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Abstract. We introduce the notion of generalized Tanaka-Webster connection for hyper-

surfaces in complex two-plane Grassmannians G2(Cm+2) and give a non-existence theorem

for Hopf hypersurfaces in G2(Cm+2) with parallel shape operator in this connection.

1 Introduction

The generalized Tanaka-Webster connection (in short, the g-Tanaka-Webster
connection) for contact metric manifolds has been introduced by Tanno [15] as
a generalization of the well-known connection defined by Tanaka in [14] and, in-
dependently, by Webster in [16]. This connection coincides with Tanaka-Webster
connection if the associated CR-structure is integrable. Tanaka-Webster connection
is defined as the canonical affine connection on a non-degenerate, pseudo-Hermitian
CR-manifold. For a real hypersurface in a Kähler manifold with almost contact
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metric structure (ϕ, ξ, η, g), Cho defined the g-Tanaka-Webster connection ∇̂(k) for
a non-zero real number k (see [5], [6] and [7]). In particular, if a real hypersurface

satisfies ϕA+Aϕ = 2kϕ, then the g-Tanaka-Webster connection ∇̂(k) coincides with
the Tanaka-Webster connection (see Proposition 7 in [7]).

Using the notion of the g-Tanaka-Webster connection, many geometers have
studied some characterizations of real hypersurfaces in complex space form M̃n(c)
with constant holomorphic sectional curvature c. For instance, when c > 0, that
is, M̃n(c) is a complex projective space CPn, Cho [5] proved that if the shape

operator A of M in CPn is ∇̂(k)-parallel (it means that the shape operator A

satisfies ∇̂(k)A = 0), then ξ is a principal curvature vector field and M is locally
congruent to a real hypersurface of Type (A2) and Type (B). (In fact, he also
gave the classification of real hypersurfaces in a complex hyperbolic space (c < 0)

and complex Euclidean space (c = 0) under the assumption ∇̂(k)-parallel shape
operator [5]). Moreover in [6] he gave the classification theorem of Levi-parallel Hopf

hypersurface in M̃n(c), c ̸= 0. Here, a real hypersurface of M̃n(c) is called Levi-
parallel if its Levi form is parallel with respect to the g-Tanaka-Webster connection.
In [9], Kon gave a characterization for real hypersurfaces of Type (A1) in complex
projective space CPn under the assumption that the Ricci tensor related to the
g-Tanaka-Webster connection identically vanishes.

Now let us denote by G2(Cm+2) the set of all complex two-dimensional linear
subspaces in Cm+2. This Riemannian symmetric space G2(Cm+2) has a remarkable
geometric structure. It is the unique compact irreducible Riemannian manifold be-
ing equipped with both a Kähler structure J and a quaternionic Kähler structure
J not containing J . In other words, G2(Cm+2) is the unique compact, irreducible,
Kähler, quaternionic Kähler manifold which is not a hyper-Kähler manifold. So,
in G2(Cm+2) we have the two natural geometric conditions for real hypersurfaces
M that the 1-dimensional distribution [ξ] = Span{ξ} and the 3-dimensional distri-
bution D⊥ = Span{ξ1, ξ2, ξ3} are invariant under the shape operator A of M (see
section 2).

Here the almost contact structure vector field ξ is defined by ξ = −JN is said
to be a Reeb vector field, where N denotes a local unit normal vector field of M
in G2(Cm+2). The almost contact 3-structure vector fields {ξ1, ξ2, ξ3} for the 3-
dimensional distribution D⊥ of M in G2(Cm+2) are defined by ξν = −JνN (ν =
1, 2, 3), where Jν denotes a canonical local basis of a quaternionic Kähler structure
J, such that TxM = D⊕D⊥, x ∈ M .

By using two invariant conditions mentioned above and the result in Alekseevskii [1],
Berndt and Suh [3] proved the following:

Theorem A. Let M be a connected real hypersurface in G2(Cm+2), m ≥ 3. Then

both [ξ] and D⊥ are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2),

or
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(B) m is even, say m = 2n, and M is an open part of a tube around a totally

geodesic HPn in G2(Cm+2).

Furthermore, the Reeb vector field ξ is said to be Hopf if it is invariant under
the shape operator A. The 1-dimensional foliation of M by the integral manifolds
of the Reeb vector field ξ is said to be a Hopf foliation of M . We say that M is
a Hopf hypersurface in G2(Cm+2) if and only if the Hopf foliation of M is totally
geodesic. By the formulas in Section 2 it can be easily checked that M is Hopf if
and only if the Reeb vector field ξ is Hopf.

