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Abstract

We prove the non existence of real hypersurfaces in complex projective
space whose structure Jacobi operator is parallel in any direction of the max-
imal holomorphic distribution.

1 Introduction.

Let CPm, m ≥ 2, be a complex projective space endowed with the metric g of
constant holomorphic sectional curvature 4. Let M be a connected real hypersurface
of CPm without boundary. Let J denote the complex structure of CPm and N a
locally defined unit normal vector field on M . Then −JN = ξ is a tangent vector
field to M called the structure vector field on M . We also call D the maximal
holomorphic distribution on M , that is, the distribution on M given by all vectors
orthogonal to ξ at any point of M .

The study of real hypersurfaces in nonflat complex space forms is a classical topic
in Differential Geometry. The classification of homogeneous real hypersurfaces in
CPm was obtained by Takagi, see [12], [13], [14], and is given by the following list: A1

: Geodesic hyperspheres. A2 : Tubes over totally geodesic complex projective spaces.
B : Tubes over complex quadrics and RPm. C : Tubes over the Segre embedding of
CP 1xCP n, where 2n + 1 = m and m ≥ 5. D : Tubes over the Plucker embedding of
the complex Grassmann manifold G(2, 5). In this case m = 9. E : Tubes over the
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cannonical embedding of the Hermitian symmetric space SO(10)/U(5). In this case
m = 15.

Other examples of real hypersurfaces are ruled real ones, that were introduced
by Kimura, [6]: Take a regular curve γ in CPm with tangent vector field X. At each
point of γ there is a unique complex projective hyperplane cutting γ so as to be
orthogonal not only to X but also to JX. The union of these hyperplanes is called
a ruled real hypersurface. It will be an embedded hypersurface locally although
globally it will in general have self-intersections and singularities. Equivalently a
ruled real hypersurface is such that D is integrable or, equivalently, g(AD, D) = 0,
where A denotes the shape operator of the immersion, see [6]. For further examples
of ruled real hypersurfaces see [7].

Except these real hypersurfaces there are very few examples of real hypersurfaces
in CP n. So we present a result about non-existence of a certain family of real
hypersurfaces in complex projective space.

On the other hand, Jacobi fields along geodesics of a given Riemannian mani-
fold (M̃, g̃) satisfy a very well-known differential equation. This classical differential
equation naturally inspires the so-called Jacobi operator. That is, if R̃ is the curva-
ture operator of M̃ , and X is any tangent vector field to M̃ , the Jacobi operator (with
respect to X) at p ∈ M , R̃X ∈End(TpM̃), is defined as (R̃XY )(p) = (R̃(Y,X)X)(p)
for all Y ∈ TpM̃ , being a selfadjoint endomorphism of the tangent bundle TM̃ of M̃ .
Clearly, each tangent vector field X to M̃ provides a Jacobi operator with respect
to X.

The study of Riemannian manifolds by means of their Jacobi operators has been
developed following several ideas. For instance, in [2], it is pointed out that (locally)
symmetric spaces of rank 1 (among them complex space forms) satisfy that all the
eigenvalues of R̃X have constant multiplicities and are independent of the point and
the tangent vector X. The converse is a well-known problem that has been studied
by many authors, although it is still open.

Let M be a real hypersurface in a complex projective space and let ξ be the
structure vector field on M . We will call the Jacobi operator on M with respect
to ξ the structure Jacobi operator on M . In [3] the authors classify, under certain
additional conditions, real hypersurfaces of CPm whose structure Jacobi operator is
parallel, in a certain sense, in the direction of ξ, namely, they suppose that R′

ξ = 0,
where R′

ξ(Y ) = (∇ξR)(Y, ξ)ξ. They obtain class A1or A2 hypersurfaces and a non-
homogeneous real hypersurface. In [4] they classify real hypersurfaces in CPm whose
structure Jacobi operator commutes both with the shape operator and with the
restriction of the complex structure to M .

