Real hypersurfaces in a complex projective space with constant principal curvatures

By Ryoichi TAKAGI*)

(Received May 30, 1973)

Introduction.

This paper is a continuation of the previous one [6], in which we classified those homogeneous real hypersurfaces in a complex projective space $P_{n}(\boldsymbol{C})$ of complex dimension $n(\geqq 2)$ which are orbits under analytic subgroups of the projective unitary group $P U(n+1)$, and gave some characterization of those hypersurfaces. We shall call each of such hypersurfaces a model space for convenience' sake. The main purpose of this paper is to give another characterization of a geodesic hypersphere in $P_{n}(\boldsymbol{C})$ which is one of six kinds of the model space. It can be stated as follows.

Theorem 1. If M is a connected complete real hypersurface in $P_{n}(\boldsymbol{C})$ with two constant principal curvatures, then M is a geodesic hypersphere.

In $\S 1$ we shall determine the principal curvatures of the model spaces. As a result of the determination we know that each model space has two or three or five constant principal curvatures. In $\S 3$ we shall prove Theorem 1 and in $\S 4$ give its application.

The author would like to express his thanks to Professor T. Takahashi for his constant encouragement.

§ 1. Principal curvatures of the model spaces.

In [6] we have seen that roughly speaking there is a one-to-one correspondence between the model spaces and the isotropy representations of various Hermitian symmetric spaces of rank two. The correspondence is given as follows. Let (\mathfrak{u}, θ) be a Hermitian effective orthogonal symmetric Lie algebra of compact type and of rank two. \mathfrak{u} is a compact semisimple Lie algebra and θ is an involutive automorphism of \mathfrak{u} (cf. [3]). Let $\mathfrak{u}=\mathfrak{q}+\mathfrak{p}$ be the decomposition of \mathfrak{n} into the eigenspaces of θ for the eigenvalues +1 and -1 , respectively. Then \mathfrak{f} and \mathfrak{p} satisfy $[\mathfrak{f}, \mathfrak{f}] \subset \mathfrak{f}$, $[\mathfrak{f}, \mathfrak{p}] \subset \mathfrak{p}$ and $[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{f}$. For the Killing form B of \mathfrak{u} we define a positive definite inner product \langle,

[^0]on \mathfrak{p} by $\langle X, Y\rangle=-B(X, Y)$ for $X, Y \in \mathfrak{p}$. Let K be the analytic subgroup of the group of inner automorphisms of 11 with Lie algebra ad (f). Then K leaves the subspace \mathfrak{p} of \mathfrak{u} invariant and acts on \mathfrak{p} as an orthogonal transformation group with respect to \langle,$\rangle . We define a representation \rho$ of K on \mathfrak{p} by $\rho(k)=k \mid \mathfrak{p}$ for $k \in K$. The differential ρ_{*} of ρ is an isomorphism of \mathfrak{q} into the Lie algebra of the orthogonal group of \mathfrak{p} and satisfies $\left(\rho_{*} X\right) Y=[X, Y]$ for $X \in \mathscr{f}$ and $Y \in \mathfrak{p}$. Let \mathfrak{a} be a maximal abelian subspace in \mathfrak{p} and S be a hypersphere in \mathfrak{p} centered at the origin. For simplicity we assume that the radius of S is equal to 1 . Let a be a regular element of \mathfrak{p} in $S \cap a$. Since $\operatorname{dim} a=2$, the orbit $N=\rho(K) a$ of a under $\rho(K)$ is a hypersurface in S. It is known ([3]) that there is an element Z_{0} in the center of 1 such that
\[

$$
\begin{aligned}
& \left(\rho_{*} Z_{0}\right)^{2}=-1 \\
& \left\langle\left(\rho_{*} Z_{0}\right) X,\left(\rho_{*} Z_{0}\right) Y\right\rangle=\langle X, Y\rangle \quad \text { for } \quad X, Y \in \mathfrak{p} .
\end{aligned}
$$
\]

Thus we may regard \mathfrak{p} as a complex vector ($n+1$)-space C^{n+1} with complex structure $I=\rho_{*} Z_{0}$ and Hermitian inner product \langle,$\rangle , where 2(n+1)=\operatorname{dim} p$. The image $M=\pi(N)$ of N by the canonical projection π of S onto $P_{n}(\boldsymbol{C})$ becomes a real hypersurface in $P_{n}(\boldsymbol{C})$. The Riemannian metric of S induced from \langle,$\rangle will be denoted by g$. Then g induces naturally what is called the Fubini-Study metric \tilde{g} on $P_{n}(\boldsymbol{C})$ through π (as stated later). Then with respect to $\tilde{g}, P_{n}(\boldsymbol{C})$ has constant holomorphic sectional curvature 4 . Let C denote the circle group in K generated by Z_{0}. Then the group $G=\rho(K) / \rho(C)$ is a compact analytic subgroup of $P U(n+1)$ which acts on M transitively as a transformation group of isometries of M, where as a Riemannian metric of M we take the one induced from \tilde{g}. Conversely every model space, that is, every real hypersurface in $P_{n}(\boldsymbol{C})$ being an orbit under an analytic subgroup of $P U(n+1)$ is congruent to a real hypersurface M obtained in this way with respect to the group of isometries of $P_{n}(\boldsymbol{C})$ (for the last several results, cf. [6]).

