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REAL HYPERSURFACES IN QUATERNIONIC KAEHLERIAN
MAMIFOLDS WITH CONSTANT Q-SECTIONAL CURVATURE

By JIN SuKk PAK

Recently determinations of some kinds of real hypersurfaces in a complex
projective space CP(m) have been done by several authors (Lawson [7], Maeda
[91, Okumura [10],[11],[12] and etc.). They have obtained sufficient condi-
tions or necessary and sufficient conditions for a real hypersurface in CP(m)
to be one of model hypersurfaces M$(a,b), where MG, (a,b) are defined in
CP m) by the same way as will be taken in §7 to define model hypersurfaces
M$ (a, b) in a quaternionic projective space QP(m). Lawson also gave in his
paper [7] a sufficient condition for a real minimal hypersurface in QP(m) to
be one of model hypersurfaces M§,(a, b). In the present paper, we shall obtain
quaternionic analogies to theorems proved in [7], [9], [107, [11] and [12].

On the other hand Eum and the present author [1] gave a characteriza-
tion of quaternionic Kaehlerian manifold Q@P(m) of real dimension 4m with con-
stant @J-sectional curvature ¢ by the existence of a real hypersurface, which
satisfies the condition

(0.1) A(X, Y)=%g(X, Y)— {u(X)u(Y)+o(X)o(¥)+w(X)w(¥ )},

passing through an arbitrary point and being tangent to an arbitrary (4m-1)-
direction at that point, where A denotes the second fundamental tensor and
u, v, w some local 1-forms. So, we shall prove in §7 that a real hypersurface
in QP(m) satisfying the condition (0.1) is necessarily one of model subspaces
M$ [(a, b).

Real hypersurfaces in a quaternionic Kaehlerian manifold admit, under
certain conditions, what we call an almost contact 3-structure. In § 1, we define
almost contact 3-structures and give some formulas for later use. And we
prove there Theorem 1 concerning their normality. In §2, we show that there
exist a contact 3-structure on real hypersurface M in a quaternionic Kaehlerian
manifold (see Theorem 2). And we give there some necessary and sufficient
conditions for the induced contact 3-structure of a real hypersurface M to be
normal (see Theorem 3). In § 3, we recall some formulas concerning real hyper-
surfaces in a quaternionic Kaehlerian manifold with constant @-sectional cur-
vature for later use and prove Theorem 4. And we characterize there real
quaternionic cylinders imbedded in Q™ in terms of the second fundamental
tensor (see Theorem 5).
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In §4, using the Laplacian 4l A{? we find sufficient conditions for a com-
pact real hypersurface in a quaternionic Kaehlerian manifold with constant Q-
sectional curvature ¢=0 to satisfy the condition (0.1) (see Theorems 6 and 7).
In §5, using an integral formula, we give a necessary and sufficient condition
for a compact real hypersurface in a quaternionic Kaehlerian manifold with
constant @-sectional curvature to admit a normal almost contact 3-structure
(see Theorem 8).

In § 6, we shall recall definitions and some formulas concerning the submer-
sion #: S*™*"*—QP(m) and an immersion ¢+: M—QP(m) and prove some lemmas
for later use. And we prove there Theorem 9 giving some conditions equiva-
lent to the condition that a real hypersurface in @ P(m) admits a normal contact
3-structure. The last §7 is devoted to give characterizations of the model
subspace M9%(a, b) in QP(m) (see Theorems 10~14 and Corollaries 15 and 16).
Manifolds, submanifolds, geometric objects and mappings we discuss in this
paper will be assumed to be differentiable and of class C*. We use in the
present paper systems of indices as follows:

A B C D=1,2 -, 4m+4; K, A, p,v=1,2, - 4m+3,
a@, ‘8) 7 5:1) 2)"'; 4m+2’ h: l;j; k:]-; 2:"'; 47”;
ab,c,d e=1,2, -, 4m—1; r,s,t,u=1,2,3.

The summation convention will be used with respect to these systems of in-
dices.

The author wishes to express his appreciation to Professors Shigeru Ishi-
hara and Masafumi Okumura for their encouragement and help in developing
this paper.

§1. Almost contact 3-structures.

Let M be a differentiable manifold with Riemannian metric g and covered
by an open covering ¢=1{0, 0, ---}. Then M is called a manifold with almost
contact 3-structure if the following conditions (1) and (2) are satisfied:

(1) In each O there are given three 1-forms u,, u,, u; and three tensor fields
@1, @2, @5 of type (1, 1) satisfying

G X=—X+u,(X)U,, u,($, X)=0, ¢, U,=0, g(U,, Uy)=1,
93X =— X+ uy(X)U,, uy(9: X)=0, ¢,U,=0, g(U,, Us)=1,
PIX=—X+uy(X)Us, us(:X)=0, ¢sU,=0, g(U,, Up)=1,
w1 $1($: X)=¢s X+ u(X)U,, $o($, X)=—¢: X+ u,(X)Us,
$o($s X) =1 X+ us(X)Us, a2 X)=—¢: X+u(X)U,,

¢3(¢1X):¢2X+u1(X)U3’ ¢1(¢3X):"¢2X+u3(X)U1 ,
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¢1U2:U3; ¢1U3:—'U2; ¢2Us:U1, ¢2U1:—U3; ¢3U1:U2, ¢3U2=—‘U1 ’
g(¢1X: Y):"‘-g(X, ¢ly)! g(¢2Xy Y):—g(X: ¢2Y)y g(¢3X: Y):_g(Xr ¢3Y>

for any vector fields X and Y, where U,, U, and U, are the vector fields asso-
ciated respectively to u,, #, and u,;, ie. g(U,, X)=u,(X), x=1, 2, 3.
(2) If On'O+#¢, there are differentiable functions S,, in OO such that

‘@ o, ‘U, Uy
,¢2 :(Sxy) ¢2 2 /u2 :(S.Z‘Z/) u2 » (xy y:]-) 2; 3)
,¢3 I Uy Ug

the matrix S=(S,,) being contained in the orthogonal group O(3). Then the
set {(0, uy, Us, Us, §1, Ps, Ps, 8)10= A} is called an almost contact 3-structure. In
such a case the manifold M is necessarily of dimension 4m-1.

We define locally in O a tensor field T of type (1,1) by

T=u,QU;+v,QV;+w,QW,.

Then, as a consequence of the condition (2), it follows that T determines
a global tensor field in M, which will be also denoted by 7. The condition (1)
shows that T satisfies the equation 7°=T and hence it is a projection tensor
field of rank 3. Therefore there exists in the manifold M a distribution D de-
termined by T, and hence a 3-dimensional vector bundle B over M consisting
of all vectors belonging to the distribution D.

We assume that {O; z}, 0= are coordinate neighborhoods in the mani-
fold M. Let there be given a connection w in the vector bundle B and denote
in each coordinate neighborhood {O; z} of M by w¥% the components of w with
respect to the local frame (U, U,, U;) in B. Then the condition (2) implies
that in ON'O+#¢ the following relation is valid:

(1.3) 2=8"'25+514S,

£2=(a¥) being defined in each neighborhood O and dS the differential of the

matrix S=(Szy).
Denoting by 7 the Riemannian connection determined by the Riemannian

metric g and putting

Vaps \ | Vit é,
Vago |=| Vxde |+ ¢,
Vs 7 s s
VU, 7 U, U,

VxU, |1=| VxU, +(w¥(X)| Usf,
VXUs VXUs U3
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(x,¥=1,2,3) for any vector field X in M, we can easily verify by using (1.3)
that in OO

V', Vo, VU, ru,
Vg |=So)| Vo |, | VU |=(So)| PU,
Vg, Ve, 7u, ru,

Now we consider in each neighborhood O local tensor field @(¢,, ¢,), (x, y=
1, 2,3) of type (1,2) with components
(15)  B(Bay $)%=(30F (B)8—(B)F D)2— W D)5~V (6,)} (B2
F(B)F (e —(B)F (G0~ (D)~ (320} ($,)2
1P (o= (el () + F (g )o—F o)} (1),

where (u,)., (4,)° and (¢.)? are components of local tensor fields u,, U, and ¢,
respectively. Then a simple calculation by using (1.2) and (1.4) gives the fol-
lowing relation

D( ¢y, 9Py, '0)P('by, ' bs) (¢, $)P(P,, )01, Ps)
@(/952; ’¢1)@(/¢2, /¢2)@(/¢2; I¢a) :(Sst) @(¢2, ¢1)@(¢2; ¢2)@(¢2; ¢3> (Sst)_l
O s, "$)P('¢s, 'G)P(Ps, 'bs) (s, $)P(Ps, $2)P(Ps, P)

in ON'O+¢ because of P(p,, ¢,)=D(p,, #,). Hence there is a global tensor
field 2, on M defined by

(L6) 21=0($1, $.)+P(Ps, $2)+DP(¢s, $s)

and a tensor X, globally defined on M by

(17 2,=0(¢;, $)RP(9s, $2)+P($s, p)QD(Bs, $3)+ Do, $2)QD($s, $1)
—D(ps, $)RD(Ps, $1)— P2, $)RP(Ps, $2)—P(Ps, $)RDP(d1, Bo)

up to sign. We now have

THEOREM 1. In a (dm—1)-dimensional differentiable manifold with almost
contact 3-structure a necessary and sufficient condition for the global tensors X,
and X, defined respectivery by (1.6) and (1.7) to vanish is that

D¢z, $,)=0, (x,3=1,2,3).