Recently, [10], we have proved the non-existence of real hypersurfaces in CPm

with parallel structure Jacobi operator. So it seems to be natural to study weaker
conditions. In this paper we consider the parallelism of Rξ only for directions in D.
We will say that M has D-parallel structure Jacobi operator if ∇XRξ = 0 for any
X ∈ D. We obtain

Theorem There exist no real hypersurfaces in CPm, m ≥ 3, with D-parallel struc-
ture Jacobi operator.
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2 Preliminaries.

Thoughout this paper, all manifolds, vector fields, etc., will be considered of class
C∞ unless otherwise stated. Let M be a connected real hypersurface in CPm, m ≥ 2,
without boundary. Let N be a locally defined unit normal vector field on M . Let
∇ be the Levi-Civita connection on M and (J, g) the Kaehlerian structure of CPm.

For any vector field X tangent to M we write JX = φX+η(X)N , and −JN = ξ.
Then (φ, ξ, η, g) is an almost contact metric structure on M , see [1]. That is, we
have

φ2X = −X + η(X)ξ, η(ξ) = 1, g(φX, φY ) = g(X,Y )− η(X)η(Y ) (2.1)

for any tangent vectors X, Y to M . From (2.1 ) we obtain

φξ = 0, η(X) = g(X, ξ). (2.2)

From the parallelism of J we get

(∇Xφ)Y = η(Y )AX − g(AX, Y )ξ (2.3)

and

∇Xξ = φAX (2.4)

for any X, Y tangent to M , where A denotes the shape operator of the immersion.
As the ambient space has holomorphic sectional curvature 4, the equations of Gauss
and Codazzi are given, respectively, by

R(X, Y )Z = g(Y, Z)X − g(X, Z)Y + g(φY, Z)φX − g(φX, Z)φY
−2g(φX, Y )φZ + g(AY,Z)AX − g(AX, Z)AY,

(2.5)

and

(∇XA)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ (2.6)

for any tangent vectors X,Y, Z to M , where R is the curvature tensor of M .
In the sequel we need the following results:

Theorem 2.1. , [9], Let M be a real hypersurface of CPm, m ≥ 2. Then the
following are equivalent:

1. M is locally congruent to one of the homogeneous hypersurfaces of class A1 or
A2.

2. φA + Aφ = 0.

Theorem 2.2. , [10], There exist no real hypersurfaces M in CPm, m ≥ 3, such
that the shape operator is given by Aξ = ξ+βU , AU = βξ+(β2−1)U , AφU = −φU ,
AX = −X, for any tangent vector X orthogonal to Span{ξ, U, φU}, where U is a
unit vector field in D and β is a nonvanishig smooth function defined on M .
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3 Some previous results.

Proposition 3.1. There exist no real hypersurfaces in CPm, m ≥ 4, whose shape
operator is given by Aξ = αξ +βU , AU = βξ, AφU = 0 and there exist two nonnull
holomorphic distributions D0 and D1 such that D0

⊕ D1 = Span{ξ, U, φU}⊥, for any
Z ∈ D0, AZ = AφZ = 0, for any W ∈ D1, AW = −(1/α)W , AφW = −(1/α)φW ,
where U is a unit vector field in D, α and β are nonvanishing smooth functions
defined on M and (φU)(β) = 0.

Proof. For any W ∈ D1, the Codazzi equation gives (∇W A)φW−(∇φW A)W = −2ξ.
If we develop this equation and take the scalar product with ξ we have

g([φW,W ], U) = 2/α2β. (3.1)

The scalar product of the same equation with U gives

g([φW,W ], U) = 2β. (3.2)

From (3.1 ) and (3.2 ) we get

α2β2 = 1. (3.3)

As we suppose (φU)(β) = 0, from (3.3 ) (φU)(α) = 0. The Codazzi equation also
gives (∇φUA)ξ − (∇ξA)φU = U . If we develop it, as (φU)(β) = (φU)(α) = 0 we
obtain

β∇φUU + A∇ξφU = U. (3.4)

Taking its scalar product with U we get 1 = g(∇ξφU, βξ) = −βg(φU, φAξ) = −β2.
This is impossible and finishes the proof. �

Proposition 3.2. Let M be a ruled real hypersurface in CPm, m ≥ 2. Then M has
not D-parallel structure Jacobi operator.

