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REAL HYPERSURFACES IN COMPLEX
HYPERBOLIC SPACE WITH $\eta$-RECURRENT

SECOND FUNDAMENTAL TENSOR

SEON MI LYU AND YOUNG JIN SUH

ABSTRACT. Recently, Hamada [4] has proved that there do not exist any real hy-
persurfaces in complex projective space $P_{n}(C)$ with recurrent second fundamental
tensor. From this point of view, he introduce the notion of $\eta$-recurrent second fun-
damental tensor for real hypersurfaces in $P_{n}(C)$ . In this paper we also consider
the notion of $\eta$-recurrent second fundamental tensor for real hypersurfaces in com-
plex hyperbolic space $H_{n}(C)$ and classified such kind of real hypersurfaces under the
condition that the structure vector field $\xi$ is principal.

1. Introduction

A complex $n(\geq 2)$ -dimensional Kaehlerian manifold of constant holomorphic sec-
tional curvature $c$ is called a complex space form, which is denoted by $M_{n}(c)$ . A
complete and simply connected complex space form is a complex projective space
$P_{n}(C)$ , a complex Euclidean space $C^{n}$ or a complex hyperbolic space $H_{n}(C)$ , ac-
cording as $c>0,$ $c=0$ or $c<0$ . The induced almost contact metric structure of a
real hypersurface $M$ of $M_{n}(c)$ is denoted by $(\phi,\xi,\eta,g)$ .

There exist many studies about real hypersurfaces of $M_{n}(c)$ . One of the first
researches is the classification of homogeneous real hypersurfaces in a complex pro-
jective space $P_{n}(C)$ by Takagi [14], who showed that these hypersurfaces of $P_{n}(C)$

could be divided into six types which are said to be of type $A_{1},$ $A_{2},$ $B,$ $C,$ $D$ , and
$E$ , and in [3] Cecil-Ryan and [7] Kimura proved that they are realized as the tubes
of constant radius over Kaehlerian submanifolds if the structure vector field $\xi$ is
principal. Also Berndt [2] showed recently that all real hypersurfaces with constant
principal curvatures of a complex hyperbolic space $H_{n}(C)$ are realized as the tubes
of constant radius over certain submanifolds when the structure vector field $\xi$ is
principal. Nowadays in $H_{n}(C)$ they are said to be of type $A_{0},$ $A_{1},$ $A_{2}$ , and $B$ .

On the other hand, in [9] Kobayashi and Nomizu have introduced the notion of
recurrent tensor field of type $(r, s)$ on a manifold $M$ with a linear connection. That
is, a non-zero tensor field $K$ of type $(r, s)$ on $M$ is said to be recurrent if there exists
a l-form $\alpha$ such that

$\nabla K=K\otimes\alpha$ .

Moreover, they gave some geometric interpretation of a manifold $M$ with recurrent
curvature tensor in terms of holonomy group, see also [15].
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Now let us denote by $A$ the second fundamental form of real hypersurfaces in
$M_{n}(c),$ $c\neq 0$ . Recently, Hamada [4] applied this notion of recurrent second funda-
mental form to real hypersurfaces $M$ in a complex projective space $P_{n}(C)$ , which
is defined in such a way that

$\nabla A=\alpha\otimes A$

for a certain l-form $\alpha$ defined on $M$ , and proved the following

Theorem A. $P_{n}(C)$ do not admit any real hypersurfaces with recurrent second
fundamental tensor.

