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REAL HYPERSURFACES IN COMPLEX TWO-PLANE

GRASSMANNIANS WITH CERTAIN COMMUTING CONDITION II

Hyunjin Lee, Seonhui Kim, Young Jin Suh, Daegu

(Received November 20, 2012)

Abstract. Lee, Kim and Suh (2012) gave a characterization for real hypersurfaces M
of Type (A) in complex two plane Grassmannians G2(C

m+2) with a commuting condition
between the shape operator A and the structure tensors ϕ and ϕ1 for M in G2(C

m+2).
Motivated by this geometrical notion, in this paper we consider a new commuting condition
in relation to the shape operator A and a new operator ϕϕ1 induced by two structure tensors
ϕ and ϕ1. That is, this commuting shape operator is given by ϕϕ1A = Aϕϕ1. Using this
condition, we prove thatM is locally congruent to a tube of radius r over a totally geodesic
G2(C

m+1) in G2(C
m+2).

Keywords: complex two-plane Grassmannians; Hopf hypersurface; D⊥-invariant hyper-
surface; commuting shape operator; Reeb vector field
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Introduction

The study of real hypersurfaces in complex two-plane Grassmannians G2(C
m+2)

was initiated by Berndt and Suh [3]. Let us denote by G2(C
m+2) the set of all com-

plex two-dimensional linear subspaces in C
m+2. This set can be identified with the

homogeneous space SU(m+2)/S(U(2)×U(m)). From this, we know that G2(C
m+2)

becomes the unique compact irreducible Riemannian manifold being equipped with

both a Kaehler structure J and a quaternionic Kaehler structure J commuting with J .

In other words, G2(C
m+2) is the unique compact, irreducible, Kaehler, quaternionic

Kaehler manifold which is not a hyper-Kaehler manifold ([3], [6], [7]).

This work was supported by grant Proj. No. NRF-2011-220-C00002 from National Re-
search Foundation of Korea. The first author was supported by grant Proj. No. NRF-
2012R1A1A3002031 and the third by grant Proj. No. NRF-2012R1A2A2A01043023.
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InG2(C
m+2) we have the following two natural geometric conditions for real hyper-

surfacesM : the 1-dimensional distribution [ξ] = Span{ξ} and the 3-dimensional dis-
tributionD⊥ = Span{ξ1, ξ2, ξ3} are invariant under the shape operator A ofM . Here
the almost contact structure vector field ξ defined by ξ = −JN is said to be a Reeb

vector field, where N denotes a local unit normal vector field of M in G2(C
m+2).

The almost contact 3-structure vector fields {ξ1, ξ2, ξ3} for the 3-dimensional dis-

tribution D⊥ of M in G2(C
m+2) are defined by ξν = −JνN (ν = 1, 2, 3), where

Jν denotes a canonical local basis of a quaternionic Kaehler structure J, such that

TxM = D⊕D⊥, x ∈ M .

By using these two invariant conditions and the result in Alekseevskij [1], Berndt

and Suh [3] proved the following:

Theorem A. Let M be a connected real hypersurface in G2(C
m+2), m > 3.

Then both [ξ] and D⊥ are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G2(C
m+1) in G2(C

m+2),

or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally

geodesic HPn in G2(C
m+2).

The Reeb vector field ξ is said to be Hopf if it is invariant under the shape operator

A. The 1-dimensional foliation of M by the integral curves of the Reeb vector field

ξ is said to be a Hopf foliation of M . We say that M is a Hopf hypersurface in

G2(C
m+2) if and only if the Hopf foliation of M is totally geodesic. By the almost

contact metric structure (ϕ, ξ, η, g) and the formula ∇Xξ = ϕAX for any X ∈ TM ,

it can be easily checked that M is Hopf if and only if the Reeb vector field ξ is Hopf.

And when the distribution D⊥ of a hypersurfaceM in G2(C
m+2) is invariant by the

shape operator, that is, AD⊥ ⊂ D⊥, we call M a D⊥-invariant hypersurface. Note

that AD⊥ ⊂ D⊥ implies AD ⊂ D, and vice versa.

Here, we say that the Reeb flow on M in G2(C
m+2) is isometric, when the Reeb

vector field ξ is Killing. In [4], Berndt and Suh gave some equivalent conditions on

the isometric Reeb flow. Among these conditions, the authors paid their attention

to the following: the Reeb flow on M is isometric if and only if the shape operator

A commutes with the structure tensor field ϕ, that is, Aϕ = ϕA. Using this notion,

they gave a characterization for real hypersurfaces of Type (A) in Theorem A.

