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Abstract 
 
We prove the non-existence of Hopf real hypersurfaces in complex two-plane Grassmannians whose Jacobi 
operators corresponding to the directions in the distribution D  are of Codazzi type if they satisfy a further 
condition. We obtain that that they must be either of type (A) or of type (B) (see [1]), but no one of these sat-
isfies our condition. As a consequence, we obtain the non-existence of Hopf real hypersurfaces in such am-
bient spaces whose Jacobi operators corresponding to D -directions are parallel with the same further con-
dition. 
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1. Introduction 
 
The geometry of real hypersurfaces in complex space 
forms or in quaternionic space forms is one of interesting 
parts in the field of differential geometry. Now let us 
consider consider real hypersurfaces in complex two- 
plane Grassmannian  2

2
mG  , which consists of all 

complex 2-dimensional linear subspaces in 2m . It is 
known to be the unique compact irreducible Riemannian 
symmetric space equipped with both a Kähler structure 
J  and a quaternionic Kähler structure   (see Berndt 
and Suh [2]). Let M  be a real hypersurface in 

 2
2

mG   and N  a local normal unit vector field. We 
can define the structure vector field of M  by 

= JN  . Moreover, if  1 2 3, ,J J J  is a local basis of 
 , we define =i iJ N  , = 1,2,3i . Thus we can con-
sider two natural geometric conditions: that both 
   = Span   and  1 2 3= , ,D Span     are invari-
ant under the shape operator A  corresponding to N . 
Berndt and Suh, [1] proved the following: 

Theorem A Let M  be a connected real hypersur-
face in  2

2
mG  , 3m  . Then both    and D  

are invariant under the shape operator of M  if and 
only if 

(A) M  is an open part of a tube around a totally 
geodesic  1

2
mG   in  2

2
mG  , or 

(B) m  is even, say = 2m n , and M  is an open 
part of a tube around a totally geodesic nP  in 

 2
2

mG  . 
The structure vector field   of a real hypersurface 

M  in  2
2

mG   is said to be a Reeb vector field. If 
the Reeb vector field   of a real hypersurface M  in 

 2
2

mG   is invariant by the shape operator, M  is 
said to be a Hopf hypersurface. In such a case the inte-
gral curves of the Reeb vector field   are geodesics 
(see Berndt and Suh [2]). Moreover, the flow generated 
by the integral curves of the structure vector field   for 
Hopf hypersurfaces in  2

2
mG   is said to be geodesic 

Reeb flow. Moreover, if the corresponding principal cur-
vature   corresponding to   is non-vanishing we say 
M  is with non-vanishing geodesic Reeb flow. 

Jacobi fields along geodesics of a given Riemannian 
manifold  ,M g   satisfy a very well-known differential 
equation. This classical differential equation naturally 
inspires the so-called Jacobi operators. That is, if R  is 
the curvature operator of M , the Jacobi operator (with 
respect to X ) at p M  ,  X pR End T M  , is defined 
as        = ,XR Y p R Y X X p  , for all pY T M  , 
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being a self-adjoint endomorphism of the tangent bundle 
TM  of M . Clearly each tangent vector field X  to 
M  provides a Jacobi operator with respect to X . 

Let R  denote the Riemannian curvature tensor of the 
complex two-plane Grassmannian  2

2
mG  . Now if 

M  is a real hypersurface in  2
2

mG   with normal 
vector field N  we can consider the normal Jacobi op-
erator NR  on  2

2
mG  . Moreover, it is clear that 

  = 0NR N , so we can consider NR  as a self adjoint 
endomorphism of the tangent bundle TM  of M . We 
will call it the normal Jacobi operator on M . The Ja-
cobi operator associated to the Reeb vector field R  is 
called the  structure Jacobi operator on M , where R  
denotes the curvature tensor of M . 

Recently, Jeong, Pérez and Suh, (see [3]) have proved 
the non-existence of real hypersurfaces M  in 

 2
2

mG   with parallel structure Jacobi operator when 
a further condition is satisfied. Also, Jeong, Kim and Suh, 
(see [3]) have proved the non-existence of real hypersur-
faces M  in  2

2
mG   with parallel normal Jacobi 

operator. Further results can also be seen in [4]. 
In this paper we will consider the Jacobi operators as-

sociated to a basis of the distribution D , 
i

R , 
= 1,2,3i . A type  1,1  tensor T  on M  is called of 

Codazzi type if    =X YT Y T X   for any ,X Y  
tangent to M , where   denotes the covariant deriva-
tive on M . In this paper we will study real hypersur-
faces M  in  2

2
mG   whose Jacobi operators 

i
R , 

= 1,2,3i  are of Codazzi type. Namely, we will prove 
the following. 