We say that an almost contact 3-structure is normal (with respect to a
connection @ in the vector bundle B) when ¥,=0 and 2,=0. Then by means
of Theorem 1 a necessary and sufficient condition for an almost contact 3-
structure to be normal is that @(é,, ¢,)=0 are established.
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§2. Hypersurfaces in a quaternionic Kaehlerian manifold.

We first recall the definition of a quaternionic Kaehlerian structure given
by S. Ishihara [3]. Let M be a 4m-dimensional differentiable manifold and
assume that there is a 3-dimensional vector bundle V consisting of tensors of
type (1.1) over M satisfying the following conditions (a), (b) and (c):

(a) In any coordinate neighborhood {I/; ¥}, there is a local base {F, G, H}
of V such that

FiFh=—0', GiG=—0%, HLH'=—0¢,
2.1) Gr=—GyF=H' G H'=—H,G}=F
H}Fh=—F{H'=G!,
Fi, G and HY denoting components of F,G and H in U respectively.
(b) There is a Riemannian metric tensor g,; such that
Fy=-F,, G,=—G,,, Hy=—H,,,
where F;;=g,,F", G;;=g,,G* and H;;=g, H".
(c) For the Riemannian connection D of (M, g)
D;Fl=r,Gr—q,H",
(2.2) D;Gi=—r;Fr+p,H?
D;Hy=p;F}—p;Gt,

where p=p,dy*, q=q,dy* and r=r,dy* are certain local 1-forms defined in .
Such a local base {F,G, H} is called a canonmical local base of the bundle V in
U, and (M, g, V) or M is called a quaternionic Kaehlerian manifold and (g, V)
a quaternionic Kaehlerian structure.

In a quaternionic_Kaehlerian manifold (M, g, V) we take intersecting coordi-
nate neighborhoods U and ‘U. Let {F,G, H} and {'F,’G,’H} be canonical
local bases of V in U and ‘U respectively. Then it follows that in Un'U

'F F
(2'3) /G :(SIL‘I/) G ’ (xy y:]-; 2; 3)
'H H

with differentiable function S.,, where the matrix S=(S,,) is contained in the
special orthogonal group SO(3) as a consequence of (2.1).
As is well known, a quaternionic Kaehlerian manifold is orientable.

We consider a real hypersurface M in a quaternionic Kaehlerian manifold
M of dimension 4m. Let M is covered by a system of coordinate neighborho-
ods {l—]: y*}. Then M is covered by a system of coordinate neighborhoods
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{U: y%}, where U= L_/(\M._ Let M be represented by ¥*=y*(x*) with respect to
local coordinates (%) in U(CM) and (¥* in U(CM). Denoting the vectors
0,5%(0,=0/3y") tangent to M by £ and a unit_normal vector field by N°, we
can put in each coordinate neighborhood U=UM

() FiBI=giBi+uN',  FiN*=—uBj,
(2.4) (i) GiBE=¢4Bi+uv,N?, GiN*=—y°Bt |
(i) HiB:=0'Bi+w,N*, HiN*=—w"Bi,
o5, &%, 65 being local tensor fields of type (1.1) and ug, v,, W, local 1-forms de-
fined in U, where g,,=g;;B{B, are the components of the induced metric tensor

in M. We have easily u®=g"u,, v"=g"v, and w’=g%w,, where (g**)=(g.)" "
Applying F7 to (2.4), (i) and taking account of (2.1) and (2.4), (1) itself, we find

drde=—0%11uu®, u.$4=0, p2u’=0, u,u’=1.
Transvecting F/ to (2.4), (ii) and using (2.1) give
0eBl+w,N' =i (¢eBy+u.N') —v.u'Bj,
—w*B)=—v¥p B} +u N’)
because of (2.4), (i) and (ii). Thus we obtain
Pepe=0%~+v,u°, uPi=w,, pvt=uw", u,v°=0.
Transvecting HY to (2.4), (ii) and using (2.1) imply
—@iBl—u  N'=¢5(0:Bj+w N')—v,w’Bj,
—u’Bi=—v*(#3Bi+w,N7)
because of (2.4), (i) and (iii). Thus we have
0ope=— @b+ v, w°, w Pe=—1u,, O0v*=u’, w,v=0.

Similarly, using equations (2.1) and (2.4), we can prove the following formulas
(25)~(2.13) :

(2.5) Ghde=—0F+upu®, u,05=0, pu’=0, uu’=1,

(2.6) Pupe=—03+vp0", voPe=0, $o*=0, v,0*=1,

2.7) 050 = — 0¢+w,w*, w,05=0, Fw*=0, w,w’=1,

2.8) PLPe =04+ v, u Pi=w,, P =w’, u,0°=0,

(2.9) 3= — b +v, W0, WP =—u,, O =—u’, w,°=0,
(2.10) P = b+ w0, v.0i=u,, Phw=u’, v,w'=0,

(211) ¢262: —¢g+wuuby ueeg: —Vq, ¢gwe: —vb; uewe:0 >



28 JIN SUK PAK
(2.12) Obpe =t +uaw°, wde=v,, Out=v", wu=0,
(2.13) D= —04+u 0°, v,05=—w,, Pou=—u’, vu’=0.
Putting @ra=4gacPs, Poa=8aPs and 0,,=g,.05 we have from (2.4)
Gpa="F;;BiBi, $po=G;:BiBY, 0y, =H;;B{BY, ,
from which and the condition (b)
(2.14) Poa=—Pas, Poo=—Pas, Ora=—0as .

We now consider intersections of coordinate neighborhoods U= UmM and
'U='U~M. Then, taking account of (2.3) and of (2.4) established in UN'U,
we can prove that

‘o i) ‘u U
(2.15) 'O =S| ¢ s v |I=S)| v ), (1=1,2,3).
' 17 "w w

hold in UN’'U, where the restriction of functions S,, defined in l_]m’lj to UNn
‘U is denoted also by the same letter S,,. Thus we have proved

THEOREM 2. A real hypersurface of a 4dm-dimensional quaternionic Kaehle-
rian manifold admits an almost contact 3-structure.

We denote by ¥ the Riemannian connection induced on M from the Rie-
mannian connection D of M. Then equations of Gauss and Weingarten are
given by

(2.16) V,Bi=A, N*,V ,N'=— A BL,

respectively, Ay, being the components of the second fundamental tensor with
respect to the unit normal vector N® and A% being defined by A¢{=g%A,.,
where

Vo Bi=0,Bi+ {1} B{Bi— {5} B,

VoN'=0,N'+{}} BIN",
and {4}, {&} are christoffel symbols formed respectively with g;; and g, .
Applying the operator V,=B;D, to the first equation of (2.4), (i), we obtain
BUD;F)Bi+Fi Bi=F $)Bi+ o Bi+F ua) N* +ul N,
from which, substituting (2.2) and (2.16) and using (2.4),
(r;BIX¢iBi+vaN)—(g;B(03 By +w NY) — Acau’ B}
=W @0 Bit+(Acepe) N* +F ua) N* — Ao B .

Consequently, putting p.=p;B{, q.=q,B] and r.=r;Bi, we have
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V pb=rpd—q.00— A+ Ay, V ottg =7 0o — q.wo — Aol .
Similarly, using (2.2), (2.4) and (2.16), we can find
(2.17) { Vepo=rpo—q05— Acau®+ Alu, ,
Veg=r00—qw,— Are®s,,

Vo= —1rpttp0s— A"+ Alva,
Vve=—rctotpewa— Al ,
Vo0i=q.00—Dcph— Aca®+ Alw,,
Vew,=qug—pvs— Acbs .

(2.18) {

(2.19)

We now define a matrix ® consisting of local 1-forms p=p,dy’, g=¢,dy"
and r=r,dy’ in M by

0 r —q
Q= —r 0 b
g —p 0

in each coordinate neighborhood U, which is really the connection form of a
linear connection @ induced in the vector bundle B determined by the projec
tion tensor field T=uQ@U+vRQV+wXW of rank 3. Obviously, we have

Q=S50S +S7(dS)

in Un'U, where ’2 is the connection form of @ in ‘U. If we now put
Vc¢(bl:Vc¢lbl“rc¢lbl+qcﬁg; ﬁcua:cha_rcva_}_cha’
l%cglv’b‘:chlJH—rcgb;,‘—pcﬁ,’,‘, VOEU":VCU“—i—rcu“—pcw“ s
ﬁcag:Vcﬁg'—Qc¢g+ﬁc¢g; Vocwa:Vcwa—CIcuan_pcva ’

then we have from (2.15)

ﬁ’qﬁ ﬁqﬁ Vru Fu
Vg =S| P |, | Pro |=(Sw)| Fo
7o 7o 7w Puw

in Un’U. On the other hand, (2.17), (2.18) and (2.19) give respectively

~Acbua+Agub; Veub: _Ace¢lez 1]

Il

(2.20) Vg3
(2.21) = — A+ Ay, V 0y = — Acedlf,
(2.22) V 07=— A,u’+ Asw,, F w,=— A, 05.

