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REAL HYPERSURFACES IN COMPLEX
HYPERBOLIC SPACE WITH »n-RECURRENT
SECOND FUNDAMENTAL TENSOR

SEON M1 Lyu AND YOUNG JIN SUH

ABSTRACT. Recently, Hamada [4] has proved that there do not exist any real hy-
persurfaces in complex projective space P,(C) with recurrent second fundamental
tensor. From this point of view, he introduce the notion of n-recurrent second fun-
damental tensor for real hypersurfaces in P,(C). In this paper we also consider
the notion of 7n-recurrent second fundamental tensor for real hypersurfaces in com-
plex hyperbolic space H, (C) and classified such kind of real hypersurfaces under the
condition that the structure vector field £ is principal.

1. Introduction

A complex n(>2)-dimensional Kaehlerian manifold of constant holomorphic sec-
tional curvature c is called a complex space form, which is denoted by M,(c). A
complete and simply connected complex space form is a complex projective space
P,(C), a complex Euclidean space C™ or a complex hyperbolic space H,(C), ac-
cording as ¢ > 0, ¢ = 0 or ¢ < 0. The induced almost contact metric structure of a
real hypersurface M of M,(c) is denoted by (¢,&,7,9).

There exist many studies about real hypersurfaces of M,(c). One of the first
researches is the classification of homogeneous real hypersurfaces in a complex pro-
jective space P, (C) by Takagi [14], who showed that these hypersurfaces of P,(C)
could be divided into six types which are said to be of type A;, A2, B,C, D, and
E, and in [3] Cecil-Ryan and [7] Kimura proved that they are realized as the tubes
of constant radius over Kaehlerian submanifolds if the structure vector field ¢ is
principal. Also Berndt [2) showed recently that all real hypersurfaces with constant
principal curvatures of a complex hyperbolic space H,(C) are realized as the tubes
of constant radius over certain submanifolds when the structure vector field ¢ is
principal. Nowadays in H,(C) they are said to be of type Ag, A1, A2, and B.

On the other hand, in [9] Kobayashi and Nomizu have introduced the notion of
recurrent tensor field of type (7, s) on a manifold M with a linear connection. That
is, a non-zero tensor field K of type (7, s) on M is said to be recurrent if there exists

a 1-form « such that
VK = K®a.

Moreover, they gave some geometric interpretation of a manifold M with recurrent
curvature tensor in terms of holonomy group, see also [15].
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Now let us denote by A the second fundamental form of real hypersurfaces in
M, (c), c#0. Recently, Hamada [4] applied this notion of recurrent second funda-
mental form to real hypersurfaces M in a complex projective space P,(C), which
is defined in such a way that

VA =a®A

for a certain 1-form a defined on M, and proved the following

Theorem A. P,(C) do not admit any real hypersurfaces with recurrent second
fundamental tensor.

Now let Ty be a distribution defined by a subspace To(z) = {X €T M : X L{(;)}
in the tangent space T M. Then by virtue of Theorem A Hamada [5] considered
the notion of 7-recurrent second fundamental form defined by

9((VxA)Y, Z) = a(X)g(AY, Z)

for a certain 1-form o defined on Ty and any X,Y and Z in Ty and classified such
kind of real hypersurfaces in P,(C) by the following

Theorem B. Let M be a real hypersurface in a complex projective space P,(C)
with n-recurrent second fundamental form and £ is principal. Then M 1is locally
congruent to a tube of some radius r over one of the following Kaehler submanifolds:

(A1) hyperplane P,_1(C), where 0 <r < 3,

(A2) totally geodesic Pr(C) (1<k<n —2), where 0 <1 < I,

(B) complex quadric Qn_1, where 0 <r < 7.

Now its geometrical meaning of n-recurrency can be interpreted that the eigen
space of the shape operator A are parallel along the curve vy orthogonal to . Here,
the eigen spaces of the shape operator A are said to be parallel along ~ if they are
invariant with respect to any parallel translations along 7, see [13].

In this paper we also consider the notions of recurrent second fundamental form
and 7-recurrent second fundamental form for real hypersurfaces in a complex hy-
perbolic space H,,(C) and proved the followings

Theorem 1. H,(C) do not admit any real hypersurfaces with recurrent second
fundamental tensor.

