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Abstract. We introduce the notion of generalized Tanaka-Webster connection for hyper-
surfaces in complex two-plane Grassmannians G2(C™2) and give a non-existence theorem
for Hopf hypersurfaces in G2(C™%?) with parallel shape operator in this connection.

1 Introduction

The generalized Tanaka-Webster connection (in short, the g-Tanaka- Webster
connection) for contact metric manifolds has been introduced by Tanno [15] as
a generalization of the well-known connection defined by Tanaka in [14] and, in-
dependently, by Webster in [16]. This connection coincides with Tanaka-Webster
connection if the associated CR-structure is integrable. Tanaka-Webster connection
is defined as the canonical affine connection on a non-degenerate, pseudo-Hermitian
CR-manifold. For a real hypersurface in a Kéhler manifold with almost contact
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metric structure (¢, £,n,g), Cho defined the g-Tanaka-Webster connection V® for
a non-zero real number k (see [5], [6] and [7]). In particular, if a real hypersurface
satisfies pA+ A¢p = 2k¢, then the g-Tanaka-Webster connection V® coincides with
the Tanaka-Webster connection (see Proposition 7 in [7]).

Using the notion of the g-Tanaka-Webster connection, many geometers have
studied some characterizations of real hypersurfaces in complex space form M, (c)
with constant holomorphic sectional curvature c. For instance, when ¢ > 0, that
is, My(c) is a complex projective space CP™, Cho [5] proved that if the shape
operator A of M in CP™ is §(k)-pamllel (it means that the shape operator A
satisfies V(W 4 = 0), then ¢ is a principal curvature vector field and M is locally
congruent to a real hypersurface of Type (A43) and Type (B). (In fact, he also
gave the classification of real hypersurfaces in a complex hyperbolic space (¢ < 0)
and complex Euclidean space (¢ = 0) under the assumption §(k)—paralle1 shape
operator [5]). Moreover in [6] he gave the classification theorem of Levi-parallel Hopf
hypersurface in M, (c), ¢ # 0. Here, a real hypersurface of M, (c) is called Levi-
parallel if its Levi form is parallel with respect to the g-Tanaka-Webster connection.
In [9], Kon gave a characterization for real hypersurfaces of Type (4;) in complex
projective space CP™ under the assumption that the Ricci tensor related to the
g-Tanaka-Webster connection identically vanishes.

Now let us denote by G5(C™%2) the set of all complex two-dimensional linear
subspaces in C™*2. This Riemannian symmetric space G2(C™*?) has a remarkable
geometric structure. It is the unique compact irreducible Riemannian manifold be-
ing equipped with both a Ké&hler structure J and a quaternionic Kahler structure
J not containing J. In other words, Go(C™*2) is the unique compact, irreducible,
Kahler, quaternionic Kdhler manifold which is not a hyper-Kahler manifold. So,
in G2(C™*2) we have the two natural geometric conditions for real hypersurfaces
M that the 1-dimensional distribution [£] = Span{¢} and the 3-dimensional distri-
bution D+ = Span{&;, &, €3} are invariant under the shape operator A of M (see
section 2).

Here the almost contact structure vector field £ is defined by £ = —JN is said
to be a Reeb vector field, where N denotes a local unit normal vector field of M
in Go(C™*2). The almost contact 3-structure vector fields {¢1,&s,&3} for the 3-
dimensional distribution D+ of M in Go(C™*2) are defined by &, = —J,N (v =
1,2, 3), where J,, denotes a canonical local basis of a quaternionic Kéhler structure
J, such that T,M =® @D+, 2 € M.

By using two invariant conditions mentioned above and the result in Alekseevskii [1],
Berndt and Suh [3] proved the following:

Theorem A. Let M be a connected real hypersurface in Go(C™%2), m > 3. Then

both [£] and DL are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic Go(C™H1) in Go(C™*2),

or
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(B) m is even, say m = 2n, and M is an open part of a tube around a totally
geodesic HP™ in Go(C™*2).