Since G is an analytic subgroup of $P U(n+1)$, all principal curvatures of M is constant ([7], $\S 1)$ and so let us evaluate the principal curvatures of M at a special point, say $\pi(a)$. Since the tangent space of \boldsymbol{C}^{n+1} is identified with itself, a vector field on \boldsymbol{C}^{n+1} can be regarded as a mapping of \boldsymbol{C}^{n+1} into itself and the complex structure I of \boldsymbol{C}^{n+1} as a vector field on S. Under such an identification, \tilde{g} is expressed as

$$
\tilde{g}(\tilde{U}, \tilde{V}) \circ \pi=g(U, V)-g(U, I) g(V, I)
$$

for vector fields U, V on S and vector fields \tilde{U}, \tilde{V} on $P_{n}(\boldsymbol{C})$ such that $\pi_{*} U=\tilde{U}$ and $\pi_{*} V=\tilde{V}$. When we denote by ∇ (resp. $\tilde{\nabla}$) the Riemannian connection of S (resp. $P_{n}(\boldsymbol{C})$) associated to g (resp. \tilde{g}), the following relation between ∇
and $\tilde{\nabla}$ is fundamental:

$$
\begin{align*}
\tilde{g}\left(\tilde{\nabla}_{\tilde{W}} \tilde{U}, \tilde{V}\right) \circ \pi= & g\left(\nabla_{W} U, V\right)-g\left(\nabla_{W} U, I\right) g(V, I) \tag{1.1}\\
& -g(U, I) g(I(W), V)-g(W, I) g(I(U), V)
\end{align*}
$$

for vector fields U, V, W on S and vector fields $\tilde{U}, \tilde{V}, \widetilde{W}$ on $P_{n}(C)$ such that $\pi_{*} U=\tilde{U}, \pi_{*} V=\tilde{V}$ and $\pi_{*} W=\widetilde{W}$.

Making use of (1.1) we shall find a relation between the second fundamental form of M and N. We denote the tangent space of a manifold L at $x \in L$ by L_{x}. In general the second fundamental form of a submanifold M^{\prime} in a Riemannian manifold for a normal vector ν at $x \in M^{\prime}$ induces the symmetric linear transformation of M_{x}^{\prime}, which is called the shape operator of M^{\prime} for ν. Let b be a unit vector normal to N at a in S. Then $\{a, b\}$ is an orthonormal base of \mathfrak{a} and $\pi_{*} b$ is a unit vector normal to M. Let N^{\prime} denote the hyperplane in N_{a} orthogonal to the unit vector $I(a) \in N_{a}$. Let T (resp. \tilde{T}) denote the shape operator of N (resp. M) for b (resp. $\pi_{*} b$). For $X \in \rho_{*}(\mathrm{f})$ we denote by X^{*} (resp. \tilde{X}) the Killing vector field on S (resp. $P_{n}(\boldsymbol{C})$) induced by X. In our notation a vector I_{a}^{*} is identified with a vector $I(a)$. It was proved in [7, pp. 471-473] that

$$
\begin{aligned}
& g\left(T\left(X_{a}^{*}\right), Y_{a}^{*}\right)=-g\left(\nabla_{b} X^{*}, Y_{a}^{*}\right), \\
& \tilde{g}\left(\tilde{T}\left(\tilde{X}_{\pi(a)}\right), \tilde{Y}_{\pi(a)}\right)=-\tilde{g}\left(\widetilde{\nabla}_{\pi, b} \tilde{X}, \tilde{Y}_{\pi(a)}\right),
\end{aligned}
$$

and

$$
T(I(a))=-I(b)
$$

for $X, Y \in \rho_{*}(f)$ such that $X_{a}^{*}, Y_{a}^{*} \in N^{\prime}$. These equations, together with (1.1), imply

$$
\begin{equation*}
g(T(u), v)=\tilde{g}\left(\widetilde{T}\left(\pi_{*} u\right), \pi_{*} v\right), \quad T(I(a))=-I(b) \tag{1.2}
\end{equation*}
$$

for $u, v \in N^{\prime}$.
We want to express the eigenvalues of \tilde{T} (they are by definition the principal curvatures of M) in terms of a root system of \mathfrak{u} making use of (1.2). For a linear form α on a we put

$$
\begin{array}{ll}
\mathfrak{p}_{\alpha}=\left\{X \in \mathfrak{p} ;(\operatorname{ad} H)^{2} X=-\alpha(H)^{2} X\right. & \text { for all } H \in \mathfrak{a}\} \\
\mathfrak{f}_{\alpha}=\left\{X \in \mathfrak{f} ;(\operatorname{ad} H)^{2} X=-\alpha(H)^{2} X\right. & \text { for all } H \in \mathfrak{a}\}
\end{array}
$$

Then $\mathfrak{p}_{-\alpha}=\mathfrak{p}_{\alpha}, \mathfrak{f}_{-\alpha}=\mathfrak{f}_{\alpha}, \mathfrak{p}_{0}=\mathfrak{a}$ and \mathfrak{f}_{0} is the centralizer of \mathfrak{a} in \mathfrak{f}. Moreover ad a maps \mathfrak{f}_{α} onto \mathfrak{p}_{α}, and \mathfrak{p}_{α} onto \mathfrak{f}_{α} isomorphically. A root of \mathfrak{u} with respect to \mathfrak{a} is by definition a linear form α on \mathfrak{a} such that $\mathfrak{f}_{\alpha} \neq\{0\}$. Select a suitable ordering in the dual space of \mathfrak{a} and denote by Δ the set of positive roots of \mathfrak{u} with respect to \mathfrak{a}. Then we have the orthogonal direct decompositions of \mathfrak{p} and \mathfrak{f} with respect to B :

$$
\mathfrak{f}=\mathfrak{f}_{0}+\sum_{\alpha \in \Delta} \mathfrak{f}_{\alpha}, \quad \mathfrak{p}=\mathfrak{a}+\sum_{\alpha \in \Delta} \mathfrak{p}_{\alpha} .
$$

