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REAL HYPERSURFACES IN COMPLEX TWO-PLANE

GRASSMANNIANS WITH GENERALIZED TANAKA-WEBSTER

PARALLEL SHAPE OPERATOR

Imsoon Jeong, Hyunjin Lee and Young Jin Suh

Abstract

We introduce the notion of generalized Tanaka-Webster connection for hyper-

surfaces in complex two-plane Grassmannians G2ðCmþ2Þ and give a non-existence

theorem for Hopf hypersurfaces in G2ðCmþ2Þ with parallel shape operator in this

connection.

Introduction

The generalized Tanaka-Webster connection (in short, the g-Tanaka-Webster
connection) for contact metric manifolds has been introduced by Tanno [14] as
a generalization of the well-known connection defined by Tanaka in [13] and,
independently, by Webster in [15]. This connection coincides with Tanaka-
Webster connection if the associated CR-structure is integrable. Tanaka-Webster
connection is defined as the canonical a‰ne connection on a non-degenerate,
pseudo-Hermitian CR-manifold. For a real hypersurface in a Kähler manifold
with almost contact metric structure ðf; x; h; gÞ, Cho defined the g-Tanaka-
Webster connection ‘̂‘ðkÞ for a non-zero real number k (see [5], [6] and
[7]). In particular, if a real hypersurface satisfies fAþ Af ¼ 2kf, then the

g-Tanaka-Webster connection ‘̂‘ðkÞ coincides with the Tanaka-Webster connection
(see Proposition 7 in [7]).

Using the notion of the g-Tanaka-Webster connection, many geometers have
studied some characterizations of real hypersurfaces in complex space form ~MMnðcÞ
with constant holomorphic sectional curvature c. For instance, when c > 0,
that is, ~MMnðcÞ is a complex projective space CPn, Cho [5] proved that if the
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shape operator A of M in CPn is ‘̂‘ðkÞ-parallel (it means that the shape operator
A satisfies ‘̂‘ðkÞA ¼ 0), then x is a principal curvature vector field and M is
locally congruent to a real hypersurface of Type ðAÞ and Type ðBÞ. (In fact, he
also gave the classification of real hypersurfaces in a complex hyperbolic space
(c < 0) and complex Euclidean space (c ¼ 0) under the assumption ‘̂‘ðkÞ-parallel
shape operator [5]). Moreover in [6] he gave the classification theorem of
Levi-parallel Hopf hypersurface in ~MMnðcÞ, c0 0. Here, a real hypersurface of
~MMnðcÞ is called Levi-parallel if its Levi form is parallel with respect to the
g-Tanaka-Webster connection. In [8], Kon gave a characterization for real
hypersurfaces of Type ðA1Þ in complex projective space CPn under the assump-
tion that the Ricci tensor related to the g-Tanaka-Webster connection identically
vanishes.

Now let us denote by G2ðCmþ2Þ the set of all complex two-dimensional linear
subspaces in Cmþ2. This Riemannian symmetric space G2ðCmþ2Þ has a remark-
able geometric structure. It is the unique compact irreducible Riemannian
manifold being equipped with both a Kähler structure J and a quaternionic
Kähler structure J not containing J. In other words, G2ðCmþ2Þ is the unique
compact, irreducible, Kähler, quaternionic Kähler manifold which is not a hyper-
Kähler manifold. So, in G2ðCmþ2Þ we have the two natural geometric conditions
for real hypersurfaces M that the 1-dimensional distribution ½x� ¼ Spanfxg and
the 3-dimensional distribution D? ¼ Spanfx1; x2; x3g are invariant under the
shape operator A of M (see section 2).

Here the almost contact structure vector field x defined by x ¼ �JN is
said to be a Reeb vector field, where N denotes a local unit normal vector field
of M in G2ðCmþ2Þ. The almost contact 3-structure vector fields fx1; x2; x3g for
the 3-dimensional distribution D? of M in G2ðCmþ2Þ are defined by xn ¼ �JnN
ðn ¼ 1; 2; 3), where Jn denotes a canonical local basis of a quaternionic Kähler
structure J, such that TxM ¼ DlD?, x A M.

By using two invariant conditions mentioned above and the result in
Alekseevskii [1], Berndt and Suh [3] proved the following:

Theorem A. Let M be a connected real hypersurface in G2ðCmþ2Þ, mb 3.
Then both ½x� and D? are invariant under the shape operator of M if and only
if
(A) M is an open part of a tube around a totally geodesic G2ðCmþ1Þ in G2ðCmþ2Þ,

or
(B) m is even, say m ¼ 2n, and M is an open part of a tube around a totally

geodesic HPn in G2ðCmþ2Þ.