Furthermore, the Reeb vector field £ is said to be Hopf if it is invariant under
the shape operator A. The 1-dimensional foliation of M by the integral manifolds
of the Reeb vector field £ is said to be a Hopf foliation of M. We say that M is
a Hopf hypersurface in Go(C™*+2) if and only if the Hopf foliation of M is totally
geodesic. By the formulas in Section 2 it can be easily checked that M is Hopf if
and only if the Reeb vector field £ is Hopf.

Moreover, we say that the Reeb vector field £ on M is Killing, when the Reeb
flow on M in Go(C™%2) is isometric. In [4], Berndt and Suh gave some equivalent
conditions of this property as follows:

Theorem B. Let M be a connected orientable real hypersurface in a Kdhler man-

ifold M. The following statements are equivalent:
(1) The Reeb flow on M is isometric,
(2) The shape operator A and the structure tensor field ¢ commute with each other,

(3) The Reeb vector field € is a principal curvature vector of M everywhere and the
principal curvature spaces contained in the mazximal compler subbundle D of

TM are complex subspaces.

Also in [4], a characterization of real hypersurfaces of Type (A) in Theorem A was
given in terms of the Reeb flow on M as follows:

Theorem C. Let M be a connected orientable real hypersurface in Go(C™T2),
m > 3. Then the Reeb flow on M is isometric if and only if M is an open part of
a tube around a totally geodesic Go(C™F1) in Go(C™T2).

Recently, Lee and Suh [10] gave a new characterization of real hypersurfaces of
Type (B) in G2(C™*?) in terms of the Reeb vector field ¢ as follows:

Theorem D. Let M be a connected orientable Hopf real hypersurface in Go(C™+2),
m > 3. Then the Reeb vector field & belongs to the distribution ® if and only if

M is locally congruent to an open part of a tube around a totally geodesic HP™ in

Go(C™*2), where m = 2n.

In particular, if the shape operator A of M in G(C™*?) satisfies (VxA)Y =0
for any vector fields X,Y on M, we say that the shape operator A is parallel with
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respect to the Levi-Civita connection. Using this notion, Suh [12] proved the non-
existence theorem of real hypersurfaces in Go(C™%2) with parallel shape operator.
Moreover, in [13], he also considered a generalized condition weaker than VA =
0, which is said to be F-parallel, and proved that there does not exist any real
hypersurface with F-parallel shape operator. Here, a shape operator A of M in
G2(C™*2) is said to be F-parallel if the shape operator A satisfies (VxA)Y = 0
for any tangent vector fields X € § and Y € T, M, where the subdistribution § is
defined by § = [(]UDL (see [13]).

Now in this paper we consider a new parallel shape operator for real hypersurface
M in Go(C™*2). Here the shape operator A is called generalized Tanaka- Webster
parallel (in short, g-Tanaka-Webster parallel) if the shape operator A is parallel
with respect to the g-Tanaka-Webster connection V(*)| that is, (%g?)A)Y = 0 for
any vector fields X, Y on M. If we consider such a notion in complex two-plane
Grassmannians G5 (C™%2), its situation is quite different from the case in complex
space forms M, (c).

From such a point of view, in this paper we give a non-existence theorem for
Hopf hypersurfaces in Go(C™*2) with parallel shape operator in the generalized
Tanaka-Webster connection as follows:

Main Theorem. There does not exist any Hopf hypersurface, o # 2k, in complex
two-plane Grassmannians Go(C™%2), m > 3, with parallel shape operator in the

generalized Tanaka- Webster connection.

