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Introduction.

This Paper is a continuation of the previous one [6], in which we classified
those homogeneous real hypersurfaces in a complex projective space $P_{n}(C)$

of complex dimension $n(\geqq 2)$ which are orbits under analytic subgroups of
the projective unitary group PU$(n+1)$ , and gave some characterization of
those hypersurfaces. We shall call each of such hypersurfaces a model
space for convenience’ sake. The main purpose of this paper is to give
another characterization of a geodesic hypersphere in $P_{n}(C)$ which is one
of six kinds of the model space. It can be stated as follows.

THEOREM 1. If $M$ is a connected complete real hypersurface in $P_{n}(C)$ with
two constant principal curvatures, then $M$ is a geodesic hypersphere.

In \S 1 we shall determine the principal curvatures of the model spaces.
As a result of the determination we know that each model space has two
or three or five constant principal curvatures. In \S 3 we shall prove Theorem
1 and in \S 4 give its application.

The author would like to express his thanks to Professor T. Takahashi
for his constant encouragement.

\S 1. Principal curvatures of the model spaces.

In [6] we have seen that roughly speaking there is a one-to-one corre-
spondence between the model spaces and the isotropy representations of
various Hermitian symmetric spaces of rank two. The correspondence is
given as follows. Let $(\iota\downarrow, \theta)$ be a Hermitian effective orthogonal symmetric
Lie algebra of compact type and of rank two. $\mathfrak{u}$ is a compact semisimple
Lie algebra and $\theta$ is an involutive automorphism of $t1$ (cf. [3]). Let $\iota\iota=f+\mathfrak{p}$

be the decomposition of $\mathfrak{u}$ into the eigenspaces of $\theta$ for the eigenvalues +1
and $-1$ , respectively. Then $f$ and $\mathfrak{p}$ satisfy $[f, f]\subset f,$ $[f, \mathfrak{p}]\subset \mathfrak{p}$ and $[\mathfrak{p}, \mathfrak{p}]\subset f$ .
For the Killing form $B$ of $\mathfrak{u}$ we define a positive definite inner product $\langle, \rangle$

$*)$ Partially suPported by the Sakko-kai Foundation.
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on $\mathfrak{p}$ by \langle X, $ Y\rangle$ $=-B(X, Y)$ for $X,$ $Y\in \mathfrak{p}$ . Let $K$ be the analytic subgroup of
the group of inner automorphisms of 11 with Lie algebra ad (f). Then $K$

leaves the subspace $\mathfrak{p}$ of $\mathfrak{u}$ invariant and acts on $\mathfrak{p}$ as an orthogonal trans-
formation group with respect to $\langle$ $\rangle$ . We define a representation $\rho$ of $K$ on

$\mathfrak{p}$ by $\rho(k)=k|\mathfrak{p}$ for $k\in K$. The differential $\rho*of\rho$ is an isomorphism of $f$

into the Lie algebra of the orthogonal group of $\mathfrak{p}$ and satisfies $(\rho_{*}X)Y=[X, Y]$

for $X\in f$ and $Y\in \mathfrak{p}$ . Let $\mathfrak{a}$ be a maximal abelian subspace in $\mathfrak{p}$ and $S$ be a
hyPersphere in $\mathfrak{p}$ centered at the origin. For simplicity we assume that the
radius of $S$ is equal to 1. Let $a$ be a regular element of $\mathfrak{p}$ in $S\cap \mathfrak{a}$ . Since
dima $=2$ , the orbit $N=\rho(K)a$ of $a$ under $\rho(K)$ is a hypersurface in $S$. It is
known ([3]) that there is an element $Z_{0}$ in the center of $f$ such that

$(\rho_{*}Z_{0})^{2}=-1$ ,

$\langle(\rho_{*}Z_{0})X, (\rho_{*}Z_{0})Y\rangle=\langle X, Y\rangle$ for $X,$ $Y\in \mathfrak{p}$ .
Thus we may regard $\mathfrak{p}$ as a complex vector $(n+1)$ -space $C^{n+1}$ with complex
structure $I=\rho_{*}Z_{0}$ and Hermitian inner product $\langle, \rangle$ , where $2(n+1)=\dim \mathfrak{p}$ .
The image $M=\pi(N)$ of $N$ by the canonical projection $\pi$ of $S$ onto $P_{n}(C)$

becomes a real hypersurface in $P_{n}(C)$ . The Riemannian metric of $S$ induced
from $\langle, \rangle$ will be denoted by $g$. Then $g$ induces naturally what is called
the Fubini-Study metric $\tilde{g}$ on $P_{n}(C)$ through $\pi$ (as stated later). Then with
respect to $\tilde{g},$ $P_{n}(C)$ has constant holomorphic sectional curvature 4. Let $C$

denote the circle group in $K$ generated by $Z_{0}$ . Then the group $G=\rho(K)/\rho(C)$

is a compact analytic subgroup of PU$(n+1)$ which acts on $M$ transitively as
a transformation group of isometries of $M$, where as a Riemannian metric
of $M$ we take the one induced from $\tilde{g}$. Conversely every model space, that
is, every real hypersurface in $P_{n}(C)$ being an orbit under an analytic sub-
group of PU$(n+1)$ is congruent to a real hypersurface $M$ obtained in this
way with respect to the group of isometries of $P_{n}(C)$ (for the last several
results, cf. [6]).