Furthermore, the Reeb vector field x is said to be Hopf if it is invariant
under the shape operator A. The 1-dimensional foliation of M by the integral
manifolds of the Reeb vector field x is said to be a Hopf foliation of M. We
say that M is a Hopf hypersurface in G2ðCmþ2Þ if and only if the Hopf foliation
of M is totally geodesic. By the formulas in Section 2 it can be easily checked
that M is Hopf if and only if the Reeb vector field x is Hopf.
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Moreover, we say that the Reeb vector field x on M is Killing, when the
Reeb flow on M in G2ðCmþ2Þ is isometric. In [4], Berndt and Suh gave some
equivalent conditions of this property as follows:

Theorem B. Let M be a connected orientable real hypersurface in a Kähler
manifold ~MM. The following statements are equivalent:

(1) The Reeb flow on M is isometric,
(2) The shape operator A and the structure tensor field f commute with each

other,
(3) The Reeb vector field x is a principal curvature vector of M everywhere

and the principal curvature spaces contained in the maximal complex sub-
bundle D of TM are complex subspaces.

Also in [4], a characterization of real hypersurfaces of Type ðAÞ in Theorem A
was given in terms of the Reeb flow on M as follows:

Theorem C. Let M be a connected orientable real hypersurface in G2ðCmþ2Þ,
mb 3. Then the Reeb flow on M is isometric if and only if M is an open part of
a tube around a totally geodesic G2ðCmþ1Þ in G2ðCmþ2Þ.

Recently, Lee and Suh [9] gave a new characterization of real hypersurfaces
of Type ðBÞ in G2ðCmþ2Þ in terms of the Reeb vector field x as follows:

Theorem D. Let M be a connected orientable Hopf real hypersurface in
G2ðCmþ2Þ, mb 3. Then the Reeb vector field x belongs to the distribution D if
and only if M is locally congruent to an open part of a tube around a totally
geodesic HPn in G2ðCmþ2Þ, where m ¼ 2n.

In particular, if the shape operator A of M in G2ðCmþ2Þ satisfies
ð‘XAÞY ¼ 0 for any vector fields X , Y on M, we say that the shape operator
A is parallel with respect to the Levi-Civita connection. Using this notion,
Suh [11] proved the non-existence theorem of real hypersurfaces in G2ðCmþ2Þ
with parallel shape operator. Moreover, in [12], he also considered a generalized
condition weaker than ‘A ¼ 0, which is said to be F-parallel, and proved that
there does not exist any real hypersurface with F-parallel shape operator. Here,
a shape operator A of M in G2ðCmþ2Þ is said to be F-parallel if the shape
operator A satisfies ð‘XAÞY ¼ 0 for any tangent vector fields X A F and
Y A TxM, where the subdistribution F is defined by F ¼ ½x�UD? (see [12]).

Now in this paper we consider a new parallel shape operator for real
hypersurface M in G2ðCmþ2Þ. Here the shape operator A is called generalized
Tanaka-Webster parallel (in short, g-Tanaka-Webster parallel ) if the shape

operator A is parallel with respect to the g-Tanaka-Webster connection ‘̂‘ðkÞ, that
is, ð‘̂‘ðkÞ

X AÞY ¼ 0 for any vector fields X ;Y on M. If we consider such a notion
in complex two-plane Grassmannians G2ðCmþ2Þ, its situation is quite di¤erent

from the case in complex space forms ~MMnðcÞ.
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From such a point of view, in this paper we give a non-existence theorem
for Hopf hypersurfaces in G2ðCmþ2Þ with parallel shape operator in the general-
ized Tanaka-Webster connection as follows:

Main Theorem. There does not exist any Hopf hypersurface, a0 2k, in
complex two-plane Grassmannians G2ðCmþ2Þ, mb 3, with parallel shape operator
in the generalized Tanaka-Webster connection.