Now let $T_{0}$ be a distribution defined by a subspace $T_{0}(x)=\{X\in T_{x}M : X\perp\xi_{(x)}\}$

in the tangent space $T_{x}M$ . Then by virtue of Theorem A Hamada [5] considered
the notion of $\eta$-recurrent second fundamental form defined by

$g((\nabla_{X}A)Y, Z)=\alpha(X)g(AY, Z)$

for a certain l-form $\alpha$ defined on $T_{0}$ and any $X,$ $Y$ and $Z$ in $T_{0}$ and classified such
kind of real hypersurfaces in $P_{n}(C)$ by the following

Theorem B. Let $M$ be a real hypersurface in a complex projective space $P_{n}(C)$

with $\eta$ -recurrent second fundamental $fo7m$ and $\xi$ is principal. Then $M$ is locally
congruent to a tube of some radius $r$ over one of the following Kaehler submanifolds:

$(A_{1})$ hyperplane $P_{n-1}(C)$ , where $0<r<\frac{\pi}{2}$

$(A_{2})$ totally geodesic $P_{k}(C)(1\leq k\leq n-2)$ , where $0<r<\frac{\pi}{2}$

$(B)$ complex quadric $Q_{n-1}$ , where $0<r<\frac{\pi}{4}$

Now its geometrical meaning of $\eta$-recurrency can be interpreted that the eigen
space of the shape opemtor $A$ are parallel along the curve $\gamma$ orthogonal to $\xi$ . Here,
the eigen spaces of the shape operator $A$ are said to be parallel along $\gamma$ if they are
invariant with respect to any parallel translations along $\gamma$ , see [13].

In this paper we also consider the notions of $recu7vent$ second fundamental form
and $\eta$-recument second fundamental form for real hypersurfaces in a complex hy-
perbolic space $H_{n}(C)$ and proved the followings

Theorem 1. $H_{n}(C)$ do not admit any real hypersurfaces with recurrent second
fundamental tensor.

Theorem 2. Let $M$ be a real hypersurface in $H_{n}(C)$ with $\eta$ -recurrent second
fundamental $fo7m$ and $\xi$ is principal, then $M$ is congruent to one of real hypersur-
faces

$(A_{0})$ a horosphere in $H_{n}(C),$ $i.e.$ , a Montiel tube,
$(A_{1})$ a tube over a totally geodesic hyperplane $H_{k}(C)$ ($k=0$ or $n-1$),
$(A_{2})$ a tube over a totally geodesic $H_{k}(C)(1\leq k\leq n-2)$ .
$(B)$ a tube over a real hyperbolic space $H_{n}(R)$ .

The present authors would like to express their sincere gratitude to the referee,
who pointed out some mistakes in the first version of this paper.
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2. Preliminaries

First of all, we recall fundamental properties of real hypersurfaces of a complex
space form. Let $M$ be a real hypersurface of a complex n-dimensional complex
space form $M_{n}(c)$ of constant holomorphic sectional curvature $c(\neq 0)$ and let $C$ be
a unit normal field on a neighborhood of a point $x$ in $M$ . We denote by $J$ an almost
complex structure of $M_{n}(c)$ . For a local vector field $X$ on a neighborhood of $x$ in
$M$ , the transformation of $X$ and $C$ under $J$ can be represented as

$JX=\phi X+\eta(X)C$ , $ JC=-\xi$ ,

where $\phi$ defines a skew-symmetric transformation on the tangent bundle $TM$ of
$M$ , while $\eta$ and $\xi$ denotea l-form anda vector field onaneighborhood ofx in M,
respectively. Moreover, it is seen that $g(\xi, X)=\eta(X),whereg$ denotes the induced
Riemannian metric on $M$ . By properties of the almost complex structure $J$ , the
set $(\phi, \xi, \eta, g)$ of tensors satisfies

$\phi^{2}=-I+\eta\otimes\xi$ , $\phi\xi=0$ , $\eta(\phi X)=0$ , $\eta(\xi)=1$ ,

where $I$ denotes the identity transformation. Accordingly, the set is so called an
almost contact metric structure. Furthermore the covariant derivative of the struc-
ture tensors are given by

(2.1) $(\nabla_{X}\phi)Y=\eta(Y)AX-g(AX, Y)\xi$ , $\nabla_{X}\xi=\phi AX$ ,

where $\nabla$ is the Riemannian connection of $g$ and $A$ denotes the shape operator with
respect to the unit normal $C$ on $M$ .

