REAL HYPERSURFACES IN COMPLEX TWO-PLANE GRASSMANNIANS WITH GENERALIZED TANAKA-WEBSTER PARALLEL SHAPE OPERATOR

Imsoon Jeong, Hyunjin Lee and Young Jin Suh

Abstract

We introduce the notion of generalized Tanaka-Webster connection for hypersurfaces in complex two-plane Grassmannians $G_{2}\left(\mathbf{C}^{m+2}\right)$ and give a non-existence theorem for Hopf hypersurfaces in $G_{2}\left(\mathbf{C}^{m+2}\right)$ with parallel shape operator in this connection.

Introduction

The generalized Tanaka-Webster connection (in short, the g-Tanaka-Webster connection) for contact metric manifolds has been introduced by Tanno [14] as a generalization of the well-known connection defined by Tanaka in [13] and, independently, by Webster in [15]. This connection coincides with TanakaWebster connection if the associated CR-structure is integrable. Tanaka-Webster connection is defined as the canonical affine connection on a non-degenerate, pseudo-Hermitian CR-manifold. For a real hypersurface in a Kähler manifold with almost contact metric structure (ϕ, ξ, η, g), Cho defined the g-TanakaWebster connection $\hat{\nabla}^{(k)}$ for a non-zero real number k (see [5], [6] and [7]). In particular, if a real hypersurface satisfies $\phi A+A \phi=2 k \phi$, then the g-Tanaka-Webster connection $\hat{\nabla}^{(k)}$ coincides with the Tanaka-Webster connection (see Proposition 7 in [7]).

Using the notion of the g-Tanaka-Webster connection, many geometers have studied some characterizations of real hypersurfaces in complex space form $\tilde{M}_{n}(c)$ with constant holomorphic sectional curvature c. For instance, when $c>0$, that is, $\tilde{M}_{n}(c)$ is a complex projective space $\mathbf{C} P^{n}$, Cho [5] proved that if the

[^0]shape operator A of M in $\mathbf{C} P^{n}$ is $\hat{\nabla}^{(k)}$-parallel (it means that the shape operator A satisfies $\hat{\nabla}^{(k)} A=0$), then ξ is a principal curvature vector field and M is locally congruent to a real hypersurface of Type (A) and Type (B). (In fact, he also gave the classification of real hypersurfaces in a complex hyperbolic space $(c<0)$ and complex Euclidean space $(c=0)$ under the assumption $\hat{\nabla}^{(k)}$-parallel shape operator [5]). Moreover in [6] he gave the classification theorem of Levi-parallel Hopf hypersurface in $\tilde{M}_{n}(c), c \neq 0$. Here, a real hypersurface of $\tilde{M}_{n}(c)$ is called Levi-parallel if its Levi form is parallel with respect to the g-Tanaka-Webster connection. In [8], Kon gave a characterization for real hypersurfaces of Type $\left(A_{1}\right)$ in complex projective space $\mathbf{C} P^{n}$ under the assumption that the Ricci tensor related to the g-Tanaka-Webster connection identically vanishes.

Now let us denote by $G_{2}\left(\mathbf{C}^{m+2}\right)$ the set of all complex two-dimensional linear subspaces in \mathbf{C}^{m+2}. This Riemannian symmetric space $G_{2}\left(\mathbf{C}^{m+2}\right)$ has a remarkable geometric structure. It is the unique compact irreducible Riemannian manifold being equipped with both a Kähler structure J and a quaternionic Kähler structure \mathfrak{J} not containing J. In other words, $G_{2}\left(\mathbf{C}^{m+2}\right)$ is the unique compact, irreducible, Kähler, quaternionic Kähler manifold which is not a hyperKähler manifold. So, in $G_{2}\left(\mathbf{C}^{m+2}\right)$ we have the two natural geometric conditions for real hypersurfaces M that the 1 -dimensional distribution $[\xi]=\operatorname{Span}\{\xi\}$ and the 3-dimensional distribution $\mathfrak{D}^{\perp}=\operatorname{Span}\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ are invariant under the shape operator A of M (see section 2).

Here the almost contact structure vector field ξ defined by $\xi=-J N$ is said to be a Reeb vector field, where N denotes a local unit normal vector field of M in $G_{2}\left(\mathbf{C}^{m+2}\right)$. The almost contact 3 -structure vector fields $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ for the 3-dimensional distribution \mathfrak{D}^{\perp} of M in $G_{2}\left(\mathbf{C}^{m+2}\right)$ are defined by $\xi_{v}=-J_{v} N$ $(v=1,2,3)$, where J_{v} denotes a canonical local basis of a quaternionic Kähler structure \mathfrak{I}, such that $T_{x} M=\mathfrak{D} \oplus \mathfrak{D}^{\perp}, x \in M$.

By using two invariant conditions mentioned above and the result in Alekseevskii [1], Berndt and Suh [3] proved the following:

Theorem A. Let M be a connected real hypersurface in $G_{2}\left(\mathbf{C}^{m+2}\right), m \geq 3$. Then both [$\xi]$ and \mathfrak{D}^{\perp} are invariant under the shape operator of M if and only if
(A) M is an open part of a tube around a totally geodesic $G_{2}\left(\mathbf{C}^{m+1}\right)$ in $G_{2}\left(\mathbf{C}^{m+2}\right)$, $o r$
(B) m is even, say $m=2 n$, and M is an open part of a tube around a totally geodesic $\mathbf{H} P^{n}$ in $G_{2}\left(\mathbf{C}^{m+2}\right)$.

Furthermore, the Reeb vector field ξ is said to be Hopf if it is invariant under the shape operator A. The 1 -dimensional foliation of M by the integral manifolds of the Reeb vector field ξ is said to be a Hopf foliation of M. We say that M is a Hopf hypersurface in $G_{2}\left(\mathbf{C}^{m+2}\right)$ if and only if the Hopf foliation of M is totally geodesic. By the formulas in Section 2 it can be easily checked that M is Hopf if and only if the Reeb vector field ξ is Hopf.

Moreover, we say that the Reeb vector field ξ on M is Killing, when the Reeb flow on M in $G_{2}\left(\mathbf{C}^{m+2}\right)$ is isometric. In [4], Berndt and Suh gave some equivalent conditions of this property as follows:

Theorem B. Let M be a connected orientable real hypersurface in a Kähler manifold \tilde{M}. The following statements are equivalent:
(1) The Reeb flow on M is isometric,
(2) The shape operator A and the structure tensor field ϕ commute with each other,
(3) The Reeb vector field ξ is a principal curvature vector of M everywhere and the principal curvature spaces contained in the maximal complex subbundle \mathscr{D} of $T M$ are complex subspaces.