It is known that there exists the subset $\Delta^{\prime}=\{\lambda, \mu\}$ of Δ consisting of strongly orthogonal roots, that is, none of $\pm \lambda \pm \mu$ is contained in Δ and $\operatorname{dim} \mathfrak{p}_{\lambda}=\operatorname{dim} \mathfrak{p}_{\mu}$ $=1$. By [4, Proposition 3.10] an element Z_{0} of the center of $£$ belongs to $\mathfrak{f}_{0}+\mathfrak{f}_{\lambda}+\mathfrak{f}_{\mu}$. It follows that the vector space N^{\prime} is spanned by $\mathfrak{p}_{\alpha}\left(\alpha \in \Delta-\Delta^{\prime}\right)$ and $I(b)$. On the other hand, we proved in [7] that for each $\alpha \in \Delta, \kappa_{\alpha}=$ $-\alpha(b) / \alpha(a)$ is an eigenvalue of T and \mathfrak{p}_{α} is contained in the eigenspace of T for κ_{α}. It follows from (1.2) that for each $\alpha \in \Delta-\Delta^{\prime}, \kappa_{\alpha}$ is an eigenvalue of \tilde{T} and $\pi_{*} p_{\alpha}$ is contained in the eigenspace of \tilde{T} for κ_{α}. Hence $\pi_{*} I(b)$ is an eigenvector of \tilde{T} for certain eigenvalue of \tilde{T}, say κ. Then again from (1.2) we see that the set of all eigenvalues of T coincides with $\left\{\kappa_{\alpha}: \alpha \in \Delta-\Delta^{\prime}\right\}$ $\cup\left\{y ; y^{2}-\kappa y-1=0\right\}$, from which we have $\kappa=\kappa_{\lambda}+\kappa_{\mu}$. Thus we proved

Theorem 2. Let the notation be in above. Then the principal curvatures of the model space M corresponding to (\mathfrak{u}, θ) are given by

$$
-\alpha(b) / \alpha(a) \quad\left(\alpha \in \Delta-\Delta^{\prime}\right)
$$

and

$$
-\lambda(b) / \lambda(a)-\mu(b) / \mu(a) \quad\left(\Delta^{\prime}=\{\lambda, \mu\}\right)
$$

By virture of Theorem 2 we can read the distinct principal curvatures ξ_{1}, \cdots, ξ_{r} of M and their multiplicities $m\left(\xi_{1}\right), \cdots, m\left(\xi_{r}\right)$ from the table given by S. Araki [1]. It is easily checked that $\kappa_{\alpha} \neq \kappa_{\beta}, \kappa_{\alpha} \neq \kappa$ and $m\left(\kappa_{\alpha}\right)=\operatorname{dim} \mathfrak{p}_{\alpha}$ for all $\alpha, \beta \in \Delta-\Delta^{\prime}$ with $\alpha \neq \beta$, and so $m(\kappa)=1$. The values ξ_{1}, \cdots, ξ_{r} depend on a position of a as well as (\mathfrak{u}, θ) and hence they include a parameter t. We have the following Table
Table

	\mathfrak{u}	\ddagger	$\operatorname{dim} M$	r	ξ_{i}	$m\left(\xi_{i}\right)$
\boldsymbol{A}_{1}	$\begin{gathered} \mathfrak{S u}(n+1)+\mathfrak{\mathfrak { u } u}(2) \\ (n \geqq 2) \end{gathered}$	$\begin{aligned} & \mathfrak{Z}(\mathfrak{u}(n)+\mathfrak{u}(1)) \\ & +\mathfrak{z}(\mathfrak{u}(1)+\mathfrak{u}(1)) \end{aligned}$	$2 n-1$	2	$\begin{aligned} & \xi_{1}=\cot t \\ & \xi_{2}=2 \cot 2 t \end{aligned}$	$\begin{aligned} & m\left(\xi_{1}\right)=2(n-1) \\ & m\left(\xi_{2}\right)=1 \end{aligned}$
\boldsymbol{A}_{2}	$\begin{gathered} \mathfrak{z u}(p+1)+\mathfrak{z u}(q+1) \\ (p \geqq q \geqq 2) \end{gathered}$	$\begin{aligned} & \mathfrak{Z}(\mathfrak{u}(p)+\mathfrak{u}(1)) \\ & +\mathfrak{S}(\mathfrak{u}(q)+\mathfrak{u}(1)) \end{aligned}$	$2(p+q)-3$	3	$\begin{aligned} & \xi_{1}=\cot t \\ & \xi_{2}=-\tan t \\ & \xi_{3}=2 \cot 2 t \end{aligned}$	$\begin{aligned} & m\left(\xi_{1}\right)=2(p-1) \\ & m\left(\xi_{2}\right)=2(q-1) \\ & m\left(\xi_{3}\right)=1 \end{aligned}$
B	$\begin{aligned} & \mathrm{d}(p+2) \\ & (p \geqq 3) \end{aligned}$	$\mathfrak{p}(p)+\boldsymbol{R}$	$2 p-3$	3	$\begin{aligned} & \xi_{1}=\cot (t-\pi / 4) \\ & \xi_{2}=-\tan (t-\pi / 4) \\ & \xi_{3}=2 \cot 2 t \end{aligned}$	$\begin{aligned} & m\left(\xi_{1}\right)=p-2 \\ & m\left(\xi_{2}\right)=p-2 \\ & m\left(\xi_{3}\right)=1 \end{aligned}$
C	$\begin{gathered} \mathfrak{z u}(p+2) \\ (p \geqq 3) \end{gathered}$	$\mathfrak{E}(\mathfrak{u}(p)+\mathfrak{u}(2))$	$4 p-3$	5	$\begin{aligned} & \xi_{i}=\cot (t-\pi i / 4) \quad(i=1,2,3,4) \\ & \xi_{5}=2 \cot 2 t \end{aligned}$	$\begin{aligned} & m\left(\xi_{i}\right)=2(p-2) \quad(i=0,2) \\ & m\left(\xi_{i}\right)=2(i=1,3) \\ & m\left(\xi_{5}\right)=1 \end{aligned}$
D	p(10)	${ }^{1}(5)$	17	5	$\begin{aligned} & \xi_{i}=\cot (t-\pi i / 4) \quad(i=1,2,3,4) \\ & \xi_{5}=2 \cot 2 t \end{aligned}$	$\begin{aligned} & m\left(\xi_{i}\right)=4(i=1,2,3,4) \\ & m\left(\xi_{5}\right)=1 \end{aligned}$
\boldsymbol{E}	E_{6}	$\mathfrak{0}(10)+\boldsymbol{R}$	29	5	$\begin{aligned} & \xi_{i}=\cot (t-\pi i / 4) \quad(i=1,2,3,4) \\ & \xi_{5}=2 \cot 2 t \end{aligned}$	$\begin{aligned} & m\left(\xi_{i}\right)=8 \quad(i=0,2) \\ & m\left(\xi_{i}\right)=6 \quad(i=1,3) \\ & m\left(\xi_{5}\right)=1 \end{aligned}$

