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Abstract. We introduce the notion of recurrent hypersurfaces in complex

two-plane Grassmannians G2(Cm+2) and give a non-existence theorem for a

Hopf hypersurface in G2(Cm+2) with recurrent shape operator.

Introduction

The notion of recurrent tensor field of type (r, s) on a differentiable manifold M
with a linear connection was well introduced in [7] and [15]. A non-zero tensor field
K of type (r, s) on M which is said to be recurrent if there exists a 1-form ω such
that

∇K = K ⊗ ω .

Moreover, they gave some geometric interpretation of such a manifold M with
recurrent curvature tensor K in terms of holonomy group, see also [7] and [15].

Now let us denote by A the shape operator of real hypersurfaces in non flat
complex space form Mn(c). Recently, Hamada ([5] and [6]) applied such a notion
of recurrent tensor to a shape operator or a Ricci tensor for real hypersurfaces M
in complex projective space CPn in such a way that

∇A = ω ⊗A

or
∇S = ω ⊗ S

for a certain 1-form ω defined on M , and proved the following :

Theorem A. The complex projective space CPn does not admit any real hyper-
surfaces with recurrent shape operator or recurrent Ricci tensor.

On the other hand, Suh [9] have explained the geometrical meaning of recurrent
shape operator A as follows :

[∇XA,A] = ω(X)[A,A] = 0

for any tangent vector field X defined on M . That is, the eigenspaces of the shape
operator A of M are parallel along any curve γ in M . Here, the eigenspaces of the
shape operator A are said to be parallel along γ if they are invariant with respect
to any parallel translation along γ.
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Now let us denote by G2(Cm+2) the set of all two-dimensional linear subspaces
in Cm+2. This Riemannian symmetric space G2(Cm+2) has a remarkable geomet-
rical structure. It is the unique compact irreducible Riemannian manifold being
equipped with both a Kaehler structure J and a quaternionic Kaehler structure J
not containing J .

In other words, G2(Cm+2) is the unique compact, irreducible, Kaehler, quater-
nionic Kaehler manifold which is not a hyper-Kaehler manifold. So, in G2(Cm+2)
we have the two natural geometrical conditions for real hypersurfaces M that
[ ξ ] = Span{ ξ } or D⊥ = Span{ ξ1, ξ2, ξ3 } are invariant under the shape op-
erator A of M . The almost contact structure vector field ξ mentioned above is
defined by ξ = −JN is said to be a Reeb vector field, where N denotes a local unit
normal vector field of M in G2(Cm+2). If the Reeb vector field ξ of M in G2(Cm+2)
is invariant by the shape operator, ξ is said to be a Hopf. The almost contact 3-
structure vector fields { ξ1, ξ2, ξ3 } for the 3-dimensional distribution D⊥ of M in
G2(Cm+2) are defined by ξν = −JνN , ν = 1 , 2 , 3, where Jν denotes a canonical
local basis of a quaternionic Kaehler structure J, such that TxM = D⊕D⊥, x ∈ M .

When the Reeb vector field ξ and the distribution D⊥ is invariant by the shape
operator A of real hypersurfaces M in G2(Cm+2), Berndt and Suh [2] have proved
the following

Theorem B. Let M be a connected real hypersurface in G2(Cm+2), m ≥ 3. Then
both [ ξ ] and D⊥ are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in
G2(Cm+2), or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally
geodesic HPn in G2(Cm+2).

Now we introduce the notion of recurrent shape operator tensor defined in such
a way that

(0.1) (∇XA)Y = ω(X)AY

for a 1-form ω and any vector fields X and Y on M in G2(Cm+2). When the shape
operator A of a real hypersurface M in G2(Cm+2) satisfies the formula (0.1), a
hypersurface M is said to be a recurrent hypersurface in G2(Cm+2).

Related to such a notion, Suh [14] has proved the non-existence for recurrent
hypersurfaces in G2(Cm+2) with D-invariant shape operator as follows :

Theorem C. There do not exist any recurrent real hypersurfaces in G2(Cm+2),
m ≥ 3 with D (resp. D⊥)-invariant shape operator.

