REAL HYPERSURFACES IN COMPLEX HYPERBOLIC SPACE WITH η -RECURRENT SECOND FUNDAMENTAL TENSOR

SEON MI LYU AND YOUNG JIN SUH

ABSTRACT. Recently, Hamada [4] has proved that there do not exist any real hypersurfaces in complex projective space $P_n(C)$ with recurrent second fundamental tensor. From this point of view, he introduce the notion of η -recurrent second fundamental tensor for real hypersurfaces in $P_n(C)$. In this paper we also consider the notion of η -recurrent second fundamental tensor for real hypersurfaces in complex hyperbolic space $H_n(C)$ and classified such kind of real hypersurfaces under the condition that the structure vector field ξ is principal.

1. Introduction

A complex $n(\geq 2)$ -dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by $M_n(c)$. A complete and simply connected complex space form is a complex projective space $P_n(C)$, a complex Euclidean space C^n or a complex hyperbolic space $H_n(C)$, according as c > 0, c = 0 or c < 0. The induced almost contact metric structure of a real hypersurface M of $M_n(c)$ is denoted by (ϕ, ξ, η, g) .

There exist many studies about real hypersurfaces of $M_n(c)$. One of the first researches is the classification of homogeneous real hypersurfaces in a complex projective space $P_n(C)$ by Takagi [14], who showed that these hypersurfaces of $P_n(C)$ could be divided into six types which are said to be of type A_1, A_2, B, C, D , and E, and in [3] Cecil-Ryan and [7] Kimura proved that they are realized as the tubes of constant radius over Kaehlerian submanifolds if the structure vector field ξ is principal. Also Berndt [2] showed recently that all real hypersurfaces with constant principal curvatures of a complex hyperbolic space $H_n(C)$ are realized as the tubes of constant radius over certain submanifolds when the structure vector field ξ is principal. Nowadays in $H_n(C)$ they are said to be of type A_0, A_1, A_2 , and B.

On the other hand, in [9] Kobayashi and Nomizu have introduced the notion of recurrent tensor field of type (r, s) on a manifold M with a linear connection. That is, a non-zero tensor field K of type (r, s) on M is said to be *recurrent* if there exists a 1-form α such that

$$\nabla K = K \otimes \alpha.$$

Moreover, they gave some geometric interpretation of a manifold M with recurrent curvature tensor in terms of holonomy group, see also [15].

^{*} This paper was supported by BSRI 97-1404 and partly by TGRC-KOSEF

Now let us denote by A the second fundamental form of real hypersurfaces in $M_n(c)$, $c \neq 0$. Recently, Hamada [4] applied this notion of recurrent second fundamental form to real hypersurfaces M in a complex projective space $P_n(C)$, which is defined in such a way that

$$\nabla A = \alpha \otimes A$$

for a certain 1-form α defined on M, and proved the following

Theorem A. $P_n(C)$ do not admit any real hypersurfaces with recurrent second fundamental tensor.

Now let T_0 be a distribution defined by a subspace $T_0(x) = \{X \in T_x M : X \perp \xi_{(x)}\}$ in the tangent space $T_x M$. Then by virtue of Theorem A Hamada [5] considered the notion of η -recurrent second fundamental form defined by

 $g((\nabla_X A)Y, Z) = \alpha(X)g(AY, Z)$

for a certain 1-form α defined on T_0 and any X, Y and Z in T_0 and classified such kind of real hypersurfaces in $P_n(C)$ by the following

Theorem B. Let M be a real hypersurface in a complex projective space $P_n(C)$ with η -recurrent second fundamental form and ξ is principal. Then M is locally congruent to a tube of some radius r over one of the following Kaehler submanifolds:

- $(A_1) \quad \text{hyperplane } P_{n-1}(C), \text{ where } 0 < r < \tfrac{\pi}{2},$
- (A₂) totally geodesic $P_k(C)$ ($1 \le k \le n-2$), where $0 < r < \frac{\pi}{2}$,
- (B) complex quadric Q_{n-1} , where $0 < r < \frac{\pi}{4}$.

Now its geometrical meaning of η -recurrency can be interpreted that the eigen space of the shape operator A are parallel along the curve γ orthogonal to ξ . Here, the eigen spaces of the shape operator A are said to be parallel along γ if they are invariant with respect to any parallel translations along γ , see [13].

In this paper we also consider the notions of *recurrent* second fundamental form and η -recurrent second fundamental form for real hypersurfaces in a complex hyperbolic space $H_n(C)$ and proved the followings

Theorem 1. $H_n(C)$ do not admit any real hypersurfaces with recurrent second fundamental tensor.