2 Riemannian geometry of Go(C™12)

In this section we summarize basic material about Go(C™%2), for details we re-
fer to [2], [3] and [4]. By G2(C™"2) we denote the set of all complex two-dimensional
linear subspaces in C™*2. The special unitary group G = SU(m + 2) acts transi-
tively on Go(C™*2) with stabilizer isomorphic to K = S(U(2) x U(m)) C G. Then
G2(C™*2) can be identified with the homogeneous space G/K, which we equip
with the unique analytic structure for which the natural action of G on Go(C™*2)
becomes analytic. Denote by g and £ the Lie algebra of G and K, respectively,
and by m the orthogonal complement of £ in g with respect to the Cartan-Killing
form B of g. Then g = ¢ ® m is an Ad(K)-invariant reductive decomposition of g.
We put 0o = eK and identify T,G2(C™"2) with m in the usual manner. Since B
is negative definite on g, its negative restricted to m x m yields a positive definite
inner product on m. By Ad(K)-invariance of B this inner product can be extended
to a G-invariant Riemannian metric g on G(C™*2). In this way Go(C™*2) be-
comes a Riemannian homogeneous space, even a Riemannian symmetric space. For
computational reasons we normalize g such that the maximal sectional curvature
of (G2(C™*2), g) is eight.
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When m = 1, G5(C?) is isometric to the two-dimensional complex projective
space C'P? with constant holomorphic sectional curvature eight. When m = 2, we
note that the isomorphism Spin(6) ~ SU(4) yields an isometry between Go(C*) and
the real Grassmann manifold G5 (R®) of oriented two-dimensional linear subspaces
in RS. In this paper, we will assume m>3.

The Lie algebra ¢ has the direct sum decomposition ¢ = su(m) @ su(2) ® R,
where R denotes the center of £. Viewing £ as the holonomy algebra of G5(C™+2),
the center R induces a Kéhler structure J and the su(2)-part a quaternionic Kéhler
structure J on Gy(C™%2). If J, is any almost Hermitian structure in J, then
JJ, = J,J, and J.J, is a symmetric endomorphism with (J.J,,)? = I and tr(JJ,) = 0
forv=1,2,3.

A canonical local basis {.J1, J2, J3} of J consists of three local almost Hermitian
structures J, in J such that J,J,41 = J, 42 = —J,+1J,, where the index v is taken
modulo three. Since J is parallel with respect to the Riemannian connection V of
(G2(C™*2), g), there exist for any canonical local basis {J1, J, J3} of J three local
one-forms ¢1, g2, g3 such that

(2.1) Vxdy = Guia(X) Dy — Qi1 (X) oo
for all vector fields X on Go(C™*2).
The Riemannian curvature tensor R of G5(C™2) is locally given by

(22) R(X,Y)Z=g(Y,2)X —g(X,2)Y + g(JY,Z)JX
—9(JX,2)JY —29(JX,Y)JZ

T Z{ (LY, 2)J,X — g(JXZ)JY—zg(JXY)JZ}

+ Z{ (J,JY, 2)J,JX — g(J,JX, Z)J, JY}

where {J1, J2, J3} denotes a canonical local basis of J.

3 Some fundamental formulas for real hypersurfaces in Go(C™*2)

In this section we derive some basic formulas and the Codazzi equation for a
real hypersurface in Go(C™72) (see [3], [4], [10], [11], [12] and [13]).

Let M be a real hypersurface of Go(C™*2), that is, a hypersurface of Go(C™*2)
with real codimension one. The induced Riemannian metric on M will also be
denoted by g, and V denotes the Riemannian connection of (M,g). Let N be a
local unit normal vector field of M and A the shape operator of M with respect to
N.

Now let us put
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for any tangent vector field X of a real hypersurface M in G5(C™*2), where N
denotes a unit normal vector field of M in Go(C™*2). From the Kihler structure
J of Go(C™%2) there exists an almost contact metric structure (¢, €, 7, g) induced
on M in such a way that

¢2X =-X+ W(X)fv Tl(f) =1, ¢£ =0, U(X) = g(X7 f)

for any vector field X on M. Furthermore, let {J1, Ja, J3} be a canonical local basis
of J. Then the quaternionic Kahler structure J, of Go (Cm”), together with the
condition J,J,+1 = Jy,42 = —Jp41J, in section 1, induced an almost contact metric
3-structure (¢,,&,,m,,9) on M as follows:

(3.2) P X =X +n,(X)6, m(&)=1, ¢.& =0,
Gv418& = —Evr2, Pu€ut1 = v,
Gubu1X = dpi2 X +1u11(X)E0,
Pu100X = —u 2 X + 0 (X)E 11

for any vector field X tangent to M. Moreover, from the commuting property of
JyJ =JJ,, v=1,2,3in section 1 and (3.1), the relation between these two contact
metric structures (¢,&,7n,9) and (éy,&,,m,9), v = 1,2,3, can be given by

(33) ¢¢VX = ¢V¢X =+ nu(X)§ - U(X)fuv
77V(¢X) = ?’]((ﬁ,,X), P&y = Pu€.

On the other hand, from the Kahler structure J, that is, VJ = 0 and the
quaternionic Kahler structure J,, together with Gauss and Weingarten equations
it follows that

(3.4) (Vx9)Y =n(Y)AX — g(AX,Y)¢, Vx&=0¢AX,

(3.5) Vx& = qui2(X)és1 — i1 (X)épo + 0, AX,

(3.6) (Vxd,)Y = —qui1(X)bp12Y 4+ qui2(X)dp11Y + 1, (Y)AX
- g(AX, Y)é-l/

Summing up these formulas, we find the following:

(3.7) Vx(¢.6) = Vx(¢¢)
= (Vxo)& + 6(Vx&y)
= ui2(X)Ov41€ — Qi1 (X)Pp428 + P pAX
- 9(AX, )& +n(6)AX.

Using the above expression (2.2) for the curvature tensor R of Go(C™"2), the equa-
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tion of Codazzi becomes:

38) (VxA)Y = (VyA)X =n(X)oY —n(Y)pX —29(¢X,Y)¢

3
+ 3 (X6 Y =0 ()6 X — 29(6, X, V), |
v=1
3
+ > {m(6X)6,6Y —n,(6Y)6,0X }
v=1

3
+ 3 {nXm8Y) = n(¥ ). (6X) },
v=1

4 The g-Tanaka-Webster connection for real hypersurfaces

In this section, we introduce the notion of generalized Tanaka-Webster connec-
tion (see [5], [6], [7] and [9]).

As mentioned above, the Tanaka-Webster connection is the canonical affine
connection defined on a non-degenerate pseudo-Hermitian CR-manifold (see [14],
[16]). In [15], Tanno defined the g-Tanaka-Webster connection for contact metric
manifolds by the canonical connection which coincides with the Tanaka-Webster
connection if the associated CR~structure is integrable.

From now on, we introduce the g-Tanaka-Webster connection due to Tanno [15]
for real hypersurfaces in Kéhler manifolds by natural extending of the canonical
affine connection on a non-degenerate, pseudo-Hermitian CR manifold.

Now let us recall the g-Tanaka-Webster connection V define by Tanno [15] for
contact metric manifolds as follows:

VxY = VxY + (Vxn)(Y)E = n(Y)VxE — n(X)pY

for all vector fields X and Y (see [15]).
By taking (3.4) into account, the g-Tanaka-Webster connection V) for real hyper-
surfaces of Kahler manifolds is defined by

(4.1) VEY = VxY + g(¢AX,Y)E — n(Y)PAX — kn(X)pY

for a non-zero real number k (see [5], [6] and [7]) (Note that V*) is invariant under
the choice of the orientation. Namely, we may take —k instead of k in (4.1) for the
opposite orientation —N).

Let us put

(4.2) FxY = g(¢AX,Y)E —n(Y)pAX — kn(X)oY.

Then the torsion tensor T*) is given by f(k)(X7 Y)=FxY — Fy X. Also, by using
(3.4) and (4.1) we can see that

(4.3) VR =0, Ve=0, vhg=0, VHg=0.
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Next the g-Tanaka-Webster curvature tensor R® with respect to V®) can be de-
fined by

D o (k) =k o (k) ok o (k
(4.4) RW(x,v)z=VQ P 2) -V 2) -V}, 2

for all vector fields X,Y, Z on M. Then we have the following identities
R®(X,Y)Z = -R¥(Y,X)Z,
9(RN(X,Y)Z,W) = —g(RM (X, Y)W, Z).