Also in [4], a characterization of real hypersurfaces of Type (A) in Theorem A was given in terms of the Reeb flow on M as follows:

Theorem C. Let M be a connected orientable real hypersurface in $G_{2}\left(\mathbf{C}^{m+2}\right)$, $m \geq 3$. Then the Reeb flow on M is isometric if and only if M is an open part of a tube around a totally geodesic $G_{2}\left(\mathbf{C}^{m+1}\right)$ in $G_{2}\left(\mathbf{C}^{m+2}\right)$.

Recently, Lee and Suh [9] gave a new characterization of real hypersurfaces of Type (B) in $G_{2}\left(\mathbf{C}^{m+2}\right)$ in terms of the Reeb vector field ξ as follows:

Theorem D. Let M be a connected orientable Hopf real hypersurface in $G_{2}\left(\mathbf{C}^{m+2}\right), m \geq 3$. Then the Reeb vector field ξ belongs to the distribution \mathfrak{D} if and only if M is locally congruent to an open part of a tube around a totally geodesic $\mathbf{H} P^{n}$ in $G_{2}\left(\mathbf{C}^{m+2}\right)$, where $m=2 n$.

In particular, if the shape operator A of M in $G_{2}\left(\mathbf{C}^{m+2}\right)$ satisfies $\left(\nabla_{X} A\right) Y=0$ for any vector fields X, Y on M, we say that the shape operator A is parallel with respect to the Levi-Civita connection. Using this notion, Suh [11] proved the non-existence theorem of real hypersurfaces in $G_{2}\left(\mathbf{C}^{m+2}\right)$ with parallel shape operator. Moreover, in [12], he also considered a generalized condition weaker than $\nabla A=0$, which is said to be \mathfrak{F}-parallel, and proved that there does not exist any real hypersurface with \mathfrak{F}-parallel shape operator. Here, a shape operator A of M in $G_{2}\left(\mathbf{C}^{m+2}\right)$ is said to be \mathfrak{F}-parallel if the shape operator A satisfies $\left(\nabla_{X} A\right) Y=0$ for any tangent vector fields $X \in \mathscr{F}$ and $Y \in T_{x} M$, where the subdistribution \mathfrak{F} is defined by $\mathfrak{F}=[\xi] \cup \mathfrak{D}^{\perp}$ (see [12]).

Now in this paper we consider a new parallel shape operator for real hypersurface M in $G_{2}\left(\mathbf{C}^{m+2}\right)$. Here the shape operator A is called generalized Tanaka-Webster parallel (in short, g-Tanaka-Webster parallel) if the shape operator A is parallel with respect to the g-Tanaka-Webster connection $\hat{\nabla}^{(k)}$, that is, $\left(\hat{\nabla}_{X}^{(k)} A\right) Y=0$ for any vector fields X, Y on M. If we consider such a notion in complex two-plane Grassmannians $G_{2}\left(\mathbf{C}^{m+2}\right)$, its situation is quite different from the case in complex space forms $\tilde{M}_{n}(c)$.

From such a point of view, in this paper we give a non-existence theorem for Hopf hypersurfaces in $G_{2}\left(\mathbf{C}^{m+2}\right)$ with parallel shape operator in the generalized Tanaka-Webster connection as follows:

Main Theorem. There does not exist any Hopf hypersurface, $\alpha \neq 2 k$, in complex two-plane Grassmannians $G_{2}\left(\mathbf{C}^{m+2}\right), m \geq 3$, with parallel shape operator in the generalized Tanaka-Webster connection.

1. Riemannian geometry of $G_{2}\left(\mathbf{C}^{m+2}\right)$

In this section we summarize basic material about $G_{2}\left(\mathbf{C}^{m+2}\right)$, for details we refer to [2], [3] and [4]. By $G_{2}\left(\mathbf{C}^{m+2}\right)$ we denote the set of all complex twodimensional linear subspaces in \mathbf{C}^{m+2}. The special unitary group $G=S U(m+2)$ acts transitively on $G_{2}\left(\mathbf{C}^{m+2}\right)$ with stabilizer isomorphic to $K=S(U(2) \times U(m))$ $\subset G$. Then $G_{2}\left(\mathbf{C}^{m+2}\right)$ can be identified with the homogeneous space G / K, which we equip with the unique analytic structure for which the natural action of G on $G_{2}\left(\mathbf{C}^{m+2}\right)$ becomes analytic. Denote by \mathfrak{g} and \mathfrak{f} the Lie algebra of G and K, respectively, and by \mathfrak{m} the orthogonal complement of \mathfrak{f} in \mathfrak{g} with respect to the Cartan-Killing form B of \mathfrak{g}. Then $\mathfrak{g}=\mathfrak{f} \oplus \mathfrak{m}$ is an $\operatorname{Ad}(K)$-invariant reductive decomposition of \mathfrak{g}. We put $o=e K$ and identify $T_{o} G_{2}\left(\mathbf{C}^{m+2}\right)$ with \mathfrak{m} in the usual manner. Since B is negative definite on \mathfrak{g}, its negative restricted to $\mathfrak{m} \times \mathfrak{m}$ yields a positive definite inner product on \mathfrak{m}. By $\operatorname{Ad}(K)$-invariance of B this inner product can be extended to a G-invariant Riemannian metric g on $G_{2}\left(\mathbf{C}^{m+2}\right)$. In this way $G_{2}\left(\mathbf{C}^{m+2}\right)$ becomes a Riemannian homogeneous space, even a Riemannian symmetric space. For computational reasons we normalize g such that the maximal sectional curvature of $\left(G_{2}\left(\mathbf{C}^{m+2}\right), g\right)$ is eight.

When $m=1, G_{2}\left(\mathbf{C}^{3}\right)$ is isometric to the two-dimensional complex projective space $\mathbf{C} P^{2}$ with constant holomorphic sectional curvature eight. When $m=2$, we note that the isomorphism $\operatorname{Spin}(6) \simeq S U(4)$ yields an isometry between $G_{2}\left(\mathbf{C}^{4}\right)$ and the real Grassmann manifold $G_{2}^{+}\left(\mathbf{R}^{6}\right)$ of oriented two-dimensional linear subspaces in \mathbf{R}^{6}. In this paper, we will assume $m \geq 3$.