On the other hand, the 1-dimensional foliation of M by the integral manifolds
of the Reeb vector field ξ is said to be a Hopf foliation of M . We say that M is
a Hopf hypersurfaces in G2(Cm+2) if and only if the Hopf foliation of M is totally
geodesic. By the formulas in section 2 it can be easily checked that M is Hopf if
and only if the Reeb vector field ξ is Hopf. Such a notion of Hopf hypersurface in
complex projective space CPn is mainly discussed by Cecil and Ryan [4] and the
invariancy of the distribution D⊥ for hypersurface in quaternionic space forms was
investigated in Berndt [1].
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In this paper, we have considered the notion of Hopf hypersurface in G2(Cm+2)
and give another non-existence theorem for Hopf hypersurfaces in G2(Cm+2) with
recurrent shape operator as follows :

Main Theorem. There do not exist any Hopf recurrent hypersurfaces in complex
two-plane Grassmannian, G2(Cm+2), m ≥ 3.

1. Riemannian geometry of G2(Cm+2)

In this section we summarize basic material about G2(Cm+2), for details we re-
fer to [2] and [3]. By G2(Cm+2) we denote the set of all complex two-dimensional
linear subspaces in Cm+2. The special unitary group G = SU(m + 2) acts transi-
tively on G2(Cm+2) with stabilizer isomorphic to K = S(U(2)×U(m)) ⊂ G. Then
G2(Cm+2) can be identified with the homogeneous space G/K, which we equip
with the unique analytic structure for which the natural action of G on G2(Cm+2)
becomes analytic. Denote by g and k the Lie algebra of G and K, respectively,
and by m the orthogonal complement of k in g with respect to the Cartan-Killing
form B of g. Then g = k⊕ m is an Ad(K)-invariant reductive decomposition of g.
We put o = eK and identify ToG2(Cm+2) with m in the usual manner. Since B
is negative definite on g, its negative restricted to m × m yields a positive definite
inner product on m. By Ad(K)-invariance of B this inner product can be extended
to a G-invariant Riemannian metric g on G2(Cm+2). In this way G2(Cm+2) be-
comes a Riemannian homogeneous space, even a Riemannian symmetric space. For
computational reasons we normalize g such that the maximal sectional curvature of
(G2(Cm+2), g) is eight. Since G2(C3) is isometric to the two-dimensional complex
projective space CP 2 with constant holomorphic sectional curvature eight we will
assume m ≥ 2 from now on. Note that the isomorphism Spin(6) ' SU(4) yields
an isometry between G2(C4) and the real Grassmann manifold G+

2 (R6) of oriented
two-dimensional linear subspaces of R6.

The Lie algebra k has the direct sum decomposition k = su(m)⊕su(2)⊕R, where
R is the center of k. Viewing k as the holonomy algebra of G2(Cm+2), the center R
induces a Kaehler structure J and the su(2)-part a quaternionic Kaehler structure
J on G2(Cm+2). If J1 is any almost Hermitian structure in J, then JJ1 = J1J , and
JJ1 is a symmetric endomorphism with (JJ1)2 = I and tr(JJ1) = 0.

A canonical local basis J1, J2, J3 of J consists of three local almost Hermitian
structures Jν in J such that JνJν+1 = Jν+2 = −Jν+1Jν , where the index is taken
modulo three. Since J is parallel with respect to the Riemannian connection ∇̄ of
(G2(Cm+2), g), there exist for any canonical local basis J1, J2, J3 of J three local
one-forms q1, q2, q3 such that

(1.1) ∇̄XJν = qν+2(X)Jν+1 − qν+1(X)Jν+2

for all vector fields X on G2(Cm+2).
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The Riemannian curvature tensor R̄ of G2(Cm+2) is locally given by

R̄(X, Y )Z =g(Y, Z)X − g(X, Z)Y + g(JY, Z)JX

− g(JX,Z)JY − 2g(JX, Y )JZ

+
3∑

ν=1

{g(JνY, Z)JνX − g(JνX, Z)JνY

− 2g(JνX, Y )JνZ}+
3∑

ν=1

{g(JνJY, Z)JνJX

− g(JνJX,Z)JνJY },

(1.2)

where {J1, J2, J3} is any canonical local basis of J.

2. Some fundamental formulas in G2(Cm+2)

In this section we derive some basic formulae and the Codazzi equation for a real
hypersurface in G2(Cm+2) (see [2], [3], [8], [10], [11], [12], [13] and [14]).