Since the ambient space is of constant holomorphic sectional curvature $c$ , the
equation of Gauss and Codazzi are respectively given as follows
(2.2)

$R(X, Y)Z=\frac{c}{4}\{g(Y, Z)X-g(X, Z)Y+g(\phi Y, Z)\phi X-g(\phi X, Z)\phi Y$

$-2g(\phi X, Y)\phi Z\}+g(AY, Z)AX-g(AX, Z)AY$,

(2.3) $(\nabla_{X}A)Y-(\nabla_{Y}A)X=\frac{c}{4}\{\eta(X)\phi Y-\eta(Y)\phi X-2g(\phi X, Y)\xi\}$ ,

where $R$ denotes the Riemannian curvature tensor of $M$ and $\nabla_{X}A$ denotes the
covariant derivative of the shape operator $A$ with respect to $X$ .

Now let us suppose that the structure vector $\xi$ is a principal vector with principal
curvature $\beta$ , that is, $ A\xi=\beta\xi$ . Then, differentiating this, we have

(2.4) $(\nabla_{X}A)\xi=(X\beta)\xi+\beta\phi AX-A\phi AX$ ,

where we have used (2.1). Then it follows
$g((\nabla_{X}A)Y,\xi)=(X\beta)\eta(Y)+\beta g(Y, \phi AX)$

(2.5)
$-g(Y, A\phi AX)$

for any tangent vector fields $X$ and $Y$ on $M$ . By the equation of Codazzi (2.3), we
have

(2.6) $2A\phi AX-\frac{c}{2}\phi X=\beta(\phi A+A\phi)X$ .
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3. Proof of Theorems 1 and 2

It is well known that the complex hyperbolic space $H_{n}(C)$ admits the Bergmann
metric normalized so that the constant holomorphic sectional curvature $c$ is-4.

Now let us prove Theorem 1 given in the introduction. From the assumption of
recurrent second fundamental form we have

(3.1) $g((\nabla_{X}A)Y,\xi)=\alpha(X)g(AY,\xi)$ .

From this let us put $A\xi=\beta\xi+\gamma U$ , where $U$ is orthogonal to $\xi$ . Then (3.1) implies

(3.2) $g((\nabla_{X}A)\xi, Y)=\beta\alpha(X)\eta(Y)+\gamma\alpha(X)g(U, Y)$ .

Now if we use the equation of Codazzi (2.3), we have

$g((\nabla_{X}A)\xi, Y)=g((\nabla_{\zeta}A)X+\phi X, Y)$

(3.3) $=g((\nabla_{\xi}A)X, Y)+g(\phi X, Y)$

$=\alpha(\xi)g(AX, Y)+g(\phi X, Y)$ .

for any $X,$ $Y$ in $M$ . Thus (3.2) and (3.3) give the following

(3.4) $\alpha(\xi)g(AX, Y)=\beta\alpha(X)\eta(Y)+\gamma\alpha(X)g(U, Y)-g(\phi X, Y)$ .

Rom this, putting $X=U,$ $Y=\xi$ , we have

(3.5) $\alpha(\xi)\gamma=\beta\alpha(U)$ .

Similarly, putting $X=U,$ $Y=\phi U$ and $X=\phi U,$ $Y=U$ in (3.4) respectively, we
have

$\alpha(\xi)g(AU, \phi U)=-g(\phi U, \phi U)=-1$ , and

(3.6) $\alpha(\xi)g(A\phi U, U)=\gamma\alpha(\phi U)g(U, U)-g(\phi^{2}U, U)$

$=\gamma\alpha(\phi U)+1$ .

So it follows

(3.7) $\gamma\alpha(\phi U)=-2$ .

Also putting $X=Y=\phi U$ in (3.4), we have

$\alpha(\xi)g(A\phi U, \phi U)=0$ .