A
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We compute components of local tensor fields @(¢, @), D(¢, ¢), D6, 0),
O(p, ), D¢, 0) and O(6, ¢) define by (1.5). Denoting by ¥ (P, $)eva=8uP(h, $)es’,
we have from (2.20)

D(P, Pera=PA— Acstiat Acathy) = — Acetta+ Acalte)
+(Acetto— Apette) i~ (Ace@s— AvePOtta ,
this is,
D(, Peva=(AcePt AaePOto—(Apeit AzePulc -
Similarly we have by using (2.20), (2.21) and (2.22)
D(P, Peva=(AcePet AaeOtty—(Apeot Aaciuc ,
(2.23) D(, P eva=(Acedlst AnepDvs—(ApePt Aaeff)ve
D0, 0)cpa=(Acelot Aaelws—(Apedit AgIw, .

On the other hand, denoting by D(, ¥)era=8:.DP(B, $)s’, we have from (2.20)
and (2.21)

D(B, Pera=PL— AesVat Acas) — G4 — Aectvat Agave)
F(Acevy— Apev )Pt P — Aoptia+ Agatis)
— (= Agottat Acatte) F(Acetto— Apette) P4
—(AcePt— AoV — (Acedt— Avehtta
and consequently
D(, Peva=(Acedot AacOVs~(Ape et Age P,
H(Acepot Agedry—(Apelot Agefi)uc -
Similarly we have from (2.20), (2.21) and (2.22)
(P, Deva=(Acedet AaeptIvo—(Apet Aucht)ve
+(Acelot Aae@O)rty—(ApePat Aaei)ttc
(P, 0)cra=(Acedot AaepDwp—(Apedt Aued) e
F(Acelit Agelv,—(Aplo+ Aaelt)ve
D0, §)eva=(Acelot AaelDus—(Apelot AaeOp)uc
F (APt AaepD)ws—(Apeot Auep) e .

We now assume the global tensor 2, defined by (1.6) vanishes. Then sub-
stituting (2.23) into (1.6) gives

(2.24)
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(AcePtt AaeOus—(ApePit Azedtue +(Aceft AaefDv,
—(Apeot Aue)ve+ (Aot AnlDwy —(Ape 0ot Ageb)w. =0
Transvecting (2.25) with »® and using (2.5), (2.8) and (2.11), we have
Aol Agodi— (P Ay ) ot — (UP Apehe— Age W0,
—(ub Ap 05+ AgetHw, =0,

(2.25)

(2.26)

from which, transvecting with u®
(2.27) (u*As)g+2AU, Wiv,—2AU, Viw,=0,

where and in the sequel the function A,,X°Y® is denoted by A(X,Y) for
arbitrary vector fields X=X"/0y* and Y=Y%3/0y* in M. Therefore, trans-
vecting (2.27) with v° and w° respectively gives A(U, V)=0 and A(U, W)=0.
Consequently (2.27) becomes

(1" A0 )$e=0.
Transvecting the equation above with ¢; and using (2.5) imply
Aput=A(U, U)u, .
Similarly, using (2.5)~(2.13) and (2.25), we have
(2.28) Aput®=A(U, Uuy, Apa0*=A(V, Vv, Apqw=AW, Ww,.

Substituting (2.28) into (2.26) and taking account of (2.5),(2.12) and (2.13), we
obtain

(2.29) Aot Agedi=(AU, U)— AW, W))vew,—(A(V, V)— AU, U)w.v,,
from which, taking the skew-symmetric part,
(A(V, V)— AW, W))(vw,~wv,)=0,

which implies A(V, V)=A(W, W). On the other hand, transvecting (2.29) with
v*w® and using (2.12),(2.13) and (2.28) give A(U, U)=A(W, W). Consequently
we have from (2.29)

Aze¢a+ Aae¢g:O .
By the same way as above we can find
(230) Ace¢g+Aue¢g:Oy Ace¢Z+Aae¢g:O, AcegiJf_Aaeﬁg:O .

Therefore, comparing (2.23) and (2.24) with (2.30) and taking account of (1.7),
we see that the global tensor field X, also vanishes. Thus 2,=0 implies 2,=0
for real hypersurfaces. Hence, combining Theorm 1, we have . ;

THERREM 3. In a real hypersurface, of a quaternionic Kaehlerian manifold
the following conditions (1)~(3) are equivalent to each other:



32 JIN SUK PAK

(1) The induced almost contact 3-structure in the hypersurface is normal.
(2) The induced almost contact 3-structure tensors {¢, P, 0} commute with
the second fundamental tensor.

3 2,=0.

§ 3. Hypersurfaces in a quaternionic Kaehlerian manifold of constant Q-
sectional curvature.

Let M be a 4m-dimensional quaternicnic Kaehlerian manifold with constant
Q-sectional curvature ¢. It is well known that its curvature tensor has com-
ponents of the form

¢
Kkjih::T(azgji_5?gln+F%Fji_F?Fki—ZijF{L'!“G’i:Gji

(3.1

where ¢ is necessary a constant, provided m=2 (See Ishihara [3]). On the
other hand, as a characterization of quaternionic Kaehlerian manifold with
constant @-sectional curvature ¢, Eum and the present author [1] proved

THEOREM A. A necessary and sufficient condition that a 4m-dimensional
Kaehlerian manifold (m=2) is of constant Q-sectional curvature ¢ is there exists
a hypersurface with the second fundamental tensor A,, of the form

c
Ape= Tgba_(ubua‘f‘ VpVa+WpWs) ,

u,v and w being appeared in (2.4), through every point with every (4m-1)-direc-
twn at the pont.

So, it seems interesting to study real hypersurfaces with second fundamental
tensor of the form

(32) Aba:#gbaﬂl(ubua_i"vbva'{’wbwa) )

#, A being assumed to be functions, in a quaternionic Kaehlerian manifold with
constant ()-sectional curvature.

Let M be a real hypersurface in the manifold M. Then the structure
equations of Gauss and Codazzi

KkjihBéBngBg:chba_AdaAcb+AcaAdb >
KkjithB{zszNn:VcAba_VbAca
are established, where K, =g, Ky;i" and Koo =82.K4c0%, Kaop® being components

of the curvature tensor determined by the induced metric g,, in M. Substitut-
ing (2.4) and (3.1) into the equations above give respectively
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C
(3.3) chba:T (8aa8cv—8caBist Paaber—Pcabar—20 4cPsa

+¢da¢'cb“‘¢'ca¢db _2¢dc¢'ba +0da00b—0ca0db _Zﬁdcﬁba)
+ AdaAcb_AcaAdb y

(34) VcAba—VbAca:%(ucﬁbba_¢caub —2¢cbua+ Uc¢ba—¢cavb "—2¢'cbva

+wcaba_0cawb—26cbwa) .
We now denote by K,, components of the Ricci tensor in M. Transvecting
(3.3) with g%, we have from (2.5), (2.6) and (2.7)
(35> ch:% {(4m+7)gcb_3(ucub+vcvb+wcwb>} +BAcb—AceAg s

where and in the sequel the mean curvature A}=g®A,, will be denoted by B.

Now, we assume that the second fundamental tensor A,, of M has the
form (3.2), ¢, A being differentiable functions. Then substituting (3.2) into the
second equation of (2.17) and using (2.5), (2.12) and (2.13), we have

(3.6) Vere= A Aw v, — (g, A0 )Wo+ 0 -
Similarly from those of (2.18) and those of (2.19) the equations
Veve=—(retAwua+pet AU wo+ pidea
V ewo=(g:+2v)ug—(PetAUe)vo+10.ca

will be obtained. Differentiating (3.2) covariantly along M and taking account
of (3.6) and (3.7), we find

VcAba:(Vcﬂ)gba‘ch(ubua+vbva+wbwa)
—lﬂ(uu.gécb+ub¢ca+va¢cb+vb¢)m+waacb—i_wbaca) »

from which, taking the skew-symmetric part with respect to ¢ and b and using
(3.4), we have

(Vc/l)gba*(Vbﬂ)gca‘Vc'z(ubua+Ubva+wbwa)’i'VbZ(ucua+Ucva+wcwa)

3.7

= (%_'lr"e)(ucsbba _¢0aub_2¢0bua+vc¢b”’

_¢cavb—2¢cbvc+ wcﬁba_ﬁcawb_20cbwa) .