In [13] Suh considered a commuting condition that the shape operator A com-

mutes with three structure tensor fields ϕν for ν = 1, 2, 3, that is, Aϕν = ϕνA for

any ν = 1, 2, 3, and gave a characterization of Hopf hypersurfaces of Type (B) in

Theorem A while in [18] he gave another characterization of Type (B) in terms of

contact hypersurfaces, that is, Aϕ+ϕA = kϕ where k 6= 0 (for the case k = 0, Jeong,
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Lee and Suh gave the non-existence theorem in [5]). Moreover, with the normal Ja-

cobi operator or the Ricci tensor, Pérez, Jeong, Suh and Watanabe considered such

commuting problems for real hypersurfaces in G2(C
m+2) (see [10], [11] and [12]).

In particular, focused on the Ricci tensor, Suh gave some classifications for real

hypersurfaces in G2(C
m+2) with a parallel, ξ-invariant or Reeb-parallel Ricci tensor

(see [16], [15], and [17]). More generally, in [14] he has given a complete classifica-

tion of real hypersurfaces in G2(C
m+2) with harmonic curvature or Weyl harmonic

curvature.

From the geometric structure of G2(C
m+2) we have a natural commuting condition

JJν = JνJ , ν = 1, 2, 3, between the Kaehler structure J and the quaternionic Kaehler

structure J having a canonical local basis Jν , ν = 1, 2, 3. In the case ν = 1, from this

commuting condition JJ1 = J1J we have a relation between two structure tensors ϕ

and ϕ1 in such a way that

ϕϕ1X = ϕ1ϕX − η(X)ξ1 + η1(X)ξ

for any tangent vector field X on M . Using this operator ϕϕ1, recently Lee, Kim

and Suh [8] considered a commuting condition between the shape operator A and

two structure tensors ϕ and ϕ1 as follows:

Theorem B. Let M be a connected orientable Hopf hypersurface in G2(C
m+2),

m > 3. Then the shape operator A satisfies the commuting condition ϕϕ1A = Aϕ1ϕ

if and only if M is an open part of a tube around a totally geodesic G2(C
m+1) in

G2(C
m+2).

Motivated by this results, naturally we consider another new commuting condi-

tion (∗) with the operator ϕϕ1 on the distribution D⊥, that is, the shape operator

A commutes with the new operator ϕϕ1 composed by two structure tensors ϕ and

ϕ1. Then in this paper we assert the following:

Main Theorem. Let M be a Hopf hypersurface in complex two-plane Grass-

mannians G2(C
m+2), m > 3, with a commuting shape operator, that is,

(∗) ϕϕ1AX = Aϕϕ1X

for any tangent vector field X ∈ D⊥. If the integral curve of the D-component of

the Reeb vector field ξ is geodesic, then M is locally congruent to an open part of

a tube around a totally geodesic G2(C
m+1) in G2(C

m+2).

In order to give a complete proof of our Main Theorem, in Section 1 we recall

the Riemannian geometry of complex two-plane Grassmannians G2(C
m+2). In Sec-

tion 2 some fundamental formulas for real hypersurfaces are also recalled and the

information for a model space in G2(C
m+2) is given in detail.
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In Lemma 3.2 of Section 3 we give some detailed information when the D (or

the D⊥)-component of the Reeb vector field is principal. Moreover, in Lemma 3.3

of Section 3, by virtue of Lemma 3.2 we prove that the Reeb vector field ξ belongs

to either the distribution D or the distribution D⊥ under the assumption that the

integral curve of the D-component is geodesic. In Section 4 we give a complete proof

of our Main Theorem according to the geodesic Reeb flow satisfying ξ ∈ D or ξ ∈ D⊥.

1. Preliminaries

Before going to give our assertions, let us summarize the basic material about

complex two-plane Grassmannians G2(C
m+2); for details we refer to [2], [3], [4], [6]

and [7].