1. Riemannian geometry of G2ðCmþ2Þ

In this section we summarize basic material about G2ðCmþ2Þ, for details
we refer to [2], [3] and [4]. By G2ðCmþ2Þ we denote the set of all complex two-

dimensional linear subspaces in Cmþ2. The special unitary group G ¼ SUðmþ 2Þ
acts transitively on G2ðCmþ2Þ with stabilizer isomorphic to K ¼ SðUð2Þ �UðmÞÞ
HG. Then G2ðCmþ2Þ can be identified with the homogeneous space G=K , which
we equip with the unique analytic structure for which the natural action of G on

G2ðCmþ2Þ becomes analytic. Denote by g and k the Lie algebra of G and K ,
respectively, and by m the orthogonal complement of k in g with respect to the
Cartan-Killing form B of g. Then g ¼ klm is an AdðKÞ-invariant reductive
decomposition of g. We put o ¼ eK and identify ToG2ðCmþ2Þ with m in the
usual manner. Since B is negative definite on g, its negative restricted to m�m
yields a positive definite inner product on m. By AdðKÞ-invariance of B this
inner product can be extended to a G-invariant Riemannian metric g on
G2ðCmþ2Þ. In this way G2ðCmþ2Þ becomes a Riemannian homogeneous space,
even a Riemannian symmetric space. For computational reasons we normalize g
such that the maximal sectional curvature of ðG2ðCmþ2Þ; gÞ is eight.

When m ¼ 1, G2ðC3Þ is isometric to the two-dimensional complex projective
space CP2 with constant holomorphic sectional curvature eight. When m ¼ 2,
we note that the isomorphism Spinð6ÞFSUð4Þ yields an isometry between

G2ðC4Þ and the real Grassmann manifold Gþ
2 ðR6Þ of oriented two-dimensional

linear subspaces in R6. In this paper, we will assume mb 3.
The Lie algebra k has the direct sum decomposition k ¼ suðmÞl suð2ÞlR,

where R is the center of k. Viewing k as the holonomy algebra of G2ðCmþ2Þ, the
center R induces a Kähler structure J and the suð2Þ-part a quaternionic Kähler
structure J on G2ðCmþ2Þ. If Jn is any almost Hermitian structure in J, then
JJn ¼ JnJ, and JJn is a symmetric endomorphism with ðJJnÞ2 ¼ I and trðJJnÞ ¼ 0
for n ¼ 1; 2; 3.

A canonical local basis fJ1; J2; J3g of J consists of three local almost
Hermitian structures Jn in J such that JnJnþ1 ¼ Jnþ2 ¼ �Jnþ1Jn, where the index
n is taken modulo three. Since J is parallel with respect to the Riemannian
connection ~‘‘ of ðG2ðCmþ2Þ; gÞ, there exist for any canonical local basis fJ1; J2; J3g
of J three local one-forms q1, q2, q3 such that

~‘‘XJn ¼ qnþ2ðXÞJnþ1 � qnþ1ðX ÞJnþ2ð1:1Þ
for all vector fields X on G2ðCmþ2Þ.
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The Riemannian curvature tensor ~RR of G2ðCmþ2Þ is locally given by

~RRðX ;Y ÞZ ¼ gðY ;ZÞX � gðX ;ZÞY þ gðJY ;ZÞJXð1:2Þ
� gðJX ;ZÞJY � 2gðJX ;YÞJZ

þ
X3

n¼1

fgðJnY ;ZÞJnX � gðJnX ;ZÞJnY � 2gðJnX ;Y ÞJnZg

þ
X3

n¼1

fgðJnJY ;ZÞJnJX � gðJnJX ;ZÞJnJYg;

where fJ1; J2; J3g denotes a canonical local basis of J.

2. Some fundamental formulas for real hypersurfaces in G2ðCmþ2Þ

In this section we derive some basic formulas and the Codazzi equation for a
real hypersurface in G2ðCmþ2Þ (see [3], [4], [9], [10], [11] and [12]).

Let M be a real hypersurface of G2ðCmþ2Þ, that is, a hypersurface of
G2ðCmþ2Þ with real codimension one. The induced Riemannian metric on M
will also be denoted by g, and ‘ denotes the Riemannian connection of ðM; gÞ.
Let N be a local unit normal vector field of M and A the shape operator of
M with respect to N.

Now let us put

JX ¼ fX þ hðX ÞN; JnX ¼ fnX þ hnðXÞNð2:1Þ

for any tangent vector field X of a real hypersurface M in G2ðCmþ2Þ, where N
denotes a unit normal vector field of M in G2ðCmþ2Þ. From the Kähler struc-
ture J of G2ðCmþ2Þ there exists an almost contact metric structure ðf; x; h; gÞ
induced on M in such a way that

f2X ¼ �X þ hðXÞx; hðxÞ ¼ 1; fx ¼ 0; hðXÞ ¼ gðX ; xÞ

for any vector field X on M. Furthermore, let fJ1; J2; J3g be a canonical local
basis of J. Then the quaternionic Kähler structure Jn of G2ðCmþ2Þ, together
with the condition JnJnþ1 ¼ Jnþ2 ¼ �Jnþ1Jn in section 1, induces an almost
contact metric 3-structure ðfn; xn; hn; gÞ on M as follows:

f2
nX ¼ �X þ hnðXÞxn; hnðxnÞ ¼ 1; fnxn ¼ 0;

fnþ1xn ¼ �xnþ2; fnxnþ1 ¼ xnþ2;

fnfnþ1X ¼ fnþ2X þ hnþ1ðXÞxn;
fnþ1fnX ¼ �fnþ2X þ hnðXÞxnþ1

ð2:2Þ

for any vector field X tangent to M. Moreover, from the commuting property
of JnJ ¼ JJn, n ¼ 1; 2; 3 in section 1 and (2.1), the relation between these two
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contact metric structures ðf; x; h; gÞ and ðfn; xn; hn; gÞ, n ¼ 1; 2; 3, can be given
by

ffnX ¼ fnfX þ hnðX Þx� hðX Þxn;
hnðfXÞ ¼ hðfnX Þ; fxn ¼ fnx:

ð2:3Þ

On the other hand, from the Kähler structure J, that is, ~‘‘J ¼ 0 and the
quaternionic Kähler structure Jn, together with Gauss and Weingarten equations
it follows that

ð‘XfÞY ¼ hðYÞAX � gðAX ;YÞx; ‘Xx ¼ fAX ;ð2:4Þ
‘Xxn ¼ qnþ2ðXÞxnþ1 � qnþ1ðX Þxnþ2 þ fnAX ;ð2:5Þ

ð‘XfnÞY ¼ �qnþ1ðX Þfnþ2Y þ qnþ2ðXÞfnþ1Y þ hnðY ÞAX � gðAX ;Y Þxn:ð2:6Þ

Summing up these formulas, we find the following:

‘X ðfnxÞ ¼ ‘X ðfxnÞð2:7Þ
¼ ð‘XfÞxn þ fð‘XxnÞ
¼ qnþ2ðXÞfnþ1x� qnþ1ðXÞfnþ2xþ fnfAX

� gðAX ; xÞxn þ hðxnÞAX :

Using the above expression (1.2) for the curvature tensor ~RR of G2ðCmþ2Þ, the
equation of Codazzi becomes:

ð‘XAÞY � ð‘YAÞX ¼ hðXÞfY � hðYÞfX � 2gðfX ;Y Þxð2:8Þ

þ
X3

n¼1

fhnðXÞfnY � hnðY ÞfnX � 2gðfnX ;Y Þxng

þ
X3

n¼1

fhnðfX ÞfnfY � hnðfY ÞfnfXg

þ
X3

n¼1

fhðX ÞhnðfYÞ � hðYÞhnðfXÞgxn:

3. The g-Tanaka-Webster connection for real hypersurfaces

In this section, we introduce the notion of generalized Tanaka-Webster
connection (see [5], [6], [7] and [8]).

As stated above, the Tanaka-Webster connection is the canonical a‰ne
connection defined on a non-degenerate pseudo-Hermitian CR-manifold (see [13],
[15]). In [14], Tanno defined the g-Tanaka-Webster connection for contact
metric manifolds by the canonical connection which coincides with the Tanaka-
Webster connection if the associated CR-structure is integrable.
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From now on, we introduce the g-Tanaka-Webster connection due to Tanno
[14] for real hypersurfaces in Kähler manifolds by natural extending of the
canonical a‰ne connection on a non-degenerate, pseudo-Hermitian CR manifold.

Now let us recall the g-Tanaka-Webster connection ‘̂‘ define by Tanno [14]
for contact metric manifolds as follows:

‘̂‘XY ¼ ‘XY þ ð‘XhÞðY Þx� hðY Þ‘Xx� hðXÞfY

for all vector fields X and Y (see [14]).
By taking (2.4) into account, the g-Tanaka-Webster connection ‘̂‘ðkÞ for real

hypersurfaces of Kähler manifolds is defined by

‘̂‘
ðkÞ
X Y ¼ ‘XY þ gðfAX ;Y Þx� hðY ÞfAX � khðX ÞfYð3:1Þ

for a non-zero real number k (see [5], [6] and [7]) (Note that ‘̂‘ðkÞ is invariant
under the choice of the orientation. Namely, we may take �k instead of k in
(3.1) for the opposite orientation �N).

