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REAL HYPERSURFACES IN COMPLEX TWO-PLANE
GRASSMANNIANS WITH COMMUTING SHAPE OPERATOR

YOUNG JIN SUH

In this paper we give a non-existence property of real hypersurfaces in complex two-
plane Grassmannians G2(Cm + 2) which have a shape operator A commuting with
the structure tensors {0i, fc, <fo} • Prom this view point we give a characterisation
of real hypersurfaces of type B in (

0. INTRODUCTION

In the geometry of real hypersurfaces in complex space forms Mm(c) or in quater-
nionic space forms there have been many characterisations of model hypersurfaces of
type A\, A2, B, C, D and E in complex projective space CP m , of type Ao, AX,A2 and
B in complex hyperbolic space CHm or A\,A2,B in quaternionic projective space
QPm, which are completely classified by Cecil and Ryan [4], Kimura [5], Berndt [1],
Martinez and Perez [7] respectively. Among them there were only a few characterisa-
tions of homogeneous real hypersurfaces of type B in complex projective space C P m .
For example, the condition that the shape operator A and the structure tensor <j> sat-
isfy A(/> + (j>A = k(j>, for some constant k, is a model characterisation of this kind for
type B, which is a tube over a real projective space RP m in CP m (See Yano and Kon
[8])-

On the other hand, when we consider real hypersurfaces in quaternionic projec-
tive space QP m , Pak [6] has considered a geometric condition that A<f>u — $VA = 0,
v = 1,2,3 that is, the structure tensor 4>v and the shape operator A commute with
each other. Moreover, it was known to be a characterisation of type A\, and A2 in
quaternionic projective space Q P m , which is a tube of radius r, 0 < r < n/2, over a
totally geodesic QPk in QPm.

Now let us denote by G2(Cm+2) the set of all two-dimensional linear subspaces
in C m + 2 . This Riemannian symmetric space G2(Cm+2) has a remarkable geometrical
structure. It is the unique compact irreducible Riemannian manifold, being equipped
with both a Kahler structure J and a quaternionic Kahler structure 3 not containing
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J. In other words, (^(C"1"1"2) is the unique compact, irreducible, Kahler, quaternionic
Kahler manifold which is not a hyper-Kahler manifold. So, in G2(Cm+2) we have the
two natural geometrical conditions for real hypersurfaces M\ that [£] = Span{£} or
2)-1- = Span{fi,£2,£3} are invariant under the shape operator A oi M. The almost
contact structure vector field £ mentioned above is defined by £ = —JN, where N

denotes a local unit normal vector field of M in C?2(Cm+2) and the almost contact
3-structure vector fields {£1,62, £3} are defined by £„ = —JVN, v = 1,2,3, where Jv

denotes a canonical local basis of a quaternionic Kahler structure Z •

The first result in this direction is the classification of real hypersurfaces in
G2 (Cm + 2) satisfying both conditions. Berndt and the present author [2] have proved
the following theorem.

THEOREM A. Let M be a connected real hypersurface in G2(Cm+2), m ^ 3.
Then both [£] and I)1- are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in
G2(Cm+2),or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally
geodesic QPn in G 2 (C m + 2 ) .

In Theorem A the vector £ contained in the one-dimensional distribution [£] is said
to be a Hopf vector when it becomes a principal vector for the shape operator A of M in
G 2 (C m + 2 ) . Moreover in such a situation M is said to be a Hopf hypersurface. Besides
of this, a real hypersurface M in G2(Cm+2) also admits the 3-dimensional distribution
3D"1, which are spanned by almost contact 3-structure vector fields {£1,62)£3}) s u c n

that TXM = 1)®Z)1-.

Real hypersurfaces of type B in Theorem A are just the case that the one dimen-
sional distribution [£] is contained in 2). It can be easily proved in Section 3 that the
tube of type B satisfies the following formula on the .orthogonal complement of the
one-dimensional distribution [£]

(*) A4>V-4>VA = Q, v = 1,2,3.

Also in the paper [3] Berndt and the present author have given a characterisation of

real hypersurfaces of type A when the shape operator A of M in G2(C m + 2 ) commutes

with the structure tensor <f>, which is equivalent to the condition that the Reeb flow on

M is isometric.

