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Abstract. We give a complete classi�cation of D⊥-invariant real hypersur-
faces in complex two-plane Grassmannians G2(C

m+2) with commuting normal
Jacobi operator R̄N .

0. Introduction

In the geometry of real hypersurfaces in complex space forms Mn(c)
Kimura [7] has proved that Hopf real hypersurfacesM in a complex projec-
tive space Pn(C) with commuting Ricci tensor are locally congruent to a tube
over a totally geodesic Pk(C) (type A), a tube over a complex quadricQn−1,
cot2 2r = n− 2 (type B), a tube overP1(C)×P(n−1)/2(C), cot2 2r = 1

n−2 and
n is odd (type C), a tube over a complex two-plane GrassmannianG2(C5),
cot2 2r = 3

5 and n = 9 (type D), a tube over a Hermitian symmetric space
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SO(10)/U(5), cot2 2r = 5
9 and n = 15 (type E). (See also Cecil and Ryan

[6].)
The notion of Hopf real hypersurfaces means that the structure vectorξ

de�ned by ξ = −JN satis�es Aξ = αξ, where J denotes a Kaehler structure
of Pn(C), N and A a unit normal and the shape operator ofM in Pn(C).

In a quaternionic projective space QPm, Pérez [8] classi�ed real hyper-
surfaces in QPm with commuting Ricci tensorSφi = φiS, i = 1, 2, 3, where S
(resp. φi) denotes the Ricci tensor (resp. the structure tensor) ofM in QPm.
They are locally congruent to ofA1, A2-type, that is, a tube over QP k with
radius 0 < r < π

2 , k ∈ {0, . . . , m− 1}.
The almost contact structure vector �elds {ξ1, ξ2, ξ3} are de�ned by

ξi = −JiN , i = 1, 2, 3, where Ji, i = 1, 2, 3, denote a quaternionic Kähler
structure of QPm and N a unit normal �eld of M in QPm. Moreover,
the �rst and third authors [9] considered the notion of∇ξi

R = 0, i = 1, 2, 3,
where R denotes the curvature tensor of a real hypersurfaceM in QPm, and
proved that M is locally congruent to a tube of radius π

4 over QP k.
For a commuting problem in quaternionic space forms Berndt [2] intro-

duced the notion of normal Jacobi operatorR̄(X,N)N ∈ EndTxM , x ∈M for
real hypersurfacesM in quaternionic projective spaceQPm or in quaternionic
hyperbolic space QHm, where R̄ denotes the curvature tensor of a quater-
nionic projective space QPm and a quaternionic hyperbolic space QHm.
Berndt [2] also has shown that the curvature adaptedness, that is, the normal
Jacobi operator commutes with the shape operatorA, and this is equivalent
to the fact that the distributionsD and D⊥ = Span {ξ1, ξ2, ξ3} are invariant
by the shape operator A of M , where TxM = D⊕D⊥, x ∈ M .

Now let us consider complex two-plane GrassmanniansG2(Cm+2) which
consist of all complex 2-dimensional linear subspaces in Cm+2. Then the
situation for real hypersurfaces inG2(Cm+1) with commuting normal Jacobi
operator is not so simple and will be quite di�erent from the cases mentioned
above.

So in this paper we consider a real hypersurfaceM in complex two-plane
Grassmannians G2(Cm+2) with commuting normal Jacobi operator, R̄N ◦A

= A ◦ R̄N , where R̄ and A denote the curvature tensor of the ambient space
G2(Cm+2) and the shape operator of M in G2(Cm+2), respectively.

The curvature tensor R̄(X,Y )Z of G2(Cm+2) is explicitly de�ned in Sec-
tion 2 and the normal Jacobi operator R̄N can be derived from the curva-
ture tensor R̄(X, Y )Z by putting Y = Z = N and the geometric structure
JJi = JiJ , i = 1, 2, 3 between the Kaehler structure J and the quaternionic
Kaehler structure Ji, i = 1, 2, 3 (see Section 3), where N denotes a unit nor-
mal vector on M in G2(Cm+2).
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The ambient space G2(Cm+2) is known to be the unique compact irre-
ducible Riemannian symmetric space equipped with both a Kähler structure
J and a quaternionic Kähler structure J not containing J (see Berndt [3]).
So, in G2(Cm+2) we have the two natural geometrical conditions for real hy-
persurfaces that [ξ] = Span {ξ} or D⊥ = Span {ξ1, ξ2, ξ3} is invariant under
the shape operator. By using such kind of geometric conditions Berndt and
the third author [4] have proved the following:

Theorem A. Let M be a connected real hypersurface in G2(Cm+2),
m = 3. Then both [ξ] and D⊥ are invariant under the shape operator of
M if and only if

(A) M is an open part of a tube around a totally geodesicG2(Cm+1) in
G2(Cm+2), or

(B) m is even, say m = 2n, and M is an open part of a tube around a
totally geodesic QPn in G2(Cm+2).