Let us put

FXY ¼ gðfAX ;YÞx� hðYÞfAX � khðX ÞfY :ð3:2Þ

Then the torsion tensor T̂T ðkÞ is given by T̂T ðkÞðX ;YÞ ¼ FXY � FYX . Also, by
using (2.4) and (3.1) we can see that

‘̂‘ðkÞh ¼ 0; ‘̂‘ðkÞx ¼ 0; ‘̂‘ðkÞg ¼ 0; ‘̂‘ðkÞf ¼ 0:ð3:3Þ

Next the g-Tanaka-Webster curvature tensor R̂RðkÞ with respect to ‘̂‘ðkÞ can be
defined by

R̂RðkÞðX ;Y ÞZ ¼ ‘̂‘
ðkÞ
X ð‘̂‘ðkÞ

Y ZÞ � ‘̂‘
ðkÞ
Y ð‘̂‘ðkÞ

X ZÞ � ‘̂‘
ðkÞ
½X ;Y �Zð3:4Þ

for all vector fields X , Y , Z on M. Then we have the following identities

R̂RðkÞðX ;YÞZ ¼ �R̂RðkÞðY ;XÞZ;

gðR̂RðkÞðX ;YÞZ;WÞ ¼ �gðR̂RðkÞðX ;YÞW ;ZÞ:

Here we remark that because the g-Tanaka-Webster connection is not torsion-
free, the Jacobi-type and Bianchi-type identities do not hold in general. More-
over, the g-Tanaka-Webster Ricci tensor ŜS is defined by

ŜSðY ;ZÞ ¼ trace of fX 7! R̂RðX ;YÞZg:ð3:5Þ

4. Key Lemmas

Let M be a Hopf hypersurface in G2ðCmþ2Þ with g-Tanaka-Webster parallel
shape operator. First of all, we find the fundamental equation for the condition

that the shape operator A is parallel with respect to ‘̂‘ðkÞ, that is, ð‘̂‘ðkÞ
X AÞY ¼ 0

for any tangent vector fields X and Y .
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From (3.1), we have

ð‘̂‘ðkÞ
X AÞY ¼ ‘̂‘

ðkÞ
X ðAY Þ � Að‘̂‘ðkÞ

X YÞð4:1Þ
¼ ‘X ðAY Þ þ gðfAX ;AY Þx� hðAY ÞfAX � khðXÞfAY

� Að‘XY þ gðfAX ;YÞx� hðYÞfAX � khðXÞfY Þ
¼ ð‘XAÞY þ gðfAX ;AY Þx� hðAY ÞfAX � khðXÞfAY

� gðfAX ;Y ÞAxþ hðYÞAfAX þ khðXÞAfY :

Under our conditions, ð‘̂‘ðkÞ
X AÞY ¼ 0 and Ax ¼ ax, it follows that

ð‘XAÞY þ gðfAX ;AY Þx� ahðYÞfAX � khðXÞfAYð4:2Þ
� agðfAX ;YÞxþ hðYÞAfAX þ khðX ÞAfY ¼ 0

for any tangent vector fields X and Y on M.
From the equation (4.2), we can assert following:

Lemma 4.1. Let M be a Hopf hypersurface in complex two-plane Grass-
mannians G2ðCmþ2Þ, mb 3. If M has the generalized Tanaka-Webster parallel
shape operator, then the smooth function a ¼ gðAx; xÞ is constant.

Proof. Substituting x for any tangent vector field Y in (4.2) and using the
notion of Hopf, that is, Ax ¼ ax, we have

ð‘XAÞx� afAX þ AfAX ¼ 0ð4:3Þ
for any vector field X tangent to M.

On the other hand, taking the covariant derivative for Ax ¼ ax along any
direction X , we get

ð‘XAÞx ¼ ðXaÞxþ afAX � AfAX :ð4:4Þ
From (4.4), the equation (4.3) can be written by

ðXaÞxþ afAX � AfAX � afAX þ AfAX ¼ 0;

that is, we obtain for any vector field X tangent to M

ðXaÞx ¼ 0:ð4:5Þ
This implies that Xa ¼ 0 for any tangent vector field X on M. Therefore we
have our assertion. r

Under the assumption of Ax ¼ ax, the Codazzi equation (2.8) becomes

ð‘xAÞY � ð‘YAÞx ¼ fY þ
X3

n¼1

fhnðxÞfnY � hnðYÞfnx� 3gðfnx;Y Þxng

for any tangent vector field Y on M.
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From this, taking an inner product with x, it gives that

gðð‘xAÞY ; xÞ � gðð‘YAÞx; xÞ ¼ 4
X3

n¼1

hnðxÞhnðfYÞ:

On the other hand, by using (4.4), we obtain

gðð‘xAÞY ; xÞ � gðð‘YAÞx; xÞ ¼ gðY ; ð‘xAÞxÞ � gðx; ð‘YAÞxÞ
¼ gðY ; ðxaÞxÞ � gðx; ðYaÞxþ afAY � AfAYÞ
¼ ðxaÞhðY Þ � ðYaÞ;

when we have used two formulas that ð‘xAÞx ¼ ðxaÞx and ð‘YAÞx ¼ ðYaÞxþ
afAY � AfAY .

