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ABSTRACT. We introduce the notion of recurrent hypersurfaces in complex
two-plane Grassmannians G2(C™%2) and give a non-existence theorem for a
Hopf hypersurface in G2(C™%2) with recurrent shape operator.

INTRODUCTION

The notion of recurrent tensor field of type (r, s) on a differentiable manifold M
with a linear connection was well introduced in [7] and [15]. A non-zero tensor field
K of type (r,s) on M which is said to be recurrent if there exists a 1-form w such
that

VK=KQ®uw.
Moreover, they gave some geometric interpretation of such a manifold M with
recurrent curvature tensor K in terms of holonomy group, see also [7] and [15].

Now let us denote by A the shape operator of real hypersurfaces in non flat
complex space form M, (c). Recently, Hamada ([5] and [6]) applied such a notion
of recurrent tensor to a shape operator or a Ricci tensor for real hypersurfaces M
in complex projective space CP™ in such a way that

VA=w®A

or
VS=w®s
for a certain 1-form w defined on M, and proved the following :

Theorem A. The complex projective space CP™ does not admit any real hyper-
surfaces with recurrent shape operator or recurrent Ricci tensor.

On the other hand, Suh [9] have explained the geometrical meaning of recurrent
shape operator A as follows:

[VxA, Al = w(X)[A, A = 0

for any tangent vector field X defined on M. That is, the eigenspaces of the shape
operator A of M are parallel along any curve vy in M. Here, the eigenspaces of the
shape operator A are said to be parallel along ~ if they are invariant with respect
to any parallel translation along ~.
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Now let us denote by G5(C™%2) the set of all two-dimensional linear subspaces
in C™*2. This Riemannian symmetric space G(C™*2) has a remarkable geomet-
rical structure. It is the unique compact irreducible Riemannian manifold being
equipped with both a Kaehler structure J and a quaternionic Kaehler structure J
not containing .J.

In other words, Go(C™*2) is the unique compact, irreducible, Kaehler, quater-
nionic Kaehler manifold which is not a hyper-Kaehler manifold. So, in G5(C™%2)
we have the two natural geometrical conditions for real hypersurfaces M that
[€] = Span{&} or D1 = Span{&;, &, &} are invariant under the shape op-
erator A of M. The almost contact structure vector field £ mentioned above is
defined by £ = —JN is said to be a Reeb vector field, where IV denotes a local unit
normal vector field of M in G5(C™*2). If the Reeb vector field £ of M in Go(C™*2)
is invariant by the shape operator, £ is said to be a Hopf. The almost contact 3-
structure vector fields { &1, &, &3} for the 3-dimensional distribution ®+ of M in
G2(C™*+2) are defined by &, = —J,N, v =1, 2, 3, where J, denotes a canonical
local basis of a quaternionic Kaehler structure J, such that T,M = D@D+, z € M.

When the Reeb vector field ¢ and the distribution -+ is invariant by the shape
operator A of real hypersurfaces M in Go(C™*2), Berndt and Suh [2] have proved
the following

Theorem B. Let M be a connected real hypersurface in Go(C™+2), m > 3. Then
both [£] and DL are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic Go(C™*1) in
GQ(Cm+2)f or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally
geodesic HP™ in Go(C™*2).

Now we introduce the notion of recurrent shape operator tensor defined in such
a way that

(0.1) (VxA)Y = w(X)AY

for a 1-form w and any vector fields X and Y on M in Go(C™*2). When the shape
operator A of a real hypersurface M in Ga(C™*2) satisfies the formula (0.1), a
hypersurface M is said to be a recurrent hypersurface in Go(C™*2).

Related to such a notion, Suh [14] has proved the non-existence for recurrent
hypersurfaces in Go(C™*2) with D-invariant shape operator as follows :

Theorem C. There do not exist any recurrent real hypersurfaces in Go(C™+2),
m >3 with ® (resp. D+ )-invariant shape operator.

On the other hand, the 1-dimensional foliation of M by the integral manifolds
of the Reeb vector field ¢ is said to be a Hopf foliation of M. We say that M is
a Hopf hypersurfaces in Go(C™%2) if and only if the Hopf foliation of M is totally
geodesic. By the formulas in section 2 it can be easily checked that M is Hopf if
and only if the Reeb vector field £ is Hopf. Such a notion of Hopf hypersurface in
complex projective space CP™ is mainly discussed by Cecil and Ryan [4] and the
invariancy of the distribution ©+ for hypersurface in quaternionic space forms was
investigated in Berndt [1].
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In this paper, we have considered the notion of Hopf hypersurface in Go(C™*2)
and give another non-existence theorem for Hopf hypersurfaces in Go(C™%2) with
recurrent shape operator as follows:

Main Theorem. There do not exist any Hopf recurrent hypersurfaces in complex
two-plane Grassmannian, Go(C™+2), m > 3.