Moreover, we say that the Reeb vector field ξ on M is Killing, when the Reeb
flow on M in G2(Cm+2) is isometric. In [4], Berndt and Suh gave some equivalent
conditions of this property as follows:

Theorem B. Let M be a connected orientable real hypersurface in a Kähler man-

ifold M̃ . The following statements are equivalent:

(1) The Reeb flow on M is isometric,

(2) The shape operator A and the structure tensor field ϕ commute with each other,

(3) The Reeb vector field ξ is a principal curvature vector of M everywhere and the

principal curvature spaces contained in the maximal complex subbundle D of

TM are complex subspaces.

Also in [4], a characterization of real hypersurfaces of Type (A) in Theorem A was
given in terms of the Reeb flow on M as follows:

Theorem C. Let M be a connected orientable real hypersurface in G2(Cm+2),

m ≥ 3. Then the Reeb flow on M is isometric if and only if M is an open part of

a tube around a totally geodesic G2(Cm+1) in G2(Cm+2).

Recently, Lee and Suh [10] gave a new characterization of real hypersurfaces of
Type (B) in G2(Cm+2) in terms of the Reeb vector field ξ as follows:

Theorem D. Let M be a connected orientable Hopf real hypersurface in G2(Cm+2),

m ≥ 3. Then the Reeb vector field ξ belongs to the distribution D if and only if

M is locally congruent to an open part of a tube around a totally geodesic HPn in

G2(Cm+2), where m = 2n.

In particular, if the shape operator A of M in G2(Cm+2) satisfies (∇XA)Y = 0
for any vector fields X,Y on M , we say that the shape operator A is parallel with
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respect to the Levi-Civita connection. Using this notion, Suh [12] proved the non-
existence theorem of real hypersurfaces in G2(Cm+2) with parallel shape operator.
Moreover, in [13], he also considered a generalized condition weaker than ∇A =
0, which is said to be F-parallel, and proved that there does not exist any real
hypersurface with F-parallel shape operator. Here, a shape operator A of M in
G2(Cm+2) is said to be F-parallel if the shape operator A satisfies (∇XA)Y = 0
for any tangent vector fields X ∈ F and Y ∈ TxM , where the subdistribution F is
defined by F = [ξ] ∪D⊥ (see [13]).

Now in this paper we consider a new parallel shape operator for real hypersurface
M in G2(Cm+2). Here the shape operator A is called generalized Tanaka-Webster
parallel (in short, g-Tanaka-Webster parallel) if the shape operator A is parallel

with respect to the g-Tanaka-Webster connection ∇̂(k), that is, (∇̂(k)
X A)Y = 0 for

any vector fields X,Y on M . If we consider such a notion in complex two-plane
Grassmannians G2(Cm+2), its situation is quite different from the case in complex

space forms M̃n(c).

From such a point of view, in this paper we give a non-existence theorem for
Hopf hypersurfaces in G2(Cm+2) with parallel shape operator in the generalized
Tanaka-Webster connection as follows:

Main Theorem. There does not exist any Hopf hypersurface, α ̸= 2k, in complex

two-plane Grassmannians G2(Cm+2), m ≥ 3, with parallel shape operator in the

generalized Tanaka-Webster connection.

2 Riemannian geometry of G2(Cm+2)

In this section we summarize basic material about G2(Cm+2), for details we re-
fer to [2], [3] and [4]. By G2(Cm+2) we denote the set of all complex two-dimensional
linear subspaces in Cm+2. The special unitary group G = SU(m + 2) acts transi-
tively on G2(Cm+2) with stabilizer isomorphic to K = S(U(2)×U(m)) ⊂ G. Then
G2(Cm+2) can be identified with the homogeneous space G/K, which we equip
with the unique analytic structure for which the natural action of G on G2(Cm+2)
becomes analytic. Denote by g and k the Lie algebra of G and K, respectively,
and by m the orthogonal complement of k in g with respect to the Cartan-Killing
form B of g. Then g = k ⊕ m is an Ad(K)-invariant reductive decomposition of g.
We put o = eK and identify ToG2(Cm+2) with m in the usual manner. Since B
is negative definite on g, its negative restricted to m × m yields a positive definite
inner product on m. By Ad(K)-invariance of B this inner product can be extended
to a G-invariant Riemannian metric g on G2(Cm+2). In this way G2(Cm+2) be-
comes a Riemannian homogeneous space, even a Riemannian symmetric space. For
computational reasons we normalize g such that the maximal sectional curvature
of (G2(Cm+2), g) is eight.
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When m = 1, G2(C
3) is isometric to the two-dimensional complex projective

space CP 2 with constant holomorphic sectional curvature eight. When m = 2, we
note that the isomorphism Spin(6) ≃ SU(4) yields an isometry betweenG2(C