Since $G$ is an analytic subgroup of PU$(n+1)$ , all principal curvatures of
$M$ is constant ([7], \S 1) and so let us evaluate the principal curvatures of $M$

at a special point, say $\pi(a)$ . Since the tangent space of $C^{n+1}$ is identified
with itself, a vector field on $C^{n+1}$ can be regarded as a maPping of $C^{n+1}$ into
itself and the complex structure $I$ of $C^{n+1}$ as a vector field on $S$. Under
such an identification, $\tilde{g}$ is expressed as

$g(U, V)\circ\pi=g(U, V)-g(U, I)g(V, I)$

for vector fields $U,$ $V$ on Sand vector fields $0$ , Von $P_{n}(C)$ such that $\pi_{*}U=0$

and $\pi_{*}V=\tilde{V}$. When we denote by $\nabla$ (resp. $\tilde{\nabla}$ ) the Riemannian connection
of $S$ (resp. $P_{n}(C)$ ) associated to $g$ (resp. $\tilde{g}$), the following relation between $\nabla$
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and $\tilde{\nabla}$ is fundamental:

(1.1) $\tilde{g}(\tilde{\nabla}_{W^{\vee}}U, V)\circ\pi=g(\nabla_{W}U, V)-g(\nabla_{W}U, I)g(V, I)$

$-g(U, I)g(I(W), V)-g(W, I)g(I(U), V)$

for vector fields $U,$ $V,$ $W$ on $S$ and vector fields $O,$ $\nu,$ $\pi$ on $P_{n}(C)$ such that
$\pi_{*}U=U,$ $\pi_{*}V=V$ and $\pi_{*}W=\pi$.

Making use of (1.1) we shall Pnd a relation between the second funda-
mental form of $M$ and $N$. We denote the tangent space of a manifold $L$ at
$x\in L$ by $L_{x}$ . In general the second fundamental form of a submanifold $M^{\prime}$

in a Riemannian manifold for a normal vector $\nu$ at $x\in M^{\prime}$ induces the sym-
metric linear transformation of $M_{x}^{\prime}$ , which is called the shape operator of
$M^{\prime}$ for $\nu$ . Let $b$ be a unit vector normal to $N$ at $a$ in $S$ . Then $\{a, b\}$ is an
orthonormal base of $\mathfrak{a}$ and $\pi_{*}b$ is a unit vector normal to $M$. Let $N^{\prime}$ denote
the hyperplane in $N_{a}$ orthogonal to the unit vector $I(a)\in N_{a}$ . Let $T$ (resp.
ff) denote the shape operator of $N$ (resp. $M$ ) for $b$ (resp. $\pi_{*}b$ ). For $X\in\rho_{*}(f)$

we denote by $x*(resp.\tilde{X})$ the Killing vector field on $S$ (resp. $P_{n}(C)$ ) induced
by $X$. In our notation a vector $I_{a}^{*}$ is identified with a vector $I(a)$ . It was
proved in $[7, PP\cdot 471-473]$ that

$g(T(X_{a}^{*}), Y_{a}^{*})=-g(\nabla_{b}X^{*}, Y_{a}^{*})$ ,

$\tilde{g}(T(\tilde{X}_{\pi(a)}),\tilde{Y}_{\pi(a)})=-\tilde{g}(\tilde{\nabla}_{\pi.b}\tilde{X},\tilde{Y}_{\pi(a)})$ ,
and

$T(I(a))=-I(b)$

for $X,$ $Y\in\rho_{*}(f)$ such that $X_{a}^{*},$ $Y_{a}^{*}\in N^{\prime}$ . These equations, together with (1.1),
imply

(1.2) $g(T(u), v)=\tilde{g}(/\Gamma(\pi_{*}u), \pi_{*}v)$ , $T(I(a))=-I(b)$

for $u,$
$v\in N^{\prime}$ .