Now in this paper we consider another condition that the almost contact 3-structure

tensors {^1,^2,^3} and the shape operator A of a real hypersurface M in G2(C m + 2 )

commute with each other. Then we are able to assert the following.
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THEOREM 1 . There do not exist any real hypersurfaces of M in G2 (C m + 2 ) sat-
isfying the condition that the shape operator A and the structure tensors {^1,^2,^3}
commute with each other.

Prom this view point, Theorem 1 and the argument mentioned above give a char-
acterisation of real hypersurfaces of type B in G 2 ( C m + 2 ) . Namely, we give a charac-
terisation of type B in Theorem A as follows.

THEOREM 2 . Let M be a Hopfreal hypersurface in G 2 ( C m + 2 ) satisfying (*)
on the orthogonal complement of the one-dimensional disribution [£]. Then M is locally
congruent to an open part of a tube around a totally geodesic QPn in Gi ( C m + 2 ) , where

m = In.

The present author would like to express his sincere gratitude to the referee for his
valuable comments and suggestions to develop the first version of the manuscript.

1. RlEMANNIAN GEOMETRY OF G2(C m + 2 )

In this section we summarise basic material about G2(Cm+2), for details we re-
fer to [2] and [3]. By G2(Cm+2) we denote the set of all complex two-dimensional
linear subspaces in C m + 2 . The special unitary group G = SU(m + 2) acts transi-
tively on G2(Cm+2) with stabiliser isomorphic to K - S(U{2) x U{m)) C G. Then
C2(Cm+2) can be identified with the homogeneous space G/K, which we equip with
the unique analytic structure for which the natural action of G on G2(Cm+2) becomes
analytic. Denote by 0 and E the Lie algebra of G and K, respectively, and by m
the orthogonal complement of E in g with respect to the Cartan-Killing form B of
g. Then 9 = E © tn is an Ad{K) -invariant reductive decomposition of g. We put
0 — eK and identify ToG2(Cm+2) with m in the usual manner. Since B is negative
definite on g, its negative restricted to m x m yields a positive definite inner product
on m. By Ad{K) -invariance of B this inner product can be extended to a G-invariant
Riemannian metric g on G2(Cm+2). In this way G2(Cm+2) becomes a Riemannian
homogeneous space, even a Riemannian symmetric space. For computational reasons
we normalise g such that the maximal sectional curvature of (G2(Cm+2),p) is eight.
Since G2(C3) is isometric to the three-dimensional complex projective space CP3 with
constant holomorphic sectional curvature eight we shall assume m ^ 2 from now on.
Note that the isomorphism Spin(6) cz SU(4) yields an isometry between G2(C4) and
the real Grassmann manifold G2" (K6) of oriented two-dimensional linear subspaces of
I 6 .

The Lie algebra I has the direct sum decomposition t = su(m) ©su(2) ©5H, where
91 is the centre of E. Viewing E as the holonomy algebra of G2(Cm+2), the centre 91
induces a Kahler structure J and the su(2) -part a quaternionic Kahler structure 3 on
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G2(Cm + 2) . If J\ is any almost Hermitian structure in 2, then JJi = J^J, and JJ\ is

a symmetric endomorphism with {JJ\)2 = I and tr{JJ{) = 0. This fact will be used

frequently throughout this paper.

A canonical local basis J\, J%, J3 of 2 consists of three local almost Hermitian
structures Jv in 2 such that JvJv+\ = Jv+2 = —JV+\JV, where the index is taken
modulo three. Since 2 is parallel with respect to the Riemannian connection V of
(G2(Cm+2),g), there exist for any canonical local basis J\,J2,J3 of 2 three local
one-forms <7i,<72><73 such that

(1.1) Vx«A/ = qu+2(X)Jv+i — qu+i(X)Ju+2

for all vector fields X on G2(Cm + 2) . This fact will be used frequently.

Let p € G2(Cm + 2) and W a subspace of TpG2(Cm + 2). We say that W is a
quaternionic subspace of TpG2(Cm+2) if JW C W for all J <S 2P- And we say that W

is a totally complex subspace of TpG2(Cm+2) if there exists a one-dimensional subspace
23 of 2P such that JW C W for all J € 23 and JW ±W for all J 6 2JX C 2P- Here,
the orthogonal complement of 23 in 2P is taken with respect to the bundle metric
and orientation on 2 for which any local oriented orthonormal frame field of 2 is a
canonical local basis of 2- A quaternionic (respectively totally complex) submanifold
of G2 (Cm + 2) is a submanifold all of whose tangent spaces are quaternionic (respectively
totally complex) subspaces of the corresponding tangent spaces of G2(Cm+2).