By G2(C
m+2) we denote the set of all complex two-dimensional linear subspaces in

C
m+2. The special unitary groupG = SU(m+2) acts transitively on G2(C

m+2) with

stabilizer isomorphic toK = S(U(2)×U(m)) ⊂ G. Then G2(C
m+2) can be identified

with the homogeneous spaceG/K, which we equip with the unique analytic structure

for which the natural action of G on G2(C
m+2) becomes analytic. Denote by g and

k the Lie algebra of G and K, respectively, and by m the orthogonal complement of

k in g with respect to the Cartan-Killing form B of g. Then g = k⊕m is an Ad(K)-

invariant reductive decomposition of g. We put o = eK and identify ToG2(C
m+2)

with m in the usual manner. Since B is negative definite on g, its negative restriction

to m × m yields a positive definite inner product on m. By Ad(K)-invariance of

B this inner product can be extended to a G-invariant Riemannian metric g on

G2(C
m+2). In this way G2(C

m+2) becomes a Riemannian homogeneous space, even

a Riemannian symmetric space. For computational reasons we normalize g so that

the maximal sectional curvature of (G2(C
m+2), g) is eight.

When m = 1, G2(C
3) is isometric to the two-dimensional complex projective

space CP 2 with constant holomorphic sectional curvature eight. In addition, when

m = 2, we note that the isomorphism Spin(6) ≃ SU(4) yields an isometry between

G2(C
4) and the real Grassmann manifold G+

2 (R
6) of oriented two-dimensional lin-

ear subspaces in R
6. From such a point of view, we consider complex two-plane

Grassmannians G2(C
m+2), m > 3.

The Lie algebra k has the direct sum decomposition

k = su(m)⊕ su(2)⊕R,

where R denotes the center of k. Viewing k as the holonomy algebra of G2(C
m+2),

the center R induces a Kaehler structure J and the su(2)-part of a quaternionic

Kaehler structure J on G2(C
m+2). If Jν is any almost Hermitian structure in J,
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then JJν = JνJ , and JJν is a symmetric endomorphism with (JJν)
2 = I and

tr(JJν) = 0 for ν = 1, 2, 3.

A canonical local basis {J1, J2, J3} of J consists of three local almost Hermitian
structures Jν in J such that JνJν+1 = Jν+2 = −Jν+1Jν , where the index ν is taken

modulo three. Since J is parallel with respect to the Riemannian connection ∇ of
(G2(C

m+2), g), there exist for any canonical local basis {J1, J2, J3} of J three local
one-forms q1, q2, q3 such that

(1.1) ∇XJν = qν+2(X)Jν+1 − qν+1(X)Jν+2

for all vector fields X on G2(C
m+2).

Moreover, the Riemannian curvature tensor R of G2(C
m+2) is locally given by

(1.2) R(X,Y )Z = g(Y, Z)X − g(X,Z)Y + g(JY, Z)JX

− g(JX,Z)JY − 2g(JX, Y )JZ

+

3
∑

ν=1

{g(JνY, Z)JνX − g(JνX,Z)JνY − 2g(JνX,Y )JνZ}

+

3
∑

ν=1

{g(JνJY, Z)JνJX − g(JνJX,Z)JνJY },

where {J1, J2, J3} denotes a canonical local basis of J.

2. Some fundamental formulas and previous results

In this section we derive some basic formulas for a real hypersurface in G2(C
m+2)

(see [3], [4], [5], [9], [11], etc.). In addition, we introduce some previous results used

in our proof as primary tools.

Let M be a real hypersurface of G2(C
m+2), that is, a hypersurface of G2(C

m+2)

with real codimension one. The induced Riemannian metric on M will also be

denoted by g, and ∇ denotes the Levi-Civita connection of (M, g). Let N be a local

unit normal vector field of M and A the shape operator of M with respect to N .

Now let us put

(2.1) JX = ϕX + η(X)N, JνX = ϕνX + ην(X)N

for any tangent vector field X of M in G2(C
m+2), where N denotes a unit normal

vector field ofM in G2(C
m+2). Owing to the Kaehler structure J of G2(C

m+2) there

exists an almost contact metric structure (ϕ, ξ, η, g) induced onM in such a way that

(2.2) ϕ2X = −X + η(X)ξ, η(ξ) = 1, ϕξ = 0, η(X) = g(X, ξ)
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for any vector field X on M . Furthermore, let {J1, J2, J3} be a canonical local basis
of J. Then the quaternionic Kaehler structure Jν of G2(C

m+2), together with the

condition JνJν+1 = Jν+2 = −Jν+1Jν mentioned in Section 1, induces an almost

contact metric 3-structure (ϕν , ξν , ην , g) on M as follows:

(2.3) ϕ2
νX = −X + ην(X)ξν , ην(ξν) = 1, ϕνξν = 0,

ϕν+1ξν = − ξν+2, ϕνξν+1 = ξν+2,

ϕνϕν+1X = ϕν+2X + ην+1(X)ξν ,

ϕν+1ϕνX = − ϕν+2X + ην(X)ξν+1

for any vector field X tangent to M . Moreover, due to the commuting property of

JνJ = JJν , ν = 1, 2, 3 in Section 1 and (2.1), the relation between these two contact

metric structures (ϕ, ξ, η, g) and (ϕν , ξν , ην , g), ν = 1, 2, 3, can be given by

(2.4) ϕϕνX = ϕνϕX + ην(X)ξ − η(X)ξν ,

ην(ϕX) = η(ϕνX), ϕξν = ϕνξ.