We want to express the eigenvalues of ff (they are by definition the
principal curvatures of $M$ ) in terms of a root system of $\mathfrak{u}$ making use of
(1.2). For a linear form $\alpha$ on $\mathfrak{a}$ we put

$\mathfrak{p}_{a}=$ { $X\in \mathfrak{p}$ ; (ad $H$ ) $X=-\alpha(H)^{2}X$ for all $H\in \mathfrak{a}$ },

$f_{a}=$ { $X\in f$ ; (ad $H$ ) $X=-\alpha(H)^{2}X$ for all $H\in \mathfrak{a}$ }.

Then $\mathfrak{p}_{-\alpha}=\mathfrak{p}_{\alpha},$ $f_{-a}=f_{\alpha},$ $\mathfrak{p}_{0}=\mathfrak{a}$ and $f_{0}$ is the centralizer of $\mathfrak{a}$ in $f$ . Moreover ad $a$

maps $f_{\alpha}$ onto $\mathfrak{p}_{\alpha}$ , and $\mathfrak{p}_{\alpha}$ onto $f_{\alpha}$ isomorphically. A root of $u$ with respect to
$\mathfrak{a}$ is by dePnition a linear form $\alpha$ on $\mathfrak{a}$ such that $f_{c\gamma}\neq\{0\}$ . Select a suitable
ordering in the dual space of $\mathfrak{a}$ and denote by $\Delta$ the set of positive roots of
$\mathfrak{u}$ with respect to $\mathfrak{a}$ . Then we have the orthogonal direct decompositions of

$\mathfrak{p}$ and $f$ with respect to $B$ :
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$f=f_{0}+\sum_{\alpha\in\Delta}f_{a}$ , $\mathfrak{p}=\mathfrak{a}+\sum_{\alpha\in\Delta}\mathfrak{p}_{a}$ .

It is known that there exists the subset $\Delta^{\prime}=\{\lambda, \mu\}$ of $\Delta$ consisting of strongly
orthogonal roots, that is, none of $\pm\lambda\pm\mu$ is contained in $\Delta$ and dim $\mathfrak{p}_{\lambda}=\dim \mathfrak{p}_{\rho}$

$=1$ . By [4, Proposition 3.10] an element $Z_{0}$ of the center of $f$ belongs to
$f_{0}+f_{\lambda}+f_{\mu}$ . It follows that the vector space $N^{\prime}$ is spanned by $\mathfrak{p}_{\alpha}$ (a $\in\Delta-\Delta^{\prime}$ )
and $I(b)$ . On the other hand, we proved in [7] that for each $\alpha\in\Delta,$

$\kappa_{\alpha}=$

$-\alpha(b)/\alpha(a)$ is an eigenvalue of $T$ and $\mathfrak{p}_{\alpha}$ is contained in the eigenspace of $T$

for $\kappa_{\alpha}$ . It follows from (1.2) that for each $\alpha\in\Delta-\Delta^{\prime},$
$\kappa_{\alpha}$ is an eigenvalue of

$\mathcal{T}$ and $\pi_{*}\mathfrak{p}_{\alpha}$ is contained in the eigenspace of $\tilde{T}$ for $\kappa_{\alpha}$ . Hence $\pi_{*}I(b)$ is an
eigenvector of $7^{\backslash }$ for certain eigenvalue of $T$, say $\kappa$ . Then again from (1.2)
we see that the set of all eigenvalues of $T$ coincides with $\{\kappa_{\alpha} : \alpha\in\Delta-\Delta^{\prime}\}$

$\cup\{y;y^{2}-\kappa y-1=0\}$ , from which we have $\kappa=\kappa_{\lambda}+\kappa_{\mu}$ . Thus we proved
THEOREM 2. Let the notation be in above. Then the Principal curvatures

of the model space $M$ corresponding to $(\mathfrak{u}, \theta)$ are given by

$-\alpha(b)/\alpha(a)$ $(\alpha\in\Delta-\Delta^{\prime})$

and
$-\lambda(b)/\lambda(a)-\mu(b)/\mu(a)$ $(\Delta^{\prime}=\{\lambda, \mu\})$ .

By virture of Theorem 2 we can read the distinct principal curvatures
$\xi_{1},$ $\cdots$ , $\xi_{r}$ of $M$ and their multiplicities $m(\xi_{1}),$ $\cdots$ , $m(\xi_{r})$ from the table given
by S. Araki [1]. It is easily checked that $\kappa_{\alpha}\neq\kappa_{\beta},$ $\kappa_{a}\neq\kappa$ and $m(\kappa_{a})=\dim \mathfrak{p}_{\alpha}$

for all $\alpha,$
$\beta\in\Delta-\Delta^{\prime}$ with $\alpha\neq\beta$ , and so $m(\kappa)=1$ . The values $\xi_{1},$ $\cdots$ , $\xi_{r}$ depend

on a position of $a$ as well as $(\mathfrak{u}, \theta)$ and hence they include a parameter $t$.
We have the following Table
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As an example we work out the type $C$ in detail. This corresponds to
the type AIII in the table of [1] (Set $p,$