Transvecting the above equation with g% and uw’u®+vov°+w'w® we find res-
pectively

(3.8) (Am—=2 p—3V A+ (uV u,+ WV v, +(wV ;Dw,=0

and
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W op— W oo =WV apt)ve— (W o)we
=3 A—(uV (At,— (W (v — (W s Dw, .
Combining the last two equations, we get
(Am—5W p=—(uWV o)t~ op)vc—(wW¥ o), ,
which implies that
ul pu=vV p=wV =0
and consequently that V. p¢=0. Substituting ¥ ,#=0 into (3.8), we obtain
VA= A+ W (v (W Dw,
from which
uV JA=vV , A=wV ,2=0.
Hence V.2=0. Thus ¢ and 2 are both constants and Ag=c/4. Thus we have

THEOREM 4. Let M be a real hypersurface in a quaternionic Kaehlerian
manifold with constant Q-sectional curvature c¢. If the second fundamental tensor
Ay has the form

Apa= 18pa— AUpUg T3V + W Wa) ,

u, A being differentiable functions, then p and 2 are both constants and Ap=c/4.

We now consider the case where the ambient manifold is of zero @-sec-
tional curvature. Identifying the quaternionic @™ naturally with R'™, Q™ can
be considered as a quaternionic Kaehlerian manifold of zero Q-sectional curva-
ture with the natural quaternionic Kaehlerian structure {F, G, H} having nu-
merical components of the form

0 —E 0 0 0 0 —E 0 00 0 —E
E 00 0 0 0 0E 0 0—E 0
(39 F: . G: . H: ,
0 00 —E E 0 00 0E 0 0
0 0E 0 0 —=E 00 E0O 0 0

where E denotes the identity (m, m)-matrix. We assume that there exists a
real hypersurface in Q™ with the second fundamental tensor A,, of the form
(3.2). Then by means of Theorem 4 ¢ and 2 are constants and A4¢=0. There-
fore Ay, is one of the following forms
Aba:() ; Aba:#gba.;
(3.10)
Aba: _2(ubua+vbva+ wbwa) .

Now let the second fundamental tensor A,, of a real hypersurface M in Q™
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be of the form (3.10). Since in this case
D;Fr=0, D,G=0, D;H=0,

the local 1-forms p,q and r in M are all vanish. Therefore taking account of
our assumption (3.10) implies

cha:wcva—wave ’ cha:ucwa"uawc: Vcwa:l)cua—vauc .

Applying the operator I, to (3.10) and substituting the equations above, we
can easily verify V,A4,,=0. On the other hand the condition (3.10) implies that
the second fundamental tensor A§ has exactly two eigenvalues —4 and 0
whose multiplicities are 3 and 4(m—1) respectively. Hence, using ¥V, A4§=0, we
see that the eigenspaces corresponding to —2 and 0 define respectively 3-and
4(m—1)-dimensional distribution D_, and D, over M which are integrable and
parallel. Denoting maximal integral manifolds of D_; and D, by M_; and M,
respectively, M_, and M, and both totally geodesic in M. Taking account of
(3.10) and using (2.5)~(2.13), we have by a simple calculation

Abe¢3,+Aae¢g:0; Abe¢g+Aae¢Ie):0: Abeﬁg_l'Aaeag:O-

Thus, for an arbitrary eigenvector X of A¢ corresponding to an eigenvalue p,
@8 X° 2 X" and 0¢X° are also eigenvectors corresponding to the same eigenva-
lue p. Putting ¢’=¢°B} for an eigenvector ¢® of A¢ and taking account of
(2.4), we see that the subspaces {¢/|¢°cD_}P{N}* and {¢’|¢°=D,} are both
invariant under the actions of F, G and H, where {N/}* is the linear closure
of the set {N’}. Consequently M, can be regarded as quaternionic submani-
folds of Q™. Let M., be represented by y*=y*z*) in M. Then the local ex-
pression of M_, in @™ can be written by ¥’'=3»?(¥*(z")). Denoting the tangent
vectors 0,3’ to M_, by Bj, we have B{=B%Bj. Since M_, is totally geodesic
in M and B} are eigenvectors of Ag corresponding to eigenvalue —1, we obtain
V ¢Bi,=—gs,N’, which means that M_, is totally umbilical in Q™. Similarly we
can prove that M, is totally geodesic in Q™ and hence identified with Q@™ %
Therefore, since M_, X M,=S*X Q™' is complete, we have

THEOREM 5. Let M be a complete real hypersurface of Q™ with the second
fundamental tensor A,, of the form

Aba:)agba—'/z(ubua"i’vbva‘}’ wbwa) ’

and A being differentiable functions. Then M 1s a Euclidean plane R*™7,
Sim-11/a/ ) or S* (1/+/2 )X Q™.

§4. The Laplacian 4| A|j?

Let M be a real hypersurface in a quaternionic Kaehlerian manifold of
constant Q-sectional curvature ¢. In this section we compute the Laplacian
A A2 of the function ] A|*=A,,A%, which is globally defined in M, where 4=
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g% V,. We thus have
1
*2*AHAllzzg“(VchAba)A”“%— V. Asal?,

where |V Ay |2=F A )(F°A*). By using Ricci identity and the equation (3.4)
of Codazzi we find

UD g AIAP=F oB) A% KEAR A5~ K g A A5 [ BUAU, U)

+AWV, V)+AW, W)~ Acl® P+ AeptI* + 1 Ay w®}®)
(AN PN PaAT) —(Acedhi)PeA™)— (A OO0 A™))
+ “VcAbu,Hz-

On the other hand a straight forward calculation by using (2.5), (2.6) and
(2.7) gives

[ Acepit Apeill >+ Aceli+ Ape el *+ 1| Acells+ Asebell
=64y A —2{(Aee3)($5 A™)+(Ac PP A)+ (Al (05 A™)}
—2([ Acer®*+ [ Acov® "+ Acew?),
from which, using the equation (3.3) of Gauss and (3.5), we can easily see that

<
4

Il Acelit Apebell®s =3 Acere® |+ 1| Acev® P4 Acew®l®)

+B2+8(Ach0b)+(Achw)Z*— ” AceAgH 2:]

3
chbaAdaACb: [—'2— { ” Ace¢g+Abe¢ce” 2+ ” Aee¢’g+ AaeS/’ﬁH ?

and
chAZA”:% {(4m+7) Ay A= 3(} Acers® |+ || Aot 4+ Acew”[1*)
+B(ALAGAZ) — || A A%} -
Therefore (4.1) becomes
(42 S A AP =T B A [3{) At Ang]

1l Acedbs+ Ape il "+ 1| Aceli+- Av Ol *}
+3B{AU, U)+ AWV, V)+ AW, W)} +B(ALA; A%)
— B +-(4m—10) Agp A — (A A1+ IV c Ava

In order to get further results, we shall prove some lemmas.
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LEMMA 4.1. On a real hypersurface in a quatermonmic Kaehlerian manifold
the following inequality holds:

4.3 B*4(m—1) A, AP4-2B{AU, U)+ AWV, V)Y+ AW, W)} .

Proof. We define a symmetric tensor P,, by

Aba+ B(ubua+vbva+wowa) .

A(m 1)
Putting P"=g%g%P,; and P=g®P,, gives

1
HPba—(P/4m—l)gba”2 Pbana’TiPZ O

which implies (4.3).

LEMMA 4.2. On a real hypersurface in a quaternionic Kaehlerian manifold
of constant Q-sectional curvature ¢

17 Asalz 5 -(m—D)e*
holds and that equality holds 1f and only 1f
VAba"‘ (¢caub+¢cbua+¢cavb+¢cbva+0cawb+6cbwa) 0
Proof. Putting

(44) V Aba—V Aba+ (¢caub+¢cbua+¢cavb+¢cbva+6calvb+0cbwa)
and using the equation (3.4) of Codazzi, we can easily check that

g 2 2 3 2

“VcAba.” :”VcAba“ _T(m_l)c )

which implies our assertion.
By means of (4.2), Lemmas 4.1 and 4.2 we have the following inequality

U9 AIAPZEFBA (3 At Angl

Hl Acet Apepell*+ 1| Acels+ Ase b5 *}
+3B{AU, Y+ AV, V)+ AW, W)} +B(A A AZ)—( A, A®)?
F6{(m—D)e— Ay A% 1 I Ay,

where ; ¢Ape is defined by (4.4). Thus we have

THEOREM 6. Let M be a compact real hypersurface in a quaternionic
Kaehlerian manifold with constant Q-sectional curvature c¢=0. If the second
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Sundamental tensor Ay, 15 semi-definite and the mean curvature B constant and
if Ay A= (m—1)c, then Ay, has the form
Ve
Aba:T {Zsa—(UpUhg+VsvaTwWwa)} .

Proof. When ¢=0, the lemma is trivially established. When ¢>0, (4.5)
and our assumptions imply

(4.6) AeoBit Apedi=0, Aottt Apefe=0, A 05+ Apc0i=0,
(4.7 B(AY A3 AL =(Ap A%,

(4.8) A A%=(m—1)c,

4.9 AU, U)y=A(V,V)=AW, W)=0.

As already show in section 2, (4.6) and (4.9) imply
(4.10) Ay u®=0, Ay v*=0, Ayqw*=0.