2. SOME FUNDAMENTAL FORMULAS FOR REAL HYPERSURFACES IN G2(Cm+2)

In this section we derive some basic formulae from the Codazzi equation for a real

hypersurface in G 2 (C m + 2 ) .

Let M be a real hypersurface of G2(Cm+2), that is, a hypersurface of G2(Cm+2)
with real codimension one. The induced Riemannian metric on M will also be denoted
by g, and V denotes the Riemannian connection of (M,g). Let N be a local unit
normal field of M and A the shape operator of M with respect to N. The Kahler
structure J of G2 (Cm + 2) induces on M an almost contact metric structure ((/>, £, 77, g).

Furthermore, let J\,J2:Jz be a canonical local basis of 2- Then each Jv induces an
almost contact metric structure (<(>„,£v,i)v,g) on M. Using the above expression for
R, the Codazzi equation becomes

- (VYA)X = t}(X)<f>Y - n(Y)<t>X - 2g((j>X,

u=l
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3

The following identities can be proved in a straightforward method and will be
used frequently in subsequent calculations:

(2.1) #„ =

<t>v<t>v+\X =

Now let us put

JX ^cf>X + rj{X)N, JVX = <t>vX + r)v(X)N

for any tangent vector X of a real hypersurface M in G 2 ( C m + 2 ) , where N denotes
a normal vector of M in G 2 ( C m + 2 ) . Then from this and the formulas (1.1) and (2.1)
we have that

(2.2)

(2.3)

(

(2.4)

(Vx<t>)Y = v(Y)AX - g{AX, Y)£, *
Vx& = qv+2{X)iv+l - qv+i{X)iv

Vx<t>v)Y = -qv+1{X)(j>v+2Y + qv+2(J

-g(AX,Y)£v.

7X£ = 4>AX,
+2 + 4>VAX,

C)4>v+iY + Vu{Y)AX

Summing up these formulas, we find the following

(2.5) - (VxMv +

Moreover, from JJV = JVJ, v = 1,2,3, it follows that

(2.6) HvX = 4>v<j>X +
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3. PROOF OF THEOREM 1

Before giving the proof of Theorem 1 let us ask what kind of model hypersurfaces
given in Theorem A satisfy the formula (*). In other words, it will be interesting to
know whether there exist any real hypersurfaces in G2(On + 2) satisfying the condition
(*). In this section we shall show that only a tube over a quaternionic projective space
QPm in G 2 (C m + 2 ) satisfies the formula (*) on the orthogonal complement of the
one-dimensional distribution [£].

To solve such a problem let us recall some propositions given by Berndt and the
present author ([2]). For a tube of type A in Theorem A we have the following.

PROPOSITION A. Let M be a connected real hypersurface of G2 (C m + 2 ) . Sup-

pose that AD CD, A£ = a£, and £ is tangent to D1-. Let JieZ be the almost Hermi-

tian structure such that JN = J\N. Then M has three(ifr — n/2) or four (otherwise)

distinct constant principal curvatures

a = \/8cot (\/8r) , 0 = v^cot (y/2r\ , A = —^2 tan (y/2r), fi = 0

with some r € (0, TT/4) . The corresponding multiplicities are

m(a) = 1, m(/3) = 2, m(X) = 2m - 2 = m(/i),

and the corresponding eigenspaces we have

Ta=R£ = RJN,

Tx = {X | XLW., JX =

Tli = {X\ X±Ht,JX = -JiX).

Moreover, for a tube of type B in Theorem A we have the following.