As an example we work out the type C in detail. This corresponds to the type AIII in the table of [1] (Set p, l in AIII as 2, $p+1$ respectively). Then we know that two simple roots α, β of \mathfrak{u} with respect to a have the diagram $\underset{\alpha}{\circ}{ }_{\beta}$, and that $m(\alpha)=2, m(\beta)=2(p-2)$ and $m(2 \alpha)=1$, where $m(\alpha)$ $=\operatorname{dim} \mathfrak{p}_{\alpha}$. Since the Weyl group of (\mathfrak{u}, θ) is simply transitive on the set of Weyl chambers in \mathfrak{a}, we have $\Delta=\{\alpha, \beta, \alpha+\beta, 2 \alpha+\beta, 2 \alpha, 2 \alpha+2 \beta\}$. Hence $m(2 \alpha+\beta)=2, m(\alpha+\beta)=2(p-2)$, and $\Delta^{\prime}=\{2 \alpha, 2 \alpha+2 \beta\}$. The values ξ_{1}, \cdots, ξ_{5} depend on the angle t between α and a.

The model space $M\left(\boldsymbol{A}_{1}\right)$ of type \boldsymbol{A}_{1} is a geodesic hypersphere in $P_{n}(\boldsymbol{C})$. In fact, a regular element a of \mathfrak{p} is decomposed into $a=a^{\prime}+a^{\prime \prime}$, where $a^{\prime} \in \mathfrak{g} u(n+1) \cap \mathfrak{p}$ and $a^{\prime \prime} \in \mathfrak{P},(2) \cap \mathfrak{p}$. Then it is easily seen that the distance between each point of $M\left(\boldsymbol{A}_{1}\right)$ and the point $\pi\left(a^{\prime \prime}\right)$ in $P_{n}(\boldsymbol{C})$ is equal to $\cot ^{-1}\left(\left|a^{\prime \prime}\right| /\left|a^{\prime}\right|\right)$. Thus we saw that every geodesic hypersurface in $P_{n}(\boldsymbol{C})$ with constant holomorphic sectional curvature 4 has two constant principal curvatures ξ, η such that the multiplicity of η is equal to one and $\xi^{2}-\xi \eta-1$ $=0$.

Remark 1.1. If we denote by \tilde{J} the complex structure of $P_{n}(\boldsymbol{C})$ induced from I and by ν a normal vector field on an arbitrary model space then $\tilde{J}(\nu)$ is a direction of principal curvature (that is an eigenvector of \tilde{T} for the eigenvalue κ) everywhere.

Remark 1.2. Among model spaces of any type there is a minimal one because the mean curvature $\left(\xi_{1}+\cdots+\xi_{r}\right) /(2 n-1)$ vanishes everywhere for some t.

Remark 1.3. By a theorem of Tashiro-Tachibana [8] there is no totally umbilical real hypersurface in $P_{n}(\boldsymbol{C})$.

§ 2. Structure equations.

