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Abstract

We prove the non-existence of Hopf real hypersurfaces in complex

two-plane Grassmannians whose Jacobi operators corresponding to the

directions in the distribution D⊥ are D-parallel if they satisfy a further

condition.
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1 Introduction

The geometry of real hypersurfaces in complex space forms or in quater-

nionic space forms is one of interesting parts in the field of differential geometry.
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Until now there have been many characterizations for homogeneous hypersur-

faces of type (A1), (A2), (B), (C), (D) and (E) in complex projective space

CPm, of type (A1),(A2) and (B) in quaternionic projective space HPm, or

of type (A) and (B) in complex two-plane Grassmannians G2(C
m+2). Each

corresponding geometric features are classified and investigated by Kimura [5],

Martinez and Pérez [8], Berndt and Suh [3] and [4], respectively.

Let (M̄, ḡ) be a Riemannian manifold. A vector field U along a geodesic γ

in M̄ is said to be a Jacobi field if it satisfies a differential equation

∇̄2
γ̇(t)U + R̄(U(t), γ̇(t))γ̇(t) = 0,

where ∇̄γ̇(t) and R̄ respectively denote the covariant derivative of the vector

field U along the curve γ(t) in M̄ and the curvature tensor of the Riemannian

manifold (M̄, ḡ). Then this equation is called the Jacobi equation.

The Jacobi operator R̄X for any tangent vector field X at x∈M̄ , is defined

by

(R̄X(Y ))(x) = (R̄(Y,X)X)(x)

for any Y ∈ TxM̄ , and it becomes a self adjoint endomorphism of the tangent

bundle TM̄ of M̄ . That is, the Jacobi operator satisfies R̄X∈End(TxM̄) and

is symmetric in the sense of ḡ(R̄X(Y ), Z) = ḡ(R̄X(Z), Y ) for any vector fields

Y and Z on M̄ .

Now let us consider real hypersurfaces in complex two-plane Grassmanni-

ans G2(C
m+2) which consist of all complex 2-dimensional linear subspaces in

C
m+2. The complex two-plane Grassmannians G2(C

m+2) have a remarkable

geometric structure. It is known to be the unique compact irreducible Rie-

mannian symmetric spaces equipped with both a Kähler structure J and a

quaternionic Kähler structure J (see Berndt and Suh [3]).

In [2] the authors prove that any tube M around a complex submanifold in

complex projective space CPm is characterized by the invariancy of Aξ = αξ,

where the Reeb vector ξ is defined by ξ = −JN for a Kähler structure J and

a unit normal N to real hypersurface M in CPm.

Moreover, the corresponding geometrical feature for hypersurfaces in HPm

is the invariance of the distribution D⊥ = Span {ξ1, ξ2, ξ3} by the shape oper-

ator, where ξi = −JiN , Ji∈J.
In fact every tube around a quaternionic submanifold of HPm admits a

geometrical structure of this type (see Alekseevskii [1]). From such a view
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point, we considered two natural geometric conditions for real hypersurfaces in

G2(C
m+2) that [ξ] = Span {ξ} and D⊥ = Span {ξ1, ξ2, ξ3} are invariant under

the shape operator. By using such conditions and the result in Alekseevskii

[1], Berndt and Suh [3] have proved the following.

Theorem A. Let M be a connected real hypersurface in G2(C
m+2), m ≥ 3.

Then both [ξ] and D⊥ are invariant under the shape operator of M if and only

if

[(A)]M is an open part of a tube around a totally geodesic G2(C
m+1) in

G2(C
m+2), or m is even, say m = 2n, and M is an open part of a tube

around a totally geodesic HP n in G2(C
m+2).

If the Reeb vector field ξ of a real hypersurface M in G2(C
m+2) is invariant

by the shape operator, M is said to be a Hopf hypersurface. In such a case

the integral curves of the Reeb vector field ξ are geodesics (see Berndt and

Suh [4]). Moreover, the flow generated by the integral curves of the structure

vector field ξ for Hopf hypersurfaces in G2(C
m+2) is said to be geodesic Reeb

flow. Moreover, if the corresponding principal curvature α is non-vanishing we

say M is with non-vanishing geodesic Reeb flow.