Proof. We suppose Aξ = αξ + βU , where U is a unit vector field in D and β a
nonvanishing smooth function on M . Thus AU = βξ, AX = 0 for any X orthogonal
to ξ and U . The Codazzi equation gives us (∇ξA)U − (∇UA)ξ = φU . Developing
this equation and taking the scalar product with φU we have

β2 − βg(∇UU, φU) = 1. (3.5)

The Codazzi equation also yields (∇φUA)U − (∇UA)φU = 2ξ. Taking its scalar
product with ξ we obtain
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(φU)(β)− βg(∇UU, φU) = 2. (3.6)

If (φU)(β) = 0, from (3.5 ) and (3.6 ) we should have β2+1 = 0, which is impossible.
Thus (φU)(β) 6= 0. We develop (∇φURξ)(U) and obtain −(φU)(β2)U − β2∇φUU −
αA∇φUU . Taking its scalar product with U we get −(φU)(β2). As this does not
vanish, ∇φURξ 6= 0, thus M cannot have D-parallel structure Jacobi operator. �

4 Proof of the Theorem

As M must have D-parallel structure Jacobi operator, (∇XRξ)(Y ) = 0 for any
X ∈ D and Y ∈ TM . From the Gauss equation this yields

−g(Y, φAX)ξ − g(ξ, Y )φAX + g(∇XAξ, ξ)AY + g(Aξ, φAX)AY
+g(Aξ, ξ)(∇XA)Y − g(Y,∇XAξ)Aξ − g(AY, ξ)∇XAξ = 0

(4.1)

for any X ∈ D, Y ∈ TM .
If we suppose that M is Hopf, that is, Aξ = αξ, see [8], α is locally constant and

(4.1 ) gives

−g(Y, φAX)ξ − g(Y, ξ)φAX + α(∇XA)Y
−α2g(Y, φAX)ξ − α2g(Y, ξ)φAX = 0

(4.2)

for any X ∈ D, Y ∈ TM . Taking the scalar product of (4.2 ) with ξ we obtain

g(Y, φAX) + αg(AY, φAX) = 0. (4.3)

Thus for any X ∈ D we get

φAX + αAφAX = 0. (4.4)

Therefore for any X, Y ∈ D we have g(φAY + αAφAY, X) = 0 = −g(Y, (Aφ +
αAφA)X). Then

AφX + αAφAX = 0 (4.5)

for any X ∈ D. From (4.4 ) and (4.5 ) we obtain φAX = AφX for any X ∈ D. As
φAξ = Aφξ = 0, we have Aφ = φA. Thus from Theorem 2.1, M must be locally
congruent to a real hypersurface of type A1 or A2. In both cases, see [8], we can
take X ∈ D such that AX = cot(r)X, Aξ = 2cot(2r)ξ, r being the radius of the
tube, 0 < r < π/2. If we compute (∇XRξ)(ξ) we obtain −cot3(r)φX 6= 0. Thus we
get
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Proposition 4.1. There exist no Hopf real hypersurfaces in CPm, m ≥ 2, whose
structure Jacobi operator is D-parallel.

From now on we suppose that our real hypersurface is not Hopf. That is, there exist
a unit U ∈ D and a nonvanishing smooth function β on M such that Aξ = αξ +βU .
Now we take Y = φU in (4.1 ). For any X ∈ D we have

−g(U,AX)ξ + g(∇XAξ, ξ)AφU + g(Aξ, φAX)AφU
+α(∇XA)φU − g(φU,∇XAξ)Aξ = 0.