Hereafter let $P_{n}(\boldsymbol{C})(n \geqq 2)$ be a complex projective space with the metric of constant holomorphic sectional curvature $4 c$ and M be a connected Riemannian real hypersurface with the induced metric. We denote by $F(M)$ the bundle of orthonormal frames of M. Then $F(M)$ is a principal fibre bundle over M with structure group $O(2 n-1)$. An element u of $F(M)$ can be expressed by $u=\left(p: e_{1}, \cdots, e_{2 n-1}\right)$, where p is a point of M and $e_{1}, \cdots, e_{2 n-1}$ is an ordered orthonormal base of M_{p}. We denote by $\theta_{i}, \theta_{i j}$ and $\Theta_{i j}{ }^{*)}$ the canonical 1-forms, the connection forms and the curvature forms of $F(M)$ respectively. Then they satisfy

[^1]\[

$$
\begin{align*}
& d \theta_{i}+\sum_{j} \theta_{i j} \wedge \theta_{j}=0, \quad \theta_{i j}+\theta_{j i}=0 \tag{2.1}\\
& d \theta_{i j}+\sum_{k} \theta_{i k} \wedge \theta_{k j}=\Theta_{i j} \tag{2.2}
\end{align*}
$$
\]

We denote by $F(P)$ the bundle of orthonormal frames of $P_{n}(\boldsymbol{C})$, and by $\tilde{\theta}_{A}$, $\tilde{\theta}_{A B}$ and $\widetilde{\Theta}_{A B}$ the canonical 1-forms, the connection forms and the curvature forms of $F(P)$ respectively. Then $\tilde{\theta}_{A}$ and $\tilde{\theta}_{A B}$ satisfy

$$
\begin{equation*}
d \tilde{\theta}_{A}+\sum_{B} \tilde{\theta}_{A B} \wedge \tilde{\theta}_{B}=0, \quad \tilde{\theta}_{A B}+\tilde{\theta}_{B A}=0 \tag{2.3}
\end{equation*}
$$

and $\widetilde{\Theta}_{A B}$ are given by

$$
\begin{align*}
\widetilde{\Theta}_{A B} & =d \tilde{\theta}_{A B}+\sum_{C} \tilde{\theta}_{A C} \wedge \tilde{\theta}_{C B} \tag{2.4}\\
& =c \tilde{\theta}_{A} \wedge \tilde{\theta}_{B}+c \sum_{C, D}\left(\tilde{J}_{A C} \tilde{J}_{B D}+\tilde{J}_{A B} \tilde{J}_{C D}\right) \tilde{\theta}_{C} \wedge \tilde{\theta}_{D}
\end{align*}
$$

where $\tilde{J}=\left(\tilde{J}_{A B}\right)$ denotes the complex structure of $P_{n}(\boldsymbol{C})$, that is, $J\left(\tilde{e}_{A}\right)$ $=\Sigma_{B} \tilde{J}_{B A} \tilde{e}_{B}$ at $\left(\tilde{p}: \tilde{e}_{1}, \cdots, \tilde{e}_{2 n}\right) \in F(P)$. Moreover \tilde{J} satisfies

$$
\begin{align*}
& \sum_{C} \tilde{J}_{A C} \tilde{J}_{C B}=-\delta_{A B}, \quad \tilde{J}_{A B}+J_{B A}=0, \tag{2.5}\\
& d \tilde{J}_{A B}=\sum_{C}\left(\tilde{J}_{A C} \tilde{\theta}_{C B}-\tilde{J}_{B C} \tilde{\theta}_{C A}\right) . \tag{2.6}
\end{align*}
$$

The equation (2.6) means that \tilde{J} is parallel.
The isometric inclusion mapping c of M into $P_{n}(\boldsymbol{C})$ induces three tensor fields $H=\left(H_{i j}\right), J=\left(J_{i j}\right)$ and $f=\left(f_{i}\right)$ on $F(M)$ as follows. For an element $u=\left(p: e_{1}, \cdots, e_{2 n-1}\right) \in F(M)$ there exists a unique tangent vector $e_{2 n}$ of $P_{n}(\boldsymbol{C})$ at $\iota(p)$ such that $\tilde{u}=\left(\iota(p): \iota_{*} e_{1}, \cdots, \iota_{*} e_{2 n-1}, \tilde{e}_{2 n}\right)$ is an element of $F(P)$ compatible with the orientation of $P_{n}(\boldsymbol{C})$ determined by \tilde{J}. This mapping $u \rightarrow \tilde{u}$ of $F(M)$ into $F(P)$ is also denoted by the same letter ι. Then denoting by ι^{*} the dual mapping of ι_{*} we have $\theta_{i}=\iota^{*} \tilde{\theta}_{i}$ and $\iota^{*} \tilde{\theta}_{2 n}=0$, from which we know $\theta_{i j}=\iota^{*} \tilde{\theta}_{i j}$ and $0=\iota^{*} d \hat{\theta}_{2 n}=-\sum_{i} \iota^{*} \tilde{\theta}_{2 n, i} \wedge \theta_{i}=0$. By Cartan's lemma we may write as

$$
\begin{equation*}
\phi_{i} \equiv \iota * \tilde{\theta}_{2 n, i}=\sum_{j} H_{i j} \theta_{j}, \quad H_{i j}=H_{j i} . \tag{2.7}
\end{equation*}
$$

The quadratic form $\Sigma_{i} \phi_{i} \theta_{i}$ is called the second fundamental form of M for $\tilde{e}_{2 n}$. Put $J_{i j}=\tilde{J}_{i j} \circ \iota$ and $f_{i}=\tilde{J}_{2 n, i} \circ \iota$. The pair (J, f) is called the almost contact structure of M. From (2.2), (2.4) and (2.7) we have the equation of Gauss

$$
\begin{equation*}
\Theta_{i j}=\phi_{i} \wedge \phi_{j}+c \theta_{i} \wedge \theta_{j}+c \sum_{k, l}\left(J_{i k} J_{j l}+J_{i j} J_{k l}\right) \theta_{k} \wedge \theta_{l} . \tag{2.8}
\end{equation*}
$$

