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1 Introduction

An n-dimensional Kaehler manifold of constant holomorphic sectional curvature c is called complex

space form and is denoted by Mn(c). Additionally, a complete and simply connected complex space

form is complex analytically isometric to

• a complex projective space CPn, if c > 0,

• a complex Euclidean space Cn, if c = 0,

• or a complex hyperbolic space CHn, if c < 0.

Let M be a real hypersurface in a non-flat complex space form Mn(c), c 6= 0. Then an almost

contact metric structure (ϕ, ξ, η, g) can be defined on M induced from the Kaehler metric G and the

complex structure J on Mn(c). The structure vector field ξ is called principal if Aξ = αξ, where A is

the shape operator of M and α = η(Aξ) is a smooth function. A real hypersurface is said to be a Hopf

hypersurface, if ξ is principal.

The problem of classifying real hypersurfaces in Mn(c), c 6= 0, is a classical one in the area of

Differential Geometry. It was initiated by Takagi, who classified homogeneous real hypersurfaces in

CPn. It was shown that they could be divided into six types, namely (A1), (A2), (B), (C), (D) and

(E) ([12], [13]). In case of CHn, the study of real hypersurfaces with constant principal curvatures, was

started by Montiel [6] and completed by Berndt in [1] for the Hopf case. They are divided into two types,

namely (A) and (B), depending on the number of constant principal curvatures. The real hypersurfaces

found by them are homogeneous. More information on the problem of classification of real hypersur-

faces with constant principal curvatures in complex space forms can be found in [3] by Dı́az-Ramos
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and Domı́nguez-Vázquez. Recently, Berndt and Tamaru in [2] have given a complete classification of

homogeneous real hypersurfaces in CHn, n ≥ 2.

Many researchers have been studying real hypersurfaces in non-flat complex space forms, when

they satisfy certain geometric conditions such as parallelism, Lie paralellism etc. The structure Jacobi

operator plays an important role in this direction. Generally, on a manifold M the Jacobi operator with

respect to a vector field X is defined by R(·, X)X , where R is the Riemmanian curvature of M . In case

of real hypersurfaces, for X = ξ the Jacobi operator is called structure Jacobi operator and is denoted

by l = R(·, ξ)ξ.

The Lie derivative of the structure Jacobi operator is an issue, which has been extensively studied.

More precisely, in [8] Perez and Santos proved the non-existence of real hypersurfaces in CPn, n ≥ 3,

whose structure Jacobi operator is Lie parallel , i.e. LX l = 0, for any X ∈ TM . Another type of

parallelness of structure Jacobi operator, that has been studied is that of Lie ξ-parallel, i.e. Lξl = 0.

More precisely, in [9] real hypersurfaces in CPn, n ≥ 3, equipped with Lie ξ-parallel structure Jacobi

operator are classified. In [4] Ivey and Ryan extend some of the above results in CP 2 and CH2. More

analytically, it is proved that in CP 2 and CH2 there exist no real hypersurfaces, whose structure Jacobi

operator is Lie parallel, but real hypersurfaces in CP 2 and CH2, whose structure Jacobi operator is Lie

ξ-parallel exist and a classification of them is given. Furthermore, they proved that no real hypersurfaces

in CPn and CHn, n ≥ 3, equipped with Lie parallel structure Jacobi operator exist. Recently, in [11]

the third author and Suh studied the condition of Lie D-parallel structure Jacobi operator, i.e. LX l = 0,

where X is orthogonal to ξ. They proved that no Hopf real hypersurfaces in CPn, n ≥ 3, satisfying

the previous condition exist. In [7] the previous work is extended for the case of three dimensional real

hypersurfaces in non-flat complex space forms. More precisely, it is proved the non-existence of real

hypersurfaces in CP 2 and CH2 equipped with D-parallel structure Jacobi operator.

Generally, a tensor field T of type (1,1) on M is of Codazzi type, when the following relation is

satisfied

(∇XT )Y = (∇Y T )X, where X , Y ∈ TM.

In case of real hypersurfaces in [10] is proved that in complex projective space there exist no real hy-

persurfaces equipped with structure Jacobi operator of Codazzi type, i.e. (∇X l)Y = (∇Y l)X. In [14]

and [15] Theofanidis and Xenos extended the previous result also for the case of three dimensional real

hypersurfaces in non-flat complex space forms and in the case of the ambient space being the complex

hyperbolic space.