From this, together with (3.5) and (3.6), it follows

(3.8) $\beta\alpha(U)g(A\phi U, \phi U)=\gamma\alpha(\xi)g(A\phi U, \phi U)=0$ .

–22–



On the other hand, by the equation of Codazzi (2.3) for $c=-4$ we have

$(\nabla_{U}A)\phi U-(\nabla_{\phi U}A)U=2\xi$ .

From this and (3.8), together with the recurrency of $M$ in $H_{n}(C)$ we have

$0=\beta\alpha(U)g(A\phi U, \phi U)$

$=\beta g((\nabla_{U}A)\phi U, \phi U)$

$=\beta g((\nabla_{\phi U}A)U+2\xi, \phi U)$

$=\beta\alpha(\phi U)g(AU, \phi U)$ .

From this and (3.6), (3.7) we know $\beta=0$ . Thus (3.5) and (3.6) gives $\gamma=0$ . This
makes a contradiction to (3.7). So there do not exist any real hypersurfaces $M$

in $H_{n}(C)$ with recurrent second fundamental tensor. This completes the proof of
Theorem 1.

Now the formula (2.6) gives the following equation for real hypersurfaces in
$H_{n}(C)$ when the structure vector field $\xi$ is principal

(3.9) $2A\phi AX+2\phi X=\beta(\phi A+A\phi)X$

for any vector field $X$ in $M$ . It folows that if $AX=\lambda X$ for any $X$ in $T_{0}$ , which
is a distribution defined by a subspace $T_{0}(x)=\{X\in T_{x}M:X\perp\xi_{(x)}\}$ in the tangent
space $T_{x}M$ , then

(3.10) $(2\lambda-\beta)A\phi X=(\beta\lambda-2)\phi X$ .

Now we introduce a lemma proved by Ki and the second author [6]

Lemma 3.1. Let $M$ be a real hypersurface in a complex hyperbolic space $H_{n}(C)$ .
If $\xi$ is a principal curvature vector with principal curvature $\beta$ , then $\beta$ is locally
constant.

Hereafter, we are going to prove Theorem 2 in the introduction. The second
fundamental form of $M$ in a complex hyperbolic space $H_{n}(C)$ is said to be $\eta-$

recurrent if and only if there exists a l-form $\alpha$ such that

$g((\nabla_{X}A)Y, Z)=\alpha(X)g(AY, Z)$

for any $X,$ $Y$ and $Z$ in $T_{0}$ . When the l-form $\alpha$ defined on $T_{0}$ vanishes, the second
fundamental form of $M$ is said to be $\eta$-pamllel.

Motivated by Theorem 1, we classify real hypersurfaces in $H_{n}(C)$ with $\eta$-recurrent
second fundamental form and principal structure vector field $\xi$ . In order to prove
Theorem 2, let us introduce a theorem proved by the second author [12].
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Theorem 3.2. Let $M$ be a real hypersurface in a complex hyperbolic space $H_{n}(C)$

with $\eta$ -pamllel second fundamental form and $\xi$ is principal. Then $M$ is locally
congruent to one of real hypersurfaces of type $A_{0},A_{1},$ $A_{2}$ or $B$ .

Remark 3.3. Kimura and Maeda [8] have proved that a real hypersurface of
a complex projective space $P_{n}(C)$ with $\eta$-pamllel second fundamental form and
principal structure vector $\xi$ is locally congruent to one of real hypersurfaces of type
$A_{1},$ $A_{2}$ and $B$ .

By Theorem 3.2 we know that the second fundamental form of real hypersurfaces
of type $A_{0},A_{1},A_{2}$ or $B$ are $\eta$-recurrent and its structure vector field $\xi$ is principal.

Conversely, let us prove Theorem 2. Under the assumption of $\eta$-recurrency and
$\xi$ principal it suffices to show that all of principal curvatures of $M$ in $H_{n}(C)$ are
constant. Then by a theorem of Berndt [1], we know that $M$ is congruent to one
of real hypersurfaces of type $A_{0},A_{1},$ $A_{2}$ and $B$ .