PROPOS ITION B . Let M be a connected real hypersurface of G2 (C m + 2 ) . Sup-

pose that AD C 2), A£ — a^, and £ is tangent to 55. Then the quaternionic dimension

m of G2(Cm + 2) is even, say m = 2n, and M has five distinct constant principal cur-

vatures

a = - 2 tan (2r), 0 = 2 cot (2r), 7 = 0, A = cot (r), \i = - tan (r)

with some r € (0, TT/4) . The corresponding multiplicities are

m{a) = 1, m(/3) — 3 = m(7), m(A) — An - 4 = m(fi)
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and the corresponding eigenspaces are

Ta = H£, I> = 2JZ, T7 = # , Tx, TM>

where

T^QT^^ ( H C O \ ZTX = Tx, 3TM = TM

Of course we have proved that all of the principal curvatures and its eigenspaces
of the tube A (respectively, the tube B) in Theorem A satisfies all of the properties in
Proposition A (respectively, Proposition B).

Now by using this Proposition B let us check whether a tube of type B in Theorem
A, that is, a tube over a totally geodesic QPm in G2 ( C m + 2 ) , satisfies the formula (*)
on the orthogonal complement of the one-dimensional distribution [£].

For any X^T\®T^ by the invariance of the eigenspaces with respect to Z we have

To check for £„, we note it follows that

2 = 0.

Finally, we check for any <f>^ in an eigenspace Tp in Proposition B whether the formula
(*) holds or not. Then (*) follows

= 0.

Summing up all of these facts, we know that the formula (*) holds on the distribution

^J-, where £ x denotes the orthogonal complement of the distribution [£].

But without the restriction of formula (*) on the distrbution £ x , the situation

could be quite different from the above. We are going to prove our Theorem 1 in the

introduction. From the condition that A<j>v — <f>vA it follows that

0 = A4>vt,v = 4>VA£,V.

Naturally this implies A£v = P^v, v — 1,2,3, which gives g^AS),1!)1-) = 0. Moreover

we know that

From this we know that all of principal curvatures are equal to each other, that is,

(3.1) 0i = ft = 03.
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Now let us take an inner product £1 with the Codazzi equation. Then using (2.1) it
follows that

2V(X)Vl(4>Y) - 2r,(Y)m(4>X) -

+ 2m(X)r,3(Y) - 2r,3(X)r,2(Y) - 2g(<f>1X, Y)
i o.2i}

+ 2T,2(4>X)V3(</>Y) - 2m(<j>Y)r,3(<t>X)

Now differentiating A£i — /3 id , and using (2.3) and the formulas Afr — #262 and
, we have

- q3(Y)m{X)}

(3-3) - (ft - 03){q2(X)v3(Y) - q2(Y)r)3(X)}

, Y) - 2g(A4>1AX, Y).

Then we are going to prove our theorem as follows.

C A S E 1. £ is principal.

In such a case we are able to apply Theorem A. Then M is congruent to real hy-
persurfaces of type A or type B. When M is congruent to of type A, by Proposition A
its principal curvatures fiv, v — 1,2,3 are not equal to each other. Then by (3.1) we
have a contradiction.

When M is congruent to of type B, by Proposition B its principal curvatures /3j,
are equal to each other. As mentioned in Proposition B of this section, all eigenvectors
in T\ and TM satisfy A4>v = (j>uA. But we know {<f>i£,(t>2€,<l>3€}€Ty for the structure
vector £GTQ. Moreover, its principal curvature is 7 = 0. This implies that for any
u — 1,2,3 we have

0 = A(j>u£ - <frvAi = -<S>VA£, = 2 t a n {2r)<j>v£,,

which also gives a contradiction. So the Case 1 can not occur.

C A S E II. £ is not principal.

Let us put
A£ = a£ + vU,

where U is orthogonal to £. Then we are able to consider an open set it = {pEM \

v(jp) ^ 0 } in M . On this open subset we continue our proof of Theorem 1 by proving

the following Lemmas.
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LEMMA 3 . 1 . Under the above assumptions we have

£€©, AfeS and U&D.

PROOF: Let

for any XeD and
vector Z so that

Then £ = r]{X)X + 77(6)6 implies

£ = r)(X)X + V(Z)Z

. Then without loss of generality we are able to choose a

= 0 =

This means £_L£i,£2> t n a t is> f i^G^"1 , where £x denotes an orthogonal complement
of the structure vector £ in TXM. Now from (3.2) and (3.3) for any XeQ such that
AX = XX we have

2)4>X -(2A -

= 0.

From this, take an inner product with £2 and use the fact that X€S) and (3.1) to get

(Pi - fohsiX) - 2r,(X)r,{£3) = 0.