1. RIEMANNIAN GEOMETRY OF Gi(C™*2)

In this section we summarize basic material about Ga(C™*2), for details we re-
fer to [2] and [3]. By G2(C™*2) we denote the set of all complex two-dimensional
linear subspaces in C™*2. The special unitary group G = SU(m + 2) acts transi-
tively on Go(C™*2) with stabilizer isomorphic to K = S(U(2) x U(m)) C G. Then
G2(C™*2) can be identified with the homogeneous space G/K, which we equip
with the unique analytic structure for which the natural action of G on Go(C™*2)
becomes analytic. Denote by g and £ the Lie algebra of G and K, respectively,
and by m the orthogonal complement of ¢ in g with respect to the Cartan-Killing
form B of g. Then g = ¢ @ m is an Ad(K)-invariant reductive decomposition of g.
We put 0o = eK and identify T,G2(C™%2) with m in the usual manner. Since B
is negative definite on g, its negative restricted to m x m yields a positive definite
inner product on m. By Ad(K)-invariance of B this inner product can be extended
to a G-invariant Riemannian metric g on G2(C™*?). In this way Go(C™*2) be-
comes a Riemannian homogeneous space, even a Riemannian symmetric space. For
computational reasons we normalize g such that the maximal sectional curvature of
(G2(C™*2), g) is eight. Since G5(C3) is isometric to the two-dimensional complex
projective space CP? with constant holomorphic sectional curvature eight we will
assume m > 2 from now on. Note that the isomorphism Spin(6) ~ SU(4) yields
an isometry between Go(C*) and the real Grassmann manifold G5 (R%) of oriented
two-dimensional linear subspaces of RS.

The Lie algebra ¢ has the direct sum decomposition £ = su(m)@su(2) R, where
R is the center of €. Viewing € as the holonomy algebra of G5(C™%2), the center R
induces a Kaehler structure J and the su(2)-part a quaternionic Kaehler structure
Jon GQ(Cm+2). If J; is any almost Hermitian structure in J, then JJ; = J;J, and
JJi is a symmetric endomorphism with (J.J;)? = I and tr(JJ;) = 0.

A canonical local basis Ji, Js, J3 of J consists of three local almost Hermitian
structures J, in J such that J,J,+1 = J 42 = —J,41J,, where the index is taken
modulo three. Since J is parallel with respect to the Riemannian connection V of
(G2(C™*+2), g), there exist for any canonical local basis Ji,Jo, J3 of J three local
one-forms ¢1, g2, g3 such that

(1.1) VxJy = qu2(X)ui1 = Qa1 (X) Ty

for all vector fields X on Go(C™*+2).
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The Riemannian curvature tensor R of G(C™*+2) is locally given by

R(X.Y)Z =g(Y,2)X — g(X,2)Y + g(JY,Z)JX
—9(JX,2)JY —29(JX,Y)JZ
3
+ Y {g(JvY, 2)1, X — g(J, X, Z)],Y
v=1
3
—29(LX, V), 2} + > {g(LJY, 2)],IX
v=1

-9(JLJX,Z)J,JY},

where {.J1, J2, J3} is any canonical local basis of J.

2. SOME FUNDAMENTAL FORMULAS IN Gg(C™%2)

In this section we derive some basic formulae and the Codazzi equation for a real
hypersurface in Go(C™%2) (see [2], [3], [8], [10], [11], [12], [13] and [14]).

Let M be a real hypersurface of Go(C™*2), that is, a hypersurface of Go(C™*+2)
with real codimension one. The induced Riemannian metric on M will also be
denoted by g, and V denotes the Riemannian connection of (M, g). Let N be a
local unit normal field of M and A the shape operator of M with respect to N. The
Kaehler structure J of Go(C™%2) induces on M an almost contact metric structure
(¢,&,m, g). Furthermore, let Jq, J2, J3 be a canonical local basis of J. Then each J,
induces an almost contact metric structure (¢,,&,,7,,9) on M. Using the above
expression (1.2) for the curvature tensor R of Go(C™*2), the Codazzi equation
becomes

(VxA)Y = (Vy A)X = n(X)oY —n(Y)oX —29(¢X,Y)E

3

3 {0 (X06Y —1,(Y)$u X —29(6, X, Y)E, }
3

+ 3 {m(6X)$, Y — (V)6 X }

3
+ 5 (X0, (6Y) — (Y )mu(6X) }&, .