Let M be a real hypersurface of G2(Cm+2), that is, a hypersurface of G2(Cm+2)
with real codimension one. The induced Riemannian metric on M will also be
denoted by g, and ∇ denotes the Riemannian connection of (M, g). Let N be a
local unit normal field of M and A the shape operator of M with respect to N . The
Kaehler structure J of G2(Cm+2) induces on M an almost contact metric structure
(φ, ξ, η, g). Furthermore, let J1, J2, J3 be a canonical local basis of J. Then each Jν

induces an almost contact metric structure (φν , ξν , ην , g) on M . Using the above
expression (1.2) for the curvature tensor R̄ of G2(Cm+2), the Codazzi equation
becomes

(∇XA)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+
3∑

ν=1

{
ην(X)φνY − ην(Y )φνX − 2g(φνX, Y )ξν

}
+

3∑
ν=1

{
ην(φX)φνφY − ην(φY )φνφX

}
+

3∑
ν=1

{
η(X)ην(φY )− η(Y )ην(φX)

}
ξν .

The following identities can be proved in a straightforward method and will be
used frequently in subsequent calculations :

φν+1ξν = −ξν+2, φνξν+1 = ξν+2,

φξν = φνξ, ην(φX) = η(φνX),

φνφν+1X = φν+2X + ην+1(X)ξν ,

φν+1φνX = −φν+2X + ην(X)ξν+1.

(2.1)

Now let us put

JX = φX + η(X)N, JνX = φνX + ην(X)N
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for any tangent vector X of a real hypersurface M in G2(Cm+2), where N denotes
a unit normal vector of M in G2(Cm+2). Then from this and the formulas (1.1)
and (2.1) we have the following

(2.2) (∇Xφ)Y = η(Y )AX − g(AX, Y )ξ, ∇Xξ = φAX,

(2.3) ∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX,

(∇Xφν)Y =− qν+1(X)φν+2Y + qν+2(X)φν+1Y + ην(Y )AX

− g(AX, Y )ξν .
(2.4)

Summing up these formulas, we find the following

∇X(φνξ) = ∇X(φξν)

= (∇Xφ)ξν + φ(∇Xξν)

= qν+2(X)φν+1ξ − qν+1(X)φν+2ξ + φνφAX

− g(AX, ξ)ξν + η(ξν)AX.

(2.5)

Moreover, from JJν = JνJ , ν = 1, 2, 3, it follows that

(2.6) φφνX = φνφX + ην(X)ξ − η(X)ξν .

3. A Key Lemma

Let M be a real hypersurface in G2(Cm+2) with recurrent shape operator. Then
it satisfied the condition that

(∇XA)Y = ω(X)AY

for a 1-form ω and any vector fields X, Y defined on M . By the equation of Codazzi
in section 2 we have that

(∇ξA)Y − (∇Y A)ξ = ω(ξ)AY − ω(Y )Aξ

= φY +
3∑

v=1

{ ην(ξ)φνY − ην(Y )φνξ − 2g(φνξ, Y )ξν }

+
3∑

ν=1

ην(φY )ξν .

(3.1)

Since we assumed that M is Hopf, (3.1) gives

(3.2) ω(ξ)AY = αω(Y )ξ + φY +
3∑

ν=1

{ην(ξ)φνY − ην(Y )φνξ + 3ην(φY )ξν }.

Now we assert the key Lemma as following :

Lemma 3.1. Let M be a recurrent hypersurface in G2(Cm+2). If the Reeb vector
ξ is principal, then ξ belongs to either the distribution D or to the distribution D⊥.
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Proof. To prove this Lemma we put ξ = η(X0)X0 + η(ξ1)ξ1 for some unit vector
X0 ∈ D. Here we notice that η(X0) and η(ξ1) are not zero. In (3.2) by putting
Y = ξ1 we have

ω(ξ)Aξ1 = αω(ξ1)ξ + φ1ξ +
3∑

ν=1

{ 3ην(φ1ξ)ξν − ην(ξ1)φνξ }

= αω(ξ1)ξ + φ1ξ − 3η3(ξ)ξ2 + 3η2(ξ)ξ3 − φ1ξ

= αω(ξ1)ξ .

(3.3)

We get also the following equations by putting Y = ξ2 and Y = ξ3 in (3.2), similarly.

ω(ξ)Aξ2 = αω(ξ2)ξ − 2η1(ξ)ξ3 ,

ω(ξ)Aξ3 = αω(ξ3)ξ + 2η1(ξ)ξ2 .
(3.4)

From these equations, taking an inner product with ξ, it follows that

α{ω(ξ1)− ω(ξ)η1(ξ)} = 0 ,

αω(ξ2) = 0 ,

αω(ξ3) = 0 .

