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Abstract. In this paper we consider a real hypersurface M in complex hyperbolic space

HnC satisfying SφA = φAS, where φ, A and S denote the structure tensor, the shape

operator and the Ricci tensor of M respectively. Moreover, we give a characterization of

real hypersurfaces of type A in HnC by such a commuting Ricci tensor.

0. Introduction

A complex n-dimensional Kaehler manifold of constant holomorphic sectional
curvature c is called a complex space form, which is denoted by Mn(c). As is well-
known, a connected complete and simply connected complex space form is complex
analytically isometric to a complex projective space PnC, a complex Euclidean space
Cn or a complex hyperbolic space HnC according as c > 0, c = 0 or c < 0.

Let M be a real hypersurface in Mn(c). Then M has an almost contact metric
structure (φ, ξ, η, g) induced from the Kaehler structure J and the Kaehlerian metric
G of Mn(c). The structure vector field ξ is said to be principal if Aξ = αξ holds
on M , where A denotes the shape operator of M in Mn(c) and α = η(Aξ). A
real hypersurface is said to be a Hopf hypersurface if the structure vector field ξ of
M is principal. For examples of such kind of Hopf hypersurfaces in PnC we give
some homogeneous real hypersurfaces which are represented as orbits under certain
subgroup of the projective unitary group PU(n + 1) ([8]).

Berndt [1] showed that all real hypersurfaces with constant principal curvature
of a complex hyperbolic space HnC are realized as the tubes of constant radius over
certain submanifolds when the structure vector field ξ is principal. Nowadays in
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HnC they said to be of type (A0), (A1), (A2) and (B). He proved the following :

Theorem B ([1]). Let M be a real hypersurface in HnC. Then M has constant
principal curvatures and ξ is principal if and only if M is locally congruent to one
of the following :
(A0) a self-tube, that is, a horosphere,
(A1) a geodesic hypersphere or a tube over a hyperplane Hn−1C,
(A2) a tube over a totally geodesic HkC (1 ≤ k ≤ n− 2),
(B) a tube over a totally real hyperbolic space HnR.

On the other hand, we remark that every homogeneous real hypersurface in PnC
was proved a Hopf hypersurface (cf. [2], [8]). However, in HnC there exists some
kinds of homogeneous real hypersurfaces, called ruled real hypersurfaces, which are
not Hopf hypersurfaces (see [6]).

Let M be a real hypersurface of type (A0), (A1) or (A2) in a complex hyperbolic
space HnC. Now, hereafter unless otherwise stated, such hypersurfaces are said to
be of type A for our convenience sake. Now we introduce a theorem due to Montiel
and Romero [7] as follows:

Theorem MR ([7]). If the shape operator A and the structure operator φ commute
to each other, then a real hypersurface of a complex hyperbolic space HnC is locally
congruent to be of type A.

Now let us denote by S the Ricci tensor of M in a complex space form Mn(c).
Then in a paper due to Kwon and the second author [3], they considered a real
hypersurface M in a complex space form Mn(c) with LξS = ∇ξS, where Lξ and
∇ξ respectively denotes the Lie derivative and the covariant derivative along the
direction of the structure vector ξ of M . Then it was proved that LξS = ∇ξS is
equivalent to the condition SφA = φAS.

In such a case we say that M has commuting Ricci tensor. That is, the Ricci
tensor S of M in Mn(c) commutes with the tensor φA.

Now let us consider a real hypersurface M in Mn(c) with SφA − φAS = 0.
Then we have (see [5])

‖Sφ− φS‖2 +
3
2
c‖φAξ‖2 = 0.

From this naturally M becomes a Hopf hypersurface if c > 0. In the case where
c < 0, by using the method of A2ξ≡0 (mod ξ, Aξ), Kwon and the second author
([3]) proved the following :

Theorem KS ([3]). Let M be a real hypersurface in HnC, n ≥ 3, with commuting
Ricci tensor. If the structure vector field ξ is principal, then M is locally congruent
to of type A.

Then we want to make a generalization of Theorem KS without the assumption
that the structure vector field ξ is principal. In this paper we have introduced
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a certain vector U defined by U = ∇ξξ and have applied such a vector to the
expression of A2ξ≡0 (mod ξ, Aξ), and finally proved that the structure vector ξ is
principal. Namely, we prove the following

Theorem. Let M be a real hypersurface in a complex hyperbolic space HnC, n ≥ 3,
with commuting Ricci tensor. Then M becomes a Hopf hypersurface. Further, M
is locally congruent to one of the following spaces :
(A0) a self-tube, that is, a horosphere,
(A1) a geodesic hypersphere or a tube over a hyperplane Hn−1C,
(A2) a tube over a totally geodesic HkC (1 ≤ k ≤ n− 2).