On the other hand, from the Kaehler structure J , that is, ∇J = 0 and the quater-

nionic Kaehler structure Jν (see (1.1)), together with Gauss and Weingarten formulas

it follows that

(∇Xϕ)Y = η(Y )AX − g(AX, Y )ξ, ∇Xξ = ϕAX,(2.5)

∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + ϕνAX,(2.6)

(∇Xϕν)Y = − qν+1(X)ϕν+2Y + qν+2(X)ϕν+1Y + ην(Y )AX − g(AX, Y )ξν .(2.7)

As we have mentioned in the introduction, with two invariant conditions on the

shape operator for real hypersurfaces in G2(C
m+2) Berndt and Suh [3] classified all

real hypersurfaces inG2(C
m+2) into two kinds of hypersurfaces which are said to be of

Type (A) or of Type (B). For these model spaces, they gave some detailed information

for eigenvalues, its corresponding eigenspaces and multiplicities and some geometric

structures.

Now let us introduce a proposition concerned with a tube of Type (A) as follows:

Proposition A. Let M be a connected real hypersurface of G2(C
m+2). Suppose

that AD ⊂ D, Aξ = αξ, and ξ is tangent to D⊥. Let J1 ∈ J be the almost Hermitian

structure such that JN = J1N . ThenM has three (if r = π/2
√
8) or four (otherwise)

distinct constant principal curvatures

α =
√
8 cot(

√
8r), β =

√
2 cot(

√
2r), λ = −

√
2 tan(

√
2r), µ = 0

138



with some r ∈ (0, π/
√
8). The corresponding multiplicities are

m(α) = 1, m(β) = 2, m(λ) = 2m− 2 = m(µ),

and the corresponding eigenspaces are

Tα = Rξ = RJN = Rξ1 = Span{ξ} = Span{ξ1},
Tβ = C

⊥ξ = C
⊥N = Rξ2 ⊕ Rξ3 = Span{ξ2, ξ3},

Tλ = {X ; X ⊥ Hξ, JX = J1X},
Tµ = {X ; X ⊥ Hξ, JX = −J1X}

where Rξ, Cξ and Hξ, respectively, denote the real, complex and quaternionic span

of the structure vector field ξ and C
⊥ξ denotes the orthogonal complement of Cξ

in Hξ.

On the other hand, for a model space of Type (B) in G2(C
m+2) we have (see [3])

Proposition B. Let M be a connected real hypersurface in G2(C
m+2). Suppose

that AD ⊂ D, Aξ = αξ, and ξ is tangent to D. Then the quaternionic dimension

m of G2(C
m+2) is even, say m = 2n, and M has five distinct constant principal

curvatures

α = −2 tan(2r), β = 2 cot(2r), γ = 0, λ = cot(r), µ = − tan(r)

with some r ∈ (0, π/4). The corresponding multiplicities are

m(α) = 1, m(β) = 3 = m(γ), m(λ) = 4n− 4 = m(µ)

and the corresponding eigenspaces are

Tα = Rξ = Span{ξ},
Tβ = JJξ = Span{ξν ; ν = 1, 2, 3},
Tγ = Jξ = Span{ϕνξ; ν = 1, 2, 3},
Tλ, Tµ,

where

Tλ ⊕ Tµ = (HCξ)⊥, JTλ = Tλ, JTµ = Tµ, JTλ = Tµ.

The distribution (HCξ)⊥ is the orthogonal complement of HCξ where

HCξ = Rξ ⊕ RJξ ⊕ Jξ ⊕ JJξ.

Next, let us introduce a lemma due to Berndt and Suh [4]. Using the fact Aξ = αξ

and the equation of Codazzi, they gave the following lemma:
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Lemma A. Let M be a Hopf hypersurface in G2(C
m+2), m > 3. Then the

smooth function α = g(Aξ, ξ) on M satisfies

(2.8) Y α = (ξα)η(Y )− 4

3
∑

ν=1

ην(ξ)ην(ϕY )

for any tangent vector field Y on M .