The Lie algebra \mathfrak{f} has the direct sum decomposition $\mathfrak{f}=\mathfrak{s u}(m) \oplus \mathfrak{s u}(2) \oplus \mathfrak{R}$, where \mathfrak{R} is the center of \mathfrak{f}. Viewing \mathfrak{f} as the holonomy algebra of $G_{2}\left(\mathbf{C}^{m+2}\right)$, the center \mathfrak{R} induces a Kähler structure J and the $\mathfrak{s u}(2)$-part a quaternionic Kähler structure \mathfrak{J} on $G_{2}\left(\mathbf{C}^{m+2}\right)$. If J_{v} is any almost Hermitian structure in \mathfrak{J}, then $J J_{v}=J_{v} J$, and $J J_{v}$ is a symmetric endomorphism with $\left(J J_{v}\right)^{2}=I$ and $\operatorname{tr}\left(J J_{v}\right)=0$ for $v=1,2,3$.

A canonical local basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of \mathfrak{J} consists of three local almost Hermitian structures J_{v} in \mathfrak{I} such that $J_{v} J_{v+1}=J_{v+2}=-J_{v+1} J_{v}$, where the index v is taken modulo three. Since \mathfrak{I} is parallel with respect to the Riemannian connection $\tilde{\nabla}$ of $\left(G_{2}\left(\mathbf{C}^{m+2}\right), g\right)$, there exist for any canonical local basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of \mathfrak{I} three local one-forms q_{1}, q_{2}, q_{3} such that

$$
\begin{equation*}
\tilde{\nabla}_{X} J_{v}=q_{v+2}(X) J_{v+1}-q_{v+1}(X) J_{v+2} \tag{1.1}
\end{equation*}
$$

for all vector fields X on $G_{2}\left(\mathbf{C}^{m+2}\right)$.

The Riemannian curvature tensor \tilde{R} of $G_{2}\left(\mathbf{C}^{m+2}\right)$ is locally given by

$$
\begin{align*}
\tilde{R}(X, Y) Z= & g(Y, Z) X-g(X, Z) Y+g(J Y, Z) J X \tag{1.2}\\
& -g(J X, Z) J Y-2 g(J X, Y) J Z \\
& +\sum_{v=1}^{3}\left\{g(J v Y, Z) J_{v} X-g\left(J_{v} X, Z\right) J_{v} Y-2 g\left(J_{v} X, Y\right) J_{v} Z\right\} \\
& +\sum_{v=1}^{3}\left\{g\left(J_{v} J Y, Z\right) J_{v} J X-g\left(J_{v} J X, Z\right) J_{v} J Y\right\},
\end{align*}
$$

where $\left\{J_{1}, J_{2}, J_{3}\right\}$ denotes a canonical local basis of \mathfrak{I}.

2. Some fundamental formulas for real hypersurfaces in $G_{2}\left(\mathbf{C}^{m+2}\right)$

In this section we derive some basic formulas and the Codazzi equation for a real hypersurface in $G_{2}\left(\mathbf{C}^{m+2}\right.$) (see [3], [4], [9], [10], [11] and [12]).

Let M be a real hypersurface of $G_{2}\left(\mathbf{C}^{m+2}\right)$, that is, a hypersurface of $G_{2}\left(\mathbf{C}^{m+2}\right)$ with real codimension one. The induced Riemannian metric on M will also be denoted by g, and ∇ denotes the Riemannian connection of (M, g). Let N be a local unit normal vector field of M and A the shape operator of M with respect to N.

Now let us put

$$
\begin{equation*}
J X=\phi X+\eta(X) N, \quad J_{v} X=\phi_{v} X+\eta_{v}(X) N \tag{2.1}
\end{equation*}
$$

for any tangent vector field X of a real hypersurface M in $G_{2}\left(\mathbf{C}^{m+2}\right)$, where N denotes a unit normal vector field of M in $G_{2}\left(\mathbf{C}^{m+2}\right)$. From the Kähler structure J of $G_{2}\left(\mathbf{C}^{m+2}\right)$ there exists an almost contact metric structure (ϕ, ξ, η, g) induced on M in such a way that

$$
\phi^{2} X=-X+\eta(X) \xi, \quad \eta(\xi)=1, \quad \phi \xi=0, \quad \eta(X)=g(X, \xi)
$$

for any vector field X on M. Furthermore, let $\left\{J_{1}, J_{2}, J_{3}\right\}$ be a canonical local basis of \mathfrak{I}. Then the quaternionic Kähler structure J_{v} of $G_{2}\left(\mathbf{C}^{m+2}\right)$, together with the condition $J_{v} J_{v+1}=J_{v+2}=-J_{v+1} J_{v}$ in section 1, induces an almost contact metric 3 -structure ($\phi_{v}, \xi_{v}, \eta_{v}, g$) on M as follows:

$$
\begin{align*}
& \phi_{v}^{2} X=-X+\eta_{v}(X) \xi_{v}, \quad \eta_{v}\left(\xi_{v}\right)=1, \quad \phi_{v} \xi_{v}=0, \\
& \phi_{v+1} \xi_{v}=-\xi_{v+2}, \quad \phi_{v} \xi_{v+1}=\xi_{v+2}, \\
& \phi_{v} \phi_{v+1} X=\phi_{v+2} X+\eta_{v+1}(X) \xi_{v}, \tag{2.2}\\
& \phi_{v+1} \phi_{v} X=-\phi_{v+2} X+\eta_{v}(X) \xi_{v+1}
\end{align*}
$$

for any vector field X tangent to M. Moreover, from the commuting property of $J_{v} J=J J_{v}, v=1,2,3$ in section 1 and (2.1), the relation between these two
contact metric structures (ϕ, ξ, η, g) and $\left(\phi_{v}, \xi_{v}, \eta_{v}, g\right), v=1,2,3$, can be given by

$$
\begin{align*}
& \phi \phi_{v} X=\phi_{v} \phi X+\eta_{v}(X) \xi-\eta(X) \xi_{v} \\
& \eta_{v}(\phi X)=\eta\left(\phi_{v} X\right), \quad \phi \xi_{v}=\phi_{v} \xi \tag{2.3}
\end{align*}
$$

On the other hand, from the Kähler structure J, that is, $\tilde{\nabla} J=0$ and the quaternionic Kähler structure J_{v}, together with Gauss and Weingarten equations it follows that

$$
\begin{gather*}
\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-g(A X, Y) \xi, \quad \nabla_{X} \xi=\phi A X \tag{2.4}\\
\nabla_{X} \xi_{v}=q_{v+2}(X) \xi_{v+1}-q_{v+1}(X) \xi_{v+2}+\phi_{v} A X \tag{2.5}\\
\left(\nabla_{X} \phi_{v}\right) Y=-q_{v+1}(X) \phi_{v+2} Y+q_{v+2}(X) \phi_{v+1} Y+\eta_{v}(Y) A X-g(A X, Y) \xi_{v} \tag{2.6}
\end{gather*}
$$