Motivated by the work that is done so far the following question raises naturally

Question: Do real hypersurfaces in non-flat complex space forms, whose Lie derivative is of Codazzi

type, exist?

First of all, a tensor field T of type (1,1) defined on a real hypersurface, will be called of Lie-Codazzi

type, when the following relation is satisfied

(LXT )Y = (LY T )X X,Y ∈ TM.
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In the present paper, real hypersurfaces in non-flat complex space forms equipped with structure Jacobi

operator of Lie-Codazzi type are studied, i.e.

(LX l)Y = (LY l)X X,Y ∈ TM. (1.1)

The following Theorem is proved

Theorem 1.1 There exist no real hypersurfaces in Mn(c), n ≥ 2 and c 6= 0, whose structure Jacobi

operator is of Lie-Codazzi type.

It would be interesting to study the condition of Lie-Codazzi type also for other tensor fields of type

(1,1), which are defined on real hypersurfaces such as the shape operator A, the Ricci operator S and the

structure tensor ϕ. Furthermore, the above condition can be studied also for tensor fields of type (1,1) of

real hypersurfaces in complex two-plane Grassmannians.

This paper is organized as follows: In Section 2 basic relations and definitions for real hypersurfaces

in non-flat complex space forms are given. In Section 3 we present some basic Lemmas and the proof of

1.1.

2 Preliminaries

Throughout this paper all manifolds, vector fields etc are assumed to be of classC∞ and all manifolds are

assumed to be connected. Furthermore, the real hypersurfaces are supposed to be oriented and without

boundary. Let M be a real hypersurface immersed in a non-flat complex space form (Mn(c), G) with

almost complex structure J of constant holomorphic sectional curvature c. LetN be a unit normal vector

field on M and ξ = −JN . For a vector field X tangent to M we can write JX = ϕX + η(X)N , where

ϕX and η(X)N are the tangential and the normal component of JX respectively. The Riemannian

connections∇ in Mn(c) and ∇ in M are related for any vector fields X , Y on M

∇YX = ∇YX + g(AY,X)N,

∇XN = −AX,

where g is the Riemannian metric induced from the metric G and A is the shape operator of M in Mn(c)

with respect toN . M has an almost contact metric structure (ϕ, ξ, η, g) induced from J onMn(c), where

ϕ is a (1,1) tensor field and η a 1-form on M such that

g(ϕX, Y ) = G(JX, Y ), η(X) = g(X, ξ) = G(JX,N).

Then we have

ϕ2X = −X + η(X)ξ, η ◦ ϕ = 0, ϕξ = 0, η(ξ) = 1,

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), g(X,ϕY ) = −g(ϕX, Y ),
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∇Xξ = ϕAX, (∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ. (2.1)

Since the ambient space is of constant holomorphic sectional curvature c, the Gauss and Codazzi equa-

tions are respectively given by

R(X,Y )Z =
c

4
[g(Y,Z)X − g(X,Z)Y + g(ϕY,Z)ϕX (2.2)

−g(ϕX,Z)ϕY − 2g(ϕX, Y )ϕZ] + g(AY,Z)AX − g(AX,Z)AY,

(∇XA)Y − (∇YA)X =
c

4
[η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ], (2.3)

where R denotes the Riemannian curvature tensor on M and X , Y , Z are any vector fields on M .

Relation (2.2) implies that the structure Jacobi operator l is given by

lX =
c

4
[X − η(X)ξ] + αAX − η(AX)Aξ, (2.4)

where α = η(Aξ) and for any X tangent vector to M .

For every point P ∈M , the tangent space TPM can be decomposed as

TPM = span{ξ} ⊕ D,

where D = {X ∈ TPM : η(X) = 0}. Due to the above decomposition, the vector field Aξ can be

written:

Aξ = αξ + βU, (2.5)

where β = |ϕ∇ξξ| and U = −(1/β)ϕ∇ξξ ∈ ker(η), provided that β 6= 0.

3 Proof of Theorem 1.1

In this section the symbol Mn(c) is used to denote CPn and CHn, n ≥ 2. Let M be a real hypersurface

in Mn(c), whose structure Jacobi operator satisfies (1.1), which analytically is written

∇X(lY ) +∇lXY −∇lYX −∇Y (lX) = 2l∇XY − 2l∇YX, (3.1)

where X , Y ∈ TM .

We consider the open subset N of M such that

N = {P ∈ M : β 6= 0 in a neighborhood of P}.