4) and
the real Grassmann manifold G+

2 (R
6) of oriented two-dimensional linear subspaces

in R6. In this paper, we will assume m≥3.

The Lie algebra k has the direct sum decomposition k = su(m) ⊕ su(2) ⊕ R,
where R denotes the center of k. Viewing k as the holonomy algebra of G2(Cm+2),
the center R induces a Kähler structure J and the su(2)-part a quaternionic Kähler
structure J on G2(Cm+2). If Jν is any almost Hermitian structure in J, then
JJν = JνJ , and JJν is a symmetric endomorphism with (JJν)

2 = I and tr(JJν) = 0
for ν = 1, 2, 3.

A canonical local basis {J1, J2, J3} of J consists of three local almost Hermitian
structures Jν in J such that JνJν+1 = Jν+2 = −Jν+1Jν , where the index ν is taken

modulo three. Since J is parallel with respect to the Riemannian connection ∇̃ of
(G2(Cm+2), g), there exist for any canonical local basis {J1, J2, J3} of J three local
one-forms q1, q2, q3 such that

(2.1) ∇̃XJν = qν+2(X)Jν+1 − qν+1(X)Jν+2

for all vector fields X on G2(Cm+2).

The Riemannian curvature tensor R̃ of G2(Cm+2) is locally given by

R̃(X,Y )Z = g(Y, Z)X − g(X,Z)Y + g(JY, Z)JX

− g(JX,Z)JY − 2g(JX, Y )JZ

+
3∑

ν=1

{
g(JνY, Z)JνX − g(JνX,Z)JνY − 2g(JνX,Y )JνZ

}
+

3∑
ν=1

{
g(JνJY, Z)JνJX − g(JνJX,Z)JνJY

}
,

(2.2)

where {J1, J2, J3} denotes a canonical local basis of J.

3 Some fundamental formulas for real hypersurfaces in G2(Cm+2)

In this section we derive some basic formulas and the Codazzi equation for a
real hypersurface in G2(Cm+2) (see [3], [4], [10], [11], [12] and [13]).

Let M be a real hypersurface of G2(Cm+2), that is, a hypersurface of G2(Cm+2)
with real codimension one. The induced Riemannian metric on M will also be
denoted by g, and ∇ denotes the Riemannian connection of (M, g). Let N be a
local unit normal vector field of M and A the shape operator of M with respect to
N .

Now let us put

(3.1) JX = ϕX + η(X)N, JνX = ϕνX + ην(X)N



208 I. Jeong, H. Lee and Y.J. Suh

for any tangent vector field X of a real hypersurface M in G2(Cm+2), where N
denotes a unit normal vector field of M in G2(Cm+2). From the Kähler structure
J of G2(Cm+2) there exists an almost contact metric structure (ϕ, ξ, η, g) induced
on M in such a way that

ϕ2X = −X + η(X)ξ, η(ξ) = 1, ϕξ = 0, η(X) = g(X, ξ)

for any vector field X on M . Furthermore, let {J1, J2, J3} be a canonical local basis
of J. Then the quaternionic Kähler structure Jν of G2(Cm+2), together with the
condition JνJν+1 = Jν+2 = −Jν+1Jν in section 1, induced an almost contact metric
3-structure (ϕν , ξν , ην , g) on M as follows:

ϕ2
νX = −X + ην(X)ξν , ην(ξν) = 1, ϕνξν = 0,

ϕν+1ξν = −ξν+2, ϕνξν+1 = ξν+2,

ϕνϕν+1X = ϕν+2X + ην+1(X)ξν ,

ϕν+1ϕνX = −ϕν+2X + ην(X)ξν+1

(3.2)

for any vector field X tangent to M . Moreover, from the commuting property of
JνJ = JJν , ν = 1, 2, 3 in section 1 and (3.1), the relation between these two contact
metric structures (ϕ, ξ, η, g) and (ϕν , ξν , ην , g), ν = 1, 2, 3, can be given by

ϕϕνX = ϕνϕX + ην(X)ξ − η(X)ξν ,

ην(ϕX) = η(ϕνX), ϕξν = ϕνξ.