(3.5)

Thus we can consider two cases that the first is α = 0 and the second is not.
For the first case α = 0, by the lemma due to Pérez and Suh [8] we know that ξ
belongs to either the distribution D or to the distribution D⊥.

Now let us consider the remaining case, α 6= 0. From (3.5), we have

ω(ξ1) = ω(ξ)η1(ξ) ,

ω(ξ2) = 0 , ω(ξ3) = 0 .
(3.6)

Substituting these equations into (3.3) and (3.4) gives

ω(ξ)Aξ1 = αω(ξ)η1(ξ)ξ,

ω(ξ)Aξ2 = −2η1(ξ)ξ3,

ω(ξ)Aξ3 = 2η1(ξ)ξ2.

(3.7)

From this, we consider the following two subcases :

Subcase II-1 . ω(ξ) = 0.

Then (3.7) gives η1(ξ) = 0. This implies ξ ∈ D.

Subcase II-2 . ω(ξ)6=0.

Then (3.7) give the following

Aξ1 = αη1(ξ)ξ ,

Aξ2 = −2η1(ξ)
ω(ξ)

ξ3 ,

Aξ3 =
2η1(ξ)
ω(ξ)

ξ2 .

(3.8)
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From this, taking an inner product with ξ3 to the second formula of (3.8), it
follows that

(3.9) g(Aξ2, ξ3) = g(−2η1(ξ)
ω(ξ)

ξ3, ξ3) = −2η1(ξ)
ω(ξ)

.

On the other hand, from the third formula of (3.8) we have

g(Aξ2, ξ3) = g(Aξ3, ξ2) = g(
2η1(ξ)
ω(ξ)

ξ2, ξ2) =
2η1(ξ)
ω(ξ)

.

From this, together with (3.9), it follows η1(ξ)
ω(ξ) = 0. That is, η1(ξ) = 0, which gives

ξ ∈ D. This complete the proof of our Lemma 3.1. �

4. Recurrent hypersurfaces for ξ ∈ D⊥

In this section by Lemma 3.1 we consider the case that ξ ∈ D⊥. That is, we
consider a Hopf hypersurface M in G2(Cm+2) with recurrent shape operator and
ξ∈D⊥. Accordingly, we may put ξ = ξ1. Then (3.2) implies the following

Lemma 4.1. Let M be a Hopf recurrent hypersurface in G2(Cm+2). If ξ ∈ D⊥,
then g(AD,D⊥) = 0.

Proof. Since we have assumed ξ ∈ D⊥, we may put ξ = ξ1. Then from (3.3) and
(3.4) we know that

ω(ξ1)Aξ1 = αω(ξ1)ξ1,

ω(ξ1)Aξ2 = αω(ξ2)ξ1 − 2ξ3,

ω(ξ1)Aξ3 = αω(ξ3)ξ1 + 2ξ2.

(4.1)

From this, if we take an inner product with X ∈ D, then we have

(4.2) ω(ξ1)g(Aξν , X) = 0, ν = 1, 2, 3.

So, for the case where ω(ξ1) 6= 0 in (4.2) we have our assertion. Now let us
consider the case that ω(ξ1) = 0. Then (4.1) gives the following

(4.3) αω(ξ2)ξ1 = 2ξ3 and αω(ξ3)ξ1 = −2ξ2,

which makes a contradiction. So, we complete the proof of Lemma 3.1. �

Now in order to complete the proof of our main theorem we recall a proposition
due to Berndt and Suh [2] as follows :

Proposition A. Let M be a connected real hypersurface of G2(Cm+2). Suppose
that AD ⊂ D, Aξ = αξ, and ξ is tangent to D⊥. Let J1 ∈ J be the almost
Hermitian structure such that JN = J1N . Then M has three (if r = π/2

√
8) or

four (otherwise) distinct constant principal curvatures

α =
√

8 cot(
√

8r) , β =
√

2 cot(
√

2r) , γ = −
√

2 tan(
√

2r) , µ = 0

with some r ∈ (0, π/
√

8). The corresponding multiplicities are

m(α) = 1 , m(β) = 2 , m(γ) = 2m− 2 = m(µ),

and the corresponding eigenspaces are
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Tα = Rξ = RJN = Rξ1,

Tβ = C⊥ξ = C⊥N = Rξ2 ⊕ Rξ3,

Tγ = {X|X ⊥ Hξ, JX = J1X},
Tµ = {X|X ⊥ Hξ, JX = −J1X}

where Rξ, Cξ and Hξ respectively denotes real, complex and quaternionic span of
the structure vector ξ and C⊥ξ denotes the orthogonal complement of Cξ in Hξ.