3. Key lemmas

Let M be a Hopf hypersurface in G2(C
m+2) with the commuting shape operator,

that is, the shape operator A of M commutes with the new operator ϕϕ1 composed

by two structure tensors ϕ and ϕ1 as follows:

(∗) ϕϕ1AX = Aϕϕ1X

for any tangent vector field X ∈ D⊥.

In this section, our purpose is to show that the Reeb vector field ξ belongs either

to the distribution D or the distribution D⊥ under the assumption (∗). In order to
do this, we suppose that the Reeb vector field ξ is given by

(∗∗) ξ = η(X0)X0 + η(ξ1)ξ1,

so that η(X0)η(ξ1) 6= 0 for some unit vector fields X0 ∈ D and ξ1 ∈ D⊥.

Under this assumption, we first prove the following:

Lemma 3.1. LetM be a Hopf hypersurface in complex two-plane Grassmannians

G2(C
m+2), m > 3. If the D-component of the Reeb vector field ξ is principal, then

it has a corresponding principal curvature α and the D⊥-component of ξ becomes

a principal curvature with the same principal curvature α. Moreover, the converse

also holds.

P r o o f. To show this lemma, first we assume that the D-component of the Reeb

vector field ξ is a principal curvature vector field with the corresponding principal

curvature λ, that is, AX0 = λX0 for some smooth function λ on M .

Since we have assumed that M is Hopf, it follows that

(3.1) Aξ = αξ ⇔ η(X0)AX0 + η(ξ1)Aξ1 = αη(X0)X0 + αη(ξ1)ξ1

⇔ λη(X0)X0 + η(ξ1)Aξ1 = αη(X0)X0 + αη(ξ1)ξ1.
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From this, if we take the inner product with X0, we have λ = α, because η(X0) 6= 0.

That is, we have AX0 = αX0. Then it follows that Aξ1 = αξ1, because (3.1) and

η(ξ1) 6= 0. This means that the D⊥-component of ξ becomes a principal curvature

vector field with the corresponding principal curvature α.

Now let us show the converse. In fact, due to our assumption of the A-invariance

to the D⊥-component of ξ we may put Aξ1 = µξ1. From this, we get

η(X0)AX0 + µη(ξ1)ξ1 = αη(X0)X0 + αη(ξ1)ξ1,

together with our assumption Aξ = αξ. If we take the inner product with ξ1, then

it follows that µ = α and AX0 = αX0 because η(X0)η(ξ1) 6= 0. �

By virtue of Lemma 3.1, we have:

Lemma 3.2. LetM be a Hopf hypersurface in complex two-plane Grassmannians

G2(C
m+2),m > 3. If theD (orD⊥)-component of the Reeb vector field ξ is principal,

then we have the following formulae:

(i) qν(ξ) = 0, qν(X0) = 0, qν(ξ1) = 0 for ν = 2, 3,

(ii) ∇X0
X0 = −2α(η(ξ1)/η(X0))ϕ1X0 = (2α/η(X0))ϕX0,

(iii) ∇X0
ξ1 = αϕ1X0, ∇ξ1ξ1 = 0, ∇ξ1X0 = αϕ1X0.

P r o o f. By the above Lemma 3.1, under our assumptions we know that

AX0 = αX0 and Aξ1 = αξ1.

From the equation (2.6), we obtain

{

∇ξξ2 = q1(ξ)ξ3 − q3(ξ)ξ1 + αϕ2ξ,

∇ξξ3 = q2(ξ)ξ1 − q1(ξ)ξ2 + αϕ3ξ,

under our assumption Aξ = αξ. Taking the inner product with ξ in these equations,

we have η(ξ1)qν(ξ) = 0 (ν = 2, 3), where g(∇ξξν , ξ) = −g(ξν ,∇ξξ) = −g(ξν , ϕAξ) =

−αg(ξν , ϕξ) = 0 for ν = 2, 3. Since η(ξ1) 6= 0, it means that for ν = 2, 3,

qν(ξ) = 0.