In Theorem A the vector ξ contained in the one-dimensional distribution
[ξ] is said to be a Hopf vector when it becomes a principal vector for the shape
operator A of M in G2(Cm+2). Moreover in such a situation M is said to
be a Hopf hypersurface. Besides, a real hypersurfaceM in G2(Cm+2) admits
the 3-dimensional distribution D⊥, which is spanned by almost contact 3-
structure vector �elds {ξ1, ξ2, ξ3}, such that TxM = D⊕D⊥.

On the other hand, Berndt and the third author [5] considered the geomet-
ric condition that the shape operatorA of real hypersurfacesM in G2(Cm+2)
commutes with the structure tensor, that is,Aφ = φA. This condition also
has the geometric meaning that the �ow of the Reeb vector �eld is isometric.
Moreover, Berndt and the third author [3] proved that a real hypersurface in
G2(Cm+2) with isometric �ow is a tube over a totally geodesicG2(Cm+1) in
G2(Cm+2).

By putting a unit normal vectorN to M in G2(Cm+2) into the curvature
tensor R̄ of the ambient space G2(Cm+2), we introduce the so called normal
Jacobi operator R̄N de�ned by

R̄N (X) = R̄(X,N)N = X + 3η(X)ξ + 3
3∑

ν=1

ην(X)ξν(∗)

−
3∑

ν=1

{ην(ξ)Jν(φX + η(X)N)− ην(φX)
{

φνξ + ην(ξ)N
}}

= X + 3η(X)ξ + 3
3∑

ν=1

ην(X)ξν
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−
3∑

ν=1

{ην(ξ)
(
φνφX − η(X)ξν

) − ην(φX)φνξ}

for any tangent vector �elds X on M in G2(Cm+2).
Now in this paper we want to give a complete classi�cation of real hy-

persurfaces M in G2(Cm+2) concerned with the commuting normal Jacobi
operator as follows:

Theorem 1. Let M be a D⊥-invariant real hypersurface in G2(Cm+2).
Then M is Hopf if and only if the normal Jacobi operator R̄N commutes with
the shape operator A provided with ξ ∈ D or ξ ∈ D⊥.

By virtue of Theorem 1 and Theorem A, we assert our main theorem as
follows:

Theorem 2. Let M be a D⊥-invariant real hypersurface in G2(Cm+2).
If the normal Jacobi operator R̄N commutes with the structure tensor and the
shape operator, then M is locally congruent to an open part of a tube around
a totally geodesic G2(Cm+1) in G2(Cm+2).

1. Riemannian geometry of G2(Cm+2)

In this section we summarize the basic material about G2(Cm+2), for
details we refer to [4] and [5]. By G2(Cm+2) we denote the set of all com-
plex two-dimensional linear subspaces inCm+2. The special unitary group
G = SU(m + 2) acts transitively on G2(Cm+2) with stabilizer isomorphic to
K = S

(
U(2)× U(m)

) ⊂ G. Then G2(Cm+2) can be identi�ed with the ho-
mogeneous space G/K, which we equip with the unique analytic structure
for which the natural action of G on G2(Cm+2) becomes analytic. Denote
by g and k the Lie algebra of G and K, respectively, and by m the orthog-
onal complement of k in g with respect to the Cartan�Killing form B of g.
Then g = k⊕m is an Ad (K)-invariant reductive decomposition of g. We
put o = eK and identify ToG2(Cm+2) with m in the usual manner. Since
B is negative de�nite on g, its negative restricted to m×m yields a positive
de�nite inner product on m. By Ad (K)-invariance of B this inner prod-
uct can be extended to a G-invariant Riemannian metric g on G2(Cm+2).
In this way G2(Cm+2) becomes a Riemannian homogeneous space, even a
Riemannian symmetric space. For computational reasons we normalize g
such that the maximal sectional curvature of (G2(Cm+2), g) is eight. Since
G2(C3) is isometric to the three-dimensional complex projective spaceCP 3

with constant holomorphic sectional curvature eight, we will assumem = 2
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from now on. Note that the isomorphism Spin (6) ' SU(4) yields an isom-
etry between G2(C4) and the real Grassmann manifold G+

2 (R6) of oriented
two-dimensional linear subspaces ofR6.