Here we remark that the identities of type Jacobi and of type Bianchi do not hold
in general, because the g-Tanaka-Webster connection is not torsion-free. Moreover,
the g-Tanaka-Webster Ricci tensor S is defined by

(4.5) S(Y, Z) = trace of {X — R(X,Y)Z}.

5 Key Lemmas

Let M be a Hopf hypersurface in Go(C™*2) with g-Tanaka-Webster parallel
shape operator. First of all, we find the fundamental equation for the condition

that the shape operator A is parallel with respect to ﬁ(k), that is, (ﬁ()];)A)Y =0
for any tangent vector fields X and Y.

From (4.1), we have
6.1 (VP =¥ 4ay) - avPY)
= Vx(AY) + g(¢AX, AY)E — n(AY)pAX — kn(X)pAY
— A(VxY + g(9AX, Y )E ~ n(Y)AX — kn(X)6Y )

= (Vx A)Y + g(dAX, AY)E —n(AY)PAX — kn(X)pAY
— g(@AX V)AL + (Y )APpAX + kn(X)AgY.

)
)

Under our conditions, (ﬁg?)A)Y =0 and A = af, it follows that

(5.2) (VxA)Y + g(pAX, AY )¢ — an(Y)pAX — kn(X)pAY
—ag(pAX,Y)E+n(Y)APAX + kn(X)A9Y =0
for any tangent vector fields X and Y on M.

From the equation (5.2), we can assert following:

Lemma 5.1. Let M be a Hopf hypersurface in complex two-plane Grassmanni-
ans Go(C™*+2) 'm > 3. If M has the generalized Tanaka-Webster parallel shape

operator, then the smooth function a = g(A&,§) is constant.
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On the other hand, under the assumption of A = a&, the Codazzi equation
(3.8) becomes

3
(VeA)Y = (Vv A)E = 0¥ + >~ {m (€)Y = m(¥)en —39(6,6. V)6, |

v=1

for any tangent vector field Y on M.
From this, taking an inner product with &, it gives that

3
9((VeA)Y &) — g((Vy A& ) =4 0, (O (4Y).

v=1

On the other hand, taking the covariant derivative for A = a& along any direction
X, we get
(VxA) = (Xa) + apAX — ApAX.

Using this equation, we obtain
9((VeA)Y,€) — g((Vy A)E,€) = g(Y, (VeA)E) — g(& (Vy A)E)

= g(Y, (£)€) — g(&, (Ya) + apAY — APAY)
= (Ean(Y) — (Ya),

where we have used two formulas that (VeA){ = (€a)€ and (VyA)E = (Ya)€ +
apAY — ApAY.
Consequently, we have the following

(5.3) Ya = (¢a)y 42% (oY)

for any tangent vector field Y on M (see [4]).

Now we give one of Key Lemmas as follows:

Lemma 5.2. Let M be a Hopf hypersurface in complex two-plane Grassmannian
Go(C™*2), m > 3. If M has the parallel shape operator with respect to the gener-
alized Tanaka-Webster connection, then the Reeb vector field & belongs to either the
distribution ® or the distribution D+.

Before giving the proof of our Main Theorem in the introduction, let us check
whether the shape operator A of real hypersurfaces of Type (A) or Type (B) in
Theorem A is parallel with respect to the g-Tanaka-Webster connection.