Theorem 2. Let M be a real hypersurface in H,(C) with n-recurrent second
fundamental form and £ is principal, then M is congruent to one of real hypersur-
faces

(Ao) a horosphere in H,(C), i.e., a Montiel tube,

(A1) a tube over a totally geodesic hyperplane H(C) (k=0 orn—1),

(A2) a tube over a totally geodesic Hx(C) (1<k<n —2).

(B) a tube over a real hyperbolic space Hn(R).

The present authors would like to express their sincere gratitude to the referee,
who pointed out some mistakes in the first version of this paper.
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2. Preliminaries

First of all, we recall fundamental properties of real hypersurfaces of a complex
space form. Let M be a real hypersurface of a complex n-dimensional complex
space form M, (c) of constant holomorphic sectional curvature ¢(#0) and let C be
a unit normal field on a neighborhood of a point z in M. We denote by J an almost
complex structure of M, (c). For a local vector field X on a neighborhood of z in

‘M, the transformation of X and C under J can be represented as

JX = ¢X +n(X)C, JC = =¢,

where ¢ defines a skew-symmetric transformation on the tangent bundle TM of
M, while 7 and £ denote a 1-form and a vector field on a neighborhood of z in M,
respectively. Moreover, it is seen that g(£, X) = n(X),where g denotes the induced
Riemannian metric on M. By properties of the almost complex structure J, the
set (¢,&,7n,9) of tensors satisfies

where I denotes the identity transformation. Accordingly, the set is so called an
almost contact metric structure. Furthermore the covariant derivative of the struc-
ture tensors are given by

(2.1) (Vx)Y =n(Y)AX — g(AX,Y){, Vx¢=¢AX,

where V is the Riemannian connection of g and A denotes the shape operator with
respect to the unit normal C on M.

Since the ambient space is of constant holomorphic sectional curvature c, the
equation of Gauss and Codazzi are respectively given as follows

(2.2)
R(X,Y)Z =2{g(Y, 2)X - g(X, Z)Y + g(8Y, 2)$X — 9(¢X, Z)$Y
— 29(¢X,Y)$Z} + g(AY, Z)AX — g(AX, 2)AY,

(23)  (VxAY = (VyAX = 1{n(X)$Y —n(Y)eX — 20($X,Y)E},

where R denotes the Riemannian curvature tensor of M and Vx A denotes the
covariant derivative of the shape operator A with respect to X.

Now let us suppose that the structure vector £ is a principal vector with principal
curvature (3, that is, A{ = B€. Then, differentiating this, we have

(2.4) (VxA)E = (XB)E + BoAX — APAX,
where we have used (2.1). Then it follows

I(VxA)Y, &) =(XB)n(Y) + Bg(Y, pAX)
— g(Y, ApAX) ‘

for any tangent vector fields X and Y on M. By the equation of Codazzi (2.3), we
have

(2.6) 2A0AX — §¢X = B(¢pA + Ad)X.

(2.5)
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3. Proof of Theorems 1 and 2

It is well known that the complex hyperbolic space H,(C) admits the Bergmann
metric normalized so that the constant holomorphic sectional curvature c is -4.

Now let us prove Theorem 1 given in the introduction. From the assumption of
recurrent second fundamental form we have

(3.1) 9((Vx A)Y,§) = o(X)g(AY,§).

From this let us put A¢ = 8¢ +~U, where U is orthogonal to ¢. Then (3.1) implies
(3.2) 9((VxA)¢,Y) = Ba(X)n(Y) + va(X)g(U,Y).

Now if we use the equation of Codazzi (2.3), we have

J(VXA)E,Y) = g(VeA)X + ¢X,Y)
(3.3) = 9((VeA)X,Y) + g(¢X,Y)
= a(§)g(AX,Y) + g(¢X,Y).

for any X,Y in M. Thus (3.2) and (3.3) give the following

(3.4) a(§)9(AX,Y) = Ba(X)n(Y) + ya(X)g(U,Y) — g(¢X,Y).
From this, putting X = U,Y = £, we have

(3.5) a(§)y = Ba(U).