Then by the fact /?i = fa we have r)(X)r)(£3) — 0. This means that

or £eS)x.

Now let us show £e2). By the above result we are able to suppose £6S)X. From this,
the structure vector £ is equal to one of £„, v = 1,2,3 and could be regarded as a
principal vector field. Together with Case 1 we have a contradiction. Accordingly, we
must have that £eS). From this fact we are able to assert the second and the third
formulae, because

,Z») = 0

and because = a£ + vU. U
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LEMMA 3 . 2 . Under the above assumptions we have that the functions 2a — Pi
= @2 = Pz are constant or g(4>vU, £) = 0 for any v = 1,2,3.

PROOF: Prom (3.1), (3.2) and (3.3) it follows that

2r)(X)rh(<t>Y) - 2n(Y)r1l{<t>X) -

, , + 2r)2(X)r)3(Y) - 2r,3(X)r,2(Y) - 2g(4nX, Y)
(3.4)

+ 2r)2(<f>X)r,3(<l>Y) - 2Tl2(<t>Y)r,3(4>X)

Then, by putting Y = £i and using Lemma 3.1 and the assumptions, we have

xfii = (tiPi)m(x)

for any X on the open subset tl of M. Similarly we are able to calculate

and X/33 =

From this tiP2 = (6^2)»?2(^i) = 0. Then by (3.1) we know that Xfc = X0i = 0 for
any X. This means fii = @2 = fi3 are all constant. Then (3.4) can be written as

(3.5)
- 2A<f>1AX = -

Now by putting X = £ in (3.5) and using £e© and A£eS) in Lemma 3.1 we have

Since in this case the structure vector ^ is not principal, we can put

A£ = a^ 4- vU

on the open set U. Then <$>\A£ = a<t>i£, + v<j>\U. Substituting this into (3.6), we have

(2a -

- 2u<piAU.

On the other hand, the left side reduces to the following

(2a - Pi)A<t>xZ = (2a - P

= a(2a -
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Then from these two equations, by taking an inner product with f we have

v{2a - 0i)g{4>iU,t) = vfagtfMt) - 2vg(4>1AU,t)

This completes the proof of our Lemma 3.2. D

LEMMA 3 . 3 . If t i e functions on U satisfy 2a = ft = 02 = ft, then g{<f>vU,f)
= 0 for any v = 1,2,3.

PROOF: By Lemma 3.1 we know that 2a = /?„, v = 1,2,3, are constant or
g{<j>vU,£,) = 0. By differentiating a = g{A£,£), we have

Now differentiating A£ = a£ + vU implies

where we have used that the function a is constant. Then, by taking an inner product
with £, we have

) ,0 - vg{U,<l>AX).

From this, together with (3.7) we assert that

0 = g (Acj>AX, 0 = g{<t>AX, at, + vU) = vg{4>AX, U).

Then on the open set il we have A<j>U — 0, which gives that

From this, together with Lemma 3.2 we know that 2a = /3U = 0 or g(<l>U,£v) = 0,
1/ = 1 , 2 , 3 .

Let us consider for a case where 2a = 0U — 0, v — 1,2,3. Then substituting into
(3.5), we have

(3.8) -2A<S>XAX = - 2 t j ( X ) # i - 2rh{<t>X)Z -

Now by putting X = £ into the above equation and using £e3) and A£ = i/[/ we have

(3.9)
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Also putting X — U in (3.8) and using t/eS) and £€2) in Lemma 3.1, we have

-2A4nAU = -2T7I(«/>[/)£ - 1$XV

From this, taking an inner product with £, we have

g(A4>iAUtt) = 2Vl(<f>U) = -2

On the other hand, the left side reduces to the following

, 0 = vgfaAU, U) = vgiAfaU, U) = 2</(<#1, U),

where in the second equality we have used the assumption (*) and in the third equality

we have used the formula (3.9). The above two equations complete the proof of Lemma

3.3. D

LEMMA 3 . 4 . There does not exist any open subset i l in M satisfying g{<j>vU, f)

= 0 for any i/ = 1,2,3.