Theorem 1.1 There do not exist any connected Hopf 
real hypersurfaces M  in  2

2
mG  , 3m  , such that 

   =X Yi i
R Y R X   , = 1,2,3i , for any ,X Y TM  

if the distribution D  or the D -component of the 
Reeb vector field is invariant by the shape operator. 

As a consequence of Theorem 1.1, we immediately 
obtain the following. 

Theorem 1.2 There do not exist any connected Hopf 
real hypersurfaces M  in  2

2
mG  , 3m  , whose 

Jacobi operators 
i

R , = 1, 2,3i , are parallel if the dis-
tribution D  or the D -component of the Reeb vector 
field is invariant by the shape operator. 
 
2. Preliminaries 
 
For the study of Riemannian geometry of  2

2
mG C   

see [1]. All the notations we will use since now are the 
ones in [1] and [2]. We will suppose that the metric g  
of  2

2
mG C   is normalized for the maximal sectional 

curvature of the manifold to be eight. Then the Rieman-
nian curvature tensor R  of  2

2
mG C   is locally given 

by 

       
   

   
  

    

3

=1

3

=1

, = , , ,

, 2 ,

, ,

2 ,

, , ,

R X Y Z g Y Z X g X Z Y g JY Z JX

g JX Z JY g JX Y JZ

g J Y Z J X g J X Z J Y

g J X Y J Z

g J JY Z J JX g J JX Z J JY

   


 

   


 
 

 



 





(2.1) 

where 1 2 3, ,J J J  is any canonical local basis of  . 
Let M  be a real hypersurface of  2

2
mG C  , that is, 

a submanifold of  2
2

mG C   with real codimension one. 
The induced Riemannian metric on M  will also be 
denoted by g , and   denotes the Riemannian con-
nection of  ,M g . Let N  be a local unit normal field 
of M  and A  the shape operator of M  with respect 
to N . The Kähler structure J  of  2

2
mG C   induces 

on M  an almost contact metric structure  , , , g   . 
Furthermore, let 1 2 3, ,J J J  be a canonical local basis of 
J . Then each J  induces an almost contact metric 
structure  , , , g      on M . Using the above ex-
pression for the curvature tensor R , the Gauss and Co-
dazzi equations are respectively given by 

     
     

      

    

        

        
   

3

=1

3

=1

3

=1

3

=1

, = , ,

, , 2 ,

, , 2 ,

, ,

, ,

, ,

R X Y Z g Y Z X g X Z Y

g Y Z X g X Z Y g X Y Z

g Y Z X g X Z Y g X Y Z

g Y Z X g X Z Y

Y Z X X Z Y

X g Y Z Y g X Z

g AY Z AX g AX Z AY

     


   


   


  


     

     

       

       

      



  

  

 

 

 

 









 

and 

         

      

    

        

3

=1

3

=1

3

=1

= 2 ,

2 ,

,

X YA Y A X X Y Y X g X Y

X Y Y X g X Y

X Y Y X

X Y Y X

     


   


  


     

     

       

      

    

  

 

 







 

where R  denotes the curvature tensor of M  in 
 2

2
mG C  . 

In [2] the following Proposition is obtained. 
Proposition 2.1 If M  is a connected orientable real 

hypersurface in  2
2

mG   with geodesic Reeb flow, 

Administrator
附注
The order of reference [3] and [4] have been adjusted, please check them over. 
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then 

      

           

         

3

=1

, 2 , 2 ,

=2 ,

2 2

g A A X Y g A X Y g X Y

X Y Y X g X Y

X Y Y X

     


   

    

        

         

  

 

 

  

for any ,X Y TM  where  = ,g A   . 
Recently Lee and Suh (see [5]) have proved the fol-

lowing. 
Proposition 2.2 Let M  be a connected orientable 

Hopf real hypersurface in  2
2

mG  , 3m  . Then the 
Reeb vector   belongs to the distribution D  if and 
only if M  is locally congruent to an open part of a tube 
around a totally geodesic nP  in  2

2
mG  , where 

= 2m n . 
 