(4.6)

Taking the scalar product of (4.6 ) with ξ we obtain

g(U,AX) + αg(AφU, φAX) = 0 (4.7)

for any X ∈ D. Taking X = φU in (4.7 ) we have

g(AU, φU) = 0. (4.8)

From (4.7 ), AU − αAφAφU has not component in D. Thus

AU − αAφAφU = (β + αβg(AφU, φU))ξ. (4.9)

If we take Y = U in (4.1 ) and the scalar product with ξ we obtain

(1− β2)g(φU, AX) + αg(AφAU, X) = 0 (4.10)

for any X ∈ D. Therefore (1−β2)AφU + αAφAU = −αβg(AU, φU)ξ and from (4.8
),

(1− β2)AφU + αAφAU = 0. (4.11)

Let us call DU = D∩Span{U, φU}⊥. Then we take Y ∈ DU , X ∈ D in (4.1 ) and the
scalar product with ξ. We obtain g(φY, AX) − αg(Y,AφAX) = 0. Taking X = Y
we get

g(φX, AX) = 0 (4.12)

for any X ∈ DU . Moreover

AφX + αAφAX = −αβg(AX, φU)ξ (4.13)

for any X ∈ DU . Taking the scalar product of (4.9 ) with U and the scalar product
of (4.11 ) with φU it follows

g(AU,U) = (1− β2)g(AφU, φU). (4.14)
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If we take Y ∈ DU , X = φU in (4.1 ), taking its scalar product with ξ, from (4.9 )
it follows

g(φY, AφU) = g(AY,U) (4.15)

for any Y ∈ DU . Similarly, for any Y ∈ DU , we have

g(Y,AY ) = g(φY, AφY ). (4.16)

If we change Y by φY in (4.15 ) it follows −g(AY, φU) = g(AφY, U), for any Y ∈ DU .
This equality, (4.8 ) and (4.14 ) yield

AφU − φAU = β2g(AφU, φU)φU. (4.17)

We want to prove that AU and AφU have no component in DU . Thus from (4.8 )
we can suppose

AU = βξ + g(AU,U)U + µZ
AφU = g(AφU, φU)φU + εW

(4.18)

where µ, ε are smooth functions on M and Z,W unit vector fields in DU . Now from
(4.14 ), (4.17 ) and (4.18 ) we have εW = µφZ. That is, AφU = g(AφU, φU)φU +
µφZ. Taking Y = φZ, X = U in (4.1 ) and its scalar product with ξ we obtain

µ + αµg(AU,U) + αµg(AφZ, φZ) = 0. (4.19)

From (4.19 ) we have either µ = 0 or 1+αg(AU,U)+αg(AφZ, φZ) = 0. Taking
Y = Z, X = φU in (4.1 ) and its scalar product with ξ we get

µ + αµg(AφU, φU) + αµg(AZ,Z) = 0. (4.20)

From (4.16 ) and (4.20 ) we obtain either µ = 0 or 1+αg(AφU, φU)+αg(AφZ, φZ) =
0. From (4.14 ), (4.19 ) and (4.20 ), if µ 6= 0, it follows α 6= 0, g(AφU, φU) = 0 and
g(AφZ, φZ) = g(AZ,Z) = −(1/α). Thus we have two possibilities:

1. µ 6= 0. Then AU = βξ+µZ, AφU = µφZ, g(AZ,Z) = g(AφZ, φZ) = −(1/α).

2. µ = 0. Then AU = βξ + δ(1 − β2)U , AφU = δφU , where we have called
δ = g(AφU, φU).

First case is impossible: From (4.9 ) we should have AU − αAφAφU = βξ. Intro-
ducing in this equation the values of AU and AφU we get βξ +µZ−αµAφ2Z = βξ.
That is, µZ + αµAZ = 0. Taking its scalar product with U it follows αµ2 = 0,
which is impossible.
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Now we consider the second case. Take Z ∈ DU such that AZ = λZ. From
(4.13 ) it follows AφZ + αAφAZ = 0. This gives (1 + αλ)AφZ = 0. Thus either
AφZ = 0 or 1+αλ = 0. If AφZ = 0, taking X = φZ in (4.13 ) we get AZ = 0. Thus
λ = 0. Thus the unique eigenvalues of A that could appear in DU are either 0 or
−(1/α). We also can conclude that the corresponding eigenspaces are holomorphic,
that is, they are invariant by φ.