From (2.4) and (2.7) we have the equation of Codazzi

$$
\begin{equation*}
d \phi_{i}+\sum_{j} \phi_{j} \wedge \theta_{j i}=c \sum_{j, k}\left(f_{j} J_{i k}+f_{i} J_{j k}\right) \theta_{j} \wedge \theta_{k} . \tag{2.9}
\end{equation*}
$$

Moreover (J, f) satisfies by (2.5) and (2.6)

$$
\begin{align*}
& \sum_{k} J_{i k} J_{k j}=f_{i} f_{j}-\delta_{i j}, \quad \sum_{j} f_{j} J_{j i}=0, \tag{2.10}\\
& \sum_{i} f_{i}^{2}=1, \quad J_{i j}+J_{j i}=0, \\
& d J_{i j}=\sum_{k}\left(J_{i k} \theta_{k j}-J_{k j} \theta_{i k}\right)-f_{i} \phi_{j}+f_{j} \phi_{i}, \tag{2.11}\\
& d f_{i}=\sum_{j}\left(f_{j} \theta_{j i}-J_{j i} \phi_{j}\right) .
\end{align*}
$$

§ 3. Proof of Theorem 1.

Assume that M has two constant principal curvatures ξ and $\eta(\xi \neq \eta)$. Let m be the multiplicity of η. Define the subbundle F^{\prime} of $F(M)$ by

$$
F^{\prime}=\left\{u \in F(M) ; \phi_{a}=\xi \theta_{a}, \phi_{r}=\eta \theta_{r} \text { at } u\right\}^{*)}
$$

and restrict all differential forms and tensor fields under consideration to F^{\prime}. Hereafter we shall promise that " $f_{a}=0$ " means " $f_{a}=0$ for all a on a nonempty open set of $F^{\prime \prime}$ ", and " $f_{a} \neq 0$ " means " $f_{a} \neq 0$ for some a on a nonempty open set of $F^{\prime \prime \prime}$, etc.

Lemma 3.1.

$$
\begin{align*}
f_{a} J_{b c}= & 0 \quad \text { and } \quad f_{r} J_{s t}=0 \tag{1}\\
(\eta-\xi) \theta_{a r}= & c \sum_{b}\left(f_{b} J_{a r}-f_{r} J_{a b}+2 f_{a} J_{b r}\right) \theta_{b} \tag{2}\\
& +c \sum_{s}\left(f_{s} J_{r a}-f_{a} J_{r s}+2 f_{r} J_{s a}\right) \theta_{s}
\end{align*}
$$

Proof. By (2.1) and (2.9) the exterior derivatives of $\phi_{a}=\xi \theta_{a}$ and $\phi_{r}=$ $\eta \theta_{r}$ give

$$
\begin{align*}
& (\xi-\eta) \sum_{r} \theta_{a r} \wedge \theta_{r}=c \sum_{j, k}\left(f_{j} J_{a k}+f_{a} J_{j k}\right) \theta_{j} \wedge \theta_{k}, \tag{3.1}\\
& (\eta-\xi) \sum_{a} \theta_{a r} \wedge \theta_{a}=c \sum_{j, k}\left(f_{j} J_{r k}+f_{r} J_{j k}\right) \theta_{j} \wedge \theta_{k} . \tag{3.2}
\end{align*}
$$

Taking account of the coefficients of $\theta_{b} \wedge \theta_{c}$ in (3.1) we have

$$
\begin{equation*}
f_{b} J_{a c}-f_{c} J_{a b}+2 f_{a} J_{b c}=0 \tag{3.3}
\end{equation*}
$$

Put $c=a$ in (3.3) to get $f_{a} J_{b a}=0$. Multiplying (3.3) by f_{a} therefore we have $f_{a} J_{b c}=0$. Similarly we have $f_{r} J_{s t}=0$ from (3.2). We can prove (2) easily by applying a method of indeterminate coefficients to (3.1) and (3.2), Q.E.D.

Lemma 3.2. $f_{a}=0$ or $f_{r}=0$.
Proof. From (2.10) and (1) of Lemma 3.1 we have
*) Hereafter the indices a, b, c run from 1 to $2 n-1-m$ and the indices r, s, t run from $2 n-m$ to $2 n-1$.

$$
0=\sum_{a, b} f_{a} J_{a b} J_{b r}=\sum_{a} f_{a}\left(-\sum_{s} J_{a s} J_{s r}+f_{a} f_{r}\right)=f_{r} \sum_{a} f_{a}^{2}
$$

since $\Sigma_{a} f_{a} J_{a s}=-\Sigma_{r} f_{r} J_{r s}=0$.
Q. E. D.

Without loss of generality we may assume $f_{a}=0$ and so $f_{r} \neq 0$ by Lemma 3.2. Then (1) of Lemma 3.1 implies $J_{r s}=0$. By (2.11) and (2) of Lemma 3.1 the derivative of $f_{a}=0$ gives

$$
\begin{equation*}
\left(\xi^{2}-\eta \xi-c\right) J_{a b}=0 . \tag{3.4}
\end{equation*}
$$

Similarly the derivative of $J_{r s}=0$ gives

$$
\begin{equation*}
\left(\eta^{2}-\xi \eta+2 c\right)\left(f_{r} \delta_{s t}-f_{s} \delta_{r t}\right)=0 . \tag{3.5}
\end{equation*}
$$