Similarly, putting X = U,Y = ¢U and X = ¢U,Y = U in (3.4) respectively, we
have

a(§)g(AU,¢U) = —g(¢U,¢U) = -1, and

(3.6) a(£)g(A¢U,U) = va(sU)g(U,U) — g(¢*U, U)
= va(oU) + 1.

So it follows

(3.7) yo(pU) = —2.

Also putting X =Y = ¢U in (3.4), we have
a(£)g(AgU, ¢U) = 0.

From this, together with (3.5) and (3.6), it follows

(3.8) Ba(U)g(AdU, pU) = va(§)g(AeU, ¢U) = 0.
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On the other hand, by the equation of Codazzi (2.3) for ¢ = —4 we have
(VuA)oU — (Vyu A)U = 2.
From this and (3.8), together with the recurrency of M in H,(C) we have

0 = Ba(U)g(AsU, ¢U)
= Bg((VuA)eU, ¢U)
= B((VeuA)U + 2¢,4U)
= Pa(eU)g(AU, ¢U).

From this and (3.6), (3.7) we know 3 = 0. Thus (3.5) and (3.6) gives v = 0. This
makes a contradiction to (3.7). So there do not exist any real hypersurfaces M
in H,(C) with recurrent second fundamental tensor. This completes the proof of
Theorem 1.

Now the formula (2.6) gives the following equation for real hypersurfaces in
H, (C) when the structure vector field £ is principal
(3.9) 2A90AX + 290X = B(pA + Ap) X

for any vector field X in M. It follows that if AX = AX for any X in Tp, which
is a distribution defined by a subspace To(z) = {X €T M : X L{(;)} in the tangent
space T, M, then

(3.10) (2 — B)AdX = (B — 2)¢X.

Now we introduce a lemma proved by Ki and the second author [6]

Lemma 3.1.  Let M be a real hypersurface in a complex hyperbolic space H,(C).
If € is a principal curvature vector with principal curvature 3, then B is locally
constant.

Hereafter, we are going to prove Theorem 2 in the introduction. The second
fundamental form of M in a complex hyperbolic space H,(C) is said to be 7-
recurrent if and only if there exists a 1-form a such that

9((VxA)Y, Z) = a(X)g(AY, Z)

for any X,Y and Z in Ty. When the 1-form a defined on 7y vanishes, the second
fundamental form of M is said to be n-parallel.

Motivated by Theorem 1, we classify real hypersurfaces in H, (C) with 7-recurrent
second fundamental form and principal structure vector field £. In order to prove
Theorem 2, let us introduce a theorem proved by the second author [12].
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Theorem 3.2.  Let M be a real hypersurface in a complex hyperbolic space H,,(C)
with n-parallel second fundamental form and & is principal. Then M 1is locally
congruent to one of real hypersurfaces of type Ao,A1, A2 or B.

Remark 3.3. Kimura and Maeda (8] have proved that a real hypersurface of
a complex projective space P,(C) with n-parallel second fundamental form and
principal structure vector £ is locally congruent to one of real hypersurfaces of type

A1, A2 and B.

By Theorem 3.2 we know that the second fundamental form of real hypersurfaces
of type Ag,A1,A2 or B are n-recurrent and its structure vector field £ is principal.

Conversely, let us prove Theorem 2. Under the assumption of n-recurrency and
¢ principal it suffices to show that all of principal curvatures of M in H,(C) are
constant. Then by a theorem of Berndt [1], we know that M is congruent to one
of real hypersurfaces of type Ag,A;1, A2 and B.

Now let us show that every principal curvatures of M are constant. From the
notion of n-recurrency and the equation of Codazzi (2.3) we have

a(X)g(AY, Z) = o(Y)g(AX, Z) = a(Z)g9(AX,Y)
for any X,Y and Z in Tp. This implies
a(X)AY —a(Y)AX = b

for a certain smooth function b on M.

In order to show that every principal curvatures are constant we consider the
following cases:

Casel. Let us consider the open set U consisting of points, at which there exist
two distinct principal curvatures.