Summing up these formulas, we find the following:

$$
\begin{align*}
\nabla_{X}\left(\phi_{v} \xi\right)= & \nabla_{X}\left(\phi \xi_{v}\right) \tag{2.7}\\
= & \left(\nabla_{X} \phi\right) \xi_{v}+\phi\left(\nabla_{X} \xi_{v}\right) \\
= & q_{v+2}(X) \phi_{v+1} \xi-q_{v+1}(X) \phi_{v+2} \xi+\phi_{v} \phi A X \\
& -g(A X, \xi) \xi_{v}+\eta\left(\xi_{v}\right) A X
\end{align*}
$$

Using the above expression (1.2) for the curvature tensor \tilde{R} of $G_{2}\left(\mathbf{C}^{m+2}\right)$, the equation of Codazzi becomes:

$$
\begin{align*}
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X= & \eta(X) \phi Y-\eta(Y) \phi X-2 g(\phi X, Y) \xi \tag{2.8}\\
& +\sum_{v=1}^{3}\left\{\eta_{v}(X) \phi_{v} Y-\eta_{v}(Y) \phi_{v} X-2 g\left(\phi_{v} X, Y\right) \xi_{v}\right\} \\
& +\sum_{v=1}^{3}\left\{\eta_{v}(\phi X) \phi_{v} \phi Y-\eta_{v}(\phi Y) \phi_{v} \phi X\right\} \\
& +\sum_{v=1}^{3}\left\{\eta(X) \eta_{v}(\phi Y)-\eta(Y) \eta_{v}(\phi X)\right\} \xi_{v} .
\end{align*}
$$

3. The g-Tanaka-Webster connection for real hypersurfaces

In this section, we introduce the notion of generalized Tanaka-Webster connection (see [5], [6], [7] and [8]).

As stated above, the Tanaka-Webster connection is the canonical affine connection defined on a non-degenerate pseudo-Hermitian CR-manifold (see [13], [15]). In [14], Tanno defined the g-Tanaka-Webster connection for contact metric manifolds by the canonical connection which coincides with the TanakaWebster connection if the associated CR-structure is integrable.

From now on, we introduce the g-Tanaka-Webster connection due to Tanno [14] for real hypersurfaces in Kähler manifolds by natural extending of the canonical affine connection on a non-degenerate, pseudo-Hermitian CR manifold.

Now let us recall the g-Tanaka-Webster connection $\hat{\nabla}$ define by Tanno [14] for contact metric manifolds as follows:

$$
\hat{\nabla}_{X} Y=\nabla_{X} Y+\left(\nabla_{X} \eta\right)(Y) \xi-\eta(Y) \nabla_{X} \xi-\eta(X) \phi Y
$$

for all vector fields X and Y (see [14]).
By taking (2.4) into account, the g-Tanaka-Webster connection $\hat{\nabla}^{(k)}$ for real hypersurfaces of Kähler manifolds is defined by

$$
\begin{equation*}
\hat{\nabla}_{X}^{(k)} Y=\nabla_{X} Y+g(\phi A X, Y) \xi-\eta(Y) \phi A X-k \eta(X) \phi Y \tag{3.1}
\end{equation*}
$$

for a non-zero real number k (see [5], [6] and [7]) (Note that $\hat{\nabla}^{(k)}$ is invariant under the choice of the orientation. Namely, we may take $-k$ instead of k in (3.1) for the opposite orientation $-N$).

Let us put

$$
\begin{equation*}
F_{X} Y=g(\phi A X, Y) \xi-\eta(Y) \phi A X-k \eta(X) \phi Y \tag{3.2}
\end{equation*}
$$

Then the torsion tensor $\hat{T}^{(k)}$ is given by $\hat{T}^{(k)}(X, Y)=F_{X} Y-F_{Y} X$. Also, by using (2.4) and (3.1) we can see that

$$
\begin{equation*}
\hat{\nabla}^{(k)} \eta=0, \quad \hat{\nabla}^{(k)} \xi=0, \quad \hat{\nabla}^{(k)} g=0, \quad \hat{\nabla}^{(k)} \phi=0 \tag{3.3}
\end{equation*}
$$

Next the g-Tanaka-Webster curvature tensor $\hat{R}^{(k)}$ with respect to $\hat{\nabla}^{(k)}$ can be defined by

$$
\begin{equation*}
\hat{R}^{(k)}(X, Y) Z=\hat{\nabla}_{X}^{(k)}\left(\hat{\nabla}_{Y}^{(k)} Z\right)-\hat{\nabla}_{Y}^{(k)}\left(\hat{\nabla}_{X}^{(k)} Z\right)-\hat{\nabla}_{[X, Y]}^{(k)} Z \tag{3.4}
\end{equation*}
$$

for all vector fields X, Y, Z on M. Then we have the following identities

$$
\begin{aligned}
\hat{\boldsymbol{R}}^{(k)}(X, Y) Z & =-\hat{\boldsymbol{R}}^{(k)}(Y, X) Z, \\
g\left(\hat{\boldsymbol{R}}^{(k)}(X, Y) Z, W\right) & =-g\left(\hat{\boldsymbol{R}}^{(k)}(X, Y) W, Z\right)
\end{aligned}
$$

Here we remark that because the g-Tanaka-Webster connection is not torsionfree, the Jacobi-type and Bianchi-type identities do not hold in general. Moreover, the g-Tanaka-Webster Ricci tensor \hat{S} is defined by

$$
\begin{equation*}
\hat{S}(Y, Z)=\text { trace of }\{X \mapsto \hat{R}(X, Y) Z\} \tag{3.5}
\end{equation*}
$$

4. Key Lemmas

Let M be a Hopf hypersurface in $G_{2}\left(\mathbf{C}^{m+2}\right)$ with g-Tanaka-Webster parallel shape operator. First of all, we find the fundamental equation for the condition that the shape operator A is parallel with respect to $\hat{\nabla}^{(k)}$, that is, $\left(\hat{\nabla}_{X}^{(k)} A\right) Y=0$ for any tangent vector fields X and Y.