1. Preliminaries

Let M be a real hypersurface immersed in a complex space form (Mn(c), G)
with almost complex structure J of constant holomorphic sectional curvature c,
and let C be a unit normal vector field on M . The Riemannian connection ∇̃ in
Mn(c) and ∇ in M are related by the following formulas for any vector fields X
and Y on M :

∇̃Y X = ∇Y X + g(AY, X)C,(1.1)

∇̃XC = −AX,(1.2)

where g denotes the Riemannian metric on M induced from that G of Mn(c) and A
is the shape operator of M in Mn(c). A characteristic vector X of the shape operator
of A is called a principal curvature vector. Also an eigenvalue λ of A is called a
principal curvature. It is known that M has an almost contact metric structure
induced from the almost complex structure J on Mn(c), that is, we define a tensor
field φ of type (1,1), a vector field ξ, a 1-form η on M by g(φX, Y ) = G(JX, Y )
and g(ξ,X) = η(X) = G(JX,C). Then we have

(1.3) φ2X = −X + η(X)ξ, g(ξ, ξ) = 1, φξ = 0.

From (1.1) we see that

(∇Xφ)Y = η(Y )AX − g(AX, Y )ξ,(1.4)
∇Xξ = φAX.(1.5)

Since the ambient space is of constant holomorphic sectional curvature c, equa-
tions of the Gauss and Codazzi are respectively given by

R(X, Y )Z =
c

4
{g(Y, Z)X − g(X, Z)Y + g(φY,Z)φX − g(φX, Z)φY

− 2g(φX, Y )φZ}+ g(AY, Z)AX − g(AX, Z)AY,

(1.6)

(1.7) (∇XA)Y − (∇Y A)X =
c

4
{η(X)φY − η(Y )φX − 2g(φX, Y )ξ}
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for any vector fields X, Y and Z on M , where R denotes the Riemannian curvature
tensor of M . We shall denote the Ricci tensor of type (1,1) by S. Then it follows
from (1.6) that

(1.8) SX =
c

4
{(2n + 1)X − 3η(X)ξ}+ hAX −A2X,

where h = trace A.
To write our formulas in convention forms, we denote α = η(Aξ), β = η(A2ξ),

γ = η(A3ξ), δ = η(A4ξ), µ2 = β − α2 and ∇f by the gradient vector field of a
function f on M . In the following, we use the same terminology and notation as
above unless otherwise stated.

If we put U = ∇ξξ, then U is orthogonal to the structure vector field ξ. Then
using (1.3) and (1.5), we see that

(1.9) φU = −Aξ + αξ,

which shows that g(U,U) = β − α2. By the definition of U , (1.3) and (1.5) it is
verify that

(1.10) g(∇Xξ, U) = g(A2ξ,X)− αg(Aξ, X).

Now, differentiating (1.9) covariantly along M and using (1.4) and (1.5), we
find

η(X)g(AU +∇α, Y ) + g(φX,∇Y U)
= g((∇Y A)X, ξ)− g(AφAX, Y ) + αg(AφX, Y ),

(1.11)

which enables us to obtain

(1.12) (∇ξA)ξ = 2AU +∇α

because of (1.7). From (1.11) we also have

(1.13) ∇ξU = 3φAU + αAξ − βξ + φ∇α,

where we have used (1.3), (1.5) and (1.10).
We put

(1.14) Aξ = αξ + µW,

where W is a unit vector field orthogonal to ξ. Then from (1.9) it is seen that
U = µφW and hence g(U,U) = µ2, and W is also orthogonal to U . Thus, we see,
making use of (1.5), that

(1.15) µg(∇XW, ξ) = g(AU,X).
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2. Real hypersurfaces satisfying A2ξ ≡ 0 (mod ξ, Aξ)

Let M be a real hypersurface of a complex space form Mn(c), c 6= 0. If it
satisfies A2ξ ≡ 0 (mod ξ, Aξ). So we can put

(2.1) A2ξ = ρAξ + (β − ρα)ξ

for a certain scalar ρ.
Hereafter, unless otherwise stated, let us assume that µ 6= 0 on M , that is, ξ is

not a principal curvature vector field and we put Ω = {p ∈ M |µ(p) 6= 0}. Then Ω
is an open subset of M , and from now on we discuss our arguments on Ω.

From (1.14) and (2.1), we see that

(2.2) AW = µξ + (ρ− α)W

and hence

(2.3) A2W = ρAW + (β − ρα)W

because µ 6= 0.
Now, differentiating (2.2) covariantly along Ω, we find

(2.4) (∇XA)W + A∇XW = (Xµ)ξ + µ∇Xξ + X(ρ− α)W + (ρ− α)∇XW.