Applying the operator . to the first equation of (4.10) and taking the
skew-symmetric part with respect to the indices ¢ and b, we find

(VcAba“VbAca)ua+Abacha—AcaVbua:O-

Substituting (2.17) and (3.4) in the equation above and using (2.5), (2.8), (2.12)
and (2.13) give

%(Ucwb_‘vbwc _¢cb) + Aed Ai¢?:O

because of (4.6) and (4.10). Transvecting the equation above with ¢; and
making use of (2.5), (2.12), (2.13) and (4.10), we can easily verify that

AbeAa:_Z“ {gba—"(ubua”{_vbva‘}‘ wbwa)}

Combining (4.7) and (4.8), we see that the second fundamental tensor Aj has
the components on M

0 0 0 0
0 0
0 0
Ve Ve
2 T2
(45)= , or (Ap=

Ve Ve

0 5 & R
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with respect to the adapted orthonormal frame {U, V, W, X, ---, Xicm-}. Thus
we may consider only one case, for example, the first case. In this case we
can write the matrix (A¢) in the form

1 ) 0 1 0 0
YT Ve
Y72 2
0 1 0 0
0 0 0 0
1 0
Vel O Vel 1
2 2 ’
0 0 0 0
this is,
A%:% {0F — (U u* 0,0 +ww)} .

which is a tensor equation and so holds for any frame, especially for natural
frame. Thus the theorem is completely proved.

THEOREM 7. Let M be a compact real hypersurface in a quaternionic
Kaehlerian manifold with constant Q-sectional curvature c¢z=0. If the second
Sundamental tensor Ay is semi-definite and the mean curvature B constant and
if B*=4(m—1)%c, then Ay is of the form

Aba:'z/Z_C_ {gba-(ubua+vbva+wbwa)} .

Proof. The equation (4.2), Lemmas 4.1 and 4.2 also give the following
inequality :

%—AllAllzz(VbVaB)A”“-l-—Z-[3{HAN¢H Apeel* 1 Aottt Apeill®

A5t A+ BLAW, U+ AV, V)+ AV, W)

3

Sy 1Am—1e—BY + BAMEAD (A A+ IV Al

+

Consequently our assumptions give (4.6), (4.7),(4.9) and B?’=4(m—1)’c. Thus
the theorem is proved by the same method as in the proof of Theorem 6.
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§5. An integral formula.

It is well known (Ishihara [3]) that for a 4m-dimensional quaternionic
Kaehlerian manifold with constant @-sectional curvature ¢, when m=2, the
followings are valid:

Djpi—Dipr“Qﬂ’i_ijh:“CFji ’

Dsqi—=D:q, 7 sps—pjri=—cGyi,
Dyi—Dy,+p0,—q;pi=—cH;; .
Therefore, in a real hypersurface M the local 1-forms p, ¢,7 defined by
Do=0.:By", 3»=q:Bs", 7o=r; B’
satisfy
Vspa—V apotqsra—70Ga=—CPa
(5.1) Vvda—V a@o+7opa—Ds" o= —CPsa
Vira=V ors+Poga—sPa=—Clsa -

On the other hand, taking account of arguments developed in section 2, we
see easily that there are two global vector fields S, and S, on M with com-
ponents

ue(l°79u”)+ve(l°7€v”)+we(f76w”) , (f7eue)u”—|—(l;eve)v”-l-(l;ewe)w”

respectively. In this section by using these global vector fields S; and S, we
shall find an integral formula which corresponds to an integral formula given
by K. Yano (Theorem 1.9 in [13]). Putting

ﬁcﬁbuazycﬁbua_rcﬁbva"l'QcVobwa,v

ﬁcVobva:Vcﬁbva_FrcVobua—pcVobwa s

Vchbwa:Vcﬁbwa_cho'bua_!_pchbva
1

and taking account of (5.1), we can verify

) -] o o

Vchua’_Vchua:_ abceue+60cbva_c¢cbwa;
o o o o
Vchva_Vchva:_chaeve-cacbua+c¢cbwa ’
o o 0 -]

Vchwa"—Vchwa:— cbaewe+c¢cbua_c¢cbva >

which implies
l;bsl”—l?bszb:K,,a(ubu“—i-v”v“—l— wbw“)—Gc—i—(Vobu“)(Voau”)
(7 )T o)+ F s F q0?)— (I ol 1P o217 ywall?)
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or equivalently

°

(5.2) VS0~V 1S = K (uPu® +0*00+ w'w®) —6c— {(div w)*+(div v)*

o 1 e . o
+(div )t - {lLugl® i Logl + Lo gl

— (WP )2 el 17 ywal®)

where _z‘ugzl;,,ua—i—Voau,, and div u:l;au“. On the other side, (2.20),(2.21) and
(2.22) imply

17 s1tal) 217 o024 17 5100 1223 Apg A% — (I Ayt 4| Apet® 1P+ 1| Apew?]2) ,

doiv uzdoiv v=d°iv w=0.
And (3.4) gives

Kba(u"u“—i—vbv“—l—w”w“):—i-{12(m—1)+B(A(U, UN+AV, V)+ AW, W))
— (Il Apers®||® -+ Ape®[|* -+ 1| Apew®||*)} .
Substituting these equalities in (5.2), we obtain
(-] o 1 o o -]
(5.3) VS:"—V »Sy’= o {||£ug!|2+|!«£’ugllz+Il-fwgll2+% {12(m—1)
+B(A(U, U)+ AWV, V)+AW, W) —34,, A%
(1= ) WA 4] Ayl Ao’
We can now prove

THEOREM 8. For a compact and orientable veal hypersurface M of a 4m-
dimensional gquaternionmic Kaehlerian manifold (m=2) with constant Q-sectional
curvature ¢, any one of the three conditions (1), (2) and (3) stated in Theorem 3
is equivalent to the following conditions:

fw[% {12(m—1)+B(AU, U)+ AV, V)+ AW, W)} —3 4,0 A%

+(1= ) Aot 12+ A+ | Aporeti*} Ji120.
Proof. From (5.3) we find

R R TN
=[5 (020m 1)+ B, D)+ AV, V) ACW, W) ~34,, 4

(=) (Al ) A I Aol o1
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Thus taking account of -}ug:ﬁbua'l"i?'aub:Abe¢ae+Aae¢be, :fvg=i7bva+f74vb=
Apetpt+ Ay’ and Lo8=F yWatV g1,=Aye0.°+ Ag.0,¢, we have our theorem.

§6. Submersion 7: S'™*—-QP(m) and immersion 1: M—QP(m)

Let S**+%(1) be the hypersphere {(¢%, -+, ¢*™)| | ¢ |-+ 1¢q™*|?=1} of radius
1 in a (m+1)-dimensional space @™ of quaternions, which will be identified
naturally with R*™*Y, The sphere S*™*%1) will be simply denoted by S*™*%,
Let #: S*""*—QP(m) be the natural projection of S*™"® onto a quaternionic
projective space @QP(m) which is defined by the Hopf fibration. As is well
known S**** admits a Sasakian 3-structure {&,7,} (See Ishihara and Konishi
[4]) and any fibre #°%(P), PEQP(m), is a maximal integral manifold of the
distribution spanned by &, 7 and 2. Therefore, the base space QP(m) of a
fibred Riemannian space with Sasakian 3-structure admits the induced a qua-
ternionic Kaehlerian structure, and moreover, is of constant @Q-sectional curva-
ture 4 (See Ishihara [2],[3]). We consider a Riemannian submersion 7 M—M
compatible with the Hopf fibration #: S*"**—QP(m), where M is a real
hypersurface in QP(m) and M=#"'(M) a hypersurface of S****, More precisely
speaking, #: M—M is a Riemannian submersion with totally geodesic fibres
such that the following diagram is commutative :

1
M Sim+s

nl lﬁ
M — QP(m)
]

where i: M—S*** and 1: M—QP(m) are certain isometric immersions.

We take coordinate neighborhoods {U; X°} of M such that =#(0)=U are
coordinate neighborhoods of M with local coordinate (¥*). Then the projection
m: M—M may be expressed by

(6.1) yr=y"(x"),

where y*(x) are differentiable functions of variables x” with Jacobian (9v%/0x®)
of the maximum rank 4m—1. We take a fibre & such that FNU+#¢. Then
we can introduce local coordinates (z°) in FNU in such a way that (y% z%)
is a system of local coordinate in U, (y*) being coordinates of =(ZF) in U.
Differentiating (6.1) with respect to x*, we put E,*=0,y%(0,=0/0x*) and denote
by E* local covector fields with components E,* in U. On the other side,
C,=0/0z° form a natural frame tangent to each fibre & in FNU. Denoting
by C*% components of C; in U, we put C,’=g,s2%C?, where g,; are components
of the induced metric of M from that of S*** in U, g,=g,C%C? and (g%)
=(g)"'. We now denote by C® local covector fields with components C,° in
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U. We next define E°, by (E%, C*)=(E,", C,°)"" and denote by E, local vector
fields with components E%, in U. Then _{E,,,C} is a local frame in U and
{E? C*} the coframe dual to {E,, C,} in U.