The Lie algebra k has the direct sum decomposition k = su(m)⊕ su(2)
⊕R, where R is the center of k. Viewing k as the holonomy algebra of
G2(Cm+2), the center R induces a Kähler structure J and the su(2)-part a
quaternionic Kähler structureJ on G2(Cm+2). If J1 is any almost Hermitian
structure in J, then JJ1 = J1J , and JJ1 is a symmetric endomorphism with
(JJ1)

2 = I and tr (JJ1) = 0.
A canonical local basis J1, J2, J3 of J consists of three local almost Hermi-

tian structures Jν in J such that JνJν+1 = Jν+2 = −Jν+1Jν , where the index
is taken modulo three. Since J is parallel with respect to the Riemannian
connection ∇̄ of

(
G2(Cm+2), g

)
, for any canonical local basis J1, J2, J3 of J

there exist three local one-forms q1, q2, q3 such that

(1.1) ∇̄XJν = qν+2(X)Jν+1 − qν+1(X)Jν+2

for all vector �elds X on G2(Cm+2).
Let p ∈ G2(Cm+2) and W a subspace of TpG2(Cm+2). We say that W

is a quaternionic subspace of TpG2(Cm+2) if JW ⊂ W for all J ∈ Jp. And
we say that W is a totally complex subspace of TpG2(Cm+2) if there exists
a one-dimensional subspace V of Jp such that JW ⊂ W for all J ∈ V and
JW ⊥ W for all J ∈ V⊥ ⊂ Jp. Here, the orthogonal complement ofV in Jp

is taken with respect to the bundle metric and orientation on J for which
any local oriented orthonormal frame �eld ofJ is a canonical local basis of J.
A quaternionic (resp. totally complex) submanifold ofG2(Cm+2) is a sub-
manifold all of whose tangent spaces are quaternionic (resp. totally complex)
subspaces of the corresponding tangent spaces ofG2(Cm+2).

The Riemannian curvature tensor R̄ of G2(Cm+2) is locally given by

R̄(X,Y )Z = g(Y, Z)X − g(X, Z)Y + g(JY, Z)JX − g(JX, Z)JY(1.2)

− 2g(JX, Y )JZ +
3∑

ν=1

{
g(JνY, Z)JνX − g(JνX,Z)JνY − 2g(JνX, Y )JνZ

}

+
3∑

ν=1

{
g(JνJY, Z)JνJX − g(JνJX, Z)JνJY

}
,

where J1, J2, J3 is any canonical local basis of J.
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2. Some fundamental formulas for real hypersurfaces inG2(Cm+2)

In this section we want to derive the normal Jacobi operator from the
curvature tensor of the complex two-plane GrassmannianG2(Cm+2) given in
(1.2) and the equation of Gauss. Moreover, we derive some basic formulae
from the Codazzi equation for a real hypersurface inG2(Cm+2) (see [4], [5],
[10], [11], [14] and [15]).

Let M be a real hypersurface of G2(Cm+2), that is, a hypersurface of
G2(Cm+2) with real codimension one. The induced Riemannian metric on
M will also be denoted by g, and ∇ denotes the Riemannian connection of
(M, g). Let N be a local unit normal �eld of M and A the shape operator
of M with respect to N . The Kähler structure J of G2(Cm+2) induces an
almost contact metric structure (φ, ξ, η, g) on M . Furthermore, let J1, J2,
J3 be a canonical local basis of J. Then each Jν induces an almost contact
metric structure (φν , ξν , ην , g) on M . Using the above expression for R̄, the
Codazzi equation becomes

(∇XA)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+
3∑

ν=1

{
ην(X)φνY − ην(Y )φνX − 2g(φνX, Y )ξν

}

+
3∑

ν=1

{
ην(φX)φνφY − ην(φY )φνφX

}

+
3∑

ν=1

{
η(X)ην(φY )− η(Y )ην(φX)

}
ξν .

The following identities can be proved in a straightforward method and
will be used frequently in subsequent calculations:

{
φν+1ξν = −ξν+2, φνξν+1 = ξν+2, φξν = φνξ, ην(φX) = η(φνX),

φνφν+1X = φν+2X + ην+1(X)ξν , φν+1φνX = −φν+2X + ην(X)ξν+1.