In this paper we will consider the Jacobi operators associated to a basis of

the distribution D⊥, Rξi , i = 1, 2, 3. In [7] we have proved the non-existence

of real hypersurfaces in complex two-plane Grassmannians whose Jacobi op-

erators Rξi , i = 1, 2, 3 are of Codazzi type if the distribution D or the D⊥-

component of the Reeb vector field is invariant by the shape operator. As

a consequence we obtained the non-existence of real hypersurfaces for which

such Jacobi operators are parallel with the same further condition. Now we

will deal with a weaker condition: The D-paralellism of the Jacobi operators

Rξi , i = 1, 2, 3. Thus we will prove the following.

Theorem 1.1. There do not exist any connected Hopf real hypersurface in

G2(C
m+2), m ≥ 3, such that ∇XRξi = 0, i = 1, 2, 3, for any X ∈ D if the

distribution D or the D⊥-component of the Reeb vector field is invariant by the

shape operator.



94 Real hypersurfaces in complex two-plane Grassmannians...

2 Preliminaries

For the study of Riemannian geometry of G2(C
m+2) see [3]. All the notations

we will use since now are the ones in [3] and [4]. For computational reasons we

will suppose that the metric g of G2(C
m+2) is normalized for the maximal sec-

tional curvature of (G2(C
m+2), g) to be eight. Then the Riemannian curvature

tensor R̄ of G2(C
m+2) is locally given by

R̄(X, Y )Z = g(Y, Z)X − g(X,Z)Y + g(JY, Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ

+
3

∑

ν=1

{g(JνY, Z)JνX − g(JνX,Z)JνY − 2g(JνX, Y )JνZ)}

+
3

∑

ν=1

{g(JνJY, Z)JνJX − g(JνJX,Z)JνJY }, (1)

where J1, J2, J3 is any canonical local basis of J.

Let M be a real hypersurface of G2(C
m+2), that is, a submanifold of

G2(C
m+2) with real codimension one. The induced Riemannian metric on

M will also be denoted by g, and ∇ denotes the Riemannian connection of

(M, g). Let N be a local unit normal field of M and A the shape operator

of M with respect to N . The Kähler structure J of G2(C
m+2) induces on M

an almost contact metric structure (φ, ξ, η, g). Furthermore, let J1, J2, J3 be

a canonical local basis of J. Then each Jν induces an almost contact metric

structure (φν , ξν , ην , g) on M . Using the above expression for the curvature

tensor R̄, the Gauss and Codazzi equations are respectively given by

R(X, Y )Z = g(Y, Z)X − g(X,Z)Y + g(φY, Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ

+
3

∑

ν=1

{g(φνY, Z)φνX − g(φνX,Z)φνY − 2g(φνX, Y )φνZ}

+
3

∑

ν=1

{g(φνφY, Z)φνφX − g(φνφX,Z)φνφY }

−
3

∑

ν=1

{η(Y )ην(Z)φνφX − η(X)ην(Z)φνφY }

−
3

∑

ν=1

{η(X)g(φνφY, Z)− η(Y )g(φνφX,Z)}ξν

+ g(AY,Z)AX − g(AX,Z)AY,
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and

(∇XA)Y − (∇YA)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+
3

∑

ν=1

{

ην(X)φνY − ην(Y )φνX − 2g(φνX, Y )ξν
}

+
3

∑

ν=1

{

ην(φX)φνφY − ην(φY )φνφX
}

+
3

∑

ν=1

{

η(X)ην(φY )− η(Y )ην(φX)
}

ξν ,

where R denotes the curvature tensor of M in G2(C
m+2).

To be used in the sequel we mention the following Propositions due to

Berdnt and Suh, [4].

Proposition 2.1. Let M be a connected real hypersurface of G2(C
m+2).

Suppose that AD ⊂ D, Aξ = αξ and ξ is tangent to D⊥.