We now take coordinate neighborhoods {[7; x*} of S*™* gsuch that ﬁ(ﬁ)

=0 are coordinate neighborhoods of QP(m) with local coordinates (37). Then
we can also deﬁne sxmllarly a local frame {E,,C} and the coframe {E’ Cs}
dual to {E],C} in U (See Ish1hara (2], [3], [4], [5] and Konishi [4] [51). We
denote by {E ,,C s+ and {E,; ,C ’} components of {EJ,C} and {Ef C¢} respec-
tively in 0.

Let the isometric immersions { and i be locally expressed by x*=x"(x%)
and y’=3’(»%) respectively. Then the commutativity #ei=i.x of the diagram
implies

PHE) = (xH(x),
and hence
(6.2) BJE=E/B,*",

where B,’=0,y’ and B, =0,x".

For an arbitrary point PEM we choose a unit normal vector field N’ to
M defined in a neighborhood U of P in such a way that {B,’, N’} span the
tangent space of QP(m) at i(P). Let P be an arbitrary point of the fibre &
over P, then the lift N*=N’E*, of N7 is a unit normal vector to M defined in

the tubular neighborhood over U because of (6.2).
Let’s denote by €%, 7 and {* components of &,7 and { of the induced
Sasakian 3-structure {&,%,Z} in S*™*° respectively. Since any fibre 7 '(P),

Pe QP(fn), is a maximal integral manifold of the distribution spanned by &,7
and , &%, 7 and Z* can be represented by

(6.3) §r=¢°B,f, T*=p"Bs", ["=({"B.,

where &%, 7* and {* are unit vector fields in M which are vertical and span
the tangent space to the fibre & at each point of M because of (6.2). We now
put in U

EZaSés; ﬁ:bsés; ﬁ:csés’
as:atgts > bs:btgts > cs:clgts s

where gN'm:gEﬂ@f"s and g, components of the induced metric in S*™*}(C Q™).
Then it follows that

(6.4) Co=a,E+bi+el,
(6.5) a,a'+bb* +csct=6:
Transvecting (6.2) with E", and substituting (6.4) imply
(EVB)E =B (a6t b nat-c'CIC,
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where £,=8%°gs, 7.=7°8s« and {,={’gs, Thus, transvecting the equation
above with E“, and using the fact &, %, and {, being vertical, we have

(6.6) B By'=BE, .
Hence the vertical vectors C; can be written as
(67) Cs:asé—l_bsﬁ—i_csc

in such a way that the functions a,, b; and ¢, satisfy (6.5), where a;, b, and c,
are respectively the restrictions of ag, b; and ¢, appearing in (6.4) and in the
sequel these restrictions will be denoted by the corresponding letters respecti-
vely.

Denoting by {2}, {#}, {#} and {g} the Christoffel symbols formed with
the Riemannian metrics i, £5:, £« and gq respectively, we put

DEr=0,E;— {5 E;+ () EJE®

D, E*=8,E% + (A} Er,— (1} E JE?,
and

VsE=05E2— (&} E S+ 8} ELELS,

VﬁEaa:aﬁEaa_i_{&} Era_{bc;t} EﬁbEac .
Since the metrics Z;, and g, are invariant with respect to the submersionsN T
and 7 respectively the van der Waerden-Bortolotti covariant derivatives of E;*,
E%, and E % E°, are given by
D Er=h(E Co+ClEY),
DB =h E 2 C—h CloE?,,
713Eaa:hbas(EﬂbCas+cﬂsEab) ,

6.9 _
( ) { VﬂEaa:hbasEﬂbcas—habscﬂsEab

(6.8) {

respectively, where h;Lszgihgszhjnt, hbas:gucgsthbcz; h'jis being h;,° are the struc-

ture tensors induced from the submersions # and 7 respectively (See Ishihara

and Konishi [5]).

On the other side the equations of Gauss and Weingarten for the immer-
sion 1: M—S*"*® are given by

\ V 6B r=0B%+ {5} Bg"B A — {da} B;"=Ag,N*
6.10 _
( V oNe=0sN*- {5} Bg*N*=—As"B,”*,
and those for the immersion i: M—QP(m) by

VbBu.l:abBat'*_ {fn} BDJBa.h—' {bfz} BclebaNi B

(6.11) .
PoN'=8,N*+ {3} By N"=— A,"By,
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where A‘;”-—:A‘grgf“, A=A, 8%, Az, being A,, are the second fundamental
tensors of M and M with respect to the unit normals N° and N’ respectively.
Moreover in this case (6.2) and (6.6) imply

Vb:Eabﬁa

Putting ¢,*=D &% §,/=D 7" and 6,°=D,£% we have by definition of Sasa-
kian 3-structure

S =—0l+E 8, g =0, §4,/=0, &&=

SPA==8l00,  §=0,  7.4,1=0, 70'=1,

0,20 =—84+2.2%  82r=0, Ehr=0, L=

612)  § == =8,  FXr=—05=7,  JrEr=—g =0
8./0=—0 478, §r=—p LA, 0,8 =0 EL,
$.03: =02 +E 77, 0”%”25;%75&*, $,/0.=3 +C,.8,
Sut$1,=0,  Futdi= 0,+0,.=0,

and

(613> Erz'/%fzéxl;t —émg/ll ’ E/zszlx:ﬁlax _ﬁxgpl ’ D 5 K:Cﬁx ~€E§ﬂi ’

Where we haVe put 5 5 g}x, 7]5—77 gz,;, Cfc-—c glu ¢,,z1_¢/1 gub ¢yi_¢/z gul and
Hﬂz-_ﬁ 8.1 (See Kuo [6])
We now put in U

¢:l:9Z/fE#jEf, ¢;t:$/fﬁﬂjﬁll: ﬁllzéﬂlﬁﬂfﬁll'
Then we have from (6.12)
$r'd=—0;, Pu'PSt=—0;,  0,'0"=-3},
Gu' P, =P, =0,0,0020, =00 ) =], 04’ =—u'0," =" .
We algo have by using (6.8), (6.12) and (6.13)
Lrg)=0,  Lip;=-20, L¥p; =24,
(6.15) Lyd=20}, Lydr=0, Lpd=-2¢),
LE0=-=-2¢}, L78)=29;  L7d;'=0,

(6.14)

L7 denoting the Lie derivation with respect to £, and
(6.16) hy'=—(0"¢ ;i +b'Ps+c'0;) ,

Where ¢]1”—¢] gm; 9[)]1 9[)] gh] and 0]1—0 ghz .
Consider a p01nt P of QP(m) and a point P of $*"** such _that ﬂ(P) P.

Denoting by #7, &5 and 5 respectively the values of @, $ and § at P we can
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define tensors F5, G5 and Hy of type (1.1) at PeQP(m) respectively by
(6.17) FyA=da(@z AY), GCyA=da(fzAY), HyA=d#(0; AD)

for any vector A tangent to QP(m) at P, where d% means the differential of
# and AL denote the horizontal lift of A. We now denote by V; the linear
closure of the set
( VYV )Y Y Yl Y HR)
pen -1 per -1p) per-1p)>

of tensors of type (1.1) at P=QP(m) and put V¥=jecopm V¥, which is a
linear subbundle of the tensor bundle Aof type (1, 1) over QP(m).

Take a coordinate neighborhood U= P of QP(m) and consider a local cross-
section = of S***® over U. If we put

(6.18) F;=F.3,, G;=C6p,, Hy=H.y,, PeU,

then the correspondence P—F;, P—~G; and P—H; define respectively local
tensor fields F, G and H of type (1,1) on U. Thus, taking account of (6.14),
(6.17) and (6.18), we find

FyF=—=8, GyGr=—0, HyH}==-0,
(619) Fy'Gr=—GyF'=H}, GuH'=—H/G=F;', H\'F}=—F2H=G},

7
Fji:_Fw s Gji:—Gz] ’ Hji:”—HIJ

where F;;=Fgy., G;;=G,"gu, H;;=H*g,,, F,', G,;> and H; being respectively
local components of F, G and H in U.

We take another local cross-section 7’ of QP(m) in ‘U. Then we can con-
struct a triple {'F,’G,’H} in ‘U by the same way as above and {'F,’G, H}
also satisfy (6.19). Thus, taking account of (6.15) implies in Ur\’Uing

< 'F F
(6.20) ‘G |=Sew| G |, (x5y=1,2,3)
'H H

with functions S., in U~'U, where the matrix (S,,) is contained in the special
orthogonal group S0(3).
Next, denoting by (z*(¥)) coordinates of the point z(P), we have from (6.18)

Fr»)=¢, ("), G)=¢,(z(»), H@)=0,(=")).

Differentiating the first equation above with respect to y® and using (Bhr")ﬁg
=0}, imply
04F =0, +(0,77)C,°0,9,*.