By taking an inner product with W in the last equation, we obtain

(2.5) g((∇XA)W,W ) = −2g(AX, U) + Xρ−Xα

since W is a unit vector field orthogonal to ξ. We also have by applying ξ to (2.4)

(2.6) µg((∇XA)W, ξ) = (ρ− 2α)g(AU,X) + µ(Xµ),

where we have used (1.15), which together with the Codazzi equation (1.7) gives

µ(∇W A)ξ = (ρ− 2α)AU − c

2
U + µ∇µ,(2.7)

µ(∇ξA)W = (ρ− 2α)AU − c

4
U + µ∇µ.(2.8)

Replacing X by ξ in (2.4) and taking account of (2.8), we find

(ρ− 2α)AU − c

4
U + µ∇µ + µ{A∇ξW − (ρ− α)∇ξW}

= µ(ξµ)ξ + µ2U + µ(ξρ− ξα)W.

(2.9)

On the other hand, from φU = −µW we have

g(AU,X)ξ − φ∇XU = (Xµ)W + µ∇XW.
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Replacing X by ξ in this and using (1.9) and (1.13), we get

(2.10) µ∇ξW = 3AU − αU +∇α− (ξα)ξ − (ξµ)W,

which implies

(2.11) Wα = ξµ.

From the last three equations, it follows that

3A2U − 2ρAU + A∇α +
1
2
∇β − ρ∇α + (αρ− β − c

4
)U

= 2µ(Wα)ξ + µ(ξρ)W − (ρ− 2α)(ξα)ξ,

(2.12)

which enables us to obtain

(2.13) ξβ = 2α(ξα) + 2µ(Wα).

Differentiating (2.1) covariantly and making use of (1.5), we get

(∇XA)Aξ + A(∇XA)ξ + A2φAX − ρAφAX

= (Xρ)Aξ + ρ(∇XA)ξ + X(β − ρα)ξ + (β − ρα)φAX,

(2.14)

which together with (1.7) implies that

c

4
{u(Y )η(X)− u(X)η(Y )}+

c

2
(ρ− α)g(φY,X)− g(A2φAX, Y )

+ g(A2φAY,X) + 2ρg(φAX, AY )− (β − ρα){g(φAY,X)− g(φAX, Y )}
= g(AY, (∇XA)ξ)− g(AX, (∇Y A)ξ) + (Y ρ)g(Aξ, X)− (Xρ)g(Aξ, Y )

+ Y (β − ρα)η(X)−X(β − ρα)η(Y ),

(2.15)

where we have defined a 1-form u by u(X) = g(U,X) for any vector field X. If we
replace X by µW to the both sides of (2.15) and take account of (1.12), (2.2), (2.3),
(2.6) and (2.7), we obtain

(3α− 2ρ)A2U + 2(ρ2 + β − 2ρα +
c

4
)AU + (ρ− α)(β − ρα− c

2
)U

= µA∇µ + (αρ− β)∇α− 1
2
(ρ− α)∇β + µ2∇ρ

− µ(Wρ)Aξ − µW (β − ρα)ξ.

(2.16)

Using (1.14), we can write the equation (2.14) as

A(∇XA)ξ + (α− ρ)(∇XA)ξ + µ(∇XA)W

= (Xρ)Aξ + X(β − ρα)ξ + (β − ρα)φAX + ρAφAX −A2φAX.
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Thus, from this, by replacing X by αξ +µW and making use of (1.5), (1.12), (1.14)
and (2.5) ∼ (2.7), we find

2ρA2U + 2(αρ− β − ρ2 − c

4
)AU + (ρ2α− ρβ +

c

2
ρ− 3

4
cα)U

= g(Aξ,∇ρ)Aξ − 1
2
A∇β +

1
2
(ρ− 2α)∇β + β∇α

− µ2∇ρ + g(Aξ,∇(β − ρα))ξ.

(2.17)

3. Real hypersurfaces in HnC with commuting Ricci tensor

Let us consider a real hypersurface M in complex hyperbolic space HnC with
negative constant holomorphic sectional curvature c < 0. If M satisfies SφA −
φAS = 0, we say that M has commuting Ricci tensor. In this section we consider a
real hypersurface M in HnC with commuting Ricci tensor. Then by (1.8) we have

(3.1) h(AφA− φA2) + φA3 −A2φA +
3
4
cη ⊗ U = 0,

where we have used (1.5). Taking the transpose of this, we find

(3.2) h(AφA−A2φ) + A3φ−AφA2 +
3
4
cU ⊗ ξ = 0.