(2.1)

Now let us put
(2.2) JX = φX + η(X)N, JνX = φνX + ην(X)N

for any tangent vector X of a real hypersurface M in G2(Cm+2), where N

denotes a normal vector ofM in G2(Cm+2). Then from this and the formulas
(1.1) and (2.1) we have

(∇Xφ)Y = η(Y )AX − g(AX, Y )ξ, ∇Xξ = φAX,(2.3)
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∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX,(2.4)

(∇Xφν)Y = −qν+1(X)φν+2Y + qν+2(X)φν+1Y + ην(Y )AX(2.5)

− g(AX, Y )ξν .

Summing up these formulas, we �nd

∇X(φνξ) = ∇X(φξν) = (∇Xφ)ξν + φ(∇Xξν)(2.6)

= qν+2(X)φν+1ξ − qν+1(X)φν+2ξ + φνφAX − g(AX, ξ)ξν + η(ξν)AX.

Moreover, from JJν = JνJ , ν = 1, 2, 3, it follows that

(2.7) φφνX = φνφX + ην(X)ξ − η(X)ξν .

3. The normal Jacobi operator and the shape operator

Now by putting Y = Z = N in (1.2) for a unit normal vectorN to M in
G2(Cm+2) and using (2.2), we de�ne a normal Jacobi operatorR̄N by (∗) for
any vector �eld X on M , where we have used the following

g(JνJN, N) = −g(JN, JνN) = −g(ξ, ξν) = −ην(ξ),

g(JνJX,N) = g(X, JJνN) = −g(X, Jξν)

= −g
(
X,φξν + η(ξν)N

)
= −g(X, φξν),

and
JνJN = −Jνξ = −φνξ − ην(ξ)N.

Then by (2.7) we know that the normal Jacobi operatorR̄N could be a sym-
metric endomorphism of TxM , x ∈ M .

Now consider the cases ξ ∈ D or ξ ∈ D⊥. On such distributions, �rst of
all, we calculate the normal Jacobi operator given in (∗) as follows:

Case I: ξ ∈ D. For any X ∈ D⊥ from the de�nition of normal Jacobi
operator (∗) we know that

R̄NX = R̄(X, N)N = X + 3
3∑

ν=1

ην(X)ξν .
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Hence the structure vector �elds {ξ1, ξ2, ξ3} are eigenvectors of the normal
Jacobi opeartor R̄N as follows:

(3.1) R̄(ξ1, N)N = 4ξ1, R̄(ξ2, N)N = 4ξ2, R̄(ξ3, N)N = 4ξ3.

Moreover, for any X ∈ D we have

(3.2) R̄(X, N)N = X + 3η(X)ξ +
3∑

ν=1

ην(φX)φνξ.

Thus together with the fact that ξ, φξi ∈ D, i = 1, 2, 3 we have

(3.3) R̄(ξ, N)N = 4ξ, R̄(φiξ,N)N = 0, i = 1, 2, 3.

Then (3.1), (3.2) and (3.3) give that there exists an orthogonal matrixP
such that

P = [ξ1, ξ2, ξ3, ξ, φ1ξ, φ2ξ, φ3ξ, e1, . . . , e4(m−2)]

and for any vector ei ∈ D, i = 1, . . . ,4(m− 2) in TxM , x ∈ M , the normal Ja-
cobi operator R̄N of a real hypersurfaceM in G2(Cm+2) can be diagonalized
as follows:

tPR̄NP =




B 0C

0 I


 ,

where I denotes the 4(m− 2)× 4(m− 2) identity matrix and the matricesB
and C are

B =

[4 0 0
0 4 0
0 0 4

]
and C =




4 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 .

Case II: ξ ∈ D⊥. Without loss of generality we can put ξ = ξ1. For any
X ∈ D the normal Jacobi operator R̄N is given by

R̄N (X) = R̄(X, N)N = X − φ1φX

and for any X ∈ D⊥ the nomal Jacobi operator is

(3.4) R̄N (X) = X + 4η(X)ξ + 3
3∑

ν=1

ην(X)ξν − φ1φX +
3∑

ν=1

ην(φX)φνξ.
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Then the normal Jacobi operator for D⊥ = span {ξ1, ξ2, ξ3} can be calcu-
lated as

R̄N (ξ1) = 8ξ1, R̄N (ξ2) = 2ξ2, R̄N (ξ3) = 2ξ3.