Now let us show that every principal curvatures of $M$ are constant. Rom the
notion of $\eta$-recurrency and the equation of Codazzi (2.3) we have

$\alpha(X)g(AY, Z)=\alpha(Y)g(AX, Z)=\alpha(Z)g(AX, Y)$

for any $X,$ $Y$ and $Z$ in $T_{0}$ . This implies

$\alpha(X)AY-\alpha(Y)AX=b\xi$

for a certain smooth function $b$ on $M$ .
In order to show that every principal curvatures are constant we consider the

following cases:

Case I. Let us consider the open set $\mathcal{U}$ consisting of points, at which there exist
two distinct principal curvatures.

In this case $T_{0}(x)=\{X\in T_{x}M : X\perp\xi\}=T_{\lambda}$ for any point $x$ in $\mathcal{U}$ . So, by a
theorem of Montiel [10] or Montiel and Romero [11] $M$ is locally congruent to a
horosphere (or said to be of a Montiel tube) or a geodesic hypersphere. Of course,
every principal curvatures of these hypersurfaces are known to be constant.

Case II. Let us consider the open set $\mathcal{V}=Int(M-\mathcal{U})$ consisting of points, at
which there exist more than 3 distinct principal curvatures.

Then among them let us take out any two distinct principal curvatures $\lambda$ and $\mu$

different from $\beta$ . Then on this $\mathcal{V}$ we can consider the following subcases:

Sub. II.1: Let $\mathcal{W}=\{p\in \mathcal{V}|\lambda(p)\neq 0, \mu(p)\neq 0\}$ . Then $\lambda$ and $\mu$ are non-vanishing
at any point of $\mathcal{W}$ .

In this case we can decompose the distribution $T_{0}$ into the direct sum of eigenspces
such that

$T_{0}=T_{\lambda}\oplus T_{\mu}\oplus T_{\mu_{1}}\oplus\cdots\oplus T_{\mu_{k}}$ ,

where $\mu_{1},$ $\cdots,$ $\mu_{k}$ denote principal curvatures different $hom\lambda$ and $\mu$ , and $T_{\lambda},$ $T_{\mu}$ and
$T_{\mu}$ . denote the eigenspaces of principal vectors in $T_{0}$ with corresponding principal
curvatures $\lambda,$

$\mu$ and $\mu_{i}$ .
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Choose $X\in T_{\lambda},$ $Y\in T_{\mu}$ such that $X$ and $Y$ are orthogonal to $\xi$ , then we have

$\alpha(X)\mu Y-\alpha(Y)\lambda X=0$ .

Then

(3.11) $\alpha(X)\mu=0$ and $\alpha(Y)\lambda=0$

for any $X\in T_{\lambda}$ and $Y\in T_{\mu}$ . So it follows that

$X\mu=g((\nabla_{X}A)Y, Y)+g(A\nabla_{X}Y, Y)$

$=\alpha(X)g(AY, Y)+\mu g(\nabla_{X}Y, Y)$

(3.12)
$=\alpha(X)\mu$

$=0$ ,

where we have used the notion of $\eta$-recurrency in the second equality for any $X\in T_{\lambda}$

and $Y\in T_{\mu}$ . Since $\lambda$ and $\mu$ are non-zero, (3.11) implies $\alpha(X)=0=\alpha(Y)$ . This
means

(3.13) $Y\mu=0$

for any $Y\in T_{\mu}$ . Moreover, for any $Z\in T_{\mu_{i}}$ the $\eta$-recurrency implies

$\mu\alpha(Z)Y-\mu_{i}\alpha(Y)Z=0$ .

This means $\alpha(Z)\mu=0$ and $\alpha(Y)\mu_{i}=0$ . So

$Z\mu=g((\nabla_{Z}A)Y, Y)+g(A\nabla_{Z}Y, Y)$

$=\alpha(Z)g(AY, Y)+\mu g(\nabla_{Z}Y, Y)$

(3.14)
$=\alpha(Z)\mu$

$=0$ .