Suppose firstly that there exists Z ∈ DU such that AZ = AφZ = 0. The Codazzi
equation gives (∇ZA)ξ − (∇ξA)Z = −φZ. Developing this equation and taking its
scalar product with φZ we get

g(∇ZU, φZ) = −(1/β). (4.21)

Again the Codazzi equation implies (∇ZA)φU − (∇φUA)Z = 0. Developing it and
taking its scalar product with Z we have

δg(∇ZU, φZ) = 0. (4.22)

If δ 6= 0, (4.21 ) and (4.22 ) give a contradiction. Thus we suppose δ = 0. In this
case, if for any Z ∈ DU , AZ = 0, remind that we have AU = βξ, AφU = 0. Thus
we obtain a ruled real hypersurface. Proposition 3.2 implies that this case does not
occur.

Now we suppose that there exists Z ∈ DU such that AZ = AφZ = 0, that is
Z ∈ D0 as in Proposition 3.1, and there exists W ∈ DU such that AW = −(1/α)W ,
AφW = −(1/α)φW , that is, W ∈ D1. From Proposition 3.1 we have (φU)(β) 6=
0. Now we develop (∇φURξ)(U) and take its scalar product with U . We obtain
−(φU)(β2) 6= 0. Thus this kind of real hypersurfaces does not satisfy our condition.

Therefore we must suppose that AU = βξ + δ(1 − β2)U , AφU = δφU , AZ =
−(1/α)φZ for any Z ∈ DU . From the Codazzi equation (∇ZA)φZ − (∇φZA)Z =
−2ξ. Developing it and taking its scalar product with ξ we get

(α + (1/α))g([φZ, Z], ξ) + βg([φZ, Z], U) = −2 (4.23)

and its scalar product with U yields

βg([φZ, Z], ξ) + (δ(1− β2) + (1/α))g([φZ, Z], U) = 0. (4.24)

As g([φZ, Z], ξ) = −(2/α), from (4.23 ) and (4.24 ) we have

αδ(1− β2) + 1 = α2β2. (4.25)

On the other hand, if these real hypersurfaces satisfy our condition, (∇φURξ)(U) = 0.
Developing this we get

(φU)(αδ(1− β2)− β2)U + (αδ(1− β2)− β2)∇φUU
+δξ − αA∇φUU + α2δξ + αδβU = 0.

(4.26)
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The scalar product of (4.26 ) with ξ gives −(αδ(1 − β2) − β2)g(U, φAφU) + δ −
α2g(∇φUU, ξ) + α2δ = 0. From (4.25 ) this yields

(α2 − 1)β2δ = 0. (4.27)

We have two possibilities: either δ = 0 or α2 = 1. In this second case, changing,
if necessary, ξ by −ξ, we can suppose α = 1. Now fron (4.25 ) we obtain two new
possibilities: either β2 = 1 or δ = −1.

If we suppose δ = 0, α2β2 = 1, Aξ = αξ + βU , AU = βξ, AφU = 0, AZ =
−(1/α)Z, for any Z ∈ DU . From the Codazzi equation (∇φUA)ξ − (∇ξA)φU = U .
Developing this equality and taking its scalar product with U we obtain (φU)(β)−
β2 = 1. If we suppose (φU)(β) = 0 we have a contradiction. Thus we must have
(φU)(β) 6= 0. But we have (∇φURξ)(U) = 0. Developing it and taking its scalar
product with U we get −(φU)(β2) = 0, which is impossible.

Thus δ 6= 0. The possiblity of being α = 1, δ = −1 cannot appear by Theorem
2.2.

Thus the unique possibility is α = 1, β2 = 1. If we change U by −U , if necessary,
we can suppose β = 1. We should have (∇URξ)(φU) = 0. Developing this equation
and taking its scalar product with φU we should obtain

U(δ) = 0. (4.28)

Developing now (∇φURξ)(φU) = 0 and taking its scalar product with φU we get

(φU)(δ) = 0. (4.29)

Now, for any Z ∈ DU , (∇ZRξ)(φU) = 0 and its scalar product with φU yields

Z(δ) = 0. (4.30)

The Codazzi equation gives (∇ξA)φU − (∇φUA)ξ = −U . Its scalar product with
φU implies