$1$ in AIII as 2, $p+1$ respectively).
Then we know that two simple roots $\alpha,$

$\beta$ of $\mathfrak{u}$ with respect to $\mathfrak{a}$ have the
diagram

$\alpha 0\Rightarrow 0\beta$ and that $m(\alpha)=2,$ $m(\beta)=2(p-2)$ and $m(2\alpha)=1$ , where $m(\alpha)$

$=\dim \mathfrak{p}_{\alpha}$ . Since the Weyl group of $(\mathfrak{u}, \theta)$ is simply transitive on the set of
Weyl chambers in $\mathfrak{a}$ , we have $\Delta=\{\alpha, \beta, \alpha+\beta, 2\alpha+\beta, 2\alpha, 2\alpha+2\beta\}$ . Hence
$m(2\alpha+\beta)=2,$ $m(\alpha+\beta)=2(P-2)$ , and $\Delta^{\prime}=\{2\alpha, 2\alpha+2\beta\}$ . The values $\xi_{1},$ $\cdots$ , $\xi_{6}$

depend on the angle $t$ between $\alpha$ and $a$ .
The model space $M(A_{1})$ of type $A_{1}$ is a geodesic hypersphere in $P_{n}(C)$ .

In fact, a regular element $a$ of $\mathfrak{p}$ is decomposed into $a=a^{\prime}+a^{\prime}$ , where
$a^{\prime}\in \mathfrak{s}\mathfrak{u}(n+1)\cap \mathfrak{p}$ and $a^{\prime\prime}\in\partial\cdot,(2)\cap \mathfrak{p}$ . Then it is easily seen that the distance
between each point of $M(A_{1})$ and the point $\pi(a^{\prime\prime})$ in $P_{n}(C)$ is equal to
$\cot^{-1}(|a^{\prime\prime}|/|a^{\prime} )$ . Thus we saw that every geodesic hypersurface in $P_{n}(C)$

with constant holomorphic sectional curvature 4 has two constant principal
curvatures $\xi,$

$\eta$ such that the multiplicity of $\eta$ is equal to one and $\xi^{2}-\xi\eta-1$

$=0$ .
REMARK 1.1. If we denote by $f$ the complex structure of $P_{n}(C)$ induced

from $I$ and by $\nu$ a normal vector field on an arbitrary model space then $\tilde{J}(\nu)$

is a direction of principal curvature (that is an eigenvector of $7^{\backslash }$ for the
eigenvalue $\kappa$ ) everywhere.

REMARK 1.2. Among model spaces of any type there is a minimal one
because the mean curvature $(\xi_{1}+\cdots+\xi_{r})/(2n-1)$ vanishes everywhere for
some $t$ .

REMARK 1.3. By a theorem of Tashiro-Tachibana [8] there is no totally
umbilical real hypersurface in $P_{n}(C)$ .

\S 2. Structure equations.

Hereafter let $P_{n}(C)(n\geqq 2)$ be a complex projective space with the metric
of constant holomorphic sectional curvature $4c$ and $M$ be a connected Rie-
mannian real hypersurface with the induced metric. We denote by $F(M)$

the bundle of orthonormal frames of $M$. Then $F(M)$ is a principal fibre
bundle over $M$ with structure group $O(2n-1)$ . An element $u$ of $F(M)$ can
be expressed by $u=$ $(p : e_{1}, \cdots , e_{2n- 1})$ , where $p$ is a point of $M$ and $e_{1},$

$\cdots$ , $e_{2n-1}$

is an ordered orthonormal base of $M_{p}$ . We denote by $\theta_{i},$ $\theta_{ij}$ and $\Theta_{ij^{*)}}$ the
canonical l-forms, the connection forms and the curvature forms of $F(M)$

respectively. Then they satisfy

$*)$ Hereafter the indices $i,$ $j,$ $k,$ $l$ run from 1 to $2n-1$ and the indices $A,$ $B,$ $C,$ $D$

run from 1 to $2n$ .
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(2.1) $d\theta_{i}+\sum_{J}\theta_{ij}\Lambda\theta_{j}=0$ , $\theta_{ij}+\theta_{ji}=0$ ,

(2.2) $d\theta_{ij}+\sum_{k}\theta_{ik}\wedge\theta_{kj}=\Theta_{ij}$ .

