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REAL HYPERSURFACES IN COMPLEX TWO-PLANE
GRASSMANNIANS WITH GENERALIZED TANAKA-WEBSTER
PARALLEL SHAPE OPERATOR

IMsooN JEONG, HYUNJIN LEE AND YOUNG JIN SUH

Abstract

We introduce the notion of generalized Tanaka-Webster connection for hyper-
surfaces in complex two-plane Grassmannians G>(C"*?) and give a non-existence
theorem for Hopf hypersurfaces in G,(C™*?) with parallel shape operator in this
connection.

Introduction

The generalized Tanaka-Webster connection (in short, the g-Tanaka-Webster
connection) for contact metric manifolds has been introduced by Tanno [14] as
a generalization of the well-known connection defined by Tanaka in [13] and,
independently, by Webster in [15]. This connection coincides with Tanaka-
Webster connection if the associated CR-structure is integrable. Tanaka-Webster
connection is defined as the canonical affine connection on a non-degenerate,
pseudo-Hermitian CR-manifold. For a real hypersurface in a Kéhler manifold
with almost contact metric structure (¢,&,7,9), Cho defined the g-Tanaka-
Webster connection V) for a non-zero real number k (see [5], [6] and
[7]). In particular, if a real hypersurface satisfies ¢4 + Ap = 2k¢, then the
g-Tanaka-Webster connection V¥ coincides with the Tanaka-Webster connection
(see Proposition 7 in [7]).

Using the notion of the g-Tanaka-Webster connection, many geometers have
studied some characterizations of real hypersurfaces in complex space form M,(c)
with constant holomorphic sectional curvature c¢. For instance, when ¢ >0,
that is, M,(c) is a complex projective space CP", Cho [5] proved that if the
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shape operator A of M in CP" is V%) -parallel (it means that the shape operator
A satisfies V® 4 = 0), then ¢ is a principal curvature vector field and M is
locally congruent to a real hypersurface of Type (4) and Type (B). (In fact, he
also gave the classification of real hypersurfaces in a complex hyperbolic space
(c < 0) and complex Euclidean space (¢ = 0) under the assumption V*)-parallel
shape operator [5]). Moreover in [6] he gave the classification theorem of
Levi-parallel Hopf hypersurface in M,(c), ¢ #0. Here, a real hypersurface of
M,(c) is called Levi-parallel if its Levi form is parallel with respect to the
g-Tanaka-Webster connection. In [8], Kon gave a characterization for real
hypersurfaces of Type (4;) in complex projective space CP" under the assump-
tion that the Ricci tensor related to the g-Tanaka-Webster connection identically
vanishes.

Now let us denote by G,(C™*?) the set of all complex two-dimensional linear
subspaces in C”*2. This Riemannian symmetric space G»(C™"?) has a remark-
able geometric structure. It is the unique compact irreducible Riemannian
manifold being equipped with both a Kaéhler structure J and a quaternionic
Kihler structure J not containing J. In other words, G,(C™*?) is the unique
compact, irreducible, Kdhler, quaternionic Kdhler manifold which is not a hyper-
Kihler manifold. So, in G,(C™"?) we have the two natural geometric conditions
for real hypersurfaces M that the 1-dimensional distribution [£] = Span{¢} and
the 3-dimensional distribution D+ = Span{¢;, &, &} are invariant under the
shape operator 4 of M (see section 2).

Here the almost contact structure vector field & defined by &= —JN is
said to be a Reeb vector field, where N denotes a local unit normal vector field
of M in G,(C™*?). The almost contact 3-structure vector fields {&1,6,&) for
the 3-dimensional distribution D+ of M in G,(C™?) are defined by &, = —J,N
(v=1,2,3), where J, denotes a canonical local basis of a quaternionic K&hler
structure 3, such that 7.M = D @® D*, xe M.

By using two invariant conditions mentioned above and the result in
Alekseevskii [1], Berndt and Suh [3] proved the following:

THEOREM A. Let M be a connected real hypersurface in Go(C™?), m > 3.
Then both [£] and D* are invariant under the shape operator of M if and only
if
(A) M is an open part of a tube around a totally geodesic G(C™™) in Go(C™?),

or
B) m is even, say m =2n, and M is an open part of a tube around a totall

'y pen p y
geodesic HP" in G,(C™"?).