In this case To(z) = {X€TM : X 1€} = T) for any point z in U. So, by a
theorem of Montiel [10] or Montiel and Romero [11] M is locally congruent to a
horosphere (or said to be of a Montiel tube) or a geodesic hypersphere. Of course,
every principal curvatures of these hypersurfaces are known to be constant.

Case II. Let us consider the open set V = Int(M — U) consisting of points, at
which there exist more than 3 distinct principal curvatures.

Then among them let us take out any two distinct principal curvatures A and u
different from 3. Then on this ¥V we can consider the following subcases:

Sub. II.1: Let W = {peV|\(p)#0, u(p)#0}. Then A and p are non-vanishing
at any point of W.
In this case we can decompose the distribution Ty into the direct sum of eigenspces
such that
To = T ®T,, & - - &1,

where y;, - - -, ux denote principal curvatures different from X and y, and Ty,7, and
T,, denote the eigenspaces of principal vectors in Tp with corresponding principal
curvatures A, u and w;.
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Choose X €T, Y€T, such that X and Y are orthogonal to &, then we have

a(X)pY —a(Y)AX =0.

Then
(3.11) a(X)p=0 and a(Y)A=0
for any X€T) and Y€T,. So it follows that

Xp= g((VxA)Y, Y) + g(AVxY, Y)
= a(X)g(AY,Y) + ng(VxY,Y)
= a(X)u
—0,

(3.12)

-where we have used the notion of n-recurrency in the second equality for any X €T,

and Y€T,. Since A and u are non-zero, (3.11) implies a(X) = 0 = «(Y). This
means

(3.13) Ypu=0

for any Y€T,,. Moreover, for any Z€T),; the n-recurrency implies
pa(Z2)Y — pa(Y)Z = 0.

This means a(Z)u =0 and o(Y)u; = 0. So

Zp=g((VzA)Y,Y) + g(AVzY)Y)
= a(Z)g(AY,Y) + ug(VzY,Y)
= a(Z)p
=0.

(3.14)

On the other hand, by (2.4), we get the following for any Y €T,

Eu = Eg(AY YY)
= g((VeA)Y,Y) + g(AV,Y,Y) + g(AY, VY)
= g((Vy A),,Y)
= g((YB)E + BoAY — ApAY,Y)

= Bug(¢Y,Y) — ug(¢Y,Y)
=0

(3.15)

where in the third equality we have used the equation of Codazzi (2.3) and the fact
AY = pY. From these (3.12),(3.13),(3.14), and (3.15) we know Xu = 0 for any
XeTy. So p is constant on W. Similarly, we know that A is also constant on W.
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Sub. II.2:  Let us consider the open subset Int(V —W) of V. Then on this open
subset either ) or u vanishes identically. Thus for convenience sake we consider such
a situation

Int(V — W) = {peV|A(p) = 0, u(p)#0}.
Now we want to show that p is constant on Int(V — W).

Then in this case the distribution Ty is decomposed into the direct sum of
eigenspaces such that

Io = TA=0®TF;&O®T;“ oD ‘@T,_,k .

When y; = 0 for all i = 1, ..., k, we consider such a situation that To = T\—o®T,xo-
Then (3.10) gives
BAPX = 2¢X.

So ApX = %d)X . In this case, by Lemma 3.1, u = % is constant.
Next for convenience sake we consider the case that

To = Tr=09T 09T 0.
From the formulas
b = a(X)AZ — a(Z)AX = ao(X)vZ, and

b = a(Y)AZ — a(Z2)AY = a(Y)vZ — a(Z)pY

for any X €Tr=0,Y €T 0 and Z€T, 40, we have a(X) = a(Y) = a(Z) = 0. So
Wu = 0 for any WeTy. From this together with the fact {u = 0, we know u is
constant on Int(V—W). Thus accordingly, by the continuity of principal curvatures
the set W is empty or V itself. From this the principal curvatures A and u are
constant on V.

Summing up the above Cases I and II, by the continuity of principal curvatures
again U is empty or the whole set M. When U is empty, the open V should be
the whole set M. From this we conclude that every principal curvatures of Ty are
constant on M. Together with Lemma 3.1 every principal curvatures of M are
constant. Now we have completed the proof of Theorem 2.
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