Lemma 3.3. $m=1$.
Proof. Suppose $m \geqq 2$. Then (3.5) implies $\eta^{2}-\xi \eta+2 c=0$. Hence from (3.4) we have $J_{a b}=0$ since $\xi^{2}-\eta \xi-c \neq 0$. Take the exterior derivative of (2) of Lemma 3.1 making use of (2.1), (2.2), (2.8), (2.10) and (2) of Lemma 3.1 itself to obtain

$$
\begin{aligned}
& (\eta-\xi)(c+\xi \eta) \theta_{a} \wedge \theta_{r}+3 c \xi f_{r} \sum_{s} f_{s} \theta_{a} \wedge \theta_{s} \\
& +c \sum_{b, s}\left((2 \eta-3 \xi) J_{a r} J_{b s}+(\eta-3 \xi) J_{a s} J_{b r}\right) \theta_{b} \wedge \theta_{s} \\
& +\frac{2 c^{2}}{\eta-\xi} \sum_{b, s, t}\left(f_{s}^{2} J_{a r} J_{b t}+f_{r} f_{t} J_{a s} J_{b s}\right) \theta_{b} \wedge \theta_{t}=0
\end{aligned}
$$

Summing up the coefficients of $\theta_{a} \wedge \theta_{r}$ in above equation on r and making use of $\Sigma_{r} J_{a r}^{2}=\Sigma_{r} f_{r}^{2}=1$ and $2 c=\eta(\xi-\eta)$ we have

$$
\eta^{2}+m \xi \eta+(m+3) c=0
$$

which contradicts $\eta^{2}-\xi \eta+2 c=0$.
Q.E.D.

Let $S^{2 n+1}(c)$ denote a $(2 n+1)$-sphere with constant sectional curvature c and π be the canonical projection of $S^{2 n+1}(c)$ onto $P_{n}(\boldsymbol{C})$.

Proof of Theorem 1. It follows from (1.2) and Lemma 3.3 that the principal curvatures of a hypersurface $N=\pi^{-1}(M)$ in $S^{2 n+1}(c)$ are given by ξ and the roots of the equation $y^{2}-\eta y-c=0$. On the other hand, we have $J_{a b} \neq 0$ since $f_{a}=0$ and $J_{a r}=0$. Hence (3.4) implies $\xi^{2}-\eta \xi-c=0$. Thus N has two constant principal curvatures ξ with multiplicity $2 n-1$ and $-c / \xi$ with multiplicity 1. By a theorem of E. Cartan [2, p. 180] we see that N is congruent to a product $S^{2 n-1}\left(\xi^{2}+c\right) \times S^{1}\left(c\left(\xi^{2}+c\right) / \xi^{2}\right)$ of two spheres, which is exactly an orbit in $S^{2 n+1}(c)$ of type \boldsymbol{A}_{1} in the Table in $\S 1$. By a comment below the Table M is a geodesic hypersphere in $P_{n}(\boldsymbol{C})$.
Q.E.D.

Remark 2.1. The radius of above geodesic hypersphere M is equal to $(|\xi| / \sqrt{c}) \cot ^{-1}(|\xi| / \sqrt{c})$.

§4. An application of Theorem 1.

Now modifying the condition of Theorem 1 we obtain
Theorem 3. If a connected complete real hypersurface M in $P_{n}(\boldsymbol{C})$ has two principal curvatures ξ with multiplicity $2 n-2$ and η with multiplicity 1 , then M is a geodesic hypersphere.

Proof. Owing to Theorem 1 it suffices to prove that both ξ and η are constant. We adopt the notation in $\S 3$. Thus the index r stands for $2 n-1$. By (2.1) and (2.4) the exterior derivative of $\phi_{a}=\xi \theta_{a}$ and $\phi_{r}=\eta \theta_{r}$ give

$$
\begin{align*}
& \sum_{o}\left\{\delta_{a b} d \xi+c \sum_{j}\left(f_{b} J_{a j}+f_{a} J_{b j}\right) \theta_{j}\right\} \wedge \theta_{b} \tag{4.1}\\
& \\
& \quad+\left\{(\eta-\xi) \theta_{a r}+c \sum_{j}\left(f_{r} J_{a j}+f_{a} J_{r j}\right) \theta_{j}\right\} \wedge \theta_{r}=0, \tag{4.2}\\
& \sum_{a}\left\{(\eta-\xi) \theta_{a r}+c \sum_{j}\left(f_{r} J_{a j}+f_{a} J_{r j}\right) \theta_{j}\right\} \wedge \theta_{a} \\
& \quad+\left\{d \eta+2 c f_{r} \sum_{a} J_{r a} \theta_{a}\right\} \wedge \theta_{r}=0 .
\end{align*}
$$

It follows from Cartan's lemma that $\}$'s in (4.1) and (4.2) can be expressed as

$$
\begin{align*}
& \delta_{a b} d \xi+c \sum_{j}\left(f_{b} J_{a j}+f_{a} J_{r j}\right) \theta_{j}=\sum_{c} A_{a b c} \theta_{c}+A_{a b} \theta_{r}, \tag{4.3}\\
& (\eta-\xi) \theta_{a r}+c \sum_{j}\left(f_{r} J_{a j}+f_{a} J_{r j}\right) \theta_{j}=\sum_{b} A_{a b} \theta_{b}+A_{a} \theta_{r}, \tag{4.4}\\
& d \eta+2 c f_{r} \sum_{a} J_{r a} \theta_{a}=\sum_{u} A_{a} \theta_{a}+A \theta_{r}, \tag{4.5}
\end{align*}
$$