Furthermore, the Reeb vector field ¢ is said to be Hopf if it is invariant
under the shape operator 4. The 1-dimensional foliation of M by the integral
manifolds of the Reeb vector field & is said to be a Hopf foliation of M. We
say that M is a Hopf hypersurface in Gz(C’"”) if and only if the Hopf foliation
of M is totally geodesic. By the formulas in Section 2 it can be easily checked
that M is Hopf if and only if the Reeb vector field ¢ is Hopf.
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Moreover, we say that the Reeb vector field & on M is Killing, when the
Reeb flow on M in G5(C™*?) is isometric. In [4], Berndt and Suh gave some
equivalent conditions of this property as follows:

THEOREM B. Let M be a connected orientable real hypersurface in a Kdihler
manifold M. The following statements are equivalent:

(1) The Reeb flow on M is isometric,

(2) The shape operator A and the structure tensor field ¢ commute with each
other,

(3) The Reeb vector field & is a principal curvature vector of M everywhere
and the principal curvature spaces contained in the maximal complex sub-
bundle 2 of TM are complex subspaces.

Also in [4], a characterization of real hypersurfaces of Type (4) in Theorem A
was given in terms of the Reeb flow on M as follows:

TuroreM C.  Let M be a connected orientable real hypersurface in Go(C™+?),
m > 3. Then the Reeb flow on M is isometric if and only if M is an open part of
a tube around a totally geodesic G»(C™™') in G,(C™).

Recently, Lee and Suh [9] gave a new characterization of real hypersurfaces
of Type (B) in G,(C™?) in terms of the Reeb vector field ¢ as follows:

THEOREM D. Let M be a connected orientable Hopf real hypersurface in
Gy(C™2), m = 3. Then the Reeb vector field ¢ belongs to the distribution D if
and only if M is locally congruent to an open part of a tube around a totally
geodesic HP" in Gy(C"*?), where m = 2n.

In particular, if the shape operator 4 of M in G,(C™"?) satisfies
(VxA)Y =0 for any vector fields X, Y on M, we say that the shape operator
A is parallel with respect to the Levi-Civita connection. Using this notion,
Suh [11] proved the non-existence theorem of real hypersurfaces in G(C™"?)
with parallel shape operator. Moreover, in [12], he also considered a generalized
condition weaker than VA = 0, which is said to be §-parallel, and proved that
there does not exist any real hypersurface with §-parallel shape operator. Here,
a shape operator 4 of M in G,(C™?) is said to be F-parallel if the shape
operator A satisfies (VyA)Y =0 for any tangent vector fields X e § and
Y € T, M, where the subdistribution § is defined by & = [(JUD" (see [12]).

Now in this paper we consider a new parallel shape operator for real
hypersurface M in G,(C™?). Here the shape operator A is called generalized
Tanaka-Webster parallel (in short, g-Tanaka-Webster parallel) if the shape
operator A is parallel with respect to the g-Tanaka-Webster connection V)| that
is, (V¥ 4)Y = 0 for any vector fields X, Y on M. If we consider such a notion
in complex two-plane Grassmannians G,(C™"?), its situation is quite different
from the case in complex space forms M,(c).
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From such a point of view, in this paper we give a non-existence theorem
for Hopf hypersurfaces in G>(C™*?) with parallel shape operator in the general-
ized Tanaka-Webster connection as follows:

MAIN THEOREM. There does not exist any Hopf hypersurface, o # 2k, in
complex two-plane Grassmannians Gy(C™2), m > 3, with parallel shape operator
in the generalized Tanaka-Webster connection.

1. Riemannian geometry of G,(C"*?)

In this section we summarize basic material about G,(C™*?), for details
we refer to [2], [3] and [4]. By G»(C™?) we denote the set of all complex two-
dimensional linear subspaces in C"*>. The special unitary group G = SU(m + 2)
acts transitively on G,(C™"?) with stabilizer isomorphic to K = S(U(2) x U(m))
c G. Then G5(C™"?) can be identified with the homogeneous space G/K, which
we equip with the unique analytic structure for which the natural action of G on
G>(C™?) becomes analytic. Denote by g and f the Lie algebra of G and K,
respectively, and by m the orthogonal complement of f in g with respect to the
Cartan-Killing form B of g. Then g =f@® m is an A4d(K)-invariant reductive
decomposition of g. We put o = eK and identify 7,G>(C™"?) with m in the
usual manner. Since B is negative definite on g, its negative restricted to m x m
yields a positive definite inner product on m. By Ad(K)-invariance of B this
inner product can be extended to a G-invariant Riemannian metric g on
G>(C™?). In this way G,(C™*?) becomes a Riemannian homogeneous space,
even a Riemannian symmetric space. For computational reasons we normalize g
such that the maximal sectional curvature of (G>(C™?),g) is eight.