From (3.1), we have

$$
\begin{align*}
\left(\hat{\nabla}_{X}^{(k)} A\right) Y= & \hat{\nabla}_{X}^{(k)}(A Y)-A\left(\hat{\nabla}_{X}^{(k)} Y\right) \tag{4.1}\\
= & \nabla_{X}(A Y)+g(\phi A X, A Y) \xi-\eta(A Y) \phi A X-k \eta(X) \phi A Y \\
& -A\left(\nabla_{X} Y+g(\phi A X, Y) \xi-\eta(Y) \phi A X-k \eta(X) \phi Y\right) \\
= & \left(\nabla_{X} A\right) Y+g(\phi A X, A Y) \xi-\eta(A Y) \phi A X-k \eta(X) \phi A Y \\
& -g(\phi A X, Y) A \xi+\eta(Y) A \phi A X+k \eta(X) A \phi Y .
\end{align*}
$$

Under our conditions, $\left(\hat{\nabla}_{X}^{(k)} A\right) Y=0$ and $A \xi=\alpha \xi$, it follows that

$$
\begin{align*}
& \left(\nabla_{X} A\right) Y+g(\phi A X, A Y) \xi-\alpha \eta(Y) \phi A X-k \eta(X) \phi A Y \tag{4.2}\\
& -\alpha g(\phi A X, Y) \xi+\eta(Y) A \phi A X+k \eta(X) A \phi Y=0
\end{align*}
$$

for any tangent vector fields X and Y on M.
From the equation (4.2), we can assert following:
Lemma 4.1. Let M be a Hopf hypersurface in complex two-plane Grassmannians $G_{2}\left(\mathbf{C}^{m+2}\right), m \geq 3$. If M has the generalized Tanaka-Webster parallel shape operator, then the smooth function $\alpha=g(A \xi, \xi)$ is constant.

Proof. Substituting ξ for any tangent vector field Y in (4.2) and using the notion of Hopf, that is, $A \xi=\alpha \xi$, we have

$$
\begin{equation*}
\left(\nabla_{X} A\right) \xi-\alpha \phi A X+A \phi A X=0 \tag{4.3}
\end{equation*}
$$

for any vector field X tangent to M.
On the other hand, taking the covariant derivative for $A \xi=\alpha \xi$ along any direction X, we get

$$
\begin{equation*}
\left(\nabla_{X} A\right) \xi=(X \alpha) \xi+\alpha \phi A X-A \phi A X . \tag{4.4}
\end{equation*}
$$

From (4.4), the equation (4.3) can be written by

$$
(X \alpha) \xi+\alpha \phi A X-A \phi A X-\alpha \phi A X+A \phi A X=0,
$$

that is, we obtain for any vector field X tangent to M

$$
\begin{equation*}
(X \alpha) \xi=0 \tag{4.5}
\end{equation*}
$$

This implies that $X \alpha=0$ for any tangent vector field X on M. Therefore we have our assertion.

Under the assumption of $A \xi=\alpha \xi$, the Codazzi equation (2.8) becomes

$$
\left(\nabla_{\xi} A\right) Y-\left(\nabla_{Y} A\right) \xi=\phi Y+\sum_{v=1}^{3}\left\{\eta_{v}(\xi) \phi_{v} Y-\eta_{v}(Y) \phi_{v} \xi-3 g\left(\phi_{v} \xi, Y\right) \xi_{v}\right\}
$$

for any tangent vector field Y on M.

From this, taking an inner product with ξ, it gives that

$$
g\left(\left(\nabla_{\xi} A\right) Y, \xi\right)-g\left(\left(\nabla_{Y} A\right) \xi, \xi\right)=4 \sum_{v=1}^{3} \eta_{v}(\xi) \eta_{v}(\phi Y) .
$$

On the other hand, by using (4.4), we obtain

$$
\begin{aligned}
g\left(\left(\nabla_{\xi} A\right) Y, \xi\right)-g\left(\left(\nabla_{Y} A\right) \xi, \xi\right) & =g\left(Y,\left(\nabla_{\xi} A\right) \xi\right)-g\left(\xi,\left(\nabla_{Y} A\right) \xi\right) \\
& =g(Y,(\xi \alpha) \xi)-g(\xi,(Y \alpha) \xi+\alpha \phi A Y-A \phi A Y) \\
& =(\xi \alpha) \eta(Y)-(Y \alpha),
\end{aligned}
$$

when we have used two formulas that $\left(\nabla_{\xi} A\right) \xi=(\xi \alpha) \xi$ and $\left(\nabla_{Y} A\right) \xi=(Y \alpha) \xi+$ $\alpha \phi A Y-A \phi A Y$.

Consequently, we have the following

$$
\begin{equation*}
Y \alpha=(\xi \alpha) \eta(Y)-4 \sum_{v=1}^{3} \eta_{v}(\xi) \eta_{v}(\phi Y) \tag{4.6}
\end{equation*}
$$

for any tangent vector field Y on M (see [4]).
Now we give one of Key Lemmas as follows:
Lemma 4.2. Let M be a Hopf hypersurface in complex two-plane Grassmannian $G_{2}\left(\mathbf{C}^{m+2}\right), m \geq 3$. If M has the parallel shape operator with respect to the generalized Tanaka-Webster connection, then the Reeb vector field ξ belongs to either the distribution \mathfrak{D} or the distribution \mathfrak{D}^{\perp}.

Proof. In order to prove our lemma, let us put $\xi=\eta\left(X_{0}\right) X_{0}+\eta\left(\xi_{1}\right) \xi_{1}$ for some unit $X_{0} \in \mathfrak{D}$ and $\xi_{1} \in \mathfrak{D}^{\perp}$ and $\eta\left(X_{0}\right) \eta\left(\xi_{1}\right) \neq 0$. Since we knew that α is constant in Lemma 4.1, we have

$$
\begin{equation*}
\sum_{v=1}^{3} \eta_{v}(\xi) \phi \xi_{v}=0 \tag{4.7}
\end{equation*}
$$

when we have used the formula (4.6).
Since $\xi=\eta\left(X_{0}\right) X_{0}+\eta\left(\xi_{1}\right) \xi_{1}$, then the equation (4.7) can be written as

$$
\sum_{v=1}^{3} \eta\left(\xi_{1}\right) \eta_{v}\left(\xi_{1}\right) \phi \xi_{v}=0
$$

which gives $\eta\left(\xi_{1}\right) \phi \xi_{1}=0$.
On the other hand, from the fact $\phi \xi_{v}=\phi_{v} \xi$, it follows $\eta\left(\xi_{1}\right) \phi \xi_{1}=$ $\eta\left(\xi_{1}\right) \eta\left(X_{0}\right) \phi_{1} X_{0}$. Thus we have

$$
\eta\left(\xi_{1}\right) \eta\left(X_{0}\right) \phi_{1} X_{0}=0
$$

Since $\eta\left(X_{0}\right) \eta\left(\xi_{1}\right) \neq 0$, we have $\phi_{1} X_{0}=0$. But this gives a contradiction. Because $g\left(\phi_{1} X_{0}, \phi_{1} X_{0}\right)=g\left(X_{0}, X_{0}\right)$ and X_{0} is a unit, $\phi_{1} X_{0}$ becomes a non zero vector. So we complete the proof of our Lemma.