Furthermore, we consider V, Ω open subsets of N such that

V = {P ∈ N : α = 0 in a neighborhood of P},



Lie-Codazzi type 5

Ω = {P ∈ N : α 6= 0 in a neighborhood of P},

where V ∪ Ω is open and dense in the closure of N.

Lemma 3.1 Let M be a real hypersurface in Mn(c), whose structure Jacobi operator is of Lie-Codazzi

type. Then V is empty.

Proof: In V relation (2.5) becomes Aξ = βU . From (2.4) for X = ϕU and X = ξ we obtain lϕU =

(c/4)ϕU and lξ = 0. Furthermore, the first of (2.1) implies∇ξξ = βϕU .

Relation (3.1) for X = ξ and Y = ϕU , due to the first (2.1) yields

c

4
∇ξϕU −

c

4
ϕAϕU = 2l∇ξϕU − 2lϕAϕU.

The inner product of the above relation with ξ, due to lξ = 0, ∇ξξ = βϕU and β 6= 0, results in c = 0,

which is a contradiction and this completes the proof the present Lemma. �

Lemma 3.2 Let M be a real hypersurface in Mn(c), whose structure Jacobi operator is of Lie-Codazzi

type. Then on Ω the following relations hold

AU = (
β2

α
− c

4α
)U + βξ, AϕU = − c

4α
ϕU. (3.2)

Proof: In Ω relation (2.5) holds and the first of (2.1), because of the latter, implies ∇ξξ = βϕU . The

inner product of relation (3.1) with ξ, due to the first of (2.1) and lξ = 0 implies

g(lϕAX + ϕAlX + lAϕX +AϕlX, Y ) + lY [g(X, ξ)]− lX[g(Y, ξ)] = 0, where X , Y ∈ TM.(3.3)

Relation (3.3) for X = ξ, because of (2.5) and β 6= 0, yields g(lϕU, Y ) = 0, for any Y ∈ TM , which

leads to lϕU = 0. Therefore, relation (2.4) for X = ϕU , owing to the latter results in

AϕU = − c

4α
ϕU. (3.4)

Relation (3.3) for X = ϕU , taking into account lϕU = 0 and (3.4) yields g((c/4α)lU − lAU, Y ) = 0,

for any Y ∈ TM and this leads to

lAU =
c

4α
lU. (3.5)

The inner product of relation (3.1) for Y = ξ with ϕU , due to the first of (2.1) and lϕU = lξ = 0 yields

g(lAU + l∇ξϕU,X) = 0, for any X ∈ TM , which results in

lAU = −l∇ξϕU. (3.6)

Furthermore, relation (3.1) for X = ξ and Y = ϕU , because of the first of (2.1), lϕU = lξ = 0 and

(3.4) implies

c

4α
lU = l∇ξϕU. (3.7)
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The combination of relations (3.6) and (3.7), taking into consideration (3.5) implies lU = 0. Then

relation (2.4) for X = U implies AU = (β2/α − c/4α)U + βξ and this completes the proof of the

present Lemma. �

Lemma 3.3 Let M be a real hypersurface in Mn(c), whose structure Jacobi operator is of Lie-Codazzi

type. Then Ω is empty.

Proof: If n = 2 suppose that ∇ξU = κ3ϕU . If n ≥ 3 then let ∇ξU = κ3ϕU + λ1Z1, for a unit vector

Z1 taken in the orthogonal complement of the distribution spanned by {U,ϕU, ξ}. Then from (3.1) for

X = U and Y = ξ, due to the latter and (2.4) for X = Z1 and lU = lϕU = lξ = 0 we obtain

λ1(
c

4
Z1 + αAZ1) = 0.

Suppose that λ1 6= 0, then due to the latter we have AZ1 = −(c/4α)Z1. The inner product of the

Codazzi equation, because of∇ξU = κ3ϕU + λ1Z1 and (3.2) implies

Z1α = βλ1, for X = Z1 and Y = ξ with ξ

g(∇UU,Z1) =
βλ1
α
, for X = U and Y = ξ with Z1

Z1β =
β2λ1
α

, for X = Z1 and Y = U with ξ owing to the previous one.

Moreover, the inner product of the Codazzi equation for X = Z1 and Y = U with U , due to (3.2) and

all the above relations results in c = 0, which is a contradiction.