On the other hand, we calculate the normal Jacobi operatorR̄N for D =
{X ∈ TxM | X⊥ξi, i = 1, 2, 3}. Then for any X ∈ D such that φX = φ1X or
φX = −φ1X, the normal Jacobi operator R̄N is given by

(3.5) R̄N (X) = 2X or R̄N (X) = 0,

respectively. Here the dimension of the eigenspace corresponding to an eigen-
value 2 (resp. 0) is equal to 2(m− 1) (resp. 2(m− 1)) (see Berndt [3]). Then
the normal Jacobi operator R̄N for the orthogonal matrix P can be given by

tPR̄NP =




8 02
2

B0 C


 ,

where (3.5) gives that the matricesB and C are 2(m−1)×2(m−1)-matrices
respectively given by

B =




2 0 0

0
. . . 0

0 0 2


 and C =




0 0 0

0
. . . 0

0 0 0


 .

Now recall a proposition from [2] concerned with a tube of type (A) as
follows:

Proposition A. Let M be a connected real hypersurface inG2(Cm+2).
Suppose that AD ⊂ D, Aξ = αξ, and ξ is tangent to D⊥. Let J1 ∈ J be
the almost Hermitian structure such that JN = J1N . Then M has three (if
r = π/2) or four (otherwise) distinct constant principal curvatures

α =
√

8 cot (
√

8r), β =
√

2 cot (
√

2r), λ = −
√

2 tan (
√

2r), µ = 0
(3.6)

with some r ∈ (0, π/4). The corresponding multiplicities are

m(α) = 1, m(β) = 2, m(λ) = 2m− 2 = m(µ),

and for the corresponding eigenspaces we have

Tα = Rξ = RJN, Tβ = C⊥ξ = C⊥N = {ξ2, ξ3},
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Tλ = {X | X⊥Hξ, JX = J1X}, Tµ = {X | X⊥Hξ, JX = −J1X}.

Now let us check for a tube over a totally geodesicG2(Cm+1) in G2(Cm+2)
whether it satis�es the commuting normal Jacobi operator, that is R̄N ◦A
= A ◦ R̄N or not as follows:

Case I: ξ = ξ1 ∈ Tα. Then by (3.4) we have

(R̄N ◦A)ξ1 = αR̄Nξ1 = 8αξ1.

On the other hand, the left side becomesA ◦ (R̄Nξ1) = 8Aξ1 = 8αξ1. So in
this case R̄N ◦A = A ◦ R̄N holds.

Case II: ξ2, ξ3 ∈ Tβ. Also by (3.4) we have (R̄N ◦A)ξ2 = βR̄Nξ1 = 2βξ2.
Moreover, the left side becomesA ◦ (R̄Nξ2) = 2Aξ2 = 2βξ2.

Case III: Xi ∈ Tλ, i = 1, . . . , 2(m− 1). Then by (3.5) we assert

(R̄N ◦A)Xi = R̄N (AXi) = λR̄NXi = 2λXi

and
(A ◦ R̄N )Xi = A(R̄NXi) = 2AXi = 2λXi

for i = 1, . . . , 2(m− 1).
Case IV: Yi ∈ Tµ, i = 1, . . . , 2(m− 1). Then also by (3.5) we have

(R̄N ◦A)Yi = R̄NYi = 0 and AR̄NYi = 0.
Summarizing these cases, we know that a real hypersurface of type (A)

in Theorem A satis�es R̄N ◦A = A ◦ R̄N .
Next we consider M congruent to a tube of type (B) mentioned in The-

orem A, that is, a tube of radius r over HPm, m = 2n in G2(Cm+2). That
is, for a tube of type B in Theorem A we introduce the following

Proposition B. Let M be a connected real hypersurface of G2(Cm+2).
Suppose that AD ⊂ D, Aξ = αξ, and ξ is tangent to D. Then the quater-
nionic dimension m of G2(Cm+2) is even, say m = 2n, and M has �ve dis-
tinct constant principal curvatures

α = −2 tan (2r), β = 2 cot (2r), γ = 0, λ = cot (r), µ = − tan (r)

with some r ∈ (0, π/4). The corresponding multiplicities are

m(α) = 1, m(β) = 3 = m(γ), m(λ) = 4n− 4 = m(µ)

and the corresponding eigenspaces are

Tα = Rξ, Tβ = JJξ, Tγ = Jξ, Tλ, Tµ,
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where

Tλ ⊕ Tµ = (HCξ)⊥, JTλ = Tλ, JTµ = Tµ, JTλ = Tµ.