Theorem 2. Let M be a real hypersurface in $H_n(C)$ with η -recurrent second fundamental form and ξ is principal, then M is congruent to one of real hypersurfaces

- (A_0) a horosphere in $H_n(C)$, i.e., a Montiel tube,
- (A₁) a tube over a totally geodesic hyperplane $H_k(C)$ (k = 0 or n 1),
- (A_2) a tube over a totally geodesic $H_k(C)$ $(1 \le k \le n-2)$.
- (B) a tube over a real hyperbolic space $H_n(R)$.

The present authors would like to express their sincere gratitude to the referee, who pointed out some mistakes in the first version of this paper.

2. Preliminaries

First of all, we recall fundamental properties of real hypersurfaces of a complex space form. Let M be a real hypersurface of a complex n-dimensional complex space form $M_n(c)$ of constant holomorphic sectional curvature $c(\neq 0)$ and let C be a unit normal field on a neighborhood of a point x in M. We denote by J an almost complex structure of $M_n(c)$. For a local vector field X on a neighborhood of x in M, the transformation of X and C under J can be represented as

$$JX = \phi X + \eta(X)C, \qquad JC = -\xi,$$

where ϕ defines a skew-symmetric transformation on the tangent bundle TM of M, while η and ξ denote a 1-form and a vector field on a neighborhood of x in M, respectively. Moreover, it is seen that $g(\xi, X) = \eta(X)$, where g denotes the induced Riemannian metric on M. By properties of the almost complex structure J, the set (ϕ, ξ, η, g) of tensors satisfies

$$\phi^2 = -I + \eta \otimes \xi, \quad \phi \xi = 0, \quad \eta(\phi X) = 0, \quad \eta(\xi) = 1,$$

where I denotes the identity transformation. Accordingly, the set is so called an almost contact metric structure. Furthermore the covariant derivative of the structure tensors are given by

(2.1)
$$(\nabla_X \phi)Y = \eta(Y)AX - g(AX,Y)\xi, \quad \nabla_X \xi = \phi AX,$$

where ∇ is the Riemannian connection of g and A denotes the shape operator with respect to the unit normal C on M.

Since the ambient space is of constant holomorphic sectional curvature c, the equation of Gauss and Codazzi are respectively given as follows

(2.2)

$$R(X,Y)Z = \frac{c}{4} \{g(Y,Z)X - g(X,Z)Y + g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y - 2g(\phi X,Y)\phi Z\} + g(AY,Z)AX - g(AX,Z)AY,$$

(2.3)
$$(\nabla_X A)Y - (\nabla_Y A)X = \frac{c}{4} \{\eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi\},$$

where R denotes the Riemannian curvature tensor of M and $\nabla_X A$ denotes the covariant derivative of the shape operator A with respect to X.

Now let us suppose that the structure vector ξ is a principal vector with principal curvature β , that is, $A\xi = \beta\xi$. Then, differentiating this, we have

(2.4)
$$(\nabla_X A)\xi = (X\beta)\xi + \beta\phi AX - A\phi AX,$$

where we have used (2.1). Then it follows

(2.5)
$$g((\nabla_X A)Y,\xi) = (X\beta)\eta(Y) + \beta g(Y,\phi AX) - g(Y,A\phi AX)$$

for any tangent vector fields X and Y on M. By the equation of Codazzi (2.3), we have

(2.6)
$$2A\phi AX - \frac{c}{2}\phi X = \beta(\phi A + A\phi)X.$$

3. Proof of Theorems 1 and 2

It is well known that the complex hyperbolic space $H_n(C)$ admits the Bergmann metric normalized so that the constant holomorphic sectional curvature c is -4.

Now let us prove Theorem 1 given in the introduction. From the assumption of recurrent second fundamental form we have

(3.1)
$$g((\nabla_X A)Y,\xi) = \alpha(X)g(AY,\xi).$$

From this let us put $A\xi = \beta\xi + \gamma U$, where U is orthogonal to ξ . Then (3.1) implies

(3.2)
$$g((\nabla_X A)\xi, Y) = \beta \alpha(X)\eta(Y) + \gamma \alpha(X)g(U,Y).$$

Now if we use the equation of Codazzi (2.3), we have

(3.3)
$$g((\nabla_X A)\xi, Y) = g((\nabla_\xi A)X + \phi X, Y)$$
$$= g((\nabla_\xi A)X, Y) + g(\phi X, Y)$$
$$= \alpha(\xi)g(AX, Y) + g(\phi X, Y).$$

for any X, Y in M. Thus (3.2) and (3.3) give the following

(3.4)
$$\alpha(\xi)g(AX,Y) = \beta\alpha(X)\eta(Y) + \gamma\alpha(X)g(U,Y) - g(\phi X,Y).$$