Without loss of generality we may put ξ = ξ1. Now let us put Y = ξ2 in Tβ in
(3.2). Then by using (3.5) we have

ω(ξ1)Aξ2 = αω(ξ2)ξ1 + φξ2 + φ1ξ2 + 3
3∑

ν=1

ην(φY )ξν − φ2ξ

= αω(ξ2)ξ1 − ξ3 + ξ3 − 3ξ3 + ξ3

=
√

8 cot(
√

8r)ω(ξ2)ξ1 − 2ξ3.

On the other hand, by Proposition A we know that

Aξ2 = βξ2 =
√

2 cot(
√

2r)ξ2.

Then summing up these two formulas, we have

(4.4)
√

2 cot(
√

2r)ω(ξ1)ξ2 =
√

8 cot(
√

8r)ω(ξ2)ξ1 − 2ξ3 .

If we take the scalar product of (4.4) and ξ3 then we derive a contradiction. So
we assert the following :

Theorem 4.2. There do not exist any Hopf recurrent hypersurfaces in G2(Cm+2)
satisfying ξ ∈ D⊥.

5. Recurrent hypersurfaces for ξ ∈ D

Now by Lemma 3.1 we consider the case that the Reeb vector belongs to D. In
this section, we give a complete classification of Hopf recurrent hypersurfaces in
G2(Cm+2) with ξ∈D. Thus we assert the following

Lemma 5.1. Let M be a Hopf recurrent hypersurface in G2(Cm+2) . If the Reeb
vector ξ belongs to the distribution D, then g(AD,D⊥) = 0.

Proof. By using ξ ∈ D in (3.3) and (3.4) we have the following for ν = 1, 2, 3,

ω(ξ)Aξν = αω(ξν)ξ, ν = 1, 2, 3.

From this, by taking an inner product with ξ, it follows that

0 = αω(ξ)ην(ξ) = αω(ξν).

That is, ω(ξ)Aξν = 0. Thus we consider the following two cases :
Case I . Aξν = 0.
Then naturally we have g(AD,D⊥) = 0.

Case II . ω(ξ) = 0.
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Let us take an inner product of the equation of Codazzi with ξ and using the
differentiation of Aξ = αξ. Then we get

−2g(φX, Y ) + 2
3∑

ν=1

{ην(X)ην(φY )− ην(Y )ην(φX)− g(φνX, Y )ην(ξ)}

= g((∇XA)Y, ξ)− g((∇Y A)X, ξ)

= g((∇XA)ξ, Y )− g((∇Y A)ξ, X)

= (Xα)η(Y )− (Y α)η(X) + αg((Aφ + φA)X, Y )− 2g(AφAX, Y ) .

(5.1)

From this, if we put X = ξ, then

(5.2) Y α = (ξα)η(Y )− 4
3∑

ν=1

ην(ξ)ην(φY ) .

In this case the recurrence of Hopf hypersurfaces and ω(ξ) = 0 give

(∇ξA)Y = ω(ξ)AY = 0

for any tangent vector field Y on M . This gives

∇ξ(AY ) = A(∇ξY ).

Then by putting Y = ξ and using M is Hopf, we have

0 = ∇ξ(Aξ) = ∇ξ(αξ) = (ξα)ξ.

So, we see that ξα = 0. From this and using (5.2) and ξ∈D, it follows that

(5.3) Y α = 0

for any tangent vector field Y on M . This means that the function α is constant
on M .

On the other hand, by differentiating Aξ = αξ and using (5.3) we have the
following

αω(X)ξ + AφAX = αφAX.

So, it follows that for any tangent vector field X on M

(5.4) αω(X)ξ = αφAX −AφAX.