(3.3)

On the other hand, from the Kähler structure J , that is, ∇̃J = 0 and the
quaternionic Kähler structure Jν , together with Gauss and Weingarten equations
it follows that

(3.4) (∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ, ∇Xξ = ϕAX,

(3.5) ∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + ϕνAX,

(∇Xϕν)Y = −qν+1(X)ϕν+2Y + qν+2(X)ϕν+1Y + ην(Y )AX

− g(AX,Y )ξν .

(3.6)

Summing up these formulas, we find the following:

∇X(ϕνξ) = ∇X(ϕξν)

= (∇Xϕ)ξν + ϕ(∇Xξν)

= qν+2(X)ϕν+1ξ − qν+1(X)ϕν+2ξ + ϕνϕAX

− g(AX, ξ)ξν + η(ξν)AX.

(3.7)

Using the above expression (2.2) for the curvature tensor R̃ of G2(Cm+2), the equa-
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tion of Codazzi becomes:

(∇XA)Y − (∇Y A)X = η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ

+

3∑
ν=1

{
ην(X)ϕνY − ην(Y )ϕνX − 2g(ϕνX,Y )ξν

}
+

3∑
ν=1

{
ην(ϕX)ϕνϕY − ην(ϕY )ϕνϕX

}
+

3∑
ν=1

{
η(X)ην(ϕY )− η(Y )ην(ϕX)

}
ξν .

(3.8)

4 The g-Tanaka-Webster connection for real hypersurfaces

In this section, we introduce the notion of generalized Tanaka-Webster connec-
tion (see [5], [6], [7] and [9]).

As mentioned above, the Tanaka-Webster connection is the canonical affine
connection defined on a non-degenerate pseudo-Hermitian CR-manifold (see [14],
[16]). In [15], Tanno defined the g-Tanaka-Webster connection for contact metric
manifolds by the canonical connection which coincides with the Tanaka-Webster
connection if the associated CR-structure is integrable.

From now on, we introduce the g-Tanaka-Webster connection due to Tanno [15]
for real hypersurfaces in Kähler manifolds by natural extending of the canonical
affine connection on a non-degenerate, pseudo-Hermitian CR manifold.

Now let us recall the g-Tanaka-Webster connection ∇̂ define by Tanno [15] for
contact metric manifolds as follows:

∇̂XY = ∇XY + (∇Xη)(Y )ξ − η(Y )∇Xξ − η(X)ϕY

for all vector fields X and Y (see [15]).

By taking (3.4) into account, the g-Tanaka-Webster connection ∇̂(k) for real hyper-
surfaces of Kähler manifolds is defined by

(4.1) ∇̂(k)
X Y = ∇XY + g(ϕAX, Y )ξ − η(Y )ϕAX − kη(X)ϕY

for a non-zero real number k (see [5], [6] and [7]) (Note that ∇̂(k) is invariant under
the choice of the orientation. Namely, we may take −k instead of k in (4.1) for the
opposite orientation −N).
Let us put

(4.2) FXY = g(ϕAX, Y )ξ − η(Y )ϕAX − kη(X)ϕY.

Then the torsion tensor T̂ (k) is given by T̂ (k)(X,Y ) = FXY −FY X. Also, by using
(3.4) and (4.1) we can see that

(4.3) ∇̂(k)η = 0, ∇̂(k)ξ = 0, ∇̂(k)g = 0, ∇̂(k)ϕ = 0.
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Next the g-Tanaka-Webster curvature tensor R̂(k) with respect to ∇̂(k) can be de-
fined by

(4.4) R̂(k)(X,Y )Z = ∇̂(k)
X (∇̂(k)

Y Z)− ∇̂(k)
Y (∇̂(k)

X Z)− ∇̂(k)
[X,Y ]Z

for all vector fields X,Y, Z on M . Then we have the following identities

R̂(k)(X,Y )Z = −R̂(k)(Y,X)Z,

g(R̂(k)(X,Y )Z,W ) = −g(R̂(k)(X,Y )W,Z).

Here we remark that the identities of type Jacobi and of type Bianchi do not hold
in general, because the g-Tanaka-Webster connection is not torsion-free. Moreover,
the g-Tanaka-Webster Ricci tensor Ŝ is defined by

(4.5) Ŝ(Y,Z) = trace of {X 7→ R̂(X,Y )Z}.