From this, putting $X = U, Y = \xi$, we have

(3.5)
$$\alpha(\xi)\gamma = \beta\alpha(U).$$

Similarly, putting $X = U, Y = \phi U$ and $X = \phi U, Y = U$ in (3.4) respectively, we have

(3.6)
$$\alpha(\xi)g(AU,\phi U) = -g(\phi U,\phi U) = -1, \text{ and}$$
$$\alpha(\xi)g(A\phi U,U) = \gamma\alpha(\phi U)g(U,U) - g(\phi^2 U,U)$$
$$= \gamma\alpha(\phi U) + 1.$$

So it follows

(3.7)
$$\gamma \alpha(\phi U) = -2.$$

Also putting $X = Y = \phi U$ in (3.4), we have

$$\alpha(\xi)g(A\phi U,\phi U)=0.$$

From this, together with (3.5) and (3.6), it follows

(3.8)
$$\beta \alpha(U)g(A\phi U, \phi U) = \gamma \alpha(\xi)g(A\phi U, \phi U) = 0.$$

On the other hand, by the equation of Codazzi (2.3) for c = -4 we have

$$(\nabla_U A)\phi U - (\nabla_{\phi U} A)U = 2\xi.$$

From this and (3.8), together with the recurrency of M in $H_n(C)$ we have

$$0 = \beta \alpha(U) g(A \phi U, \phi U)$$

= $\beta g((\nabla_U A) \phi U, \phi U)$
= $\beta g((\nabla_{\phi U} A) U + 2\xi, \phi U)$
= $\beta \alpha(\phi U) g(AU, \phi U).$

From this and (3.6), (3.7) we know $\beta = 0$. Thus (3.5) and (3.6) gives $\gamma = 0$. This makes a contradiction to (3.7). So there do not exist any real hypersurfaces M in $H_n(C)$ with recurrent second fundamental tensor. This completes the proof of Theorem 1.

Now the formula (2.6) gives the following equation for real hypersurfaces in $H_n(C)$ when the structure vector field ξ is principal

(3.9)
$$2A\phi AX + 2\phi X = \beta(\phi A + A\phi)X$$

for any vector field X in M. It follows that if $AX = \lambda X$ for any X in T_0 , which is a distribution defined by a subspace $T_0(x) = \{X \in T_x M : X \perp \xi_{(x)}\}$ in the tangent space $T_x M$, then

(3.10)
$$(2\lambda - \beta)A\phi X = (\beta\lambda - 2)\phi X.$$

Now we introduce a lemma proved by Ki and the second author [6]

Lemma 3.1. Let M be a real hypersurface in a complex hyperbolic space $H_n(C)$. If ξ is a principal curvature vector with principal curvature β , then β is locally constant.

Hereafter, we are going to prove Theorem 2 in the introduction. The second fundamental form of M in a complex hyperbolic space $H_n(C)$ is said to be η -recurrent if and only if there exists a 1-form α such that

$$g((\nabla_X A)Y, Z) = \alpha(X)g(AY, Z)$$

for any X, Y and Z in T_0 . When the 1-form α defined on T_0 vanishes, the second fundamental form of M is said to be η -parallel.

Motivated by Theorem 1, we classify real hypersurfaces in $H_n(C)$ with η -recurrent second fundamental form and principal structure vector field ξ . In order to prove Theorem 2, let us introduce a theorem proved by the second author [12].

— 23 —

Theorem 3.2. Let M be a real hypersurface in a complex hyperbolic space $H_n(C)$ with η -parallel second fundamental form and ξ is principal. Then M is locally congruent to one of real hypersurfaces of type A_0, A_1, A_2 or B.

Remark 3.3. Kimura and Maeda [8] have proved that a real hypersurface of a complex projective space $P_n(C)$ with η -parallel second fundamental form and principal structure vector ξ is locally congruent to one of real hypersurfaces of type A_1 , A_2 and B.

By Theorem 3.2 we know that the second fundamental form of real hypersurfaces of type A_0, A_1, A_2 or B are η -recurrent and its structure vector field ξ is principal.

Conversely, let us prove Theorem 2. Under the assumption of η -recurrency and ξ principal it suffices to show that all of principal curvatures of M in $H_n(C)$ are constant. Then by a theorem of Berndt [1], we know that M is congruent to one of real hypersurfaces of type A_0, A_1, A_2 and B.