P R O O F : Differentiating the formula A$v — <pvA — 0 and using (2.4) and A(,v
= 0v£v» v = 1,2,3 we have

(3.10) {VXA)Y = r)v {{VxA)Y)iv - &,(VXA)4>VY - r,v(Y)<f>vA
2X

Now putting Y — £„ into (3.10) and using the fact that fiv = g(A£v,€u), v = 1,2,3

are constants, we have

(3.11) ( V x A ) { , = -4>VA2X + M

Then by taking an inner product (3.10) with £^+1 and using (2.1) and the assumption

(*) on i l we have

g ( t Y f > A 2

-r,v(AY)9(AX,tu+2)

, -<f>v+2A
2X +

= ~g(4>v+1Y,A2X) +/3v+2g(<j>v+1Y,AX),

where we have used Lemma 3.2, (3.11) and cj)v+2<f>i,Y = —cj>v+iY + T}v{y)£>v+2 in (2.1).

By applying (3.11) to the left side of (3.12) we have

= -g(Y, 4>v+iA2X) + /3v+1g(<l>»+iAX, Y).
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Then (3.12) and (3.13) imply for any vector field X

From this, together with Lemma 3.2, we have

(3.14) A2X =

On the other hand, by putting X = U into (3.5) and using Lemma 3.3 and the
assumption g(<f>uU,£) = 0 we have

= AfaAU - faU.

Then by using our assumption (*) and Lemma 3.1 we have

(3.15) A2U - PiAU -U = 0.

From this, together with (3.14), we have a contradiction. So we have proved our
Lemma. D

Summing up these four Lemmas 3.1, 3.2, 3.3 and 3.4 we have completed the proof
of our Theorem 1. That is, we know that there do not exist any real hypersurfaces M

in G 2 (C m + 2 ) satisfying the condition that the structure tensors {<j>\,4>2,<f>2) commute
with the shape operator A of M .

4. ANOTHER CHARACTERISATION

In paper [3] of Berndt and the present author we give a characterisation of real

hypersurfaces of type A in G2(Cm + 2) when the Reeb flow is isometric. Moreover, in

this paper we have proved that the Reeb flow on a real hypersurface M in C?2(Cm+2)

is isometric if and only if the structure tensor <j> and the shape operator A commute

with each other.

But in Section 3 we have proved that there do not exist any real hypersurfaces M

in G?2(Cm+2) if the structure tensors {(j>\,(j>2,<i>3) commute with its shape operator A

of M. Moreover, we have known that if we restrict the formula (*) on the orthogonal

complement £-*-, a tube over a totally geodesic QPn in G2(C1T'+2), where m = 2n,

satisfies such a condition.

From this view point we give a characterisation of real hypersurfaces in G2

by a condition weaker than the commutative condition

(4.1) A4>u = <f>,,A, u = 1 , 2 , 3 .

Now we prove the following:
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THEOREM 4 . 1 . Let M be a Hopfreal hypersurface in G2(Cm+2) satisfying the
formula (4.1) on the orthogonal complement of the one-dimensional distibution [£].
Then M is locally congruent to an open part of a tube around a totally geodesic QPn

in G2(C
m+2), where m = 2n.

PROOF: Let us put

£ = V(X)X + r,(Z)Z

for any Xe2) and Ze35x . Then without loss of generality we are able to choose a
vector Z in such a way that

Then £ = T){X)X + 7?(6)6 implies

riiti) = 0 =

This means f-Lfi,f2> that is, £i,f2Gfx. Prom the condition that A(j>v = (f>vA, v = 1,2
on the the orthogonal complement £ x it follows that

Naturally this implies A£,v = $„£„, v — 1,2. Moreover we know that

This means that all structure vector fields £„, v = 1,2,3 are principal vectors with the
same principal curvatures, that is,

(4.2) 0! = 02 = 0a.

This implies ^(ylJ),!)-1-) = 0. From this together with Theorem A we know that a real
hypersurface M satisfying (4.1) on the othogonal complement ^ is congruent to a real
hypersurface of type A or type B. But it can be easily checked that real hypersurfaces
of type A can not satisfy the condition (4.1), because £ = £3 is in an eigenspace Ta

and £2,^3 is in an eigenspace T^, and the constants a and 0 are different from each
other, which contradicts to (4.2). Accordingly, a real hypersurface M satisfying (4.1)
on the orthogonal complement £ x is congruent to one of real hypersurfaces of type B.
From this we completed the proof of Theorem 2. D
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