The following identities can be proved in a straightforward method and will be
used frequently in subsequent calculations :

G118 = —Eur2,  Ouur1 = g2,
o6 = & m(9X) = n(guX),
Gupu11X = P2 X + 111 (X)E,
bu+100 X = =12 X + 0y (X) &1

(2.1)

Now let us put
JX = (Z5X +77(X)N7 J X = ¢UX +771/(X)N
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for any tangent vector X of a real hypersurface M in Go(C™*?2), where N denotes
a unit normal vector of M in G(C™*2). Then from this and the formulas (1.1)
and (2.1) we have the following

(2.2) (Vx@)Y =n(Y)AX —g(AX,Y)§, Vx{=9¢AX,

(2'3) VXfl/ = qy+2(X)£u+1 —qu+1 (X)£V+2 + (buAX)

(Vxo)Y == qui1(X)dp2Y + qui2(X)pp 1Y + 1, (Y)AX
—9(AX,Y)S,.
Summing up these formulas, we find the following
Vx(o€) = Vx(6&)
= (Vx¢)& + o(Vx&)
= @u42(X) v 418 — @41 (X)bu 428 + dppAX
— 9(AX,§)& +n(&)AX.
Moreover, from JJ, = J,J, v =1,2,3, it follows that

(2.4)

(2.5)

(26) ¢¢VX = ¢V¢X + nu(X)f - 77(X)§V-

3. A KEy LEMMA

Let M be a real hypersurface in Go(C™*%2) with recurrent shape operator. Then
it satisfied the condition that

(VxA)Y =w(X)AY
for a 1-form w and any vector fields X, Y defined on M. By the equation of Codazzi
in section 2 we have that

(VeA)Y — (Vy A)§ = w(§)AY —w(Y)AL

3
=Y + > {m (Y —n(Y)h€ —29(6.€, V)6, }

v=1

3
+ m(6Y)E, .
v=1

(3.1)

Since we assumed that M is Hopf, (3.1) gives

3
(32)  w(©AY =aw(Y)E+ Y + Y {m()d,Y — 0 (V)& + 3n,(6Y)E, ).

v=1
Now we assert the key Lemma as following:

Lemma 3.1. Let M be a recurrent hypersurface in Go(C™%2). If the Reeb vector
€ is principal, then € belongs to either the distribution ® or to the distribution .



6 SEONHUI KIM, HYUNJIN LEE AND HAE YOUNG YANG

Proof.  To prove this Lemma we put £ = n(Xo)Xo + n(£1)&1 for some unit vector
Xo € ©. Here we notice that 1n(Xy) and n(&;) are not zero. In (3.2) by putting
Y = &1 we have

3
w(€)AG = aw(€)é+ dr6+ Y _{3n,(619)& — m(§1)dué }

3.3 v=1

33 = aw(&) + 01§ — 3n3(§)&2 + 3n2(§)E&s — 1€

= aw(&)E.
We get also the following equations by putting Y = & and Y = &3 in (3.2), similarly.

w(§) A& = aw(&2)€ — 2m(£)Es,
w(§) ALz = aw(&3)€ + 2m (€& -

From these equations, taking an inner product with &, it follows that

(3.4)

afw(&) —w(@m(§)} =0,
(3.5) aw(§) =0,
aw(&s) = 0.

Thus we can consider two cases that the first is @ = 0 and the second is not.
For the first case @ = 0, by the lemma due to Pérez and Suh [8] we know that &
belongs to either the distribution ® or to the distribution ©+.

Now let us consider the remaining case, o # 0. From (3.5), we have

w(&1) = w(&m(&),
w(§2) =0, w(&)=0.