Now let us check for a real hypersurface of type (B) whether it satis�es
the property of commuting normal Jacobi operator as follows:

Case I: ξ ∈ Tα. Then by (3.3) we know

A ◦ R̄Nξ = 4Aξ1 = 4αξ and R̄NAξ = αR̄Nξ = 4αξ.

Case II: ξ1, ξ2, ξ3 ∈ Tβ. Then also by (3.2) we have

A ◦ R̄Nξi = 4Aξi = 4βξ1 and R̄NAξi = βR̄Nξi = 4βξi

for i = 1, 2, 3.
Case III: φiξ ∈ Tγ , i = 1, 2, 3. Then by (3.3) we have

A ◦ R̄Nφξi = 0 and R̄NAφξi = 0.

Case IV: Xi ∈ Tλ, i = 1, . . . , 2(m− 2). Then by (3.2) we have

A ◦ R̄NXi = AXi = λXi and R̄NAXi = λR̄NXi = λXi.

Case V: Yi ∈ Tµ, i = 1, . . . , 2(m− 2). Then also by (3.2) we have

A ◦ R̄NYi = AXi = µXi and R̄NAXi = µR̄NXi = µXi.

Summarizing the cases mentioned above, we know that real hypersurfaces
of type (B) satisfy the property of commuting normal Jacobi operator, that
is, R̄N ◦A = A ◦ R̄N .

4. Commuting normal Jacobi operator

In this section we consider aD⊥-invariant real hypersurface inG2(Cm+2)
with commuting normal Jacobi operator.

Consider a normal Jacobi operator

R̄N (X) = R̄(X, N)N ∈ TxM, x ∈ M

de�ned in (∗). Then the commuting Jacobi operatorA ◦ R̄N = R̄N ◦A gives
that

3
3∑

ν=1

ην(X)Aξν −
3∑

ν=1

ην(ξ)AφνφX +
3∑

ν=1

η(X)ην(ξ)Aξν(4.1)
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+
3∑

ν=1

ην(φX)Aφνξ + 3η(X)Aξ

= 3
3∑

ν=1

ην(AX)ξν −
3∑

ν=1

ην(ξ)φνφAX +
3∑

ν=1

ην(ξ)η(AX)ξν

+
3∑

ν=1

ην(φAX)φνξ + 3η(AX)ξ.

Now we consider the following two cases.
Case I: ξ ∈ D. Then (4.1) gives that

3
3∑

ν=1

ην(X)Aξν +
3∑

ν=1

ην(φX)Aφνξ + 3η(X)Aξ

= 3
3∑

ν=1

ην(AX)ξν + 3η(AX)ξ +
3∑

ν=1

ην(φAξ)φνξ.

Putting X = ξ into this equation,

(4.2) 3Aξ = 3
3∑

ν=1

ην(Aξ)ξν + 3η(Aξ)ξ +
3∑

ν=1

ην(φAξ)φνξ.

On the other hand, from the assumption we know that the shape operator
A is invariant, that is g(AD, D⊥) = 0. This means ην(Aξ) = 0 for ξ ∈ D.
Moreover, di�erentiating g(ξ, ξν) = 0 along the direction ξ gives

g(∇ξξ, ξν) + g(ξ,∇ξξν) = 0.

Hence, together with the formulas in Section 2 it follows that
ην(φAξ) = −g(ξ, qν+2(ξ)ξν+1 − qν+1(ξ)ξν+2 + φνAξ)

= −g(ξ, φνAξ) = −ην(φAξ).

Then ην(φAξ) = 0, and together with (4.2), we assert thatM is Hopf, that
is, the structure vector ξ is principal.

Case II: ξ ∈ D⊥. Without loss of generality we may put ξ = ξ1. Now
putting X = ξ1 in (4.1), we have

(4.3) 7Aξ = 2
3∑

ν=1

ην(Aξ1)ξν − φ1φAξ + 5η(Aξ)ξ.
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Hence, by applying φ to both sides and using the formulas in Section 2 we
have

7φAξ = 2
3∑

ν=1

ην(Aξ1)φξν − φφ1φAξ = 2
3∑

ν=1

ην(Aξ1)φξν + φ1Aξ.