Therefore, in Ω λ1 = 0 and ∇ξU = κ3ϕU . In the following the method is the same when n = 2 or

n ≥ 3. The inner product of Codazzi equation , because of (3.2) yields

β2κ3
α

= βκ1 +
c

4α
(
β2

α
− c

4α
), for X = U and Y = ξ with ϕU, (3.8)

(ϕU)β = β2 + βκ1 +
c

2α
(
β2

α
− c

4α
), for X = ϕU and Y = ξ with U due to (3.8) (3.9)

(ϕU)α = β(α+ κ3 +
3c

4α
), for X = ϕU and Y = ξ with ξ, (3.10)

ξα =
4α2βκ2

c
, for X = ϕU and Y = ξ with ϕU (3.11)

(ϕU)(
β2

α
− c

4α
) = β(

β2

α
+
βκ1
α
− 3c

4α
), for X = U and Y = ϕU with U, (3.12)

Uα =
4αβ2κ2

c
, for X = U and Y = ϕU with ϕU (3.13)

Uα = ξβ =
4αβ2κ2

c
, for X = U and Y = ξ with ξ due to (3.13) (3.14)

Uβ = βκ2(
4β2

c
+ 1), for X = U and Y = ξ with U due to (3.11) and (3.14), (3.15)

whereκ1 = g(∇UU,ϕU), κ2 = g(∇ϕUU,ϕU) and κ3 = g(∇ξU,ϕU).

Relation (3.12), because of (3.8), (3.9) and (3.10), yields

κ3 = −4α, (3.16)



Lie-Codazzi type 7

and so relation (3.8) becomes

βκ1 =
c

4α
(
c

4α
− β2

α
)− 4β2. (3.17)

The Riemannian curvature on M satisfies relation (2.2) and on the other hand is given by the relation

R(X,Y )Z = ∇X∇Y Z − ∇Y∇XZ − ∇[X,Y ]Z. The combination and the inner product of these two

relations for X = Z = U , Y = ξ with ϕU and X = ξ, Y = ϕU , Z = U with ϕU , owing to

∇ξ(ϕU) = (∇ξϕ)U + ϕ∇ξU and the second of (2.1) implies respectively:

Uκ3 − ξκ1 = κ2(
β2

α
− c

4α
− κ3), (3.18)

(ϕU)κ3 − ξκ2 = κ1(κ3 +
c

4α
) + β(κ3 −

c

2α
). (3.19)

Differentiating the relations (3.16) and (3.17) with respect to U and ξ respectively and substituting

in (3.18) and taking into account (3.11), (3.14) and (3.15) we obtain

κ2(c− 2β2 − 4α2) = 0.

Suppose that κ2 6= 0, then because of the above relation we obtain 2β2 + 4α2 = c holds. Differen-

tiation of the last relation with respect to ξ, because of (3.11), (3.14) and 2β2 + 4α2 = c yields κ2 = 0,

which is a contradiction.

Therefore, in Ω, κ2 = 0 and relations (3.11), (3.14) and (3.15) become

Uα = Uβ = ξα = ξβ = 0.

Using the above relations and (3.16) we obtain

[U, ξ]α = U(ξα)− ξ(Uα) = 0,

[U, ξ]α = (∇Uξ −∇ξU)α =
1

4α
(4β2 + 16α2 − c)(ϕU)α.

Combining the last two relations we have

(4β2 + 16α2 − c)(ϕU)α = 0.

Suppose that (ϕU)α 6= 0 then due to the above relation we have 16α2 + 4β2 = c. Differentiating the

last relation with respect to ϕU and taking into account (3.9), (3.10), (3.16), (3.17) and c = 16α2 + 4β2,

implies α2 = 0, which is impossible.

Hence, on Ω relation (ϕU)α = 0 holds and relations (3.10) and (3.16) imply c = 4α2 and (3.17), due

to the latter, yields βκ1 = α2 − 5β2. On the other hand relation (3.19), because of (3.16) and c = 4α2,

leads to κ1 = −2β. Substitution of κ1 in βκ1 = α2 − 5β2 yields 3β2 = α2. The covariant derivative of

3β2 = α2 with respect to ϕU , because of (3.9), κ1 = −2β, c = 4α2 and 3β2 = α2, results in β = 0,

which is a contradiction and this completes the proof of the present Lemma. �

From Lemmas 3.1 and 3.3, the following proposition holds
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Proposition 3.4 Every real hypersurface in Mn(c), n ≥ 2, whose structure Jacobi operator is of Lie-

Codazzi type, is a Hopf hypersurface.