Now let us show that every principal curvatures of M are constant. From the notion of η -recurrency and the equation of Codazzi (2.3) we have

$$\alpha(X)g(AY,Z) = \alpha(Y)g(AX,Z) = \alpha(Z)g(AX,Y)$$

for any X, Y and Z in T_0 . This implies

$$\alpha(X)AY - \alpha(Y)AX = b\xi$$

for a certain smooth function b on M.

In order to show that every principal curvatures are constant we consider the following cases:

Case I. Let us consider the open set \mathcal{U} consisting of points, at which there exist two distinct principal curvatures.

In this case $T_0(x) = \{X \in T_x M : X \perp \xi\} = T_\lambda$ for any point x in \mathcal{U} . So, by a theorem of Montiel [10] or Montiel and Romero [11] M is locally congruent to a horosphere (or said to be of a *Montiel* tube) or a geodesic hypersphere. Of course, every principal curvatures of these hypersurfaces are known to be constant.

Case II. Let us consider the open set $\mathcal{V} = Int(M - \mathcal{U})$ consisting of points, at which there exist more than 3 distinct principal curvatures.

Then among them let us take out any two distinct principal curvatures λ and μ different from β . Then on this \mathcal{V} we can consider the following subcases:

Sub. II.1: Let $\mathcal{W} = \{p \in \mathcal{V} | \lambda(p) \neq 0, \mu(p) \neq 0\}$. Then λ and μ are non-vanishing at any point of \mathcal{W} .

In this case we can decompose the distribution T_0 into the direct sum of eigenspices such that

$$T_0 = T_\lambda \oplus T_\mu \oplus T_{\mu_1} \oplus \cdots \oplus T_{\mu_k},$$

where μ_1, \dots, μ_k denote principal curvatures different from λ and μ , and T_{λ}, T_{μ} and T_{μ_i} denote the eigenspaces of principal vectors in T_0 with corresponding principal curvatures λ, μ and μ_i .

Choose $X \in T_{\lambda}$, $Y \in T_{\mu}$ such that X and Y are orthogonal to ξ , then we have

 $\alpha(X)\mu Y - \alpha(Y)\lambda X = 0.$

Then

(3.15)

(3.11)
$$\alpha(X)\mu = 0 \text{ and } \alpha(Y)\lambda = 0$$

for any $X \in T_{\lambda}$ and $Y \in T_{\mu}$. So it follows that

(3.12)

$$X\mu = g((\nabla_X A)Y, Y) + g(A\nabla_X Y, Y)$$

$$= \alpha(X)g(AY, Y) + \mu g(\nabla_X Y, Y)$$

$$= \alpha(X)\mu$$

$$= 0,$$

where we have used the notion of η -recurrency in the second equality for any $X \in T_{\lambda}$ and $Y \in T_{\mu}$. Since λ and μ are non-zero, (3.11) implies $\alpha(X) = 0 = \alpha(Y)$. This means

$$Y\mu = 0$$

for any $Y \in T_{\mu}$. Moreover, for any $Z \in T_{\mu_i}$ the η -recurrency implies

 $\mu\alpha(Z)Y - \mu_i\alpha(Y)Z = 0.$

This means $\alpha(Z)\mu = 0$ and $\alpha(Y)\mu_i = 0$. So

(3.14)
$$Z\mu = g((\nabla_Z A)Y, Y) + g(A\nabla_Z Y, Y)$$
$$= \alpha(Z)g(AY, Y) + \mu g(\nabla_Z Y, Y)$$
$$= \alpha(Z)\mu$$
$$= 0.$$

On the other hand, by (2.4), we get the following for any $Y \in T_{\mu}$

$$\begin{split} \xi\mu &= \xi g(AY,Y) \\ &= g((\nabla_{\xi}A)Y,Y) + g(A\nabla_{\xi}Y,Y) + g(AY,\nabla_{\xi}Y) \\ &= g((\nabla_{Y}A)\xi,Y) \\ &= g((Y\beta)\xi + \beta\phi AY - A\phi AY,Y) \\ &= \beta\mu g(\phi Y,Y) - \mu^{2}g(\phi Y,Y) \\ &= 0 \end{split}$$

where in the third equality we have used the equation of Codazzi (2.3) and the fact $AY = \mu Y$. From these (3.12),(3.13),(3.14), and (3.15) we know $X\mu = 0$ for any $X \in T_0$. So μ is constant on \mathcal{W} . Similarly, we know that λ is also constant on \mathcal{W} .