When m =1, GZ(C3) is isometric to the two-dimensional complex projective
space CP? with constant holomorphic sectional curvature eight. When m = 2,
we note that the isomorphism Spin(6) ~ SU(4) yields an isometry between
G>(C*) and the real Grassmann manifold G, (R®) of oriented two-dimensional
linear subspaces in R®. In this paper, we will assume m > 3.

The Lie algebra f has the direct sum decomposition f = su(m) @ s1(2) @ R,
where R is the center of f. Viewing f as the holonomy algebra of G,(C™*?), the
center R induces a Kéhler structure J and the su(2)-part a quaternionic Kéhler
structure § on G»(C™2). 1If J, is any almost Hermitian structure in J, then
JJ, = J,J, and JJ, is a symmetric endomorphism with (JJ,)> = I and tr(JJ,) = 0
for v=1,2,3.

A canonical local basis {Jj,J»,J3} of J consists of three local almost
Hermitian structures J, in J such that J,J,.; = J,.» = —J,.1J,, where the index
v is taken modulo three. Since J is parallel with respect to the Riemannian
connection V of (G»(C™"?),g), there exist for any canonical local basis {J;,Ja,J3}
of J three local one-forms ¢;, ¢», g3 such that

(1~1) ?XJV = (1v+2<X>JV+1 - ‘]erI(X)JMZ
for all vector fields X on G,(C"*?).
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The Riemannian curvature tensor R of G2(C’”+2) is locally given by

(12)  RX,VNZ=g(Y,2)X —g(X,2)Y +9(JY,Z)JX
—g(JX,Z2)JY —29(JX,Y)JZ
3
+ {g(JVYa Z)JvX - g(JvXaZ)JvY - Zg(Jva Y)JvZ}
v=1
3
+

V:

{g(-]v-]Y, Z)JVJX - g(JVJXaZ)JvJY}a
1

where {J1,J>,J3} denotes a canonical local basis of J.

2. Some fundamental formulas for real hypersurfaces in G,(C""?)

In this section we derive some basic formulas and the Codazzi equation for a
real hypersurface in G,(C""?) (see [3], [4], [9], [10], [11] and [12]).

Let M be a real hypersurface of G,(C™'?), that is, a hypersurface of
G>(C™?) with real codimension one. The induced Riemannian metric on M
will also be denoted by g, and V denotes the Riemannian connection of (M, g).
Let N be a local unit normal vector field of M and A4 the shape operator of
M with respect to N.

Now let us put

(2.1) JX = ¢X +n(X)N, JX =¢,X +n,(X)N

for any tangent vector field X of a real hypersurface M in G>(C™*?), where N
denotes a unit normal vector field of M in G,(C™?). From the Kihler struc-
ture J of G,(C™"?) there exists an almost contact metric structure (¢,¢,7,9)
induced on M in such a way that

PX =-X+nX)E nE) =1, ¢£=0, nX)=g(X,<

for any vector field X on M. Furthermore, let {J,J>,J3} be a canonical local
basis of 3. Then the quaternionic Kihler structure J, of GZ(C’””), together
with the condition J,J,.; =J,120 = —J,41J, in section 1, induces an almost
contact metric 3-structure (¢,,&,,7,,9) on M as follows:

FX =X +0,(X)é, n(&) =1 $,&=0,
¢v+lév =2, S =&,

P X = b X + 11, (X)E,,

o1 X = —d, X +1,(X)E0 41

for any vector field X tangent to M. Moreover, from the commuting property
of J,J =JJ,, v=1,2,3 in section 1 and (2.1), the relation between these two

(2.2)
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contact metric structures (¢,&,7,¢9) and (¢,,<,,7,,9), v=1,2,3, can be given
by