Substituting these equations into (3.3) and (3.4) gives

w(§) A& = aw(§)m(§)E,
(3.7) w(§) A& = —2m(§)&,
w(§)ALs = 2m(£)&-
From this, we consider the following two subcases:
Subcase II-1. w(§) =0.
Then (3.7) gives 11 (§) = 0. This implies £ € D.
Subcase II-2.  w(&)#0.
Then (3.7) give the following

(3.6)

A&y = ami(§)E,

_ 72771(5)
(38) AEZ - w(f) 53;
Ags = 2m () §2.

w(£)
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From this, taking an inner product with &3 to the second formula of (3.8), it
follows that

2m(§) 2m(§)
. A — g(— - .
(3.9) 9(A&2,&3) = g( o(©) €3,83) 2©
On the other hand, from the third formula of (3.8) we have
2m(§) 2m(§)
A =g(A = = .
g( £2a§3) g( €3a€2) g( u)(f) 62752) w(f)
From this, together with (3.9), it follows Zl(—g)) = 0. That is, 1(£) = 0, which gives
¢ € ®©. This complete the proof of our Lemma 3.1. O

4. RECURRENT HYPERSURFACES FOR £ € D+

In this section by Lemma 3.1 we consider the case that ¢ € ®1. That is, we
consider a Hopf hypersurface M in Go(C™%2) with recurrent shape operator and
£e®+. Accordingly, we may put & = &;. Then (3.2) implies the following

Lemma 4.1. Let M be a Hopf recurrent hypersurface in Go(C™+2). If ¢ € DL,
then g(AD,D1) = 0.

Proof.  Since we have assumed ¢ € ®+, we may put & = &;. Then from (3.3) and
(3.4) we know that

w(é1)A& = aw(&r)éa,
(4.1) w(§1)A& = aw(&2)ér — 263,
w(€1) ALz = aw(&3)61 + 2&s.

From this, if we take an inner product with X € ®, then we have

(4.2) w(€)g(AE,, X)=0, v=1,2,3.

So, for the case where w(§;) # 0 in (4.2) we have our assertion. Now let us
consider the case that w(§1) = 0. Then (4.1) gives the following

(4.3) aw(&2)é =28 and  aw(€3)é = —2&,

which makes a contradiction. So, we complete the proof of Lemma 3.1. d

Now in order to complete the proof of our main theorem we recall a proposition
due to Berndt and Suh [2] as follows:

Proposition A. Let M be a connected real hypersurface of Go(C™%2). Suppose
that AD C D, A¢ = of, and & is tangent to ©+. Let J, € J be the almost
Hermitian structure such that JN = J;yN. Then M has three (if r = ©/2v/8) or
four (otherwise) distinct constant principal curvatures

a=V8cot(V8r), B =v2cot(v2r), v=—V2tan(v2r), p=0
with some r € (0,7/+/8). The corresponding multiplicities are
m(a) =1, m(B) =2, m(y) =2m—2=m(p),

and the corresponding eigenspaces are
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T, =Ré =RJN = R&,

Ty = CH¢{ = C'N = R&; & REs,
T, ={X|X LH, JX = J1 X},
T,={X|X LH,, JX = -J1 X}

where RE, CE and HE respectively denotes real, complexr and quaternionic span of
the structure vector & and Ct¢ denotes the orthogonal complement of C£ in HE.

Without loss of generality we may put £ = &;. Now let us put Y =&, in T3 in
(3.2). Then by using (3.5) we have

3
w(€) A& = 0w (&) + ¢l + d1&a + 3D mu(@Y)E — haf

v=1
= aw(&2)1 — &3+ 83— 363+ &3
= VBeot(VEr)w(&)é — 2.
On the other hand, by Proposition A we know that
Ay = P&r = V2 cot (V2r)6s.
Then summing up these two formulas, we have
(4.4) V2 cot(V2r)w(€1)€ = V8 cot (V8 w(&y)ér — 265

If we take the scalar product of (4.4) and & then we derive a contradiction. So
we assert the following:

Theorem 4.2. There do not exist any Hopf recurrent hypersurfaces in Ga(C™*2)
satisfying &€ € ©*.

5. RECURRENT HYPERSURFACES FOR £ € ©

Now by Lemma 3.1 we consider the case that the Reeb vector belongs to ®. In

this section, we give a complete classification of Hopf recurrent hypersurfaces in
Go(C™*2) with £€®. Thus we assert the following

Lemma 5.1. Let M be a Hopf recurrent hypersurface in Go(C™+2) . If the Reeb
vector & belongs to the distribution ®, then g(AD,D+) = 0.

Proof. By using £ € D in (3.3) and (3.4) we have the following for v = 1,2, 3,
W(f)Afl, = OéLd(é-V)é-, v= 17 23 3
From this, by taking an inner product with &, it follows that

0= aw(&)n,(§) = aw(&y).

That is, w(§) A&, = 0. Thus we consider the following two cases:
Case I. A&, =0.
Then naturally we have g(AD,D1) = 0.