- 25 -

Sub. II.2: Let us consider the open subset $Int(\mathcal{V} - \mathcal{W})$ of \mathcal{V} . Then on this open subset either λ or μ vanishes identically. Thus for convenience sake we consider such a situation

$$Int(\mathcal{V} - \mathcal{W}) = \{p \in \mathcal{V} | \lambda(p) = 0, \mu(p) \neq 0\}.$$

Now we want to show that μ is constant on $Int(\mathcal{V} - \mathcal{W})$.

Then in this case the distribution T_0 is decomposed into the direct sum of eigenspaces such that

$$T_0 = T_{\lambda=0} \oplus T_{\mu\neq 0} \oplus T_{\mu_1} \oplus \cdots \oplus T_{\mu_k}.$$

When $\mu_i = 0$ for all i = 1, ..., k, we consider such a situation that $T_0 = T_{\lambda=0} \oplus T_{\mu\neq 0}$. Then (3.10) gives

$$\beta A \phi X = 2 \phi X.$$

So $A\phi X = \frac{2}{\beta}\phi X$. In this case, by Lemma 3.1, $\mu = \frac{2}{\beta}$ is constant.

Next for convenience sake we consider the case that

$$T_0 = T_{\lambda=0} \oplus T_{\mu\neq 0} \oplus T_{\nu\neq 0}.$$

From the formulas

$$b\xi = lpha(X)AZ - lpha(Z)AX = lpha(X)
u Z$$
, and
 $b\xi = lpha(Y)AZ - lpha(Z)AY = lpha(Y)
u Z - lpha(Z)\mu Y$

for any $X \in T_{\lambda=0}, Y \in T_{\mu\neq0}$ and $Z \in T_{\nu\neq0}$, we have $\alpha(X) = \alpha(Y) = \alpha(Z) = 0$. So $W\mu = 0$ for any $W \in T_0$. From this together with the fact $\xi\mu = 0$, we know μ is constant on $Int(\mathcal{V}-\mathcal{W})$. Thus accordingly, by the continuity of principal curvatures the set \mathcal{W} is empty or \mathcal{V} itself. From this the principal curvatures λ and μ are constant on \mathcal{V} .

Summing up the above Cases I and II, by the continuity of principal curvatures again \mathcal{U} is empty or the whole set M. When \mathcal{U} is empty, the open \mathcal{V} should be the whole set M. From this we conclude that every principal curvatures of T_0 are constant on M. Together with Lemma 3.1 every principal curvatures of M are constant. Now we have completed the proof of Theorem 2.

References

- 1. J. Berndt, Real hypersurfaces with constant principal curvatures in a complex hyperbolic space, J. Reine Angew. Math. **395** (1989), 132-141.
- 2. J. Berndt, Real hypersurfaces in quaternionic space forms, J. Reine Angew. Math. 419 (1991), 9-26.
- 3. T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481-499.
- 4. T. Hamada, On real hypersurfaces of a complex projective space with recurrent second fundamental form, Ramanujan Math. Soc. 11 (1996), 103–107.

- 5. T. Hamada, On real hypersurfaces of a complex projective space with η -recurr ent second fundamental tensor, Nihonkai Math. J. **6-2** (1995), 153–163.
- U-H. Ki and Y.J. Suh, On real hypersurfaces of a complex space form, Math. J. Okayama 32 (1990), 207-221.
- 7. M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans Amer. Math. Soc. 296 (1986), 137-149.
- 8. M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Math. Z. 202 (1989), 299-311.
- 9. S. Kobayashi and K. Nomizu, Foundations of differential geometry I, Wiley and Sons Inc., New York-London, 1963.
- 10. S. Montiel, Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan 37 (1985), 515-535.
- 11. S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geometriae Dedicata **20** (1986), 245–261.
- 12. Y. J. Suh, On real hypersurfaces of a complex space form with η -parallel Ricci tensor, Tsukuba J. Math. 14-1 (1990), 27-37.
- 13. Y. J. Suh, Real hypersurfaces in complex space forms with η -recurrent second fundamental tensors, Math. J. Toyama **19** (1996), 127–141.
- 14. R. Takagi, On homogeneous real hypersurfaces of a complex projective space, Osaka J. Math. 10 (1973), 495-506.
- 15. Y.C. Wong, Recurrent tensors on a linearly connected diffenerentiable manifold, Trans. Amer. Math. Soc. 99 (1961), 325-341.

DEPARTMENT OF MATHEMATICS, KYUNGPOOK NATIONAL UNIVERSITY, TAEGU 702-701, KOREA E-mail: yjsuh@bh.kyungpook.ac.kr

Received August 20, 1996

Revised March 10, 1997