Before giving the proof of our Main Theorem given in the introduction, let us check whether the shape operator A of real hypersurfaces of Type (A) or of Type (B) in Theorem A is parallel with respect to the g-Tanaka-Webster connection.

First let us check for the case that M is locally congruent to a real hypersurface of Type (A), an open part of a tube around a totally geodesic $G_{2}\left(\mathbf{C}^{m+1}\right)$ in $G_{2}\left(\mathbf{C}^{m+2}\right)$. We recall a proposition due to Berndt and Suh [3] as follows:

Proposition E. Let M be a connected real hypersurface of $G_{2}\left(\mathbf{C}^{m+2}\right)$. Suppose that $A \mathfrak{D} \subset \mathfrak{D}, A \xi=\alpha \xi$, and ξ is tangent to \mathfrak{D}^{\perp}. Let $J_{1} \in \mathfrak{I}$ be the almost Hermitian structure such that $J N=J_{1} N$. Then M has three (if $r=\pi / 2 \sqrt{8}$) or four (otherwise) distinct constant principal curvatures

$$
\alpha=\sqrt{8} \cot (\sqrt{8} r), \quad \beta=\sqrt{2} \cot (\sqrt{2} r), \quad \lambda=-\sqrt{2} \tan (\sqrt{2} r), \quad \mu=0
$$

with some $r \in(0, \pi / \sqrt{8})$. The corresponding multiplicities are

$$
m(\alpha)=1, \quad m(\beta)=2, \quad m(\lambda)=2 m-2=m(\mu),
$$

and the corresponding eigenspaces are

$$
\begin{aligned}
T_{\alpha} & =\mathbf{R} \xi=\mathbf{R} J N=\mathbf{R} \xi_{1}=\operatorname{Span}\{\xi\}=\operatorname{Span}\left\{\xi_{1}\right\} \\
T_{\beta} & =\mathbf{C}^{\perp} \xi=\mathbf{C}^{\perp} N=\mathbf{R} \xi_{2} \oplus \mathbf{R} \xi_{3}=\operatorname{Span}\left\{\xi_{2}, \xi_{3}\right\}, \\
T_{\lambda} & =\left\{X \mid X \perp \mathbf{H} \xi, J X=J_{1} X\right\} \\
T_{\mu} & =\left\{X \mid X \perp \mathbf{H} \xi, J X=-J_{1} X\right\}
\end{aligned}
$$

where $\mathbf{R} \xi, \mathbf{C} \xi$ and $\mathbf{H} \xi$ respectively denotes real, complex and quaternionic span of the structure vector field ξ and $\mathbf{C}^{\perp} \xi$ denotes the orthogonal complement of $\mathbf{C} \xi$ in $\mathbf{H} \xi$.

Now let us suppose that a real hypersurface of Type (A) has the parallel shape operator with respect to the g -Tanaka-Webster. Then we see that $\left(\hat{\nabla}_{X}^{(k)} A\right) \xi_{2}=0$ for a unit eingenvector $X \in T_{\lambda}$. Then it follows that

$$
\begin{align*}
\left(\hat{\nabla}_{X}^{(k)} A\right) \xi_{2}= & \nabla_{X}\left(A \xi_{2}\right)+g\left(\phi A X, A \xi_{2}\right) \xi-\eta\left(A \xi_{2}\right) \phi A X-k \eta(X) \phi A \xi_{2} \tag{4.8}\\
& -A\left(\nabla_{X} \xi_{2}+g\left(\phi A X, \xi_{2}\right) \xi-\eta\left(\xi_{2}\right) \phi A X-k \eta(X) \phi \xi_{2}\right) \\
= & \beta \nabla_{X} \xi_{2}-A\left(\nabla_{X} \xi_{2}\right) \\
= & 0
\end{align*}
$$

because $\xi \in \mathfrak{D}^{\perp}, X \in T_{\lambda}$ and $\xi_{2} \in T_{\beta}$.

On the other hand, since we put $\xi=\xi_{1}$ from the assumption $\xi \in \mathfrak{D}^{\perp}$, we obtain that $q_{2}(X)=2 g\left(A \xi_{2}, X\right)$ and $q_{3}(X)=2 g\left(A \xi_{3}, X\right)$ for any tangent vector field X on M. Thus the equation (4.8) can be changed by

$$
\beta \lambda \phi_{2} X-\lambda A \phi_{2} X=0 .
$$

From (2.1), (2.2) and (2.3), we see that $\phi_{2} X \in T_{\mu}$ for any $X \in T_{\lambda}$, that is, $A \phi_{2} X=\mu \phi_{2} X$. Since $\mu=0$, we have

$$
\beta \lambda \phi_{2} X=0
$$

for any vector field $X \in T_{\lambda}$. Thus we have $\beta \lambda$ is zero and this case can not occur for some $r \in(0, \pi / 2 \sqrt{8})$. So we conclude a remark as follows:

Remark 4.3. The shape operator A of real hypersurfaces of Type (A) in $G_{2}\left(\mathbf{C}^{m+2}\right)$ is not parallel with respect to the generalized Tanaka-Webster connection.