Let J1∈J = Span{J1, J2, J3} be the almost Hermitian structure such that

JN = J1N . Then M has three (if r = π/2
√
8) or four (otherwise) distinct

constant principal curvatures

α =
√
8 cot(

√
8r) , β =

√
2 cot(

√
2r) , λ = −

√
2 tan(

√
2r), µ = 0

with some r ∈ (0, π/
√
8). The corresponding multiplicities are

m(α) = 1, m(β) = 2, m(λ) = 2m− 2 = m(µ)

and as the corresponding eigenspaces we have

Tα = Rξ = RJN = Rξ1,

Tβ = C
⊥ξ = C

⊥N = Rξ2⊕Rξ3,

Tλ = {X|X⊥Hξ, JX = J1X},
Tµ = {X|X⊥Hξ, JX = −J1X},

where Rξ, Cξ and Hξ respectively denotes real, complex and quaternionic span

of the structure vector ξ and C
⊥ξ denotes the orthogonal complement of Cξ in

Hξ.
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Proposition 2.2. Let M be a connected real hypersurface of G2(C
m+2).

Suppose that AD ⊂ D, Aξ = αξ and ξ is tangent to D. Then the quaternionic

dimension m of G2(C
m+2) is even, say m = 2n, and M has five distinct

constant principal curvatures

α = −2 tan(2r) , β = 2 cot(2r) γ = 0 , λ = cot(r) , µ = − tan(r)

with some r ∈ (0, π/4). The corresponding multiplicities are

m(α) = 1 , m(β) = 3 = m(γ) , m(λ) = 4n− 4 = m(µ)

and the corresponding eigenspaces are

Tα = Rξ , Tβ = JJξ , Tγ = Jξ , Tλ , Tµ ,

where

Tλ ⊕ Tµ = (HCξ)⊥ , JTλ = Tλ , JTµ = Tµ , JTλ = Tµ .

Proposition 2.3. IfM is a connected orientable real hypersurface in G2(C
m+2)

with geodesic Reeb flow, then

αg((Aφ+ φA)X, Y )− 2g(AφX, Y ) + 2g(φX, Y )

= 2
3

∑

ν=1

(

ην(X)ην(φY )− ην(Y )ην(φX)− g(φνX, Y )ην(ξ)

− 2η(X)ην(φY )ηνξ + 2η(Y )ην(φX)ην(ξ)
)

for any X, Y ∈ TM where α = g(Aξ, ξ).

Recently, Lee and Suh, [6], have proved the following.

Proposition 2.4. Let M be a connected orientable Hopf real hypersurface

in G2(C
m+2), m ≥ 3. Then the Reeb vector ξ belongs to the distribution D if

and only if M is locally congruent to an open part of a tube around a totally

geodesic HP n in G2(C
m+2), where m = 2n.
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3 Proof of Theorem 1.1

From the expression of the curvature tensor of G2(C
m+2) we get

Rξi(X) = X − ηi(X)ξi − 3g(φX, ξi)φξi − 3
3

∑

ν=1

g(φνX, ξi)φνξi

+
3

∑

ν=1

g(φνφξi, ξi)(φνφX − η(X)ξν) +
3

∑

ν=1

g(φνφX, ξi)(η(ξi)ξν − φνφξi)

−η(ξi)φiφX + η(X)φiφξi + g(Aξi, ξi)AX − g(AX, ξi)Aξi (2)

for any tangent vector field X. From (2) we have

(∇XRξi)Y = −g(Y,∇Xξi)ξi − ηi(Y )∇Xξi − 3
{

(η(Y )ηi(AX)

−η(ξi)g(AX, Y ) + g(φY,∇Xξi))φξi + ηi(φY )(η(ξi)AX − ηi(AX)ξ

+φ∇Xξi)
}

− 3
3

∑

ν=1

{

(−qν+1(X)ηi(φν+2Y )

+qν+2(X)ηi(φν+1Y ) + ην(Y )ηi(AX)− ην(ξi)g(AX, Y )

+g(φνY,∇Xξi))φνξi + ηi(φνY )(−qν+1(X)φν+2ξi

+qν+2(X)φν+1ξi + ην(ξi)AX − ηi(AX)ξν + φν∇Xξi)
}

+
3

∑

ν=1

{

(−g(AX, φνξi)η(ξi) + ηi(AX)η(φνξi)

+g(∇Xξi, φφνξi)− qν+1(X)ηi(φφν+2ξi) + qν+2(X)ηi(φφν+1ξi)