¢¢VX = ¢V¢X + ”v(X)é - ”(X)évv
771’(¢X) = 77(¢VX)7 ¢év = ¢vé~

On the other hand, from the Kihler structure J, that is, VJ =0 and the
quaternionic Kéhler structure J,, together with Gauss and Weingarten equations
it follows that

(2.4) (Vx@)Y =n(Y)AX —g(AX,Y)S, Vi< =gAX,
(2.5) Vxé = qr2(X)So1 — qur1 (X)Evp2 + 4,4X,
(2.6) (Vx¢,)Y = —qv1(X)y 2 Y + @vi2(X) Py Y +11,(Y)AX — g(AX, Y)S,
Summing up these formulas, we find the following:
(2.7) Vx(4,8) = Vx(¢<,)
= (Vx9)<, + 4(Vx<,)
= qv2(X)Py 1€ — o1 (X)P, ¢ + §,9AX
—g(AX,&)¢, +n(¢,)AX.

Using the above expression (1.2) for the curvature tensor R of G>(C™"?), the
equation of Codazzi becomes:

2.8)  (VxA)Y = (VyA)X =n(X)¢Y —n(Y)pX —29(¢X, Y)¢

(2.3)

+ Z{m ), Y —n,(Y)p,X —29(, X, Y)E,}
+ Z{m(aﬁX)mY —n,($Y)$,4X}

+Z{f7 M(PY) = n(Y)n,($X)}E,.

3. The g-Tanaka-Webster connection for real hypersurfaces

In this section, we introduce the notion of generalized Tanaka-Webster
connection (see [5], [6], [7] and [8]).

As stated above, the Tanaka-Webster connection is the canonical affine
connection defined on a non-degenerate pseudo-Hermitian CR-manifold (see [13],
[15]). In [14], Tanno defined the g-Tanaka-Webster connection for contact
metric manifolds by the canonical connection which coincides with the Tanaka-
Webster connection if the associated CR-structure is integrable.
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From now on, we introduce the g-Tanaka-Webster connection due to Tanno
[14] for real hypersurfaces in Kéhler manifolds by natural extending of the
canonical affine connection on a non-degenerate, pseudo-Hermitian CR manifold.

Now let us recall the g-Tanaka-Webster connection V define by Tanno [14]
for contact metric manifolds as follows:

VxY =V Y + (Vi) (Y)E = n(Y)Vyxé —n(X)pY

for all vector fields X and Y (see [14]). .
By taking (2.4) into account, the g-Tanaka-Webster connection V¥ for real
hypersurfaces of Kédhler manifolds is defined by

(3.1) VY = Vy Y + g(¢AX, Y)E — n(Y)PAX — kn(X)pY

for a non-zero real number k (see [5], [6] and [7]) (Note that V%) is invariant
under the choice of the orientation. Namely, we may take —k instead of k in
(3.1) for the opposite orientation —N).

Let us put

(3-2) FxY =g(¢AX, Y)E —n(Y)pAX — kn(X)pY.

Then the torsion tensor T'%) is given by TA"(I‘)(X7 Y)=FyY —FyX. Also, by
using (2.4) and (3.1) we can see that

(3.3) vy =0, vWe=0, vWg=0, v¥g=o0.

Next the g-Tanaka-Webster curvature tensor R*) with respect to V* can be
defined by

5 (k & (k) ¢ (k & (k) g (k & (k
(3.4) ROx, )z =V VP 2) -V VP2 -V, Z
for all vector fields X, Y, Z on M. Then we have the following identities
RW(Xx,Y)Z=—-RW (Y, X)Z,
JRO(X, V)Z,W) = —g(RY (X, V)W, Z).

Here we remark that because the g-Tanaka-Webster connection is not torsion-
free, the Jacobi-type and Bianchi-type identities do not hold in general. More-
over, the g-Tanaka-Webster Ricci tensor S is defined by

(3.5) S(Y,Z) =trace of {X — R(X,Y)Z}.