where $A_{a b c}=A_{a c b}=A_{b a c}$. From (4.3) we have $A_{a b c}=c\left(f_{b} J_{a c}+f_{a} J_{b c}\right)$ and $A_{a b}=$ $c\left(f_{b} J_{a r}+f_{a} J_{b r}\right)$ for $a \neq b$. Hence $0=A_{a b c}-A_{a c b}=c\left(f_{b} J_{a c}-f_{c} J_{a b}+2 f_{a} J_{b c}\right)$ for $a \neq b$. From this we have $f_{a} J_{b c}=0$ as in the proof of (1) of Lemma 3.1. Then putting $d \xi=\Sigma_{a} \xi_{a} \theta_{a}+\xi_{r} \theta_{r}$ and $d \eta=\Sigma_{a} \eta_{a} \theta_{a}+\eta_{r} \theta_{r}$ we have from (4.3) and (4.5)

$$
A_{a a}=2 c f_{a} J_{a r}+\xi_{r}, \quad A_{a}=-\eta_{a},
$$

Thus (4.4) was reduced to

$$
\begin{equation*}
(\eta-\xi) \theta_{a r}=c \sum_{b}\left(f_{b} J_{a r}-f_{r} J_{a b}+2 f_{a} J_{b r}\right) \theta_{b}+\xi_{r} \theta_{a}+\eta_{a} \theta_{r} \tag{4.6}
\end{equation*}
$$

Here we shall divide into two cases.
(1) The case where $f_{a} \neq 0$. Then we have $f_{r}=0$ as in the proof of Lemma 3.2. By (2.11) and (4.6) the derivative of $f_{r}=0$ gives $\eta_{a}=0$ and

$$
\begin{equation*}
\left(\xi^{2}-\eta \xi+2 c\right) J_{a r}+f_{a} \xi_{r}=0 . \tag{4.7}
\end{equation*}
$$

Multiply (4.7) by f_{a} and sum up on a to obtain $\xi_{r}=0$. Thus (4.7) again implies $\xi^{2}-\eta \xi+2 c=0$ since $J_{a r} \neq 0$. The derivative of $\xi^{2}-\eta \xi+2 c=0$ gives $\xi_{a}=0$ and $\eta_{r}=0$, which shows that both ξ and η are constant.
(2) The case $f_{a}=0$. Then since $J_{a b} \neq 0$, the derivative of $f_{a}=0$ gives
$\xi_{r}=0, \eta_{a}=0$ and $\xi^{2}-\eta \xi-c=0$ as in the case (1). The derivative of $\xi^{2}-\eta \xi-c$ $=0$ gives $\eta_{r}=0$, which implies that η is constant, and hence ξ is also constant.
Q.E.D.

Following S. Tachibana and T. Kashiwada [5] we shall call a real hypersurface in $P_{n}(\boldsymbol{C})$ totally η-umbilic if $H_{i j}=\alpha \delta_{i j}+\beta f_{i} f_{j}$ holds good for some scalar functions α and β. For a matrix $Q=\left(x \delta_{\lambda \mu}+y_{\lambda} z_{\mu}\right)$ of degree D we see that $\operatorname{det} Q=x^{D}+\left(\Sigma_{\lambda} y_{\lambda} z_{\lambda}\right) x^{D-1}$ by induction on D and differentiation on x. Thus if M is η-umbilic hypersurface in $P_{n}(\boldsymbol{C})$ then each principal curvature κ of M satisfies

$$
\begin{aligned}
0 & =\operatorname{det}\left(H-\kappa \delta_{i j}\right)=\operatorname{det}\left((\alpha-\kappa) \delta_{i j}+\beta f_{i} f_{j}\right) \\
& =(\alpha-\kappa)^{2 n-2}(\alpha-\kappa+\beta)
\end{aligned}
$$

since $\sum_{i} f_{i}^{2}=1$. So $\kappa=\alpha$ or $\alpha+\beta$. But β does not vanish everywhere. In fact by [8, Theorem 3] the set $F^{\prime}=\{u \in F(M) ; \beta=0$ at $u\}$ contains no nonempty open sets of $F(M)$. On the other hand, Theorem 3 shows that both α and β are constant on $F(M)-F^{\prime}$ and hence $F^{\prime}=\emptyset$ by continuity of β. Thus Theorem 3 again implies

Corollary 4. If M is a connected complete totally η-umbilic hypersurface in $P_{n}(\boldsymbol{C})$ then M is a geodesic hypersphere.

References

[1] S. Araki, On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ., 13 (1962), 1-34.
[2] E. Cartan, Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. Mat. Pura Appl., 17 (1938), 177-191.
[3] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.
[4] A. Korányi and J. A. Wolf, Realization of hermitian symmetric spaces as generalized half planes, Ann. Math., 81 (1965), 265-288.
[5] S. Tachibana and T. Kashiwada, On a characterization of spaces of constant holomorphic curvature in terms of geodesic hypersphere, to appear.
[6] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math., 10 (1973), 495-506.
[7] R. Takagi and T. Takahashi, On the principal curvatures of homogeneous hypersurfaces in a sphere, Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo, 1972.
[8] Y. Tashiro and S. Tachibana, On Fubinian and C-Fubinian manifolds, Kōdai Math. Sem. Rep., 15 (1963), 176-183.

Ryoichi TAKAGI
Department of Mathematics
Faculty of Science
Tokyo University of Education
Otsuka, Bunkyo-ku
Tokyo, Japan

[^0]: *) Partially supported by the Sakko-kai Foundation.

[^1]: *) Hereafter the indices i, j, k, l run from 1 to $2 n-1$ and the indices A, B, C, D run from 1 to $2 n$.