Thus, takingN account of (6.16), we obtain D,F;*=r,G,'—q,H', where we have
put ¢,=-—b,C. 9,7 and 7,=—¢,C,*0,7*. Similarly, using (6.16), we obtain in U
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DyF=r,G, —q,H,,
(6.21) DyG,'=—rF +puH,,
DyH=q,F ' —puG,n

for certain local 1-forms p, q,r defined in U. By means of (6.19),(6.20) and
(6.21) the quaternionic projective space QP(m) admits a quaternionic Kaehlerian
structure (See Ishihara [2],[3], [5] and Konishi [5]).

Let’s denote by Kﬁw‘ and K,;* components of the curvature tensors of
(8™, g:) and (QP(m), g;;) respectively. Since the unit sphere S™** is a space
of constant curvature 1, using the eugation of co-Gauss (See Ishihara and
Konishi [5])

Kyt =K o B B B2 Bop h by — Ryt — 20y BT,
and (6.16) implies
Kknh:aggji—5?gki+Fthji_F;thi“‘2ijth+6th;¢—0;th;
—2G,,G*+HH,;;—H H,,—2H,;H".

Hence QR(m) is a quaternionic Kaehlerian manifold with constant @-sectional
curvature 4 (See Ishihara [2],[3], [5] and Kanishi [5]), and consequently the
real hypersurface M of QP(m) can be regarded as a manifold with almost
contact 3-structure as already shown in section 2.

We are now going to prove that the structure of M induced by the im-

mersion 2: M—S*™** and the submersion = : M—M is the same as the structure
induced by the submersion #: S*™**—QP(m) and the immersion : M—QP(m).

Applying the operator Vﬂ:Bﬁ”ﬁy to (6.3) and using the euqations (6.10) of
Gauss and Weingarten, we find

BB =(7 5% B+ Ag £ NF,
QZ#EB,B#: (7[37]“)80(,6 + Aa,@??aNE;
5/LEB,9#: (7,3Ca>BaE+ AﬁaCaNﬂ,
from which, putting
(6.22) $s"=V " Gt=V e, O57=V L%,
(6-23) u,@:AﬁaEa) vﬁ:Aﬂana: wﬂ:AﬂaCa:
ua:gﬂauﬂ , va:gﬁavﬁ , wa:gﬂawﬁ ,

we also have
¢/1EB13ﬂ:¢ﬂaBalc+uﬂNE: ¢ﬂ':N/1: _'u'BBﬁ’c;

(6.24) G B'=¢ "B +vsNe,  §FNF=—vPBg,
0, By'=0,"B, +wsN*, 6, N=—wPBy".
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Transvecting ¢, to (6.24) and using (6.12) and (6.24) itself in the usual
way, we can easily obtain that

BT =St LS, §=pE=0,  uwi=l, =1,
O =—05+v e, O5vP=¢sm =0, ovpf=1, ymf=1,
0,05 =—083+waw +sl% 05 wP=0,"P=0, wywf=1, LseP=1,
G Pg'=—0" VUt pf",  Pgu~ws,  ugbf=0,

O =0"+ug™+Em*,  Pgv.=—ws,  vgn’=0,

D205 =—p Fwa+ L% O5fv.=ug,  wif=0,

0,°¢s7=¢" tvgw+nsls,  Pgw.=—us, Egu=0,

0P a7 =—¢s"Fusw+&£5L7%, P W—Vg, nav*=0,

G0 =P +wgu+LsE% 05 Uy=—vs,  Lw=0,

05 nP=—s"CP=¢%,  wep’=0, v{f=0,

P CP=—0"8P=2"  wulP=0, wtf=0,

911,9"5‘3:—‘5255"77‘3:?:“; u[mﬁ:o R vﬁe’fﬁ:O .

(6.25)

Applying the operator V,=B,"D, to (6.24) and using (6.11), (6.13)"and (6.24)
itself, we also have

V05" =E508 —£°gatus A —uArs, T s=—Ads%
(6.26) V=008 —1°85 0540 Ars,  Fws=—Ards%
VB =C0f = 8rp+wsA —wAs, Vws=—A.047
which and (6.25) imply
Lepg®=0,  Lydg"=—205",  Lchs"=20",
(6.27) Lehg®=205",  Lyhps"=0, Lo =—2p5"
LOP=—205"  L405°=205",  L0:°=0.

and
Leu*=0, Lput=—2w% Leu"=207
(6.28) Lv*=2uw", Lw*=0, La%=—2u",
&
Lew=—20°%, Law*=2u*, Law =0.

G

If we put in a neighborhood U of M
¢‘1h:¢l¥ﬁEaa‘Eﬂb’ Sbﬂ-bngaﬂEaaE‘Bb) 0ab:0a13EaaE‘3b)
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u*=utL.’, v *=0°ES", w*=w"E ",
then, taking account of (6.7), we find from (6.25)
PSS =0 E L EPy+(c;b —bsc)C, CPy
¢ L=¢ EPE A (ac" —c,a)CCP,
0,5=0,FE *E8, +(ba*—a,b")C,C? .
and
u'=uk",, ve=v*E°,, w*=w"E%,,
which imply the following formulas
.°P,°= — 0% +-u,u’, du*=0, " =0, uyub=1,
D, = —0%+v,v?, Pvr=0, V."=0, vu’=1,
0.8, = —d3+w,w?, 0. w =0, wyf,2=0, wyw’=1,

which are already given by (2.5),(2.6) and (2.7) respectively, where u,=u"gu;,
Vp=0v°g,; and w,=w'g,,. Therefore we can construct a triple {§, &, #} of almost
contact metric structures defined in each coordinate neighborhood {U; 3%} of
the hypersurface M by the same method as in the construction of the quater-
nionic Kaehlerian structure {F, G, H}, and moreover prove that they satisfy
the other algebraic conditions given by (2.8)~(2.13). Since #+i=iem, choosing
suitably local coordinates in M and in QP(m), we can find in Un\'U#¢ the
relations

‘$ & ‘it @
' 1=Sa)| ¢, 0 =(S)| 7], (n,y=123)
4] ] ¢ w

with functions S,, defined in U~'U which coincide with those appearing in
(6.20). By denoting by {#.%, ¢.°, 8,°} and {@#°%, % W respectively the components
of {¢, ¢, 6} and {&, 7, @} with respect to coordinate neighborhood {U; %}, the
commutativity of the diagram gives in U

F'B/=¢,B+i,N', FN'=—a’B,,
G B=F By +0,N', G Ni=_i"B,,
H}By=0By+@,N', H'Ni=—g"B,,
where #,=#"gyq, 1,=0"2y, and W,="Ly,.
Here and in the sequel we use the notations {g.’, ¢.°, 4."} and {1, v°, w

instead of {d.°, ¢.% 8,°} and {@, ©°, @} respectively. In the followings the
algebraic relations (2.5)~(2.13) and the structure equations (2.17)~(2.19) will be
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very useful.
First we apply the operator V,=E%7 ,=B,’D, to (6.2). Then we have

7 4B)E 2 +BJIER oE =B E*(D E B+ EJEAT B,
from which, substituting (6.8), (6.9), (6.10) and (6.11),
ApaE AN+ 1,2,C 2 By? = 1,2 C* By Byt + Ag B, NV,
and consequently
(6.29) Apy=Ag EPLE,,
(6.30) % Co Bo?=h,?C.*B "By

because of (6.7), (6.23) and (6.25). Transvecting E,°E;* to (6.29) and replacing
the indices y and 0 with 8 and « respectively, we get

AvaEgE 2= As— Agl @ T +b07 +,50C, — Al a7 +by +,LNC,
or equivalently
(6.31) Apa= Ay ESLE P+ (sE o 00t wsl o) +(Uaf s Hvans+wale) -
Then, transvecting (6.31) with g** and using (6.25), we find
Alt=A"
And also transvecting (6.31) with A®® and using (6.25) and (6.29) give
Ay A=A, AP*—6 .
Thus we have
LEMMA 6.1. (See also Lawson [6])
A=A and Ay A=A, A% 6.
On the other hand, as a consequence of (6.16) and (6.18), we have
Fr=—h2a*, Gr=—h)b*, H'=-—h' (.
Thus substituting these equations into (6.30) and taking account of (2.4) imply
(6.32) $l=—hla, P =—h,"b°, 0.0=—hyc".
Applying V,=FE7 .V, to (6.31), we can easily obtain
Er 1 Asa=( A ELE o+ Ao BT (T ERVE &+ Ao ESET V ,E 2
FE AW ugeat- (T de s+ ) nat+V w ) ms+F w05
+ (T w )l stusl satud 1550V patvd st wal Latwd Lsh
from which, substituting (6.9), (6.22) and (6.26) and using (6.32),
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ET Y Agg=W c Ava+GcatiotPeats+OcaWstBostha+ Posvat 00w ESLE 2
—(Apepe*+ Aeeps NE €0t Eo6 ) —(Ave s+ Aceths W ES D aE o 75)
—(Apel+ Acels" NELCatELCs) -
Thus, using Lemma 4.2, we have

LEMMA 6.2. If the second fundamental tensor As, of M=%YM) is parallel,
then the following two conditions (1) and (2) are valid 1n M :

ey IV cApall*=24(m—1),
2 Aeep®+ Apedt=0,  Aeeths®+Apep’=0, Al +Ap0.°=0.
Next we prove
LEMMA 6.3. If the second fundamental tensor A,, of M satisfles
(6.33)  Apea’+tAaeh’=0,  Apdpa’+Awth’=0,  Apls’+A00,=0,
then the following two conditions (1) and (2) are valid in M=#"Y(M).
) V,As#=0,
) A AT =2Ap, 850,
where 2 1s a function deflned by A=A, ulu’
Proof. We have already seen in section 2 that the condition (6.33) implies

Apqu=AU, U)u,, Apav*=AV, V)v,, Apgw=AW, Ww, .
On the other hand transvecting the first equation of (6.33) with v* and making
use of (2.13) give A, w’+v*A4,.6,°=0, and consequently AV, V)=A(W, W). Simi-
larly we can also obtain A(U, U)=A(V,V)=AW, W). If we put i=AU, U)=
AV, V)=A(W, W), then we get

(6.34) Apu®=2Au,, Apev®=2v, , Apw=2Aw, .