Now (∗∗) implies that

(3.2) η(X0)q2(X0) = −η(ξ1)q2(ξ1), η(X0)q3(X0) = −η(ξ1)q3(ξ1).
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Next, we consider the covariant derivative of ξ along the direction of X0, that is,

∇X0
ξ. From (2.5) and our assumption AX0 = αX0, it follows that ∇X0

ξ = ϕAX0 =

αϕX0. In addition, the assumption (∗∗) gives

(3.3) ∇X0
ξ = ∇X0

(η(X0)X0 + η(ξ1)ξ1)

= g(∇X0
X0, ξ)X0 + g(X0,∇X0

ξ)X0 + η(X0)∇X0
X0

+ g(∇X0
ξ1, ξ)ξ1 + g(ξ1,∇X0

ξ)ξ1 + η(ξ1)∇X0
ξ1

= η(X0)g(∇X0
X0, X0)X0 + η(ξ1)g(∇X0

X0, ξ1)X0 + g(ϕAX0, X0)X0

+ η(X0)∇X0
X0 + η(X0)g(∇X0

ξ1, X0)ξ1 + η(ξ1)g(∇X0
ξ1, ξ1)ξ1

+ g(ϕAX0, ξ1)ξ1 + η(ξ1)∇X0
ξ1

= η(ξ1)g(∇X0
X0, ξ1)X0 + g(ϕAX0, X0)X0 + η(X0)∇X0

X0

+ η(X0)g(∇X0
ξ1, X0)ξ1 + g(ϕAX0, ξ1)ξ1 + η(ξ1)∇X0

ξ1.

Summing up the above formulas, we have

αϕX0 = − η(ξ1)g(X0,∇X0
ξ1)X0 + αg(ϕX0, X0)X0 + η(X0)∇X0

X0

+ η(X0)g(∇X0
ξ1, X0)ξ1 + αg(ϕX0, ξ1)ξ1 + η(ξ1)∇X0

ξ1

= η(X0)∇X0
X0 + η(ξ1){q3(X0)ξ2 − q2(X0)ξ3 + αϕ1X0},

where we have used ∇X0
ξ1 = q3(X0)ξ2 − q2(X0)ξ3 + αϕ1X0 and g(ϕX0, ξ1) =

g(∇X0
ξ1, X0) = 0. Moreover, it follows that

(3.4) −2αη(ξ1)ϕ1X0 = η(X0)∇X0
X0 + η(ξ1)q3(X0)ξ2 − η(ξ1)q2(X0)ξ3,

where we have used ϕX0 = −η(ξ1)ϕ1X0 which comes from ϕξ = 0 and the assump-

tion (∗∗).
Since ϕ1ξ2 = ξ3 and g(∇X0

X0, ξ2) = −g(X0,∇X0
ξ2) = 0, let us take the inner

product with ξ2 in (3.4). This yields η(ξ1)q3(X0)ξ2 = 0. Since η(ξ1) 6= 0, we have

q3(X0) = 0.

Similarly, taking the inner product with ξ3 in (3.4), we have

q2(X0) = 0,

because we know that ϕ1ξ3 = −ξ2 and ∇X0
ξ3 = q2(X0)ξ1 − q1(X0)ξ2 + αϕ3X0.

By using these results, the equation (3.2) implies

q2(ξ1) = 0, q3(ξ1) = 0

because η(ξ1) 6= 0.
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Moreover, since q2(X0) = q3(X0) = 0, the equation (3.4) becomes

−2αη(ξ1)ϕ1X0 = η(X0)∇X0
X0,

that is,

∇X0
X0 = −2α

η(ξ1)

η(X0)
ϕ1X0 =

2α

η(X0)
ϕX0,

because η(X0) 6= 0 and ϕX0 = −η(ξ1)ϕ1X0.

On the other hand, the formula∇Y ξ1 = q3(Y )ξ2−q2(Y )ξ3+ϕ1AY for any Y ∈ TM

gives that

(3.5) ∇X0
ξ1 = q3(X0)ξ2 − q2(X0)ξ3 + ϕ1AX0 = αϕ1X0,

∇ξ1ξ1 = q3(ξ1)ξ2 − q2(ξ1)ξ3 + ϕ1Aξ1 = αϕ1ξ1 = 0.

To show the last equation in Lemma 3.2, we consider the covariant derivative of

ξ along the ξ1-direction, that is, ∇ξ1ξ. From our assumption (∗∗), we obtain that

∇ξ1ξ = ∇ξ1(η(X0)X0 + η(ξ1)ξ1)

= η(ξ1)g(∇ξ1X0, ξ1)X0 + g(X0, ϕAξ1)X0 + η(X)∇ξ1X0

+ η(X0)g(∇ξ1ξ1, X0)ξ1 + g(ξ1, ϕAξ1)ξ1 + η(ξ1)∇ξ1ξ1.