4. Key Lemmas

Let M be a Hopf hypersurface in G,(C™"?) with g-Tanaka-Webster parallel
shape operator. First of all, we find the fundamental equation for the condition
that the shape operator 4 is parallel with respect to V¥, that is, (@g‘)A)Y =0
for any tangent vector fields X and Y.
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From (3.1), we have
@1 Py =vPuy)-avPr)
= Vy(AY) + g(pAX, AY)E — n(AY)PAX — kn(X)pAY
— A(Vx Y + g($AX, Y)E - n(Y)$AX — kn(X)$Y)
— (VxA)Y + g($AX, AY)E — q(AY)$AX — kn(X)gAY
—g(pAX, Y)AE+n(Y)APAX + kn(X)ApY.
Under our conditions, (@gf)A) Y =0 and A& = of, it follows that
(4.2) (VxA)Y + g(pAX, AY)E — an(Y)pAX — kn(X)pAY
—og(¢AX, Y)E+n(Y)APAX + kn(X)ApY =0
for any tangent vector fields X and Y on M.

From the equation (4.2), we can assert following:

Lemma 4.1. Let M be a Hopf hypersurface in complex two-plane Grass-
mannians Gy(C™2), m > 3. If M has the generalized Tanaka-Webster parallel
shape operator, then the smooth function o= g(AE, &) is constant.

Proof. Substituting ¢ for any tangent vector field Y in (4.2) and using the
notion of Hopf, that is, A& = af, we have
(4.3) (VxA)E — apAX + ApAX =0

for any vector field X tangent to M.
On the other hand, taking the covariant derivative for A¢ = o along any
direction X, we get

(4.4) (VxA)é = (Xa)é + apAX — AgAX.
From (4.4), the equation (4.3) can be written by

(Xo)E + apAX — APAX — agpAX + APAX =0,
that is, we obtain for any vector field X tangent to M

(4.5) (Xa)é =0.
This implies that Xo =0 for any tangent vector field X on M. Therefore we
have our assertion. O

Under the assumption of A¢ = o, the Codazzi equation (2.8) becomes
3
(VeA)Y = (VyA)e =Y+ {n()d,Y —n,(Y)h,& = 39(h& Y)E}
v=1

for any tangent vector field ¥ on M.
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From this, taking an inner product with &, it gives that

3
g(VeA) Y, &) = g(VyA)E, &) =4 n,(E)n, (7).
y=1

On the other hand, by using (4.4), we obtain

g(Ved) Y, ¢) = g((VyA)E,€) = g(Y, (Ved)E) — (&, (Vr A)Q)
=9(Y,(c0)¢) — g(&, (Y) + apAdY — AJAY)
= (En(Y) = (Yo),
when we have used two formulas that (V:4)¢ = (So)é and (VyA)E = (Ya)é +

apAY — ApAY .
Consequently, we have the following

3
(4.6) Yo = (Ca)p(Y) =4 n,(E)n,(4Y)
v=1

for any tangent vector field Y on M (see [4]).
Now we give one of Key Lemmas as follows:

Lemma 4.2. Let M be a Hopf hypersurface in complex two-plane Grass-
mannian GZ(C'””), m > 3. If M has the parallel shape operator with respect to
the generalized Tanaka-Webster connection, then the Reeb vector field & belongs to
either the distribution ® or the distribution D*.

Proof. 1In order to prove our lemma, let us put & = 5(Xo)Xo + n(&)¢; for
some unit Xoe D and & € D and 5(Xo)n(¢;) #0. Since we knew that « is
constant in Lemma 4.1, we have

3
(47) va(é)¢£v = Oa
v=1

when we have used the formula (4.6).
Since & = n(Xo)Xo +n(&;)E;, then the equation (4.7) can be written as

3

Z n(Cn,(E)pe, =0,

v=1

which gives #(&)¢é; = 0.
On the other hand, from the fact ¢&, = ¢, &, it follows #(&))gé =
n(&)n(Xo)p; Xo. Thus we have

1n(&1)n(Xo)¢ Xo = 0.
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Since #7(Xo)n(&;) #0, we have ¢; Xp =0. But this gives a contradiction. Be-
cause ¢(¢; X0, 9 Xo) = g(Xo, Xo) and Xy is a unit, ¢, Xy becomes a non zero
vector. So we complete the proof of our Lemma. O

Before giving the proof of our Main Theorem given in the introduction,
let us check whether the shape operator 4 of real hypersurfaces of Type (4) or
of Type (B) in Theorem A is parallel with respect to the g-Tanaka-Webster
connection.

