a finite disjunction of statements of this

form: There is an ordering P on M with
∧r

i=1 fi(a) = 0 ∧ ∧m
j=1 gj(a) ∈ P ,

where f1, . . . , fr, g1, . . . , gm ∈ Z[X1, . . . , Xn] do not depend on M and a.

Put g0 = 1, and let Δ be the set of finite sums of squares in M . By

[P1, Corollary 1.6],
∑m

i,j=0 gi(a)gj(a)Δ is the intersection of all orderings on

M that contain g1(a), . . . , gm(a). Therefore the last statement is equivalent to:∧r
i=1 fi(a) = 0 ∧ −1 /∈ ∑m

i,j=0 gi(a)gj(a)Δ. As Δ is the set of sums of two

squares in the PRC field M [P2, Proposition 1.5], a formula in L(Q) expresses

this statement.

Proposition 10.3. Every real Galois formula θ over a field K is equivalent

to a formula in L(K), modulo the theory of PRC fields M containing K.

Proof. It suffices to express in L(K) the statement Ar(A,X) ∈ Con, with

C/A a real Galois ring/set cover over K and Con = {Hσ| σ ∈ G(C/A)}, where

H = (H, IH) is a involutory substructure of G(C/A). Let E = K(A) and

F = K(C) be the quotient fields. For each G ≤ G(C/A) = G(F/E) let F (G) be

the fixed field of G in F , and let zG be a primitive element for F (G)/E. Replacing

A by an open subset A′ (that is, replacing the given Galois stratification by its

refinement) we may assume that K[A][zG]/K[A] is a ring cover [FJ, Definition

5.4] and zG is a primitive element for it.

Write K[A] as K[x, g(x)−1], where x is a generic point of A over K. Let fG be

a polynomial over K such that fG(x, g(x)−1, Z) = irr(zG, E). For every ǫ ∈ H

let hǫ be a polynomial over K with hǫ(x, g(x)−1, zH , Z ′) = irr(z〈ǫ〉, F (H)).

Then M |= Ar(A,a) ∈ Con means the following conditions hold.

(a) a ∈ A:there is a specialization x → a such that g(a) �= 0.
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(b) x → a extends to a homomorphism ψ: C → M̃ such that ψ∗(G(M)) = H.

(c) ψ∗(I(M)) = IH : for every involution ǫ ∈ H, ǫ ∈ IH if and only if

(cǫ) ǫ ∈ ψ∗(I(M)).

Assume (a). Then (b) means the conjunction of the following two statements

[FJ, Remark 25.14]:

(b1) fH(a, g(a)−1, Z) has a root c ∈ M ; and

(b2) if G < H, then fG(a, g(a)−1, Z) has no root in M .

Assume (a) and (b), and let ǫ ∈ H be an involution. Condition (cǫ) says

(c′ǫ) hǫ(a, g(a)−1, c, Z ′) has a root α ∈ M̃ such that M(α) is formally real.

Therefore the assertion follows by Lemma 10.2.

Proposition 10.4. The following collection of conditions on a field M is

equivalent to a primitive recursive set of elementary sentences in L(Q).

(1) M is PRC.

(2) M ∩ Q̃ = Qtr.

(3) ImG(M) = {H| H = 〈IH〉}.
(4) G(M) has the embedding property.

(5) M/Qtr is totally real.

Proof. For (1) see [P2, Theorem 4.1]. Condition (2) says each irreducible

polynomial f ∈ Q[X] has a root in M if an only if f has a root in Qtr. This is

equivalent to f splits over the real closure of Q. Express the latter in L(Q) either

by Tarski’s principle [HL, Proposition 1.4] or by Sturm’s Theorem [L, Chapter

XI, §2]. Conditions (3) and (4) easily follow from Lemma 10.2.

Assume (1) and (2). By Remark 1.8(b), the image X of restriction X(M) →
X(Qtr) is closed in X(Qtr). Thus, (5) is equivalent to X dense in X(Qtr). Now,

X(Qtr) has a basis from the sets {P ∈ X(Qtr)| P extends to Qtr(α)}, where α

runs through the elements of Q̃. Indeed, by Remark 1.8(b) these sets are clopen.

By [P1, Corollary 9.2], Qtr is SAP. That is, the sets

H(c) = {P ∈ X(Qtr)| c ∈ P} = {P ∈ X(Qtr)| P extends to Qtr(
√

c)}
form a basis for the Harrison topology on X(Qtr), as c varies on Qtr.

It suffices to consider only α ∈ Q̃ with Q(α) formally real; otherwise the

corresponding set of orderings is empty. Thus (5) is equivalent to this statement:

If Q(α) is a finite formally real extension of Q, then M(α) is formally real. Now

use Lemma 10.2.

Corollary 10.5. A field M is a model of Th(Qtr) if and only if it satisfies

conditions (1)–(5).

Proof. The conditions hold for M = Qtr. By Remark 10.4 they thus hold

for each model M of Th(Qtr). Conversely, assume (1)–(5). Then M is a real

Frobenius field (Proposition 8.3), and ImG(M) = ImG(Qtr), by (3). So, (2) and

(5) imply resQ̃G(M) = G(Qtr). By Proposition 9.4 (with K = Q) the fields M

and Qtr satisfy the same sentences in L(Q).
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