We denote by $F(P)$ the bundle of orthonormal frames of $P_{n}(C)$ , and by $\tilde{\theta}_{A}$ ,
$\tilde{\theta}_{AB}$ and $\tilde{\Theta}_{AB}$ the canonical l-forms, the connection forms and the curvature
forms of $F(P)$ respectively. Then $\tilde{\theta}_{A}$ and $\tilde{\theta}_{AB}$ satisfy

(2.3) $d\theta_{A}+\sum_{B}\theta_{AB}\wedge\theta_{B}=0$ , $\theta_{AB}+\theta_{BA}=0$ ,

and $\tilde{\Theta}_{AB}$ are given by

(2.4) $\tilde{\Theta}_{AB}=d\theta_{AB}+\sum_{c}\theta_{AC}\wedge\theta_{CB}$

$=c\theta_{A}$ A $\theta_{B}+c\sum_{C,D}(\tilde{J}_{AC}\tilde{J}_{BD}+\tilde{J}_{AB}\tilde{J}_{CD})\theta_{c}$ A $\tilde{\theta}_{D}$ ,

where $J=(J_{AB})$ denotes the complex structure of $P_{n}(C)$ , that is, $J(\tilde{e}_{A})$

$=\Sigma_{B}\tilde{J}_{BA}\tilde{e}_{B}$ at $(\tilde{p};\tilde{e}_{1}, \cdots , \tilde{e}_{2n})\in F(P)$ . Moreover $\tilde{J}$ satisfies

(2.5) $\sum_{c}\tilde{J}_{AC}\tilde{J}_{CB}=-\delta_{AB}$ , $\tilde{J}_{AB}+J_{BA}=0$ ,

(2.6) $d\tilde{J}_{AB}=\sum_{c}(\tilde{I}_{AC}\theta_{CB}-\tilde{I}_{BC}\theta_{CA})$ .

The equation (2.6) means that $\tilde{J}$ is parallel.
The isometric inclusion mapping $\iota$ of $M$ into $P_{n}(C)$ induces three tensor

fields $H=(H_{ij}),$ $J=(J_{ij})$ and $f=(f_{i})$ on $F(M)$ as follows. For an element
$u=$ $(p;e_{1}, \cdots , e_{2n-1})\in F(M)$ there exists a unique tangent vector $e_{2n}$ of $P_{n}(C)$

at $\iota(p)$ such that $\tilde{u}=(\iota(p):\iota_{*}e_{1}, \cdots , \iota_{*}e_{2n-1},\tilde{e}_{2n})$ is an element of $F(P)$ com-
patible with the orientation of $P_{n}(C)$ determined by $\tilde{J}$. This mapping $u\rightarrow\tilde{u}$

of $F(M)$ into $F(P)$ is also denoted by the same letter $\iota$ . Then denoting by
$\iota^{*}$ the dual mapping of $\iota_{*}$ we have $\theta_{i}=\iota^{*}\tilde{\theta}_{i}$ and $\iota^{*}\tilde{\theta}_{2n}=0$ , from which we
know $\theta_{ij}=\iota^{*}\tilde{\theta}_{ij}$ and $0=\iota^{*}d\hat{\theta}_{2n}=-\Sigma_{i}\iota^{*}\tilde{\theta}_{2n,i}\wedge\theta_{i}=0$ . By Cartan’s lemma we
may write as

(2.7) $\phi_{i}\equiv\iota^{*}\tilde{\theta}_{2n,i}=\sum_{j}H_{ij}\theta_{j}$ , $H_{ij}=H_{ji}$ .

The quadratic form $\sum_{i}\phi_{i}\theta_{i}$ is called the second fundamental form of $M$ for
$\tilde{e}_{2n}$ . Put $ J_{ij}=\tilde{J}_{ij^{\circ}}\iota$ and $ f_{i}=\tilde{J}_{2n,i}\circ\iota$ . The pair $(J, f)$ is called the almost contact
structure of $M$. From (2.2), (2.4) and (2.7) we have the equation of Gauss

(2.8) $\Theta_{ij}=\phi_{i}\wedge\phi_{j}+c\theta_{i}\Lambda\theta_{j}+c\sum_{k.l}(J_{ik}J_{jl}+J_{ij}J_{kl})\theta_{k}\wedge\theta_{l}$ .

From (2.4) and (2.7) we have the equation of Codazzi

(2.9) $d\phi_{i}+\sum_{f}\phi_{j}\wedge\theta_{jt}=c\sum_{J^{k}}(f_{j}J_{ik}+f_{i}J_{jk})\theta_{j}\wedge\theta_{k}$ .
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Moreover $(J, f)$ satisPes by (2.5) and (2.6)

(2.10) $\sum_{k}J_{ik}J_{kj}=f_{i}f_{j}-\delta_{ij}$ , $\sum_{J}f_{j}J_{ji}=0$ ,

$\sum_{i}f_{i}^{2}=1$ , $J_{ij}+J_{ji}=0$ ,

(2.11) $dJ_{ij}=\sum_{k}(J_{ik}\theta_{kj}-J_{kj}\theta_{ik})-f_{i}\phi_{j}+f_{j}\phi_{i}$ ,

$df_{i}=\sum_{j}(f_{j}\theta_{ji}-J_{fi}\phi_{j})$ .