Consequently, we have the following

Ya ¼ ðxaÞhðYÞ � 4
X3

n¼1

hnðxÞhnðfY Þð4:6Þ

for any tangent vector field Y on M (see [4]).
Now we give one of Key Lemmas as follows:

Lemma 4.2. Let M be a Hopf hypersurface in complex two-plane Grass-
mannian G2ðCmþ2Þ, mb 3. If M has the parallel shape operator with respect to
the generalized Tanaka-Webster connection, then the Reeb vector field x belongs to
either the distribution D or the distribution D?.

Proof. In order to prove our lemma, let us put x ¼ hðX0ÞX0 þ hðx1Þx1 for
some unit X0 A D and x1 A D? and hðX0Þhðx1Þ0 0. Since we knew that a is
constant in Lemma 4.1, we have

X3

n¼1

hnðxÞfxn ¼ 0;ð4:7Þ

when we have used the formula (4.6).
Since x ¼ hðX0ÞX0 þ hðx1Þx1, then the equation (4.7) can be written as

X3

n¼1

hðx1Þhnðx1Þfxn ¼ 0;

which gives hðx1Þfx1 ¼ 0.
On the other hand, from the fact fxn ¼ fnx, it follows hðx1Þfx1 ¼

hðx1ÞhðX0Þf1X0. Thus we have

hðx1ÞhðX0Þf1X0 ¼ 0:
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Since hðX0Þhðx1Þ0 0, we have f1X0 ¼ 0. But this gives a contradiction. Be-
cause gðf1X0; f1X0Þ ¼ gðX0;X0Þ and X0 is a unit, f1X0 becomes a non zero
vector. So we complete the proof of our Lemma. r

Before giving the proof of our Main Theorem given in the introduction,
let us check whether the shape operator A of real hypersurfaces of Type ðAÞ or
of Type ðBÞ in Theorem A is parallel with respect to the g-Tanaka-Webster
connection.

First let us check for the case that M is locally congruent to a real
hypersurface of Type ðAÞ, an open part of a tube around a totally geodesic
G2ðCmþ1Þ in G2ðCmþ2Þ. We recall a proposition due to Berndt and Suh [3] as
follows:

Proposition E. Let M be a connected real hypersurface of G2ðCmþ2Þ.
Suppose that ADHD, Ax ¼ ax, and x is tangent to D?. Let J1 A J be the
almost Hermitian structure such that JN ¼ J1N. Then M has three (if
r ¼ p=2

ffiffiffi
8

p
) or four (otherwise) distinct constant principal curvatures

a ¼
ffiffiffi
8

p
cotð

ffiffiffi
8

p
rÞ; b ¼

ffiffiffi
2

p
cotð

ffiffiffi
2

p
rÞ; l ¼ �

ffiffiffi
2

p
tanð

ffiffiffi
2

p
rÞ; m ¼ 0

with some r A ð0; p=
ffiffiffi
8

p
Þ. The corresponding multiplicities are

mðaÞ ¼ 1; mðbÞ ¼ 2; mðlÞ ¼ 2m� 2 ¼ mðmÞ;
and the corresponding eigenspaces are

Ta ¼ Rx ¼ RJN ¼ Rx1 ¼ Spanfxg ¼ Spanfx1g;

Tb ¼ C?x ¼ C?N ¼ Rx2 lRx3 ¼ Spanfx2; x3g;
Tl ¼ fX jX ? Hx; JX ¼ J1Xg;
Tm ¼ fX jX ? Hx; JX ¼ �J1Xg

where Rx, Cx and Hx respectively denotes real, complex and quaternionic span
of the structure vector field x and C?x denotes the orthogonal complement of Cx
in Hx.