Transforming (3.1) by A to the left, and (3.2) to the right respectively, and
combining to these two equations, we obtain

η ⊗AU + ξ ⊗ η(AφA) = 0,

which implies

(3.3) AU = 0.

If we take an inner product (3.2) with ξ and make use of (3.3), then we have

(3.4) AφA2ξ = 0.

Taking an inner product (3.1) with ξ and using (3.3) and the last equation, we
also find

φ(A3ξ − hA2ξ) +
3
4
cU = 0.

If we apply this by φ and take account of (1.9), then we get

A3ξ − hA2ξ = (γ − βh +
3
4
cα)ξ − 3

4
cAξ,

which tells us that

(3.5) A4ξ − hA3ξ = (γ − βh +
3
4
cα)Aξ − 3

4
cA2ξ.
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Next, applying (3.1) by Aξ and making use of (3.3) and (3.4), we have

φ(A4ξ − hA3ξ) =
3
4
cαU,

which implies that

A4ξ − hA3ξ = −3
4
cα(Aξ − αξ) + (δ − hγ)ξ.

This, together with (3.5) implies that

(3.6)
3
4
cA2ξ = (γ − βh +

3
2
cα)Aξ + (hγ − δ − 3

4
cα2)ξ.

Thus, it follows that

(3.7)
3
4
c(β − α2) = α(γ − βh) + hγ − δ.

Therefore (3.6) is reformed as

(3.8) A2ξ = ρAξ + (β − ρα)ξ,

where the function ρ is defined in such a way that

(3.9)
3
4
cρ = γ − βh +

3
2
cα.

Accordingly the formulas stated in Section 2 are established.
Now, we are going to prove our Main Theorem.
Transforming (2.12) by U and using (3.3), we find

(3.10)
1
2
Uβ − ρ(Uα) = (β − ρα +

c

4
)µ2.

Similarly, from (2.16) and (2.17) we have respectively

(αρ− β)Uα− 1
2
(ρ− α)Uβ + (β − α2)Uρ = (ρ− α)(β − ρα− c

2
)µ2,(3.11)

1
2
(ρ− 2α)Uβ + β(Uα)− (β − α2)Uρ = (ρ2α− ρβ +

c

2
ρ− 3

4
cα)µ2.(3.12)

Differentiating (3.3) covariantly along Ω, we find

(∇XA)U + A∇XU = 0.

If we put X = ξ in this and take account of (1.13) and (3.3), we obtain

(∇ξA)U + αA2ξ − βAξ + αAφ∇α = 0,
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which shows that
φ(∇ξA)U = (β − ρα)U − αφAφ∇α,

where we have used (3.8). From this and (1.7), it follows that

(3.13) φ(∇UA)ξ = (β − ρα +
c

4
)U − αφAφ∇α.

On the other hand, from ∇Xξ = φAX and U = ∇ξξ, we see that

∇XU = φ(∇XA)ξ + αAX − g(A2X, ξ)ξ + φAφAX

by virtue of (1.4). Replacing X by U in this and making use of (3.3), we obtain
∇UU = φ(∇UA)ξ, which together with (3.13) implies that

∇UU = (β − ρα +
c

4
)U − αφAφ∇α.

If we take an inner product with U to the last equation and use (1.9), (3.3) and
µ2 = β − α2, then we get

(3.14)
1
2
Uβ − α(Uα) = (β − ρα +

c

4
)µ2.

This, together with (3.10), implies that

(3.15) (ρ− α)Uα = −2(β − ρα +
c

4
)µ2.

Combining (3.12) to (3.14), we find

(3.16) Uρ = Uα− c

4
(ρ− α).

Substituting (3.14), (3.15) and (3.16) into (3.12), we obtain ρ−α = 0 and hence
β − α2 + c

4 = 0 by virtue of (3.15). Thus, (3.8) becomes A2ξ = αAξ − c
4ξ, which

tells us that γ = α3 − c
2α. Then it follows

δ = α4 − 3
4
cα2 + (

c

4
)2.

Using above facts, (3.7) turns out to be

(3.17) αh = α2 +
c

2
.

Since ρ = α, (3.9) becomes γ−βh = − 3
4cα, which implies that α3−h(α2− c

4 ) =
− c

4α. This, together with (3.17), yields c = 0, a contradiction. Hence Ω = ∅. Thus,
the subset Ω (of M) on which Aξ − η(Aξ)ξ 6= 0 is an empty set, namely in HnC
every real hypersurface satisfying SφA = φAS is a Hopf hypersurface. Then, by
Theorem KS we complete the proof of our Main Theorem.
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