\S 3. Proof of Theorem 1.

Assume that $M$ has two constant principal curvatures $\xi$ and $\eta(\xi\neq\eta)$ .
Let $m$ be the multiplicity of $\eta$ . DePne the subbundle $F^{\prime}$ of $F(M)$ by

$F^{\prime}=\{u\in F(M);\phi_{a}=\xi\theta_{a}, \phi_{r}=\eta\theta_{r} at u\}^{*)}$

and restrict all differential forms and tensor fields under consideration to $F^{\prime}$ .
Hereafter we shall promise that “

$f_{a}=0$
’ means “

$f_{a}=0$ for all $a$ on a non-
empty open set of $F^{\prime}’$ , and ”

$f_{a}\neq 0$
’ means ”

$f_{a}\neq 0$ for some $a$ on a nonempty
open set of $F^{\prime}$ “, etc.

LEMMA 3.1.

(1) $f_{a}J_{bc}=0$ and $f_{r}J_{st}=0$ .
(2) $(\eta-\xi)\theta_{ar}=c\sum_{b}(f_{b}J_{ar}-f_{r}J_{ab}+2f_{a}J_{br})\theta_{b}$

$+c\sum_{\epsilon}(f_{s}]_{ra}-f_{a}J_{rs}+2f_{r}J_{sa})\theta_{s}$ .

PROOF. By (2.1) and (2.9) the exterior derivatives of $\phi_{a}=\xi\theta_{a}$ and $\phi_{r}=$

$\eta\theta_{r}$ give

(3.1) $(\xi-\eta)\sum_{r}\theta_{ar}\wedge\theta_{r}=c\sum_{f.k}(f_{j}J_{ak}+f_{a}J_{jk})\theta_{f}\wedge\theta_{k}$ ,

(3.2) $(\eta-\xi)\sum_{a}\theta_{ar}\wedge\theta_{a}=c\sum_{j,k}(f_{j}J_{rk}+f_{r}J_{jk})\theta_{j}\wedge\theta_{k}$ .

Taking account of the coefficients of $\theta_{b}\wedge\theta_{c}$ in (3.1) we have

(3.3) $f_{b}J_{ac}-f_{c}J_{ab}+2f_{a}J_{bc}=0$ .
Put $c=a$ in (3.3) to get $f_{a}J_{ba}=0$ . Multiplying (3.3) by $f_{a}$ therefore we have
$f_{a}J_{bc}=0$ . Similarly we have $f_{r}J_{st}=0$ from (3.2). We can prove (2) easily by
applying a method of indeterminate coefficients to (3.1) and (3.2). Q. E. D.

LEMMA 3.2. $f_{a}=0$ or $f_{r}=0$ .
PROOF. From (2.10) and (1) of Lemma 3.1 we have

$*)$ Hereafter the indices $a,$ $b,$ $c$ run from 1 to $2n-1-m$ and the indices $r,$ $s,$
$t$ run

from $2n-m$ to $2n-1$ .
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$0=\sum_{a.b}f_{a}J_{ab}J_{br}=\sum_{a}f_{a}(-\sum_{*}J_{as}J_{sr}+f_{a}f_{r})=f_{r}\sum_{a}f_{a}^{2}$

since $\Sigma_{a}f_{a}J_{as}=-\Sigma_{r}f_{r}J_{rs}=0$ . Q. E. D.
Without loss of generality we may assume $f_{a}=0$ and so $f_{r}\neq 0$ by Lemma

3.2. Then (1) of Lemma 3.1 implies $J_{rs}=0$ . By (2.11) and (2) of Lemma 3.1
the derivative of $f_{a}=0$ gives

(3.4) $(\xi^{2}-\eta\xi-c)J_{ab}=0$ .
Similarly the derivative of $J_{rs}=0$ gives

(3.5) $(\eta^{2}-\xi\eta+2c)(f_{r}\delta_{st}-f_{s}\delta_{rt})=0$ .
LEMMA 3.3. $m=1$ .
PROOF. Suppose $m\geqq 2$ . Then (3.5) implies $\eta^{2}-\xi\eta+2c=0$ . Hence from

(3.4) we have $J_{ab}=0$ since $\xi^{2}-\eta\xi-c\neq 0$ . Take the exterior derivative of (2)
of Lemma 3.1 making use of (2.1), (2.2), (2.8), (2.10) and (2) of Lemma 3.1
itself to obtain