Now let us suppose that a real hypersurface of Type ðAÞ has the parallel
shape operator with respect to the g-Tanaka-Webster. Then we see that

ð‘̂‘ðkÞ
X AÞx2 ¼ 0 for a unit eingenvector X A Tl. Then it follows that

ð‘̂‘ðkÞ
X AÞx2 ¼ ‘X ðAx2Þ þ gðfAX ;Ax2Þx� hðAx2ÞfAX � khðXÞfAx2ð4:8Þ

� Að‘Xx2 þ gðfAX ; x2Þx� hðx2ÞfAX � khðXÞfx2Þ
¼ b‘Xx2 � Að‘Xx2Þ
¼ 0;

because x A D?, X A Tl and x2 A Tb.
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On the other hand, since we put x ¼ x1 from the assumption x A D?, we
obtain that q2ðX Þ ¼ 2gðAx2;XÞ and q3ðXÞ ¼ 2gðAx3;X Þ for any tangent vector
field X on M. Thus the equation (4.8) can be changed by

blf2X � lAf2X ¼ 0:

From (2.1), (2.2) and (2.3), we see that f2X A Tm for any X A Tl, that is,
Af2X ¼ mf2X . Since m ¼ 0, we have

blf2X ¼ 0

for any vector field X A Tl. Thus we have bl is zero and this case can not occur
for some r A ð0; p=2

ffiffiffi
8

p
Þ. So we conclude a remark as follows:

Remark 4.3. The shape operator A of real hypersurfaces of Type ðAÞ in
G2ðCmþ2Þ is not parallel with respect to the generalized Tanaka-Webster con-
nection.

As a second, let us check whether the shape operator A of real hypersurfaces
of Type ðBÞ is parallel with respect to the g-Tanaka-Webster connection. As is
well known in Berndt and Suh [3], a real hypersurface of Type ðBÞ has five
distinct constant principal curvatures as follows:

Proposition F. Let M be a connected real hypersurface of G2ðCmþ2Þ.
Suppose that AD A D, Ax ¼ ax, and x is tangent to D. Then the quaternionic
dimension m of G2ðCmþ2Þ is even, say m ¼ 2n, and M has five distinct constant
principal curvatures

a ¼ �2 tanð2rÞ; b ¼ 2 cotð2rÞ; g ¼ 0; l ¼ cotðrÞ; m ¼ �tanðrÞ

with some r A ð0; p=4Þ. The corresponding multiplicities are

mðaÞ ¼ 1; mðbÞ ¼ 3 ¼ mðgÞ; mðlÞ ¼ 4n� 4 ¼ mðmÞ

and the corresponding eigenspaces are

Ta ¼ Rx ¼ Spanfxg;
Tb ¼ JJx ¼ Spanfxn j n ¼ 1; 2; 3g;
Tg ¼ Jx ¼ Spanffnx j n ¼ 1; 2; 3g;
Tl; Tm;

where

Tl lTm ¼ ðHCxÞ?; JTl ¼ Tl; JTm ¼ Tm; JTl ¼ Tm:

Here we suppose that a real hypersurface of Type ðBÞ has the g-Tanaka-Webster

parallel shape operator. Then we see that ð‘̂‘ðkÞ
X AÞx2 ¼ 0 for a unit eingenvector

X A Tl. Then it follows that
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ð‘̂‘ðkÞ
X AÞx2 ¼ ‘X ðAx2Þ þ gðfAX ;Ax2Þx� hðAx2ÞfAX � khðXÞfAx2ð4:9Þ

� Að‘Xx2 þ gðfAX ; x2Þx� hðx2ÞfAX � khðXÞfx2Þ
¼ b‘Xx2 � Að‘Xx2Þ
¼ 0;

because x A D, X A Tl and x2 A Tb.
From (2.5) and xn A Tb, the equation (4.9) can be written by

blf2X � lAf2X ¼ 0:

Since JZ A Tl for any Z A Tl, we see that Af2X ¼ lX . From these facts it
follows that

lðb � lÞf2X ¼ 0

for any vector field X A Tl. From this, taking an inner product with f2X , we
have

lðb � lÞ ¼ 0:

Since l ¼ cot r ð0 < r < p=4Þ is not zero, we have b ¼ l. But this case also can
not occur for some r A ð0; p=4Þ. In fact, since b ¼ 2 cotð2rÞ and l ¼ cot r, we
obtain b � l ¼ �tan r ¼ m < 0 where r A ð0; p=4Þ. So we also give the following
remark:

Remark 4.4. The shape operator A of real hypersurfaces of Type ðBÞ in
G2ðCmþ2Þ is not parallel with respect to the generalized Tanaka-Webster con-
nection.