Substituting this into (4.3), we have

49Aξ = 14
3∑

ν=1

ην(Aξ1)ξν − φ1

{
2

3∑

ν=1

ην(Aξ1)φ1φξν + φ1Aξ

}
+ 35η(Aξ)ξ.

This implies

49Aξ = 14
3∑

ν=1

ην(Aξ1)ξν − 2
{

η2(Aξ1)ξ2 + η3(Aξ1)ξ3

}
+ Aξ + 34η(Aξ)ξ,

which yields

(4.4) 48Aξ = 12
3∑

ν=1

ην(Aξ1)ξν + 36η(Aξ)ξ.

Hence, taking an inner product with ξ2 and ξ3 respectively, we have

η2(Aξ) = 0 and η3(Aξ) = 0.

Substituting this into (4.4) �nally givesAξ = η(Aξ)ξ. This means that a real
hypersurface M satisfying the commuting normal Jacobi operator is also a
Hopf hypersurface in this case.

Summarizing the above cases, we assert the following
Theorem 4.1. Let M be a D⊥-invariant real hypersurface in G2(Cm+2)

with commuting Jacobi operator. Then M is Hopf provided with ξ ∈ D or
ξ ∈ D⊥.

Hence, together with a theorem due to Berndt and Suh [4], we have the
following

Theorem 4.2. Let M be a D⊥-invariant real hypersurface inG2(Cm+2),
m = 3, with commuting normal Jacobi operator. ThenM is congruent to one
of the following provided ξ ∈ D or ξ ∈ D⊥:

(A) an open part of a tube around a totally geodesic G2(Cm+1) in
G2(Cm+2), or

(B) an open part of a tube around a totally geodesic and totally realQPn,
m = 2n, in G2(Cm+2).
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Now recall a lemma due to Suh [12] as follows:
Lemma 4.3. Let M be a real hypersurface in G2(Cm+2), m = 3. If the

shape operator is parallel along the distributionF = [ξ]∪D⊥, then ξ ∈ D.
By Lemma 4.3 and Theorem 4.2 we assert the following
Theorem 4.4. Let M be a real hypersurface in G2(Cm+2), m = 3. If

the shape operator is parallel along the distribution F = [ξ]∪D⊥, then M is
locally congruent to a tube over a totally geodesic, totally realQPm, m = 2n,
in G2(Cm+2).

Next we consider M congruent to a tube of type (B) mentioned in The-
orem 4.4, that is, a tube of radius r over QPm, m = 2n in G2(Cm+2). Then
for any Y ∈ Tλ due to Proposition B in Section 3 we put

AY = cot rY, AφY = − tan rφY, φAY = cot rφY,

AφAY = cot rAφY = −φY.

So by the equation of Codazzi we have for anyY ∈ Tλ

0 = (∇ξA)Y = (∇Y A)ξ + η(ξ)φY = (αI −A)φAY + φY

= αφAY −AφAY + φY = {−2 tan 2r · cot r + 2}φY,

where in the second equality we have used JTλ = Tλ, JTµ = Tµ. This gives
tan2 r + 1 = 0, which is a contradiction. Then by Theorem 4.4 and Proposi-
tion B in Section 3 we assert the following

Theorem 4.5.There do not exist any real hypersurfacesM in G2(Cm+2)
with parallel second fundamental tensor on F when M has a commuting
Jacobi operator.

5. Proof of the main theorem

In this section we consider a real hypersurface M in G2(Cm+2) whose
normal Jacobi operator R̄N commutes with the structure tensorφ. Then the
commuting condition R̄N ◦ φ = φ ◦ R̄N gives

3
3∑

ν=1

ην(X)φξν −
3∑

ν=1

{ην(ξ)
(
φφνφX − η(X)φξν

) − ην(φX)φφνξ}(5.1)

= 3
3∑

ν=1

ην(φX)ξν −
3∑

ν=1

{ην(ξ)
(
φνφ

2X − η(φX)ξν

) − ην(φ2X)φνξ}.
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This can be written as follows:

(5.2) 4
3∑

ν=1

ην(X)φξν −
3∑

ν=1

ην(ξ)η(φνX)ξ = 4
3∑

ν=1

ην(φX)ξν .

Hence, taking an inner product with ξ, we have

3∑

ν=1

ην(ξ)η(φνX) = 0.

Then (5.2) becomes

(5.3)
3∑

ν=1

ην(X)φξν =
3∑

ν=1

ην(φX)ξν .

Putting X = ξ in (5.3), we have

(5.4)
3∑

ν=1

ην(ξ)φξν = 0.