First let us check for the case that M is locally congruent to a real
hypersurface of Type (A4), an open part of a tube around a totally geodesic
G>(C™1) in Go(C™?).  We recall a proposition due to Berndt and Suh [3] as
follows:

PrOPOSITION E. Let M be a connected real hypersurface of G,(C™*?).
Suppose that AD <D, A =af, and & is tangent to DL Let Ji €3 be the
almost  Hermitian structure such that JN =J\N. Then M has three (if
r=mn/2v8) or four (otherwise) distinct constant principal curvatures

o =V8cot(v8r), B=v2cot(V2r), A=—V2tan(vV2r), u=0
with some r e (0,7//8). The corresponding multiplicities are
m(a) =1, m(f) =2, m() =2m—2=m(p),
and the corresponding eigenspaces are
T, = RE = RJN = R = Span{¢} = Span{¢, },
Ty = C*¢ = C'N = RE @ RE = Span{&y, &3},
T,={X|X LHJX =J, X},
T,={X|X LH, JX = —-J1 X}

where RE, CE and HE respectively denotes real, complex and quaternionic span
of the structure vector field ¢ and C*& denotes the orthogonal complement of C&
in HE

Now let us suppose that a real hypersurface of Type (A) has the parallel
shape operator with respect to the g-Tanaka-Webster. Then we see that

(%f)A)fz =0 for a unit eingenvector X € T,. Then it follows that
(48) (VY A)& = Vi(AE) + g($AX, AL)E = n(AE)PAX — kn(X)pAE
— A(Vx& +g(¢AX, &) — (&) pAX — kn(X)pSr)
= fVx& — A(Vx &)
=0,
because e D, X eT) and & € Tp.
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On the other hand, since we put ¢ = ¢, from the assumption &€ D+, we
obtain that ¢>(X) = 2g(A4&,, X) and ¢3(X) = 2g(A&;, X) for any tangent vector
field X on M. Thus the equation (4.8) can be changed by

From (2.1), (2.2) and (2.3), we see that ¢, X € T, for any X e T,, that is,
Ay X = up,X. Since =0, we have
Bl X =0

for any vector field X € T,. Thus we have 4 is zero and this case can not occur
for some r e (0,7/2v/8). So we conclude a remark as follows:

Remark 4.3. The shape operator 4 of real hypersurfaces of Type (4) in
G>(C™?) is not parallel with respect to the generalized Tanaka-Webster con-
nection.

As a second, let us check whether the shape operator A of real hypersurfaces
of Type (B) is parallel with respect to the g-Tanaka-Webster connection. As is
well known in Berndt and Suh [3], a real hypersurface of Type (B) has five
distinct constant principal curvatures as follows:

PrOPOSITION F. Let M be a connected real hypersurface of G,(C™"?).
Suppose that AD e D, AE =af, and & is tangent to . Then the quaternionic
dimension m of G(C"*?) is even, say m = 2n, and M has five distinct constant
principal curvatures

o= —2tan(2r), B =2cot(2r), y=0, A=cot(r), u=—tan(r)
with some re (0,7/4). The corresponding multiplicities are
m@) =1, m(B)=3=m(), m()=dn—4=mi)
and the corresponding eigenspaces are
T, = R = Span{¢},
Ty = 3JE=Span{&,|v=1,2,3},
T, =3¢ =Span{¢,¢|v=1,2,3},
T, T,
where
T, ®T,=MHCO)", IT,=T, 3IT,=T, JT;=T,

Here we suppose that a real hypersurface of Type (B) has the g-Tanaka-Webster

parallel shape operator. Then we see that (ng) A)¢, = 0 for a unit eingenvector
X eT,. Then it follows that
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49)  (VPA)E, = Vi (4E) + g(pAX, AS)E — n(AE)PAX — kn(X)pAE,
—A(Vx& + g(9AX, E)E — n(E)pAX — kn(X)Pé,)
= fVx& — A(Vxé,)
=0,

because £€®D, X €T, and &, € Tp.
From (2.5) and &, € Tp, the equation (4.9) can be written by

Big, X — AAp, X = 0.

Since JZ €T, for any Z e T), we see that A¢,X = AX. From these facts it
follows that

M~ 24X =0

for any vector field X € 7;,. From this, taking an inner product with ¢, X, we
have

A —1)=0.