It follows that

(3.6) ∇ξ1ξ = η(X0)∇ξ1X0,

and from (3.5), AX0 = αX0 and Aξ1 = αξ1. On the other hand, from (2.5) we

get ∇ξ1ξ = ϕAξ1 = αϕξ1 = αη(X0)ϕ1X0, because ϕξ1 = η(X0)ϕ1X0. From this

and (3.6), we see that

∇ξ1X0 = αϕ1X0,

since η(X0) 6= 0. �

Using Lemmas 3.1 and 3.2, we can assert the following:

Lemma 3.3. Let M be a Hopf hypersurface in G2(C
m+2) with the commuting

shape operator (∗). If the integral curve of the D-component of the Reeb vector field
ξ is geodesic, then ξ belongs either to the distribution D or the distribution D⊥.

P r o o f. Putting X = ξ1 into (∗), it becomes ϕϕ1Aξ1 = 0, because ϕ1ξ1 = 0.

From this, applying the structure tensor ϕ, we get

(3.7) −ϕ1Aξ1 + η(ϕ1Aξ1)ξ = 0.
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From this, if we take the inner product with ξ1, it follows that η(ϕ1Aξ1) = 0, because

η(ξ1) 6= 0. Thus from (3.7) we get ϕ1Aξ1 = 0, from which applying the structure

tensor ϕ1, it follows that

(3.8) Aξ1 = λξ1, where λ = η1(Aξ1),

that is, the D⊥-component of ξ becomes a principal vector field. Hence, we have

(3.9) g(Aξ1, X0) = g(Aξ1, ξ2) = g(Aξ1, ξ3) = 0.

Now, substituting X = ξ2 in (∗), it follows that

ϕϕ1Aξ2 = Aϕϕ1ξ2 = Aϕξ3 = Aϕ3ξ = η(X0)Aϕ3X0 + η(ξ1)Aξ2,

together with (2.3), (2.4) and (∗∗). Taking the inner product with ξ1 of this equation,
we have g(ϕϕ1Aξ2, ξ1) = 0 from (3.8). Thus we obtain

(3.10) g(Aξ2, X0) = 0,

where ϕ1ϕξ1 = ϕ2
1ξ = −ξ + η(ξ1)ξ1 = −η(X0)X0 and η(X0)η(ξ1) 6= 0.

Similarly, putting X = ξ3 in (∗), we have

(3.11) g(Aξ3, X0) = 0.

Combining (3.9), (3.10) and (3.11), we see that the D-component of ξ is invariant

under the shape operator, that is, AX0 ∈ D.

Next, in order to use Lemma 3.2, we first want to prove that

AX0 = αX0, and Aξ1 = αξ1.

Since we have assumed that M is a Hopf hypersurface, the formula Aξ = αξ can

be rewritten as

αη(X0)X0 + αη(ξ1)ξ1 = η(X0)AX0 + η(ξ1)Aξ1

= η(X0)AX0 + λη(ξ1)ξ1,

by using (∗∗) and (3.8). By comparing the D and D⊥ parts, we obtain αη(X0)X0 =

η(X0)AX0 and αη(ξ1)ξ1 = λη(ξ1)ξ1, because AX0 ∈ D. This implies that λ = α,

from which together with (3.8) and (∗∗) we have

(3.12) AX0 = αX0, Aξ1 = αξ1.
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This formula gives that the D and D⊥-components of the Reeb vector field ξ become

principal vectors. Then by Lemma 3.2 we have

η(X0)∇X0
X0 = 2αϕX0.

Since we have assumed that the D-component of ξ is geodesic, it follows that

2αϕX0 = 0.

From this, taking the inner product with ϕX0, we obtain that 2αη
2(ξ1) = 0,

because g(ϕX0, ϕX0) = 1−η2(X0) = η2(ξ1). By our assumption η(ξ1) 6= 0, it means

that the smooth function α must be vanishing, that is, α = 0. Then by Lemma A

in Section 2, we have
3

∑

ν=1

ην(ξ)ϕνξ = 0,

for the case α = 0. Together with η(ξ2) = η(ξ3) = 0, this yields η(X0)η1(ξ)ϕ1X0 = 0.

Since ϕ1X0 is a unit vector field, we consequently have η(X0)η1(ξ) = 0. This makes

a contradiction. It gives us a complete proof of our lemma. �

4. Proof of Main Theorem

In this section, we give a proof of our Main Theorem asserted in the introduction.