As a second, let us check whether the shape operator A of real hypersurfaces of Type (B) is parallel with respect to the g-Tanaka-Webster connection. As is well known in Berndt and Suh [3], a real hypersurface of Type (B) has five distinct constant principal curvatures as follows:

Proposition F. Let M be a connected real hypersurface of $G_{2}\left(\mathbf{C}^{m+2}\right)$. Suppose that $A \mathfrak{D} \in \mathfrak{D}, A \xi=\alpha \xi$, and ξ is tangent to \mathfrak{D}. Then the quaternionic dimension m of $G_{2}\left(\mathbf{C}^{m+2}\right)$ is even, say $m=2 n$, and M has five distinct constant principal curvatures

$$
\alpha=-2 \tan (2 r), \quad \beta=2 \cot (2 r), \quad \gamma=0, \quad \lambda=\cot (r), \quad \mu=-\tan (r)
$$

with some $r \in(0, \pi / 4)$. The corresponding multiplicities are

$$
m(\alpha)=1, \quad m(\beta)=3=m(\gamma), \quad m(\lambda)=4 n-4=m(\mu)
$$

and the corresponding eigenspaces are

$$
\begin{aligned}
& T_{\alpha}=\mathbf{R} \xi=\operatorname{Span}\{\xi\}, \\
& T_{\beta}=\mathfrak{J} J \xi=\operatorname{Span}\left\{\xi_{v} \mid v=1,2,3\right\}, \\
& T_{\gamma}=\mathfrak{J} \xi=\operatorname{Span}\left\{\phi_{v} \xi \mid v=1,2,3\right\}, \\
& T_{\lambda}, \quad T_{\mu},
\end{aligned}
$$

where

$$
T_{\lambda} \oplus T_{\mu}=(\mathbf{H C} \xi)^{\perp}, \quad \mathfrak{J} T_{\lambda}=T_{\lambda}, \quad \mathfrak{J} T_{\mu}=T_{\mu}, \quad J T_{\lambda}=T_{\mu} .
$$

Here we suppose that a real hypersurface of Type (B) has the g-Tanaka-Webster parallel shape operator. Then we see that $\left(\hat{\nabla}_{X}^{(k)} A\right) \xi_{2}=0$ for a unit eingenvector $X \in T_{\lambda}$. Then it follows that

$$
\begin{align*}
\left(\hat{\nabla}_{X}^{(k)} A\right) \xi_{2}= & \nabla_{X}\left(A \xi_{2}\right)+g\left(\phi A X, A \xi_{2}\right) \xi-\eta\left(A \xi_{2}\right) \phi A X-k \eta(X) \phi A \xi_{2} \tag{4.9}\\
& -A\left(\nabla_{X} \xi_{2}+g\left(\phi A X, \xi_{2}\right) \xi-\eta\left(\xi_{2}\right) \phi A X-k \eta(X) \phi \xi_{2}\right) \\
= & \beta \nabla_{X} \xi_{2}-A\left(\nabla_{X} \xi_{2}\right) \\
= & 0,
\end{align*}
$$

because $\xi \in \mathfrak{D}, X \in T_{\lambda}$ and $\xi_{2} \in T_{\beta}$.
From (2.5) and $\xi_{v} \in T_{\beta}$, the equation (4.9) can be written by

$$
\beta \lambda \phi_{2} X-\lambda A \phi_{2} X=0 .
$$

Since $\mathfrak{J} Z \in T_{\lambda}$ for any $Z \in T_{\lambda}$, we see that $A \phi_{2} X=\lambda X$. From these facts it follows that

$$
\lambda(\beta-\lambda) \phi_{2} X=0
$$

for any vector field $X \in T_{\lambda}$. From this, taking an inner product with $\phi_{2} X$, we have

$$
\lambda(\beta-\lambda)=0
$$

Since $\lambda=\cot r(0<r<\pi / 4)$ is not zero, we have $\beta=\lambda$. But this case also can not occur for some $r \in(0, \pi / 4)$. In fact, since $\beta=2 \cot (2 r)$ and $\lambda=\cot r$, we obtain $\beta-\lambda=-\tan r=\mu<0$ where $r \in(0, \pi / 4)$. So we also give the following remark:

Remark 4.4. The shape operator A of real hypersurfaces of Type (B) in $G_{2}\left(\mathbf{C}^{m+2}\right)$ is not parallel with respect to the generalized Tanaka-Webster connection.

5. The proof of Main Theorem

In this section, let us M be a Hopf hypersurface M in $G_{2}\left(\mathbf{C}^{m+2}\right)$ with the g-Tanaka-Webster parallel shape operator. Then by Lemma 4.2 we consider the following two cases:

- Case I: the Reeb vector field ξ belongs to the distribution \mathfrak{D},
- Case II: the Reeb vector field ξ belongs to the distribution \mathfrak{D}^{\perp}.

First, let us consider the Case I, that is, $\xi \in \mathfrak{D}$. By Theorem D, we see that M is locally congruent to a real hypersurface of Type (B) under our assumption. But in section 4 we have checked that the shape operator A of real hypersurface of Type (B) is not g -Tanaka-Webster parallel (see Remark 4.4). From these facts, first we assert the following:

Theorem 5.1. There does not exist any Hopf hypersurface in $G_{2}\left(\mathbf{C}^{m+2}\right)$, $m \geq 3$, with generalized Tanaka-Webster parallel shape operator if the Reeb vector field ξ belongs to the distribution \mathfrak{D}.

Next we consider for the case $\xi \in \mathfrak{D}^{\perp}$. Accordingly, we may put $\xi=\xi_{1}$. Then we have the following:

Lemma 5.2. Let M be a Hopf hypersurface in complex two-plane Grassmannian $G_{2}\left(\mathbf{C}^{m+2}\right), m \geq 3$ with $\xi \in \mathfrak{D}^{\perp}$. If M has the parallel shape operator in the generalized Tanaka-Webster connection and $\alpha \neq 2 k$, then the structure tensor ϕ commutes with the shape operator A of M.

Proof. Using (4.1) and $A \xi=\alpha \xi$, we have

$$
\begin{align*}
& \left(\hat{\nabla}_{X}^{(k)} A\right) \xi-\left(\hat{\nabla}_{\xi}^{(k)} A\right) X \tag{5.1}\\
& \quad=\left(\nabla_{X} A\right) \xi-\alpha \phi A X+A \phi A X-\left(\nabla_{\xi} A\right) X+k \phi A X-k A \phi X
\end{align*}
$$

for any vector field $X \in T_{x} M$ and any point $x \in M$.
From the equation of Codazzi (2.8) we see that

$$
\left(\nabla_{X} A\right) \xi-\left(\nabla_{\xi} A\right) X=-\phi X+\sum_{v=1}^{3}\left\{\eta_{v}(X) \phi_{v} \xi-\eta_{v}(\xi) \phi_{v} X-3 g\left(\phi_{v} X, \xi\right) \xi_{v}\right\}
$$

Moreover, since $\phi_{2} \xi=\phi_{2} \xi_{1}=-\xi_{3}$ and $\phi_{3} \xi=\phi_{3} \xi_{1}=\xi_{2}$, it follows that

$$
\begin{equation*}
\left(\nabla_{X} A\right) \xi-\left(\nabla_{\xi} A\right) X=-\phi X-\phi_{1} X-2 \eta_{3}(X) \xi_{2}+2 \eta_{2}(X) \xi_{3} . \tag{5.2}
\end{equation*}
$$