Since 2 =cotr (0 < r < mn/4) is not zero, we have f = 4. But this case also can
not occur for some re (0,7/4). In fact, since f =2 cot(2r) and 1 =cotr, we
obtain f — A= —tanr = u < 0 where r € (0,7/4). So we also give the following
remark:

Remark 4.4. The shape operator A of real hypersurfaces of Type (B) in
G>(C™?) is not parallel with respect to the generalized Tanaka-Webster con-
nection.

5. The proof of Main Theorem

In this section, let us M be a Hopf hypersurface M in G,(C™*?) with the
g-Tanaka-Webster parallel shape operator. Then by Lemma 4.2 we consider the
following two cases:

+ Case I: the Reeb vector field & belongs to the distribution D,

« Case II: the Reeb vector field ¢ belongs to the distribution D*.

First, let us consider the Case I, that is, £ € ©. By Theorem D, we see that M is
locally congruent to a real hypersurface of Type (B) under our assumption. But
in section 4 we have checked that the shape operator 4 of real hypersurface of
Type (B) is not g-Tanaka-Webster parallel (see Remark 4.4). From these facts,
first we assert the following:

THEOREM 5.1. There does not exist any Hopf hypersurface in G,(C"*?),
m > 3, with generalized Tanaka-Webster parallel shape operator if the Reeb vector
field & belongs to the distribution .
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Next we consider for the case & e D*. Accordingly, we may put &= &,.
Then we have the following:

Lemma 5.2. Let M be a Hopf hypersurface in complex two-plane Grass-
mannian G,(C™?), m >3 with ¢ € . If M has the parallel shape operator in
the generalized Tanaka-Webster connection and o # 2k, then the structure tensor ¢
commutes with the shape operator A of M.

Proof. Using (4.1) and A¢ = &, we have
(51 (VY- (vEax
= (VxA)E — apAX + APAX — (V:A)X + kpAX — kAPX

for any vector field X € Tx\M and any point x € M.
From the equation of Codazzi (2.8) we see that

(VyA)E — (VeA)X :—¢X+Z{m )$.& =1, X —39($, X, E)E, )

Moreover, since ¢,& = ¢,& = —&3 and ¢;,¢ = @& = &,, it follows that
(5.2) (VxA)E — (Ved)X = —¢pX — X — 2n3(X) & + 2 (X) .
Substituting (5.2) into (5.1), we have
(5.3) (VP A)E — (VEAX = —9X — $, X + (k — 0)pAX — kAPX

+ APAX — 213(X) & + 215 (X) <.
Then the parallel shape operator in the g-Tanaka-Webster connection gives
(54) —dX =y X + (k — 0)pAX — kAPX + APAX — 213(X)Er + 23 (X)E3 =0

for any tangent vector field X on M.
Now we introduce the formula derived from A¢ = aé (see [4]) as follows:

(5.5) 2 APX + oc¢AX —2APAX + 24X

= 20(X)n,(E),& — 20, (X ), (£)E}
Since ¢ = &, the equation (5.5) gives
(5.6)  24PAX = 0APX + apAX + 29X + 24, X + 4n3(X)Er — 4y (X)E5.
Thus from (5.4) and (5.6) we have
(5.7) (2k — 0)pAX — (2k — 0) ApX = 0.
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Since o # 2k, we have (¢4 — Ap)X = 0 for any vector field X € T, M. It means
that the shape operator 4 commutes with the structure tensor ¢. O

Therefore from Theorems B and C in the introduction, we assert the following:

Lemma 5.3. Let M be a Hopf hypersurface in complex two-plane Grass-
mannian Gy(C™?), m > 3. If M satisfies the assumptions in Lemma 5.2, M is
locally congruent to an open part of a tube around a totally geodesic Gg(CmH) in
Gz(Cm+2).

As mentioned in Remark 4.3, the shape operator 4 for real hypersurfaces
of Type (A4) can not parallel with respect to the g-Tanaka-Webster connection.
From this we assert the following:

THEOREM 5.4. There does not exist any Hopf hypersurface in Go(C™"*) with
parallel shape operator with respect to the generalized Tanaka-Webster connection
if ¢e D" and o # 2k.

Summing up Theorems 5.1 and 5.4, we give a complete proof of our Main
Theorem in the introduction. O
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