5. The proof of Main Theorem

In this section, let us M be a Hopf hypersurface M in G2ðCmþ2Þ with the
g-Tanaka-Webster parallel shape operator. Then by Lemma 4.2 we consider the
following two cases:

� Case I: the Reeb vector field x belongs to the distribution D,
� Case II: the Reeb vector field x belongs to the distribution D?.

First, let us consider the Case I, that is, x A D. By Theorem D, we see that M is
locally congruent to a real hypersurface of Type ðBÞ under our assumption. But
in section 4 we have checked that the shape operator A of real hypersurface of
Type ðBÞ is not g-Tanaka-Webster parallel (see Remark 4.4). From these facts,
first we assert the following:

Theorem 5.1. There does not exist any Hopf hypersurface in G2ðCmþ2Þ,
mb 3, with generalized Tanaka-Webster parallel shape operator if the Reeb vector
field x belongs to the distribution D.
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Next we consider for the case x A D?. Accordingly, we may put x ¼ x1.
Then we have the following:

Lemma 5.2. Let M be a Hopf hypersurface in complex two-plane Grass-
mannian G2ðCmþ2Þ, mb 3 with x A D?. If M has the parallel shape operator in
the generalized Tanaka-Webster connection and a0 2k, then the structure tensor f
commutes with the shape operator A of M.

Proof. Using (4.1) and Ax ¼ ax, we have

ð‘̂‘ðkÞ
X AÞx� ð‘̂‘ðkÞ

x AÞXð5:1Þ

¼ ð‘XAÞx� afAX þ AfAX � ð‘xAÞX þ kfAX � kAfX

for any vector field X A TxM and any point x A M.
From the equation of Codazzi (2.8) we see that

ð‘XAÞx� ð‘xAÞX ¼ �fX þ
X3

n¼1

fhnðX Þfnx� hnðxÞfnX � 3gðfnX ; xÞxng:

Moreover, since f2x ¼ f2x1 ¼ �x3 and f3x ¼ f3x1 ¼ x2, it follows that

ð‘XAÞx� ð‘xAÞX ¼ �fX � f1X � 2h3ðX Þx2 þ 2h2ðX Þx3:ð5:2Þ
Substituting (5.2) into (5.1), we have

ð‘̂‘ðkÞ
X AÞx� ð‘̂‘ðkÞ

x AÞX ¼ �fX � f1X þ ðk � aÞfAX � kAfXð5:3Þ

þ AfAX � 2h3ðXÞx2 þ 2h2ðXÞx3:

Then the parallel shape operator in the g-Tanaka-Webster connection gives

�fX � f1X þ ðk � aÞfAX � kAfX þ AfAX � 2h3ðX Þx2 þ 2h2ðX Þx3 ¼ 0ð5:4Þ

for any tangent vector field X on M.
Now we introduce the formula derived from Ax ¼ ax (see [4]) as follows:

aAfX þ afAX � 2AfAX þ 2fXð5:5Þ

¼ �2
X3

n¼1

fhnðX Þfnxþ hnðfX Þxn þ hnðxÞfnX

� 2hðXÞhnðxÞfnx� 2hnðfXÞhnðxÞxg:

Since x ¼ x1, the equation (5.5) gives

2AfAX ¼ aAfX þ afAX þ 2fX þ 2f1X þ 4h3ðXÞx2 � 4h2ðXÞx3:ð5:6Þ
Thus from (5.4) and (5.6) we have

ð2k � aÞfAX � ð2k � aÞAfX ¼ 0:ð5:7Þ
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Since a0 2k, we have ðfA� AfÞX ¼ 0 for any vector field X A TxM. It means
that the shape operator A commutes with the structure tensor f. r

Therefore from Theorems B and C in the introduction, we assert the following:

Lemma 5.3. Let M be a Hopf hypersurface in complex two-plane Grass-
mannian G2ðCmþ2Þ, mb 3. If M satisfies the assumptions in Lemma 5.2, M is
locally congruent to an open part of a tube around a totally geodesic G2ðCmþ1Þ in
G2ðCmþ2Þ.

As mentioned in Remark 4.3, the shape operator A for real hypersurfaces
of Type ðAÞ can not parallel with respect to the g-Tanaka-Webster connection.
From this we assert the following:

Theorem 5.4. There does not exist any Hopf hypersurface in G2ðCmþ2Þ with
parallel shape operator with respect to the generalized Tanaka-Webster connection
if x A D? and a0 2k.

Summing up Theorems 5.1 and 5.4, we give a complete proof of our Main
Theorem in the introduction. r
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