Case II. w(§) =0.
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Let us take an inner product of the equation of Codazzi with £ and using the
differentiation of A{ = a&. Then we get

3
296X, Y) + 2> {n(X)m(6Y) = (V)1 (6X) — g(60 X, V), (€)}

v=1

(5.1) =9((VxA)Y,§) —g((Vy 4)X,§)
=9((VxA)§Y) = g((Vy A)¢, X)
= Xa)n(Y) = (Ya)n(X) + ag((Ap + ¢A)X,Y) — 29(ApAX,Y).
From this, if we put X = &, then

3
(5.2) Ya=(Ea)n) =4 n,(On.(4Y).

v=1
In this case the recurrence of Hopf hypersurfaces and w(§) = 0 give
(VeAY =w(§)AY =0
for any tangent vector field Y on M. This gives
Ve(AY) = A(VeY).
Then by putting ¥ = £ and using M is Hopf, we have
0 = Ve(A€) = Ve(ag) = (€a)e.
So, we see that o = 0. From this and using (5.2) and £€D, it follows that

(5.3) Ya=0

for any tangent vector field Y on M. This means that the function « is constant
on M.
On the other hand, by differentiating A{ = « and using (5.3) we have the
following
aw(X)E+ ApAX = apAX.

So, it follows that for any tangent vector field X on M

(5.4) aw(X)€ = apAX — ApAX.

Now we consider a subdistribution ®; of the distribution © defined in such a way
that

D,={XeD| XLE X1¢:& i=1,2,3}.
Then from (3.2) and using £ € ® in Case II we have

(5.5) 0=aw(X)¢+ ¢pX
for any X€®;. Then (5.4) and (5.5) give the following

(5.6) apAX — ApAX +¢X =0
for any X€9,.
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On the other hand, (5.1) and (5.3) give the following
—20X = a(A¢p + pA)X —2A9pAX
for any X € ®; where we have used the fact that £ € ®. From this and together
with (5.6) we get
200AX = a(Ap + ¢A) X,
which gives
apAX = aApX

for any X€®;. Then we have the following two subcases.

Subcase II-1. o =0.

From (5.4) and (5.6) we have ¢X = 0 for any X€®;. Then by applying ¢ we
have X = 0 for any X€®;. But this case can not appear.

Subcase II-2. « # 0.
By putting Y = £ in the Codazzi equation in section 2, we have

3
(VXA = (VeA)X = =X + > {n(X)dé — 29(60. X, £)& — (6 X)6 }-
v=1

From this, together with the recurrence and w(§) = 0, it follows that

(5.7) aw(X)E = —oX

for any X€®;. Taking an inner product with & we have aw(X) = 0 for any X€D;.
This gives w(X) = 0 for any X€D;. Then (5.7) gives ¢ X = 0 for any X €04, which
also makes a contradiction. So, Case II can not appear. O

Then by virtue of Theorem A in the introduction, a Hopf recurrent hypersurface
in Go(C™*2) with ¢ € D is congruent to of type B, that is, a tube over a totally
real quaternionic projective space HP™, m = 2n. Now for this type of hypersurface
we introduce the following (See [2])

Proposition B. Let M be a connected real hypersurface of Go(C™+2). Suppose
that AD C D, A = a&, and & is tangent to ®. Then the quaternionic dimension
m of Go(C™*2) is even, say m = 2n, and M has five distinct constant principal
curvatures

a=—2tan(2r), [B=2cot(2r), v=0, A=cot(r), p=—rtan(r)
with some r € (0,7/4). The corresponding multiplicities are
m(e) =1, m(B) =3=m(y), mA)=4n—4=m(p)
and the corresponding eigenspaces are
T, =R, Tg=3J¢, T,=3¢, Tn, T,,
where
TyeT, = (HCH)", IT=T\, IT,=T,, JT\=T,.
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Then by putting ¥ = ¢1£ in T, in Proposition B, we have

3
0 =w(€)d1€ = w(€)Agi& = aw(hr1&)é + 6 +3 D mu(¢°6)E,

v=1

= aw($1§)€ — & — 36
= aw(p1§)€ — 41,

which gives a contradiction for £€®. So we assert the following

Theorem 5.2. There do not exist any Hopf recurrent hypersurfaces in Go(C™%2)
with £ € 9.

Then summing up Theorems 4.2 and 5.2 we complete the proof of our Main

Theorem in the introduction.
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