By virtue of Lemma 3.3, we can divide it into the following two cases:

Case I. The Reeb vector field ξ belongs to the distribution D,

Case II. The Reeb vector field ξ belongs to the distribution D⊥,

providedM is a Hopf hypersurface in G2(C
m+2) with commuting shape operator (∗)

and the D-component of ξ on M is geodesic.

First, let us consider Case I, that is, ξ ∈ D. To consider this case, we introduce

a theorem due to Lee and Suh [9] as follows:

Theorem C. Let M be a connected orientable Hopf hypersurface in G2(C
m+2),

m > 3. Then the Reeb vector field ξ belongs to the distribution D if and only if

M is locally congruent to an open part of a tube around a totally geodesic HPn in

G2(C
m+2), where m = 2n.

By Theorem C, for Case I we know that M is locally congruent to a real hyper-

surface of Type (B) under our assumptions. Now let us check the converse problem,
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that is, whether or not the model spaceMB of Type (B) given in Theorem A satisfies

the commuting condition

(∗) ϕϕ1AX = Aϕϕ1X

for any tangent vector field X ∈ D⊥. To check this, let us assume that MB satisfies

the condition (∗).
From the structure of the tangent space TxMB at any point x on MB we see that

the distribution D⊥ is equal to the eigenspace Tβ where Tβ = Span{ξµ; µ = 1, 2, 3}
(see Proposition B in Section 2). Thus putting X = ξ2 in (∗), the left-hand side
becomes

0 = ϕϕ1Aξ2 −Aϕϕ1ξ2 = βϕξ3 −Aϕξ3 = βϕξ3,

because ϕ1ξ2 = ξ3 and Tγ = Span{ϕµξ; µ = 1, 2, 3} where γ = 0. It means that

β = 0 because ϕξ3 is a unit vector field. But from Proposition B we see that

β = 2 cot(2r) where r ∈ (0, π/4), so that the function β does not vanish. This

gives a contradiction. Therefore, we assert that there exists no Hopf hypersurface in

G2(C
m+2) with the commuting shape operator ϕϕ1AX = Aϕϕ1X if the Reeb vector

field ξ belongs to the distribution D.

Next we consider Case II, that is, the case ξ ∈ D⊥. Accordingly, we may put

ξ = ξ1. From this, differentiating this equation along any direction Y , we have

qµ(Y ) = 2g(AY, ξµ) for µ = 2, 3 and moreover,

AY = αη(Y )ξ + 2g(AY, ξ2)ξ2 + 2g(AY, ξ3)ξ3 − ϕϕ1AY

for any tangent vector field Y on M . From this, together with our assumption (∗),
it follows that

(4.1) AY = αη(Y )ξ + 2g(AY, ξ2)ξ2 + 2g(AY, ξ3)ξ3 −Aϕϕ1Y

for any tangent vector field Y ∈ D⊥. Putting Y = ξ2 in (4.1) gives

Aξ2 = g(Aξ2, ξ2)ξ2 + g(Aξ2, ξ3)ξ3,

because Aϕϕ1ξ2 = Aϕξ3 = Aϕ3ξ1 = Aξ2. Similarly, substituting Y = ξ3 in (4.1), we

have

Aξ3 = g(Aξ3, ξ2)ξ2 + g(Aξ3, ξ3)ξ3.

Summing up these statements, we can assert that under our assumption (∗), the
distribution D⊥ is invariant under the shape operator A of M in G2(C

m+2). Then

by Theorem A we see thatM is locally congruent to a real hypersurface of Type (A).
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Now it remains only to show whether a real hypersurfaceMA of Type (A) satisfies

the condition (∗) or not. Since the distribution D⊥ is composed of two eigenspaces

Tα and Tβ where Tα = Span{ξ} and Tβ = Span{ξ2, ξ3}, we consider the following
two cases:

Case A-1. X ∈ Tα, that is, X = ξ.

This case is trivial by the assumptions Aξ = αξ and ξ = ξ1.

Case A-2. X ∈ Tβ , that is, X = ξ2 or X = ξ3.

Since ϕϕ1ξµ = ξµ for µ = 2, 3, the condition (∗) holds.
From these two cases we see that the shape operator A for a real hypersurface

MA of Type (A) satisfies the commuting condition (∗) for any tangent vector field
X ∈ D⊥.

Summing up these discussions, gives a complete proof of our main theorem in the

introduction. �
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