−ην(ξi)g(AX, φξi) + ηi(AX)ην(φξi) + g(φνφξi,∇Xξi))φνφY

+ηi(φνφξi)(−qν+1(X)φν+2φY + qν+2(X)φν+1φY + ην(φY )AX

−g(AX, φY )ξν + η(Y )φνAX − g(AX, Y )φνξ)
}

−
3

∑

ν=1

{

(−η(ξi)g(AX, φνξi)

+ηi(AX)ην(φξi) + g(∇Xξi, φφνξi)− qν+1(X)ηi(φφν+2ξi)

+qν+2(X)ηi(φφν+1ξi)− ην(ξi)g(AX, φξi) + ηi(AX)ην(φξi)

+g(∇Xξi, φνφξi))η(Y )ξν + ηi(φφνξi)(g(Y, φAX)ξν + η(Y )∇Xξν)
}

+
3

∑

ν=1

{

(−qν+1(X)g(Y, φφν+2ξi) + qν+2(X)g(Y, φφν+1ξi)

+ην(φY )ηi(AX)− g(AX, φY )ην(ξi) + η(Y )ηi(φνAX) + g(AX, Y )ην(φξi)
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+g(φνφY,∇Xξi))η(ξi)ξν + g(Y, φφνξi)((η(∇Xξi)

+ηi(φAX))ξν + η(ξi)∇Xξν)
}

−
3

∑

ν=1

{

(−qν+1(X)ηi(φν+2φY )

+qν+2(X)ηi(φν+1φY ) + ην(φY )ηi(AX)− g(AX, φY )ην(ξi) + η(Y )ηi(φνAX)

+g(AX, Y )η(φνξi) + g(φνφY,∇Xξi))φνφξi + ηi(φνφY )(−qν+1(X)φν+2φξi

+qν+2(X)φν+1φξi + ην(φξi)AX − g(AX, φξi)ξν + η(ξi)φνAX

−ηi(AX)φνξ + φνφ∇Xξi)
}

−
{

(η(∇Xξi) + ηi(∇Xξ))
}

φiφY

+η(ξi)(−qi+1(X)φi+2φY + qi+2(X)φi+1φY + ηi(φY )AX − g(AX, φY )ξi

+η(Y )φiAX − g(AX, Y )φiξ)
}

+ g(Y,∇Xξ)φiφξi + η(Y )(−qi+1(X)φi+2φξi

+qi+2(X)φi+1φξi − g(AX, φξi)ξi + φi∇Xξi + η(ξi)φiAX − ηi(AX)φiξ

+φiφ∇Xξi) + (ηi(∇XAξi) + g(Aξi,∇Xξi))AY + ηi(Aξi)(∇XA)Y

−
{

(ηi((∇XA)Y ) + g(AY,∇Xξi))Aξi + ηi(AY )∇XAξi

}

(3)

for any X, Y tangent to M .

We will write ξ = η(X0)X0 + η(ξ1)ξ1, for a unit X0 ∈ D, where we suppose

η(X0)η(ξ1) 6= 0. Then we have g(φνφξ1, ξ1) = 0, ν = 1, 2, 3. Notice this is true

even if ξ ∈ D. Thus, the covariant derivative of Rξ1 is given by

(∇XRξ1)Y = ∇X(Rξ1(Y ))−Rξ1(∇XY )

= −g(Y,∇Xξ1)ξ1 − η1(Y )∇Xξ1

−3
{

{η(Y )g(AX, ξ1)− g(AX, Y )η(ξ1) + g(φY,∇Xξ1)}φξ1

+g(φY, ξ1)(η(ξ1)AX − g(AX, ξ1)ξ + φ∇Xξ1)
}

−3
3

∑

ν=1

{

{−qν+1(X)g(φν+2Y, ξ1) + qν+2(X)g(φν+1Y, ξ1)

+ην(Y )g(AX, ξ1)− g(AX, Y )ην(ξ1) + g(φνY,∇Xξ1)}φνξ1

+g(φνY, ξ1){−qν+1(X)φν+2ξ1 + qν+2(X)φν+1ξ1 + ην(ξ1)AX

−g(AX, ξ1)ξν + φν∇Xξ1}
}

+
3

∑

ν=1

{

{−qν+1(X)g(Y, φφν+2ξ1)

+qν+2(X)g(Y, φφν+1ξ1) + ην(φY )g(AX, ξ1)− g(AX, φY )ην(ξ1)