3. Proof of Theorem 1.1 
 
From the expression of the curvature tensor of 

 2
2

mG   we get 

     

      

    
       

3 3

=1 =1

3

=1

= 3 ,

3 , ,

,

, ,

i i i ii

i i i i

i i i

i i i i i i i i

R X X X g X

g X g X X

g X

X X g A AX g AX A



    
 

  


    

          

       

          

 

  

 

   

 


 

(3.1) 

for any tangent vector field X . From (3.1) we have 

     

              

                  
          

3

1 2 2 1
=1

1 2 2 1

3

=1

= ,

3 , ,

3 , ,

X X i i i X ii

i i X i i i i i X i

i i i i X i i

i i i i i X i

R Y g Y Y

Y AX g AX Y g Y Y AX AX

q X Y q X Y Y AX g AX Y g Y

Y q X q X AX AX

g



       


       



   

             

           

           

   

   

    

       

      

      

 



              
             

       
      

       

1 2

2 1

1 2 2 1

3

=1

, ,

, ,

, ,

, ,

i i i i X i i i i

i i i i i i i X i

i i

i i i i X i

AX AX g q X

q X g AX AX g Y

q X Y q X Y Y AX

g AX Y Y AX g AX Y

g AX AX g

    

     

     

  

 


             

             

        

     

        

 

 

   

   

    

   

  

          
               

      
         

               

 

1 2

2 1

3

1 2 2 1
=1

, ,

,

, , ( )

, , ,

,

i i i

i i i i i i X i i

i i X

i i i

i i i X i i

i

q X

q X g AX AX g Y

g Y AX Y

q X g Y q X g Y Y AX

g AX Y Y AX g AX Y g Y

g Y

  

     

  

    


    



    

             

      

      

             

 

 

 

   



    

  

   

    





       
               

         
         

    
     

3

1 2 2 1
=1

1 2 2 1

,

, ,

,

X i i i X

i i i i

i i X i i

i i i i

i i X i

X i i X i

AX

q X Y q X Y Y AX g AX Y

Y AX g AX Y g Y

Y q X q X AX g AX

AX AX

 

     


   

      

  

       

           

          

          

        

     

   

   

   

    

   

    

   

   



              1 2 2 1 , ,i i i i i i i i i

Y

q X Y q X Y Y AX g AX Y Y AX g AX Y                      
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1 2 2 1,

,

,

,

X i i i i i i i i

i i i X i i i i i i X i

i X i i X i i i X

i X X i i i X

g Y Y q X q X

g AX AX AX

A g A AY A A Y

A Y g AY A AY A

       

            

     

    

       

      

     

     

      (3.2) 

 
for any ,X Y  tangent to M . 

We will write    0 0 1 1= X X     , for a unit 

0X D , where we suppose    0 1 0X    . Then we 
have  1 1, = 0g    , = 1, 2,3 . Notice this is true 
even if D  .Thus the covariant derivative of 

1
R  is 

given by Equation (3.3), for any ,X Y  tangent to M . 
From this expression we have: 

Lemma 3.1 Let M  be a Hopf real hypersurface in 
 2

2
mG   such that D  or D -component of the 

Reeb vector field is A -invariant. If   =X i
R Y  

 Y i
R X , = 1,2,3i , for any ,X Y TM , then 
D   or D  . 

Proof: As we suppose =A   and have written 
   0 0 1 1= X X      with  0X  and  1   non 

 

null, where 0X D  is unit, as = 0  we get 
 0 1 1 0=X X    . Moreover, 0 0=AX X . 

Taking 0=X X  in Proposition 2.1 we have  

     
   

2
1 1 0 1 1 0 1 1 0

2
0 1 1 0

2

= 4

A X X X

X X

         

   

  
.  

From this, if = 0  we obtain    0 1 =0X   , giving 
us the result. Thus we suppose 0  . Therefore  

  2 2
1 0 0 1 0

1
= 4A X X X   


 . 

We also have  

 1 1 0 1 0= = X X     . 

      
   
                 

                  
         

1 1 1

1 1 1 1

1 1 1 1 1 1 1 1

3

1 1 2 2 1 1 1 1 1 1
=1

1 1 2 1 2 1 1 1 1

=

= ,

3 , ,

3 , ,

X X X

X X

X X

X

R Y R Y R Y

g Y Y

Y AX g AX Y g Y Y AX AX

q X Y q X Y Y AX g AX Y g Y

Y q X q X AX AX

  

       


      

   

              

           

         

   

   

   

   

       

      

     



 
               

           
        

             

1

3

1 2 1 2 1 1 1 1
=1

1 1 1

1 1 1 1

3

1 1 2 2 1 1 1 1 1
=1

, , ,

, ,

,

( ) ( ) , ( )

X

X

X X

q X g Y q X g Y Y AX g AX Y

Y AX g AX Y g Y

g Y AX

q X Y q X Y Y AX g AX Y AX Y

g



     


   

  

      


 

         

          

         

              

   

   



    

   

    

     







     
       

      
    
              

       

1 1 1

1 1 2 1 2 1 1 1

1 1 1 1

1 1 1

1 2 3 3 2 1 1 1 1

1 1 2 3 1 3 2

, ,

,

, ,

,

X

X

X X

X

AX Y g Y

Y q X q X AX

g AX AX AX

Y

q X Y q X Y Y AX g AX Y Y AX g AX Y

g Y Y q X q X

  