Since M is a Hopf hypersurface, Aξ = αξ and due Theorem 2.1 [5] α is constant. We consider a

unit vector W ∈ D, such that AW = λW , then (λ− α/2)AϕW = (λα/2 + c/4)ϕW at some point P

∈M , (Corollary 2.3 [5]). We have the following cases

• Case I: α2 + c 6= 0.

In this case we have that λ 6= α/2, soAϕW = νϕW . OnM the following relation holds ,(Corollary

2.3 [5]):

λν =
α

2
(λ+ ν) +

c

4
. (3.20)

The first of relation (2.1) and relation (2.4), for X = W and X = ϕW , due to AW = λW and

AϕW = νϕW , imply respectively

∇W ξ = λϕW and ∇ϕW ξ = −νW, (3.21)

lW = (
c

4
+ αλ)W and lϕW = (

c

4
+ αν)ϕW. (3.22)

The inner product of relation (3.1) for X = W and Y = ϕW with ξ, taking into account (3.21) and

(3.22) implies

(λ+ ν)[(
c

2
+ α(λ+ ν)] = 0.

Let M1 be the open subset of M such that

M1 = {P ∈ M : λ 6= −ν, in a neighborhood of P}.

Then onM1 relation α(λ+ν) = −c/2 holds. Relation (3.20), due to the latter, implies λν = 0. Suppose

that ν 6= 0. So λ = 0 and relation α(λ+ ν) = −c/2 implies αν = −c/2.

The inner product of relation (3.1) for X = W and Y = ξ with ϕW , due to the first of (3.21) and

(3.22), λ = 0 and αν = −c/2, yields g(∇ξW,ϕW ) = 0. On the other hand, the inner product of (3.1)

for X = ϕW and Y = ξ with W , taking into account the second of (3.21) and (3.22), αν = −c/2 and

g(∇ξW,ϕW ) = 0 implies cν = 0, which is a contradiction, since c 6= 0 and ν 6= 0. Therefore, on M1

relation ν = 0 holds. Following similar steps as in the previous case, we lead to the conclusion that M1

is empty.

Therefore on M relation λ = −ν holds. Substitution of the last relation in (3.20) implies c = −4λ2.

So we conclude that c < 0 and that λ, ν are constant. The Hopf real hypersurface, which satisfies the

previous conditions is that of type (B) in CHn, since the distribution D is not ϕ-invariant. Substituting

the eigenvalues of it in relation λ = −ν leads to a contradiction (for the eigenvalues see [1]).

• Case II: α2 + c = 0.
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In this case α 6= 0, because if α = 0, then c = 0, which is impossible. Suppose that λ 6= α/2. Relation

(3.20), owing to α2 + c = 0, results in ν = α/2, where ν is defined to be AϕW = νϕW . Also in this

case relations (3.21) and (3.22) hold. The inner product of relation (3.1) for X = W and Y = ϕW with

ξ, taking into account (3.21), (3.22) and α2 + c = 0 implies

λ(λ+
α

2
) = 0.

Suppose that λ 6= 0, then we have that λ = −α/2. So we conclude that λ, ν are constant and the real

hypersurface has three distinct eigenvalues. This implies that we have one of type (B). Substituting the

eigenvalues of type (B) in the previous relation leads to a contradiction (for the eigenvalues see [1]).

Therefore, we have λ = 0. The inner product of relation (3.1) for X = W and Y = ξ with ϕW , due

to the first of (3.21) and (3.22) yields g(∇ξW,ϕW ) = 0. On the other hand, the inner product of (3.1) for

X = ϕW and Y = ξ withW , taking into account the second of (3.21) and (3.22) and g(∇ξW,ϕW ) = 0

results in α = 0, which is a contradiction.

So the remaining case is that of λ = α/2, which will be the only eigenvalue for all vectors in D.

In this case the real hypersurface is a horosphere. The inner product of relation (3.1) for X = W and

Y = ϕW with ξ, taking into account (3.21) and (3.22) and that the only eigenvalue is α/2 implies α = 0,

which is impossible.

Therefore, we have proved that there exist no real hypersurfaces in non-flat complex space forms

Mn(c), n ≥ 2, whose structure Jacobi operator is of Lie-Codazzi type and this completes the proof of

Theorem 1.1.
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