Substituting (5.2) into (5.1), we have

$$
\begin{align*}
\left(\hat{\nabla}_{X}^{(k)} A\right) \xi-\left(\hat{\nabla}_{\xi}^{(k)} A\right) X= & -\phi X-\phi_{1} X+(k-\alpha) \phi A X-k A \phi X \tag{5.3}\\
& +A \phi A X-2 \eta_{3}(X) \xi_{2}+2 \eta_{2}(X) \xi_{3} .
\end{align*}
$$

Then the parallel shape operator in the g -Tanaka-Webster connection gives

$$
\begin{equation*}
-\phi X-\phi_{1} X+(k-\alpha) \phi A X-k A \phi X+A \phi A X-2 \eta_{3}(X) \xi_{2}+2 \eta_{2}(X) \xi_{3}=0 \tag{5.4}
\end{equation*}
$$

for any tangent vector field X on M.
Now we introduce the formula derived from $A \xi=\alpha \xi$ (see [4]) as follows:

$$
\begin{align*}
\alpha A \phi X+\alpha \phi A X & -2 A \phi A X+2 \phi X \tag{5.5}\\
=-2 \sum_{v=1}^{3}\{ & \eta_{v}(X) \phi_{v} \xi+\eta_{v}(\phi X) \xi_{v}+\eta_{v}(\xi) \phi_{v} X \\
& \left.\quad-2 \eta(X) \eta_{v}(\xi) \phi_{v} \xi-2 \eta_{v}(\phi X) \eta_{v}(\xi) \xi\right\} .
\end{align*}
$$

Since $\xi=\xi_{1}$, the equation (5.5) gives

$$
\begin{equation*}
2 A \phi A X=\alpha A \phi X+\alpha \phi A X+2 \phi X+2 \phi_{1} X+4 \eta_{3}(X) \xi_{2}-4 \eta_{2}(X) \xi_{3} . \tag{5.6}
\end{equation*}
$$

Thus from (5.4) and (5.6) we have

$$
\begin{equation*}
(2 k-\alpha) \phi A X-(2 k-\alpha) A \phi X=0 . \tag{5.7}
\end{equation*}
$$

Since $\alpha \neq 2 k$, we have $(\phi A-A \phi) X=0$ for any vector field $X \in T_{x} M$. It means that the shape operator A commutes with the structure tensor ϕ.

Therefore from Theorems B and C in the introduction, we assert the following:
Lemma 5.3. Let M be a Hopf hypersurface in complex two-plane Grassmannian $G_{2}\left(\mathbf{C}^{m+2}\right), m \geq 3$. If M satisfies the assumptions in Lemma $5.2, M$ is locally congruent to an open part of a tube around a totally geodesic $G_{2}\left(\mathbf{C}^{m+1}\right)$ in $G_{2}\left(\mathbf{C}^{m+2}\right)$.

As mentioned in Remark 4.3, the shape operator A for real hypersurfaces of Type (A) can not parallel with respect to the g -Tanaka-Webster connection. From this we assert the following:

Theorem 5.4. There does not exist any Hopf hypersurface in $G_{2}\left(\mathbf{C}^{m+2}\right)$ with parallel shape operator with respect to the generalized Tanaka-Webster connection if $\xi \in \mathfrak{D}^{\perp}$ and $\alpha \neq 2 k$.

Summing up Theorems 5.1 and 5.4, we give a complete proof of our Main Theorem in the introduction.

References

[1] D. V. AlekseevskiI, Compact quaternion spaces, Funct. Anal. Appl. 2 (1968), 106-114.
[2] J. Berndt, Riemannian geometry of complex two-plane Grassmannian, Rend. Sem. Mat. Univ. Politec. Torino 55 (1997), 19-83.
[3] J. Berndt and Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians, Monatshefte für Math. 127 (1999), 1-14.
[4] J. Berndt and Y. J. Suh, Isometric flows on real hypersurfaces in complex two-plane Grassmannians, Monatshefte für Math. 137 (2002), 87-98.
[5] J. T. Сно, $C R$ structures on real hypersurfaces of a complex space form, Publ. Math. Debrecen 54 (1999), 473-487.
[6] J. T. Сно, Levi-parallel hypersurfaces in a complex space form, Tsukuba J. Math. 30 (2006), 329-344.
[7] J. T. Cho and M. Kimura, Pseudo-holomorphic sectional curvatures of real hypersrufaces in a complex space form, Kyushu J. Math. 62 (2008), 75-87.
[8] M. Kon, Real hypersurfaces in complex space forms and the generalized-Tanaka-Webster connection (Y. J. Suh, J. Berndt and Y. S. Choi, eds.), Proc. of the 13th International Workshop on Differential Geometry anad Related Fields, NIMS, 2009, 145-159.
[9] H. Lee and Y. J. Suh, Real hypersurfaces of type B in complex two-plane Grassmannians related to the Reeb vector, Bull. Korean Math. Soc. 47 (2010), 551-561.
[10] J. D. Pérez and Y. J. Suh, The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians, J. Korean Math. Soc. 44 (2007), 211-235.
[11] Y. J. SuH, Real hypersurfaces in complex two-plane Grassmannians with parallel shape operator, Bull. of Austral. Math. Soc. 68 (2003), 493-502.
[12] Y. J. SuH, Real hypersurfaces in complex two-plane Grassmannians with parallel shape operator II, J. Korean Math. Soc. 41 (2004), 535-565.
[13] N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan J. Math. 20 (1976), 131-190.
[14] S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc. 314 (1989), 349-379.
[15] S. M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Diff. Geom. 13 (1978), 25-41.

Imsoon Jeong

Department of Mathematics
Kyungrook National University
Taegu 702-701

Korea

E-mail: imsoon.jeong@gmail.com
Hyunjin Lee
Graduate School of Electrical Engineering and Computer Science
Kyungpook National University
TaEgu 702-701

Korea

E-mail: 1hjibis@hanmail.net
Young Jin Suh
Department of Mathematics
Kyungrook National University
Taegu 702-701

Korea

E-mail: yjsuh@knu.ac.kr

[^0]: 2000 Mathematics Subject Classification: Primary 53C40; Secondary 53C15.
 Key words and phrases: Real hypersurfaces, Complex two-plane Grassmannians, Hopf hypersurface, Generalized Tanaka-Webster connection, Generalized Tanaka-Webster parallel shape operator.

 The first author was supported by grant Proj. No. BSRP-2011-0013381 and the second and the third authors supported by grant Proj. No. NRF-2011-220-C00002 from National Research Foundation of Korea.

 Received October 5, 2010.