5 Key Lemmas

Let M be a Hopf hypersurface in G2(Cm+2) with g-Tanaka-Webster parallel
shape operator. First of all, we find the fundamental equation for the condition

that the shape operator A is parallel with respect to ∇̂(k), that is, (∇̂(k)
X A)Y = 0

for any tangent vector fields X and Y .

From (4.1), we have

(∇̂(k)
X A)Y = ∇̂(k)

X (AY )−A(∇̂(k)
X Y )

= ∇X(AY ) + g(ϕAX,AY )ξ − η(AY )ϕAX − kη(X)ϕAY

−A
(
∇XY + g(ϕAX, Y )ξ − η(Y )ϕAX − kη(X)ϕY

)
= (∇XA)Y + g(ϕAX,AY )ξ − η(AY )ϕAX − kη(X)ϕAY

− g(ϕAX, Y )Aξ + η(Y )AϕAX + kη(X)AϕY.

(5.1)

Under our conditions, (∇̂(k)
X A)Y = 0 and Aξ = αξ, it follows that

(∇XA)Y + g(ϕAX,AY )ξ − αη(Y )ϕAX − kη(X)ϕAY

− αg(ϕAX, Y )ξ + η(Y )AϕAX + kη(X)AϕY = 0

(5.2)

for any tangent vector fields X and Y on M .

From the equation (5.2), we can assert following:

Lemma 5.1. Let M be a Hopf hypersurface in complex two-plane Grassmanni-

ans G2(Cm+2), m ≥ 3. If M has the generalized Tanaka-Webster parallel shape

operator, then the smooth function α = g(Aξ, ξ) is constant.
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On the other hand, under the assumption of Aξ = αξ, the Codazzi equation
(3.8) becomes

(∇ξA)Y − (∇Y A)ξ = ϕY +

3∑
ν=1

{
ην(ξ)ϕνY − ην(Y )ϕνξ − 3g(ϕνξ, Y )ξν

}
for any tangent vector field Y on M .
From this, taking an inner product with ξ, it gives that

g
(
(∇ξA)Y, ξ

)
− g

(
(∇Y A)ξ, ξ

)
= 4

3∑
ν=1

ην(ξ)ην(ϕY ) .

On the other hand, taking the covariant derivative for Aξ = αξ along any direction
X, we get

(∇XA)ξ = (Xα)ξ + αϕAX −AϕAX.

Using this equation, we obtain

g
(
(∇ξA)Y, ξ

)
− g

(
(∇Y A)ξ, ξ

)
= g

(
Y, (∇ξA)ξ

)
− g

(
ξ, (∇Y A)ξ

)
= g

(
Y, (ξα)ξ

)
− g

(
ξ, (Y α)ξ + αϕAY −AϕAY

)
= (ξα)η(Y )− (Y α),

where we have used two formulas that (∇ξA)ξ = (ξα)ξ and (∇Y A)ξ = (Y α)ξ +
αϕAY −AϕAY .
Consequently, we have the following

(5.3) Y α = (ξα)η(Y )− 4
3∑

ν=1

ην(ξ)ην(ϕY )

for any tangent vector field Y on M (see [4]).

Now we give one of Key Lemmas as follows:

Lemma 5.2. Let M be a Hopf hypersurface in complex two-plane Grassmannian

G2(Cm+2), m ≥ 3. If M has the parallel shape operator with respect to the gener-

alized Tanaka-Webster connection, then the Reeb vector field ξ belongs to either the

distribution D or the distribution D⊥.

Before giving the proof of our Main Theorem in the introduction, let us check
whether the shape operator A of real hypersurfaces of Type (A) or Type (B) in
Theorem A is parallel with respect to the g-Tanaka-Webster connection.