$(\eta-\xi)(c+\xi\eta)\theta_{a}\wedge\theta_{r}+3c\xi f_{r}\sum_{s}f_{s}\theta_{a}\wedge\theta_{s}$

$+c\sum_{b.s}((2\eta-3\xi)J_{ar}J_{bs}+(\eta-3\xi)J_{as}J_{br})\theta_{b}\wedge\theta_{s}$

$+\frac{2c^{2}}{\eta-\xi}\sum_{b,s,t}(f_{s}^{2}J_{ar}J_{bt}+f_{r}f_{t}J_{as}]_{bs})\theta_{b}\Lambda\theta_{t}=0$ .
Summing up the coefficients of $\theta_{a}\Lambda\theta_{r}$ in above equation on $r$ and making
use of $\Sigma_{r}J_{ar}^{2}=\sum_{r}f_{r}^{2}=1$ and $2c=\eta(\xi-\eta)$ we have

$\eta^{2}+m\xi\eta+(m+3)c=0$ ,

which contradicts $\eta^{2}-\xi\eta+2c=0$ . Q. E. D.
Let $S^{2n+1}(c)$ denote a $(2n+1)$ -sphere with constant sectional curvature $c$

and $\pi$ be the canonical projection of $S^{2n+1}(c)$ onto $P_{n}(C)$ .
PROOF OF THEOREM 1. It follows from (1.2) and Lemma 3.3 that the

principal curvatures of a hypersurface $N=\pi^{-1}(M)$ in $S^{2n+1}(c)$ are given by
$\xi$ and the roots of the equation $y^{2}-\eta y-c=0$ . On the other hand, we have
$J_{ab}\neq 0$ since $f_{a}=0$ and $J_{ar}=0$ . Hence (3.4) implies $\xi^{2}-\eta\xi-c=0$ . Thus $N$ has
two constant principal curvatures $\xi$ with multiplicity $2n-1$ and $-c/\xi$ with
multiplicity 1. By a theorem of E. Cartan [2, p. 180] we see that $N$ is con-
gruent to a product $S^{2n-1}(\xi^{2}+c)\times S^{1}(c(\xi^{2}+c)/\xi^{2})$ of two spheres, which is exactly
an orbit in $S^{2n+1}(c)$ of type $A_{1}$ in the Table in \S 1. By a comment below the
Table $M$ is a geodesic hypersphere in $P_{n}(C)$ . Q. E. D.

REMARK 2.1. The radius of above geodesic hypersphere $M$ is equal to
$(|\xi)/\sqrt{c})\cot^{-1}(|\xi|/\sqrt{c})$ .
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\S 4. An application of Theorem 1.

Now modifying the condition of Theorem 1 we obtain
THEOREM 3. If a connected complete real hypersurface $M$ in $P_{n}(C)$ has

two Principal curvatures $\xi$ with multiplicity $2n-2$ and $\eta$ with multiplicity1,
then $M$ is a geodesic hypersphere.

PROOF. Owing to Theorem 1 it suffices to prove that both $\xi$ and $\eta$ are
constant. We adopt the notation in \S 3. Thus the index $r$ stands for $2n-1$ .
By (2.1) and (2.4) the exterior derivative of $\phi_{a}=\xi\theta_{a}$ and $\phi_{r}=\eta\theta_{r}$ give

(4.1) $\sum_{0}\{\delta_{ab}d\xi+c\sum_{J}(f_{b}J_{aj}+f_{a}J_{bj})\theta_{f}\}\Lambda\theta_{b}$

$+\{(\eta-\xi)\theta_{ar}+c\sum_{J}(f_{\gamma}J_{aj}+f_{a}J_{rj})\theta_{j}\}\wedge\theta_{r}=0$ ,

(4.2) $\sum_{a}\{(\eta-\xi)\theta_{ar}+c\sum_{j}(f_{r}J_{aj}+f_{a}J_{rj})\theta_{j}\}\Lambda\theta_{a}$

$+\{d\eta+2cf_{r}\sum_{a}J_{ra}\theta_{a}\}\wedge\theta_{r}=0$ .