+η(Y )g(φνAX, ξ1) + g(AX, Y )ην(φξ1) + g(φνφY,∇Xξ1)}η(ξ1)ξν
+g(Y, φφνξ1){g(∇Xξ1, ξ) + g(ξ1, φAX))ξν + η(ξ1)∇Xξν}

}
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−
3

∑

ν=1

{

{−qν+1(X)g(φν+2φY, ξ1) + qν+2(X)g(φν+1φY, ξ1)

+ην(φY )g(AX, ξ1)− g(AX, φY )ην(ξ1) + g(φνAX, ξ1)η(Y )

+g(AX, Y )η(φνξ1) + g(φνφY,∇Xξ1)}φνφξ1

+g(φνφY, ξ1){−qν+1(X)φν+2φξ1 + qν+2(X)φν+1φξ1 + ην(φξ1)AX

−g(AX, φξ1)ξν + η(ξ1)φνAX − g(AX, ξ1)φνξ + φνφ∇Xξ1}
}

−
{

{g(∇Xξ1, ξ) + g(ξ1,∇Xξ)}φ1φY + η(ξ1){−q2(X)φ3φY + q3(X)φ2φY

+η1(φY )AX − g(AX, φY )ξ1 + η(Y )φ1AX − g(AX, Y )φ1ξ}
}

+g(Y,∇Xξ)φ1φξ1 + η(Y )(−q2(X)φ3φξ1 + q3(X)φ2φξ1

−g(AX, φξ1)ξ1 + φ1∇Xξ1 + η(ξ1)φ1AX − g(AX, ξ1)φ1ξ + φ1φ∇Xξ1}
+{g(∇XAξ1, ξ1) + g(Aξ1,∇Xξ1)}AY + g(Aξ1, ξ1)(∇XA)Y

−
{

{g((∇XA)Y, ξ1) + g(AY,∇Xξ1)}Aξ1 + g(AY, ξ1)∇XAξ1

}

(4)

for any X, Y tangent to M . From this expression we have:

Lemma 3.1. Let M be a Hopf real hypersurface in G2(C
m+2) such that D

or the D⊥-component of the Reeb vector field is A-invariant. If ∇XRξi = 0,

i = 1, 2, 3, for any X ∈ D, then ξ ∈ D or ξ ∈ D⊥.

Proof. As we suppose Aξ = αξ and have written ξ = η(X0)X0 + η(ξ1)ξ1

with η(X0) and η(ξ1) nonnull, where X0 ∈ D is unit, we get from (4)

0 = g((∇X0
Rξ1)ξ1, X0) (5)

= −g(∇X0
ξ1, X0) + η(ξ1)g(φ1∇X0

ξ1, X0) + g(φ1φ∇X0
ξ1, X0)− αg(A∇X0

ξ1, X0).

Now we have

g(∇X0
ξ1, X0) = g(φ1AX0, X0) = αg(φ1X0, X0) = 0.

We also have g(φ1∇X0
ξ1, X0) = −g(∇X0

ξ1, φ1X0) = −g(φ1AX0, φ1X0)

= −αg(φ1X0, φ1X0) = −α, g(φ1φ∇X0
ξ1, X0) = g(∇X0

ξ1, φφ1X0) = g(φ1AX0, φφ1X0)

= αg(φ1X0, φφ1X0) = 0, and

g(A∇X0
ξ1, X0) = αg(∇X0

ξ1, X0) = αg(φ1AX0, X0) = α2g(φ1X0, X0) = 0.
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From (5) we get -αη(ξ1) = 0. If α 6= 0 in (3) we get ξ ∈ D. If α = 0, the result

follows from [9].

With the hypothesis in Lemma 3.1 we can prove.

Lemma 3.2. If ξ ∈ D⊥ then g(AD,D⊥) = 0.