In order to do this, we recall the following propositions due to Berndt and
Suh [3] as follows :
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Proposition E. Let M be a connected real hypersurface of G2(Cm+2). Suppose

that AD ⊂ D, Aξ = αξ, and ξ is tangent to D⊥. Let J1 ∈ J be the almost

Hermitian structure such that JN = J1N . Then M has three (if r = π/2
√
8) or

four (otherwise) distinct constant principal curvatures

α =
√
8 cot(

√
8r), β =

√
2 cot(

√
2r), λ = −

√
2 tan(

√
2r), µ = 0

with some r ∈ (0, π/
√
8). The corresponding multiplicities are

m(α) = 1, m(β) = 2, m(λ) = 2m− 2 = m(µ),

and the corresponding eigenspaces are

Tα = Rξ = RJN = Rξ1 = Span
{
ξ
}
= Span

{
ξ1
}
,

Tβ = C⊥ξ = C⊥N = Rξ2 ⊕ Rξ3 = Span
{
ξ2, ξ3

}
,

Tλ = {X|X ⊥ Hξ, JX = J1X },

Tµ = {X|X ⊥ Hξ, JX = −J1X }

where Rξ, Cξ and Hξ respectively denotes real, complex and quaternionic span of

the structure vector field ξ and C⊥ξ denotes the orthogonal complement of Cξ in

Hξ.

Proposition F. Let M be a connected real hypersurface of G2(Cm+2). Suppose

that AD ∈ D, Aξ = αξ, and ξ is tangent to D. Then the quaternionic dimension

m of G2(Cm+2) is even, say m = 2n, and M has five distinct constant principal

curvatures

α = −2 tan(2r), β = 2 cot(2r), γ = 0, λ = cot(r), µ = − tan(r)

with some r ∈ (0, π/4). The corresponding multiplicities are

m(α) = 1, m(β) = 3 = m(γ), m(λ) = 4n− 4 = m(µ)

and the corresponding eigenspaces are

Tα = Rξ = Span
{
ξ
}
,

Tβ = JJξ = Span
{
ξν | ν = 1, 2, 3

}
,

Tγ = Jξ = Span
{
ϕνξ | ν = 1, 2, 3

}
,

Tλ, Tµ,
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where

Tλ ⊕ Tµ = (HCξ)⊥, JTλ = Tλ, JTµ = Tµ, JTλ = Tµ.

Using these propositions, we conclude remarks as follows:

Remark 5.3. The shape operator A of real hypersurfaces of Type (A) in G2(Cm+2)

is not parallel with respect to the generalized Tanaka-Webster connection.

Remark 5.4. The shape operator A of real hypersurfaces of Type (B) in G2(Cm+2)

is not parallel with respect to the generalized Tanaka-Webster connection.

6 The proof of Main Theorem

In this section, letM be a Hopf hypersurfaceM inG2(Cm+2) with the g-Tanaka-
Webster parallel shape operator. Then by Lemma 5.2 we consider the following two
cases:

• Case I : the Reeb vector field ξ belongs to the distribution D,

• Case II : the Reeb vector field ξ belongs to the distribution D⊥.

First, let us consider the Case I, that is, ξ ∈ D. By Theorem D, we see that M is
locally congruent to a real hypersurface of Type (B) under our assumption. But
in section 4 we have checked that the shape operator A of real hypersurface of
Type (B) is not g-Tanaka-Webster parallel (see Remark 5.4). From these facts,
first we assert the following:

Theorem 6.1. There does not exist any Hopf hypersurface in G2(Cm+2), m ≥ 3,

with generalized Tanaka-Webster parallel shape operator if the Reeb vector field ξ

belongs to the distribution D.

Next we consider for the case ξ ∈ D⊥. Accordingly, we may put ξ = ξ1. Then
we have the following:

Lemma 6.2. Let M be a Hopf hypersurface in complex two-plane Grassmannian

G2(Cm+2), m ≥ 3 with ξ ∈ D⊥. If M has the parallel shape operator in the

generalized Tanaka-Webster connection and α ̸= 2k, then the structure tensor ϕ

commutes with the shape operator A of M .

Therefore from Theorems B and C in the introduction, we assert the following:
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Lemma 6.3. Let M be a Hopf hypersurface in complex two-plane Grassmannian

G2(Cm+2), m ≥ 3. If M satisfies the assumptions in Lemma 6.2, M is locally con-

gruent to an open part of a tube around a totally geodesic G2(Cm+1) in G2(Cm+2).

As mentioned in Remark 5.3, the shape operator A for real hypersurfaces of
Type (A) can not parallel with respect to the g-Tanaka-Webster connection. From
this we assert the following:

Theorem 6.4. There does not exist any Hopf hypersurface in G2(Cm+2) with par-

allel shape operator with respect to the generalized Tanaka-Webster connection if

ξ ∈ D⊥ and α ̸= 2k.

Summing up Theorems 6.1 and 6.4, we give a complete proof of our Main Theo-
rem in the introduction. 2
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