It follows from Cartan’s lemma that $\{\}s$ in (4.1) and (4.2) can be expressed as
(4.3) $\delta_{ab}d\xi+c\sum_{j}(f_{b}\prime_{aj}+f_{a}J_{rj})\theta_{j}=\sum_{c}A_{abc}\theta_{c}+A_{ab}\theta_{r}$ ,

(4.4) $(\eta-\xi)\theta_{ar}+c\sum_{f}(f_{r}J_{aj}+f_{a}J_{rj})\theta_{j}=\sum_{b}A_{ab}\theta_{b}+A_{a}\theta_{r}$ ,

(4.5) $d\eta+2cf_{r}\sum_{a}J_{ra}\theta_{a}=\sum_{\alpha}A_{a}\theta_{a}+A\theta_{\gamma}$ ,

where $A_{abc}=A_{acb}=A_{bac}$ . From (4.3) we have $A_{abc}=c(f_{b}J_{ac}+f_{a}J_{bc})$ and $A_{ab}=$

$c(f_{b}J_{ar}+f_{a}J_{b\tau})$ for $a\neq b$ . Hence $0=A_{abc}-A_{acb}=c(f_{b}J_{ac}-f_{c}J_{ab}+2f_{a}J_{bc})$ for $a\neq b$ .
From this we have $f_{a}J_{bc}=0$ as in the proof of (1) of Lemma 3.1. Then
putting $d\xi=\sum_{a}\xi_{a}\theta_{a}+\xi_{r}\theta_{r}$ and $d\eta=\Sigma_{a}\eta_{a}\theta_{a}+\eta_{r}\theta_{r}$ we have from (4.3) and (4.5)

$A_{\alpha a}=2cf_{a}J_{\alpha r}+\xi_{\gamma}$ , $A_{a}=-\eta_{a}$ ,

Thus (4.4) was reduced to

(4.6) $(\eta-\xi)\theta_{ar}=c\sum_{b}(f_{b}J_{ar}-f_{r}J_{ab}+2f_{a}J_{br})\theta_{b}+\xi_{\gamma}\theta_{a}+\eta_{a}\theta_{r}$ .

Here we shall divide into two cases.
(1) The case where $f_{a}\neq 0$ . Then we have $f_{r}=0$ as in the proof of Lemma

3.2. By (2.11) and (4.6) the derivative of $f_{r}=0$ gives $\eta_{a}=0$ and

(4.7) $(\xi^{2}-\eta\xi+2c)J_{ar}+f_{a}\xi_{r}=0$ .

Multiply (4.7) by $f_{a}$ and sum up on $a$ to obtain $\xi_{\gamma}=0$ . Thus (4.7) again im-
plies $\xi^{2}-\eta\xi+2c=0$ since $J_{ar}\neq 0$ . The derivative of $\xi^{2}-\eta\xi+2c=0$ gives $\xi_{a}=0$

and $\eta_{r}=0$ , which shows that both $\xi$ and $\eta$ are constant.
(2) The case $f_{a}=0$ . Then since $J_{ab}\neq 0$ , the derivative of $f_{a}=0$ gives
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$\xi_{r}=0,$ $\eta_{a}=0$ and $\xi^{2}-\eta\xi-c=0$ as in the case (1). The derivative of $\xi^{2}-\eta\xi-c$

$=0$ gives $\eta_{r}=0$ , which implies that $\eta$ is constant, and hence $\xi$ is also con-
stant. Q. E. D.

Following S. Tachibana and T. Kashiwada [5] we shall call a real hyper-
surface in $P_{n}(C)$ totally $\eta$ -umbilic if $H_{ij}=\alpha\delta_{ij}+\beta f_{i}f_{j}$ holds good for some
scalar functions $\alpha$ and $\beta$ . For a matrix $Q=(x\delta_{\lambda\mu}+y_{\lambda}z_{\mu})$ of degree $D$ we see
that det $Q=x^{D}+(\sum_{\lambda}y_{\lambda}z_{\lambda})x^{D-1}$ by induction on $D$ and differentiation on $x$.
Thus if $M$ is $\eta$ -umbilic hypersurface in $P_{n}(C)$ then each principal curvature
$\kappa$ of $M$ satisfies

$0=\det(H-\kappa\delta_{ij})=\det((\alpha-\kappa)\delta_{ij}+\beta f_{i}f_{j})$

$=(\alpha-\kappa)^{2n- 2}(\alpha-\kappa+\beta)$

since $\Sigma_{i}f_{i}^{2}=1$ . So $\kappa=\alpha$ or $\alpha+\beta$ . But $\beta$ does not vanish everywhere. In
fact by [8, Theorem 3] the set $F^{\prime}=$ { $u\in F(M);\beta=0$ at $u$ } contains no non-
empty open sets of $F(M)$ . On the other hand, Theorem 3 shows that both
$\alpha$ and $\beta$ are constant on $F(M)-F^{\prime}$ and hence $ F‘=\emptyset$ by continuity of $\beta$ .
Thus Theorem 3 again implies

COROLLARY 4. If $M$ is a connected complete totally $\eta$ -umbilic hypersurface
in $P_{n}(C)$ then $M$ is a geodesic hypersphere.
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