Now we put ξ = X1 + X2 for some X1 ∈ D⊥ and X2 ∈ D. Then (5.4) gives

0 =
3∑

ν=1

ην(ξ)φνξ =
3∑

ν=1

ην(ξ)φνX1 +
3∑

ν=1

ην(ξ)φνX2.

From this it follows that

(5.5)
3∑

ν=1

ην(ξ)φνX1 = 0 and
3∑

ν=1

ην(ξ)φνX2 = 0,

because φνX1 ∈ D⊥ and φνX2 ∈ D for any ν = 1, 2, 3. The term in the sec-
ond formula of (5.5) is included in a distribution D. If X2 vanishes, then
ξ ∈ D⊥. If not, then {φ1X2, φ2X2, φ3X3} ∈ D are linearly independent. So
naturally we have ην(ξ) = 0 for any ν = 1, 2, 3. This means that ξ ∈ D.

Summarizing, we assert the following
Lemma 5.1. If M is a real hypersurface in G2(Cm+2), m=3, satisfying

R̄N ◦ φ = φ ◦ R̄N , then ξ ∈ D or ξ ∈ D⊥.
Hence, together with Theorem 3.1, we have the following
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Theorem 5.2. Let M be a D⊥-invariant real hypersurface inG2(Cm+2).
Then M is Hopf if the Jacobi operator R̄N commutes both with the shape
operator A and the structure tensor φ.

Hence, together with Theorem A due to Berndt and Suh [4], we know
that M is congruent to an open part of a tube around a totally geodesic
G2(Cm+1) or a tube around a totally geodesic quaternionic projective space
QPn, m = 2n, in G2(Cm+2).

Related to our assumption of commuting normal Jacobi operator with
the structure tensor we give the following two remarks:

Remark 5.1. By Proposition A let us check whether real hypersurfaces
of type (A) satisfy R̄N ◦ φ = φ ◦ R̄N or not as follows:

Case I: ξ = ξ1 ∈ Tα. Then by (3.4) we know that R̄N ◦ φξ1 = 0 and
φ ◦ R̄Nξ1 = 8φξ1 = 0.

Case II: ξ2, ξ3 ∈ Tβ. Then also by (3.4) we have R̄N ◦ φξ2 = −R̄Nξ3 =
−2ξ3 and φ ◦ R̄NAξ2 = 2φξ2 = −2ξ3.

Case III: Xi ∈ Tλ, i = 1, . . . , 2(m− 1). Then by Proposition A, the eigen
space Tλ has the property that φX = φ1X for any X ∈ Tλ. Moreover, it is
invariant by the structure tensor φ, that is φTλ⊂Tλ, because for any Xi ∈ D

such that φXi = φ1Xi we have φφXi = −Xi and φ1φXi = φ2
1Xi = −Xi. Thus

φφXi = φ1φXi. So it follows that φXi ∈ Tλ. Hence, together with (3.5), we
have (R̄N ◦ φ)Xi = 2φXi and (φ ◦ R̄N )Xi = 2φXi.

Case IV: Yi ∈ Tµ, i = 1, . . . , 2(m− 1). The eigen space Tµ has the prop-
erty that φY = −φ1Y for any Y ∈ Tµ. Moreover, such an eigen space Tµ

is φ-invariant, that is, φTµ⊂Tµ. In fact, suppose Yi ∈ D such that φYi

= −φ1Yi. Then φYi ∈ D, φφYi = −Yi and φ1φYi = −φ2
1Yi = Yi. So it fol-

lows that φYi ∈ D. By using (3.5), R̄N ◦ φYi = 0 and φ ◦ R̄NYi = 0. Then by
Cases I, II, III and IV the normal Jacobi operator R̄N commutes with the
structure tensor φ for real hypersurfaces of type (A) in Theorem A.

Remark 5.2. By Proposition B we want to check whether real hypersur-
faces of type (B) in Theorem A satisfy R̄N ◦ φ = φ ◦ R̄N or not as follows.

In fact, from (3.3) for ξ ∈ D it follows that R̄N ◦ φξ2 = 0, but from (3.1)
we know that φ ◦ R̄Nξ2 = 4φξ2. So naturally the normal Jacobi operator R̄N

does not commute with the structure tensorφ for ξ2 ∈ Tβ in Proposition B.
By Theorem 5.2 and Theorem A, together with Remarks 5.1 and 5.2

mentioned above we complete the proof of our Theorem 2.
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