Now we consider a subdistribution D1 of the distribution D defined in such a way
that

D1 = {X ∈ D | X⊥ξ, X⊥φiξ, i = 1, 2, 3}.
Then from (3.2) and using ξ ∈ D in Case II we have

(5.5) 0 = αω(X)ξ + φX

for any X∈D1. Then (5.4) and (5.5) give the following

(5.6) αφAX −AφAX + φX = 0

for any X∈D1.
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On the other hand, (5.1) and (5.3) give the following

−2φX = α(Aφ + φA)X − 2AφAX

for any X ∈ D1 where we have used the fact that ξ ∈ D. From this and together
with (5.6) we get

2αφAX = α(Aφ + φA)X,

which gives

αφAX = αAφX

for any X∈D1. Then we have the following two subcases.
Subcase II-1 . α = 0.
From (5.4) and (5.6) we have φX = 0 for any X∈D1. Then by applying φ we

have X = 0 for any X∈D1. But this case can not appear.

Subcase II-2 . α 6= 0.
By putting Y = ξ in the Codazzi equation in section 2, we have

(∇XA)ξ − (∇ξA)X = −φX +
3∑

ν=1

{ην(X)φνξ − 2g(φνX, ξ)ξν − ην(φX)ξν}.

From this, together with the recurrence and ω(ξ) = 0, it follows that

(5.7) αω(X)ξ = −φX

for any X∈D1. Taking an inner product with ξ we have αω(X) = 0 for any X∈D1.
This gives ω(X) = 0 for any X∈D1. Then (5.7) gives φX = 0 for any X∈D1, which
also makes a contradiction. So, Case II can not appear. �

Then by virtue of Theorem A in the introduction, a Hopf recurrent hypersurface
in G2(Cm+2) with ξ ∈ D is congruent to of type B, that is, a tube over a totally
real quaternionic projective space HPn, m = 2n. Now for this type of hypersurface
we introduce the following (See [2])

Proposition B. Let M be a connected real hypersurface of G2(Cm+2). Suppose
that AD ⊂ D, Aξ = αξ, and ξ is tangent to D. Then the quaternionic dimension
m of G2(Cm+2) is even, say m = 2n, and M has five distinct constant principal
curvatures

α = −2 tan(2r) , β = 2 cot(2r) , γ = 0 , λ = cot(r) , µ = − tan(r)

with some r ∈ (0, π/4). The corresponding multiplicities are

m(α) = 1 , m(β) = 3 = m(γ) , m(λ) = 4n− 4 = m(µ)

and the corresponding eigenspaces are

Tα = Rξ , Tβ = JJξ , Tγ = Jξ , Tλ , Tµ ,

where

Tλ ⊕ Tµ = (HCξ)⊥ , JTλ = Tλ , JTµ = Tµ , JTλ = Tµ .
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Then by putting Y = φ1ξ in Tγ in Proposition B, we have

0 = γω(ξ)φ1ξ = ω(ξ)Aφ1ξ = αω(φ1ξ)ξ + φ2ξ1 + 3
3∑

ν=1

ην(φ2ξ1)ξν

= αω(φ1ξ)ξ − ξ1 − 3ξ1

= αω(φ1ξ)ξ − 4ξ1,

which gives a contradiction for ξ∈D. So we assert the following

Theorem 5.2. There do not exist any Hopf recurrent hypersurfaces in G2(Cm+2)
with ξ ∈ D.

Then summing up Theorems 4.2 and 5.2 we complete the proof of our Main
Theorem in the introduction.

Acknowledgmet The authors would like to express their hearty thanks to Pro-
fessor Young Jin Suh for his valuable suggestions and continuous encouragement
during the preparation of this work.

References

[1] J. Berndt, Real hypersurfaces in quaternionic space forms, J. Reine Angew. Math.,
419 (1991), 9–26.

[2] J. Berndt and Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians, Monat-

shefte für Math., 127 (1999), 1-14.
[3] J. Berndt and Y.J. Suh, Isometric flows on real hypersurfaces in complex two-plane Grass-

mannians, Monatshefte für Math., 137 (2002), 87-98.

[4] T.E. Cecil and P.J. Ryan, Focal sets and real hypersurfaces in complex projective space,
Trans. Amer. Math. Soc., 269 (1982), 481-499.

[5] T. Hamada, On real hypersurfaces of a complex projective space with recurrent second fun-

damental form, Ramanujan Math. Soc., 11 (1996), 103–1079.
[6] T. Hamada, Real hypersurfaces of a complex projective space with recurrent Ricci tensor,

Glasgow Math. J., 41 (1999), 297–302.
[7] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry I, Wiley and Sons Inc.

(New York-London, 1963).
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