Proof. In this case we can take ξ = ξ1. Thus it is enough to prove that

η2(AX) = η3(AX) = 0, for any X ∈ D. For such an X we get 0=(∇XRξ1)ξ1 =

(∇XRξ)ξ

= −φAX − αAφAX − 2η3(AX)ξ2 + 2η2(AX)ξ3 − φ1AX. If α = 0, taking the

scalar product of (3) and ξ2, respectively ξ3, we obtain the result. If α 6= 0,

taking the scalar product of (3) and ξ2 we get

αg(AφAX, ξ2) + 2η3(AX) = 0. (6)

On the other hand, by Proposition 2.3 we obtain

2g(AφAX, ξ2) = αg(AφX, ξ2) + 2η3(AX). (7)

From (6) and (7) we have α2g(AφX, ξ2) + (α2 + 4)η3(AX) = 0. Thus

g(AφX, ξ2) = −α2 + 4

α2
η3(AX). (8)

If we change X by φX in (8), it follows

−α2η2(AX) + (α2 + 4)η3(AφX) = 0. (9)

Now applying the same procedure to the scalar product of (3) and ξ3 we arrive

to

g(AφX, ξ3) =
α2 + 4

α2
η2(AX) (10)

and changing X by φX in (10) it gives

α2η3(AX) + (α2 + 4)η2(AφX) = 0. (11)

From (8) and (10) we obtain

(−α2 +
(α2 + 4)2

α2
)η2(AX) = 0, (12)
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and from (9) and (11) we have

(−α2 +
(α2 + 4)2

α2
)η3(AX) = 0. (13)

From (12) and (13) we get η2(AX) = η3(AX) = 0, finishing the proof.

From this Lemma and Proposition 2.4, in order to finish the proof of our

Theorem, we only have to see if the real hypersurfaces of either type (A) or

type (B) satisfy our condition.

In the case of a real hypersurface of type (A) we get from Proposition 2.1,

considering ξ = ξ1 and taking Xi ∈ Tλ, φXi ∈ Tλ. Thus

0 = (∇Xi
Rξ)ξ = −2λφXi − αλAφXi = (−2λ− αλ2)φXi. (14)

Thus 2λ+αλ2 = 0. This yields either λ = 0 or 2+αλ = 0. As from Proposition

2.1, λ = −
√
2tan(

√
2r), for some r ∈ (0, π√

8
), λ 6= 0. Thus 2 + αλ = 0. Then

0 = (
√
8 cot(

√
8r))(−

√
2 tan(

√
2r)) + 2

= cot(
√
8r) tan(

√
2r)− 2 = 2 tan2(

√
2r).

But for r ∈ (0, π/
√
8), then tan(

√
2r) 6= 0, thus these real hypersurfaces

do not satisfy our condition.

If we consider now a real hypersurface of type (B), from Proposition 2.2

we get

g((∇ξRξ1)ξ1, φξ1) = −4α. (15)

If the real hypersurface satisfies our condition, from (15) we have α = 0, but

from Proposition 2.2, α = −2 tan(2r) for some r ∈ (0, π/4). This gives a

contradiction, so real hypersurfaces of type (B) do not satisfy our condition.

This finishes the proof.

ACKNOWLEDGEMENTS. Second author is supported by MCT-FEDER

Grant MTM2010-18099. Third author is supported by Grant BSRP-2010-001-

0020931 from National Research Foundation of Korea.



102 Real hypersurfaces in complex two-plane Grassmannians...

References

1.2.[1] D.V. Alekseevskii, Compact quaternion spaces, Func. Anal. Appl., 2,

(1966), 106-114.

[2] J. Berndt, S. Console and C. Olmos, Submanifolds and Holonomy, Chap-

man & Hall CRC, Research Notes in Mathematics, 434, 2003.

[3] J. Berndt and Y.J. Suh, Real hypersurfaces in complex two-plane Grass-

mannians, Monatsh. Math., 127, (1999), 1-14.

[4] J. Berndt and Y.J. Suh , Isometric flows on real hypersurfaces in complex

two-plane Grassmannians, Monatsh. Math., 137, (2002), 87-98.

[5] M. Kimura, Real hypersurfaces and complex submanifolds in complex

projective space, Trans. Amer. Math. Soc., 296, (1986), 137-149.

[6] H.J. Lee and Y.J. Suh, Real hypersurfaces of type B in complex two-

plane Grassmannians related to the Reeb vector, Bull. Korean Math.

Soc., 47, (2010), 551-561.
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[8] A. Martinez and J.D. Pérez , Real hypersurfaces in quaternionic projec-

tive space, Ann. Mat. Pura Appl., 145, (1986), 355-384.
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