In order to do this, we recall the following propositions due to Berndt and
Suh [3] as follows:
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Proposition E. Let M be a connected real hypersurface of Go(C™%2). Suppose
that AD C D, A = af, and & is tangent to L. Let J, € J be the almost
Hermitian structure such that JN = JyN. Then M has three (if r = 7/2\/8) or

four (otherwise) distinct constant principal curvatures
o =V8cot(V8r), B=+v2cot(vV2r), A=—-V2tan(v2r), p=0

with some r € (0,7/+/8). The corresponding multiplicities are
m(a) =1, m(B)=2, m(A)=2m—2=m(p),
and the corresponding eigenspaces are
T, = R{ =RJN = R& = Span{¢} = Span{&; },
Ty = Cté = C*N = RE; ® RE = Span{&y, &1,
T\={X|X LH JX =, X},
T,={X|X LH, JX =-/1X}
where RE, CE and HE respectively denotes real, complex and quaternionic span of

the structure vector field & and C+¢& denotes the orthogonal complement of CE in

HE.

Proposition F. Let M be a connected real hypersurface of Go(C™%2). Suppose
that AD € ©, A = €, and £ is tangent to ©. Then the quaternionic dimension
m of Go(C™*2) is even, say m = 2n, and M has five distinct constant principal

curvatures
a=—2tan(2r), p=2cot(2r), =0, A=cot(r), u=—tan(r)
with some r € (0,7/4). The corresponding multiplicities are
m(@) =1, m(B)=3=m(r), m())=4n—4=m)
and the corresponding eigenspaces are
T, = R¢ = Span{¢},
Tg =JJE = Span{f,,| v= 1,2,3}7
T, =3¢ = Span{q’)yﬂ r=123 },
T\, 1T,
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where
TN&T, = (HCEY, ITh=Tx, T, =T, JTr="T,..

Using these propositions, we conclude remarks as follows:

Remark 5.3. The shape operator A of real hypersurfaces of Type (A) in Go(C™*2)

is not parallel with respect to the generalized Tanaka-Webster connection.

Remark 5.4. The shape operator A of real hypersurfaces of Type (B) in Go(C™+2)

s not parallel with respect to the generalized Tanaka-Webster connection.

6 The proof of Main Theorem

In this section, let M be a Hopf hypersurface M in G(C™*+?) with the g-Tanaka-
Webster parallel shape operator. Then by Lemma 5.2 we consider the following two
cases:

e Case I: the Reeb vector field £ belongs to the distribution ©,
e Case II: the Reeb vector field ¢ belongs to the distribution ®+.

First, let us consider the Case I, that is, £ € ©. By Theorem D, we see that M is
locally congruent to a real hypersurface of Type (B) under our assumption. But
in section 4 we have checked that the shape operator A of real hypersurface of
Type (B) is not g-Tanaka-Webster parallel (see Remark 5.4). From these facts,
first we assert the following:

Theorem 6.1. There does not exist any Hopf hypersurface in Go(C™+2), m > 3,
with generalized Tanaka-Webster parallel shape operator if the Reeb vector field £
belongs to the distribution ©.

Next we consider for the case & € D1. Accordingly, we may put & = &. Then
we have the following:

Lemma 6.2. Let M be a Hopf hypersurface in complex two-plane Grassmannian
Go(C™*2), m > 3 with & € . If M has the parallel shape operator in the
generalized Tanaka-Webster connection and o # 2k, then the structure tensor ¢

commutes with the shape operator A of M.

Therefore from Theorems B and C in the introduction, we assert the following:
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Lemma 6.3. Let M be a Hopf hypersurface in complex two-plane Grassmannian
G2(C™+2), m > 3. If M satisfies the assumptions in Lemma 6.2, M is locally con-
gruent to an open part of a tube around a totally geodesic Go(C™T1) in Go(C™T2).
As mentioned in Remark 5.3, the shape operator A for real hypersurfaces of

Type (A) can not parallel with respect to the g-Tanaka-Webster connection. From
this we assert the following:

Theorem 6.4. There does not exist any Hopf hypersurface in Go(C™2) with par-
allel shape operator with respect to the generalized Tanaka-Webster connection if

£ €Dt and a # 2k.

Summing up Theorems 6.1 and 6.4, we give a complete proof of our Main Theo-
rem in the introduction. O
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