ξ(δ) = g(∇φUU, φU). (4.31)

Again the Codazzi equation implies (∇UA)φU−(∇φUA)U = −2ξ. Its scalar product
with φU yields δg(∇φUU, φU) = 0. As we suppose δ 6= 0, from (4.31 ) we get

ξ(δ) = 0. (4.32)

From (4.28 ), (4.29 ), (4.30 ) and (4.32 ), we conclude that δ is constant.
The Codazzi equation yields (∇ξA)φU − (∇φUA)ξ = −U and its scalar product

with ξ gives
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g(∇ξφU, U) = −3δ + 1. (4.33)

Its scalar product with U implies

δg(∇ξφU, U) = −2− δ. (4.34)

From (4.33 ) and (4.34 ) we get

3δ2 − 2δ − 2 = 0. (4.35)

But from the Codazzi equation (∇UA)φU−(∇φUA)U = −2ξ, and its scalar product
with U yields

g(∇UφU, U) = −2. (4.36)

Taking the scalar product of the above Codazzi equation and ξ we get

g(∇UφU, U) = δ + 2. (4.37)

From (4.35 ), (4.36 ) and (4.37 ) we arrive to a contradiction, and this finishes the
proof.

�

References

[1] D.E. Blair, Riemannian Geometry of contact and symplectic manifolds,
Progress in Mathematics 203 (2002), Birkhauser Boston Inc. Boston ,Ma.

[2] Q.S. Chi, A curvature characterization of certain locally rank-one symmetric
spaces, J. Diff. Geom. 28 (1988), 187-202.

[3] J.T. Cho and U-H. Ki, Jacobi operators on real hypersurfaces of a complex
projective space, Tsukuba J. Math. 22 (1998), 145-156.

[4] J.T. Cho and U-H. Ki, Real hypersurfaces of a complex projective space in
terms of the Jacobi operators, Acta Math. Hungar. 80 (1998), 155-167.

[5] U-H. Ki, H.J. Kim and A.A. Lee, The Jacobi operator of real hypersurfaces in
a complex Space form, Commun. Korean Math. Soc. 13 (1998), 545-600.

[6] M. Kimura, Sectional curvatures of holomorphic planes on a real hypersurface
in P n(C), Math. Ann. 276 (1987), 487-497.

[7] M. Loknherr and H. Reckziegel, On ruled real hypersurfaces in complex space
forms, Geom. Dedicata 74 (1999), 267-286.



Real hypersurfaces in complex projective space 469

[8] R. Niebergall and P.J. Ryan, Real hypersurfaces in complex space forms, in
Tight and Taut Submanifolds, MSRI Publications, Vol. 32, 1997, 233-305.

[9] M. Okumura, On some real hypersurfaces of a complex projective space, Trans.
A.M.S. 212 (1975), 355-364.

[10] M. Ortega, J.D. Perez and F.G. Santos, Non-existence of real hypersurfaces
with parallel structure Jacobi operator in nonflat complex space forms, Rocky
Mountain J. Math., to appear.

[11] J.D. Perez, F.G. Santos and Y.J. Suh, Real hypersurfaces in complex projective
space whose structure Jacobi operator is Lie ξ-parallel, Diff. Geom. Appl., 22
(2005), 181-188.

[12] R. Takagi, On homogeneous real hypersurfaces in a complex projective space,
Osaka J. Math. 10 (1973), 495-506.

[13] R. Takagi, Real hypersurfaces in complex projective space with constant prin-
cipal curvatures, J. Math. Soc. Japan 27 (1975), 43-53.

[14] R. Takagi, Real hypersurfaces in complex projective space with constant prin-
cipal curvatures II, J. Math. Soc. Japan 27 (1975), 507-516.

Juan de Dios Perez: jdperez@ugr.es
Florentino G. Santos: florenti@ugr.es
Departamento de Geometria y Topologia
Universidad de Granada
18071 Granada
Spain

Young Jin Suh: yjsuh@mail.knu.ac.kr
Department of Mathematics
Kyungpook National University
Taegu 702-701
Republic of Korea