On the other hand, by (2.4), we get the following for any $Y\in T_{\mu}$

$\xi\mu=\xi g(AY, Y)$

$=g((\nabla_{\xi}A)Y, Y)+g(A\nabla_{\xi}Y, Y)+g(AY, \nabla_{\xi}Y)$

$=g((\nabla_{Y}A)\xi, Y)$

(3.15)
$=g((Y\beta)\xi+\beta\phi AY-A\phi AY, Y)$

$=\beta\mu g(\phi Y, Y)-\mu^{2}g(\phi Y, Y)$

$=0$

where in the third equality we have used the equation of Codazzi (2.3) and the fact
$AY=\mu Y$ . From these (3.12),(3.13),(3.14), and (3.15) we know $X\mu=0$ for any
$X\in T_{0}$ . So $\mu$ is constant on $\mathcal{W}$ . Similarly, we know that $\lambda$ is also constant on $\mathcal{W}$ .
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Sub. II.2: Let us consider the open subset Int $(\mathcal{V}-\mathcal{W})$ of $\mathcal{V}$ . Then on this open
subset either $\lambda$ or $\mu$ vanishes identically. Thus for convenience sake we consider such
a situation

Int $(\mathcal{V}-\mathcal{W})=\{p\in \mathcal{V}|\lambda(p)=0, \mu(p)\neq 0\}$ .

Now we want to show that $\mu$ is constant on Int $(\mathcal{V}-\mathcal{W})$ .

Then in this case the distribution $T_{0}$ is decomposed into the direct sum of
eigenspaces such that

$T_{0}=T_{\lambda=0}\oplus T_{\mu\neq 0}\oplus T_{\mu_{1}}\oplus\cdots\oplus T_{\mu_{k}}$ .

When $\mu_{i}=0$ for all $i=1,$
$\ldots,$

$k$ , we consider such a situation that $T_{0}=T_{\lambda=0}\oplus T_{\mu\neq 0}$ .
Then (3.10) gives

$\beta A\phi X=2\phi X$ .

So $A\phi X=\frac{2}{\beta}\phi X$ . In this case, by Lemma 3.1, $\mu=\frac{2}{\beta}$ is constant.
Next for convenience sake we consider the case that

$T_{0}=T_{\lambda=0}\oplus T_{\mu\neq 0}\oplus T_{\nu\neq 0}$ .

From the formulas

$b\xi=\alpha(X)AZ-\alpha(Z)AX=\alpha(X)\nu Z$ , and

$b\xi=\alpha(Y)AZ-\alpha(Z)AY=\alpha(Y)vZ-\alpha(Z)\mu Y$

for any $X\in T_{\lambda=0},$ $Y\in T_{\mu\neq 0}$ and $Z\in T_{\nu\neq 0}$ , we have $\alpha(X)=\alpha(Y)=\alpha(Z)=0$ . So
$W\mu=0$ for any $W\in T_{0}$ . Rom this together with the fact $\xi\mu=0$ , we know $\mu$ is
constant on Int $(\mathcal{V}-\mathcal{W})$ . Thus accordingly, by the continuity of principal curvatures
the set $\mathcal{W}$ is empty or $\mathcal{V}$ itself. From this the principal curvatures $\lambda$ and $\mu$ are
constant on $\mathcal{V}$ .

Summing up the above Cases I and II, by the continuity of principal curvatures
again $\mathcal{U}$ is empty or the whole set $M$ . When $\mathcal{U}$ is empty, the open $\mathcal{V}$ should be
the whole set $M$ . From this we conclude that every principal curvatures of $T_{0}$ are
constant on $M$ . Together with Lemma 3.1 every principal curvatures of $M$ are
constant. Now we have completed the proof of Theorem 2.
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