     

   

       

        

          

     

             

       

   

 

   

    

   

      

           
       
        

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1

,

,

,

X X

X X X

X X X

g AX AX AX

A g A AY A A Y

A Y g AY A AY A

            

     

    

      

     

     

(3.3)
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From (3.3) we get 

      

     

2
1 1 0 0 01

3 2
0 0 1

, =

7 .

g R X X X

X X

      

   

  

 
  (3.4) 

and 

    

     
1 0 01 1

2 3
0 1 0

, = 4

4 4 .

g R X X

X X

    

   

 

 
   (3.5) 

As we suppose that 
1

R  is of Codazzi type (3.4) 
and (3.5) must be equal. This yields  2

0 = 0X  . As 
we suppose 0   the result follows. □ 

With the hypothesis in Lemma 3.1, we can prove: 
Lemma 3.2 If D   then  , 0g AD D   
Proof: In this case, we can take 1=  . Thus the 

condition of 
1

R  being of Codazzi type is equivalent 
to R  also being. Taking =Y   and X D  we get 

   
 

3 2

2 3 1

= 2

2 .

X R AX A AX AX

AX AX

      

  

   

 
  (3.6) 

On the other hand 

     = .R X AX A X           (3.7) 

Therefore we have 

   
   

3 2 2 3 12 2

=

AX A AX AX AX AX

AX A X

       

  

    

 
 

Taking its scalar product with 2  it follows 

   
      

2 3

2 2

, 2

= , .

g A AX AX

AX g A X

   

    

 

 
     (3.8) 

and the scalar product with 3  yields 

   
      

3 2

3 3

, 2

= ,

g A AX AX

AX g A X

   

    

 

 
    (3.9) 

Now the Codazzi equation gives 

     
   

2 2

2 3

, = ,

= , .

Xg A X g A

g A AX AX

   

  

 

 
 

and 

     
   

3 3

3 2

, = ,

= , .

Xg A X g A

g A AX AX

   

  

 

 
 

From (3.8) and (3.9) we get 

       

       

2
3 2

2
2 3

2 = 0.

2 = 0.

AX AX

AX AX

    

    

 

  
   (3.10) 

If  =0   we have finished. If   0   , from (3.10)  

we obtain      
2

2 3

2
=AX AX

 
 


  and  3 AX  

   
2

2

2
= AX

 
 


 . Clearly, this yields  2 AX   

 3= = 0AX , finishing the proof. □ 
From this Lemma and Proposition 2.2, in order to fin-

ish the proof of our Theorem, we only have to see if the 
real hypersurfaces of either type  A  or type  B  
satisfy our condition. 

In the case of a real hypersurface of type  A  we get 
from Proposition 3 in [1], considering 1=   and taking 

2=X  , =Y  , that if our condition is satisfied we 
should have     22

=R R      . This yields 

  2
2 3 32 = 0.A        As    2 =A      

 3q    we have 

     3 32 = 0.q             (3.11) 

From (3.11) we have    3 0q      and 
 2 = 0   . If = 0 , from the second equality we 

also obtain = 0 , but  = 2cot 2r  for some  

π
0,

8
r

 
 
 

. Thus this is impossible. 

If =  , from the second equality we get 
2 2 = 0  , having a contradiction. Thus  3 = 0q  . 

From the second equality we get 2 = 0  , with 

 = 8cot 8r  and  = 2cot 2r  for some  

π
0,

8
r

 
 
 

. Then  22 = 2cot 2 = 0r  , which is  

impossible and we can conclude that type  A  real hy-
persurfaces do not satisfy our condition. 

In the case of a real hypersurface of type  B  let us 
suppose it satisfies our condition. From Proposition 2 in  

[1] it is easy to see that   1 11
, = 4g R       and 

   2
1 11

, = 4g R        . As both expressions 

must be equal, we obtain 
2

4
=

4




, where now 

 = 2tan 2r   and  =2cot 2r , for some 
π

0,
4

r
  
 

.  

This yields  2tan 2 = 2r  , which is impossible and the 
proof concludes. 

As a conclusion we have obtained that Jacobi opera-
tors corresponding to D -directions have the same be-
haviour as the normal Jacobi operator and structure Ja-
cobi operator if we consider their covariant derivatives in 
the direction of any tangent vector field are null. In order 
to continue this research it is interesting to investigate 
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what occurs if the covariant derivatives are taken in di-
rections corresponding to the two distributions appearing 
on the real hypersurface, namely D  and D . Also we 
can consider as a future work what happens if we deal 
with Lie derivatives of these Jacobi operators instead 
covariant derivatives. 
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