Substituting (2.17) and (6.34) itself in the equation obtained by applying the
operator V., to the first equation of (6.34), we have

(VcAba>ua+ AbaAceSZSea:(Vc'z)ub —2A6e¢be:

from which, taking the skew-symmetric part and using the eugation (3.3) of
Codazzi and (6.33),

1
(635) Ucwb‘wcvb_¢cb_AceAbd¢de:_2' {(ch)ub’_(Vbz)uc} _ZAceﬂbbe,

and consequently V A=u¥ ,)u.. By the similar way as above the second
equation of (6.34) implies V A= ,A)v.. Accordingly, since ¥ and v are mu-
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tually orthogonal unit vectors, u¥,Al=v¥,A=0 and hence A=const. If we
substitute 7 .A=0 into (6.35) and take account of (6.33), then we have

VWy— WUy —¢cb_ AceAed¢bd: ‘—ZAceQﬁbe:

from which, transvecting with ¢,° and using (2.5), (2.12) and (2.13), because of
(6.34)

(6'36> AceAae:ZAca+gca_<ucua+vcva+wcwa> .

On the other side, if we transvect (6.31) with A, and use (6.25),(6.29),
(6.34) and (6.36) itself, then we get

Apa Ay =(Ace A ES EL + (A8 Hup)ug+ (A0, 00 o +-(A0+wpwg
+(Apr+E)E 5+ Qv+ 1) s+ QAw, +8)E 5,
from which, substituting (6.36),
(6.37) A A=A g5 .
If we now apply the operator I to (6.37), then using A=const. implies
V5 Ap) A"+ Al 54,2 =2F 575, .
Thus, taking account of 7,;1413“»—7‘3/15“:0, we get
Asd A= As7 AL,
and consequently A7 ;A4,°=A4,V ;A5°. Therefore we find
2457 54,7 =4V 5Ag; .
from which, transvecting A, and using (6.37),
28 Aol s A"+ 2T 5 Ara=2 AT ; A5y,
and consequently

175/17,,,:-% AAT 54, .

Hence {2+(2%/2)} A3/ ;A,"=0, which implies F;Az=0. Therefore the lemma
is completely proved.
LEMMA 64. If IV, Apll?=24(m—1), then
Ace¢be+Abe¢ce:O s Ace¢be+ Abe¢ce:0 i Aceabe+ Abeacezo .

Proof. By means of Lemma 4.2 the assumption [/ A4,.*=24(m—1) im-
plies

(638) VcAba +¢caub+¢cbua+¢cavb +¢cbva+0cau'b+acbu'a =0.
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Differentiating (6.38) covariantly along M and applying Ricci identity to the
equation thus obtained, we can easily find from (2.17), (2.18) and (2.19)

— Ko Aea—Kaca® Ape
—(AaehsVPeat(AcePr’)Paa—Per( AsePa’) + Pas( AcePa’)
—(AaeoVpeat(AcethsVaa—Per( Adeha®) t Par(Acetha”)
—(Agels)0cat(Acels)0sa—0c0( Agela) 0 4p( Acel)

+ Aoyt +vv e+ wywe)+ Agy(Uott g +v 0 +wow,)

= Ayt g+ 050 F 10 Wa) — Acp(Ugthq+V,0, +Wawe) =0 .

On the other hand, by using the equation (3.3) of Gauss and ¢=4 a direct
simple calculation gives

Ko’ Ava=Ada8er—8ar Aca
F(Pa* Aea)Por—Par(Pe’ Aea) = 2P ac($s’ Aca) T(Pu" Aca) P
—Par(Pe* Aca) —2Pac(Po’ Aea) +(00° Aea)l oo —0an(0.° Ara)
—2046(0° Aga) FH(Ad* Aga) Ao — Aus( At Aga) -
Consequently the equation above reduces to
(6.39) Asl AL Ap—E8eptuctty+v 00+ w ws) —Agel A’ Aop—L8as
gty vVt W)+ Agp( Al Aga—8eattcllaFV VW W,)
~ A Ad* Aca—Gaat thattaFVava+WaWa) +Paa(Acey’ + Apapc”)
—GealAze’+ Apeda®) T Par( Acea’+ Aaed”)
~Per( AgePa’+ AnePa®) 200 ( P’ Acat P’ Aes)
FPaa(Aces’+ Apepe?) —Peal AgePs’ + Apea’)
+ao(AcePa’+ Aaep ) — Per(AgePa’ + Aged o)
20 4e(P0° Acat P’ Aeo) 0 aa( Acels’ + Ase8.°)
~0ca(Aels*+ Apel )+ 0ao(Acela®+ Aacl )
—0op(Agela’+ Anel ) +20 (0  Aga 104" Ay)=0.
Transvecting (6.39) with u‘u® and using (2.5), (2.8), (2.11), (2.12) and (2.13), we
can easily verify that
AU, UX(AgeAd —8aatualatv ot wae) — | Acett|* Ada
F(Agu)(Age Apu?) —(Ageti®)(Age A uUP) +2AU, W)paa—2AU, V )044
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00 {Aaev’ +(Aceu)0} +3va{ Aaet+(Aeei®)0,%}
Fwo{Agew® —(Acett)P ot +3wa{ Agew —(Acett®) ot =0,
from which, taking its symmetric and skew-symmetric part, we get respectively
6.40) AU, UYAL A= AU, UYua—Uglhe—V Vo —WWa)+ || Acoti®]* Aya
=20, { Agev*+(Acet)04} —20 4 { Aot +(Aceu)0,.%}
—2Wa { Age —(Aceu)P ot —2Wa{ Ao —(Ac)Po’}
and
6.41)  va{Aev +( A0t —va { Aget®+(Aceu)0,t +2AU, W)Paa
Fw{Ag W —(Arett)P} —wo { AgeW® —( Aottt —2A, v)8 4,
—(Ageu)(Aac A" u") +(Agett ) Age Ap'u’)=0.
If we transvect (6.40) with u® and use (2.5), (2.12) and (2.13), then we have
AU, U)Age Atub=| Apeu 2 Agyu® —4 AU, Vv, —4 AU, Wiw, .
Similarly using (2.5)~(2.13) and (6.39) implies
AU, U) Az Atrul=|| A u||PAgyu®—4 AU, V)vy—4AU, W)w,,
(6.24) AWV, V)AL A0 =] A v A gt —4 AU, V )u,—4AV, W)w,,
AW, W) Az Afw’= | Aew®|2Agpw®—4 AU, Wiu,—4AV, Wiv,.

Multiplying A(U, U) to (6.41) and substituting the first equation of (6.42), we
have

AU, UY{wg(Agev®+ Acett®0,)—v o (Agov®+ ALeu®80) +2AU, UYAU, W)a,
AU, U){w(Agew’— Aeett* o) —wa( Age® — et o)}
—2AU, UYAU, V)8 4o +4( Ageu®) { AU, Vo + AU, W)wg}
—A( AL u){ AU, Vivg+ AU, WHw,} =0,
from which, transvecting ¢ and 0% respectively and using (2.5)~(2.13),
A(U, U)A(U,V)=0, AU, UYA(U, W)=0,
and consequently
AU, U){(Agev®+ Aceu0 ) —(AV, V)= AU, U)ve— AV, Wiwe} =0,
AU, U {(Agew®*— At oS)— AV, Wv,+(AWU, U)— AW, W)Hw,} =0.
Therefore, (6.40) and (6.43) imply
(6.44) AU, UYAy Aof=AU, U)X ga—UaUa— VgV —WaWo)+ | Arett®]|* Aga

(6.43)
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—4(AWV, V)= AU, U)av,+4H AU, U)— AW, W)Hww,
_4A(V’ W)(waa+wdva) .

On the other side, transvecting (6.39) with ¢% and taking account of (2.5)~
(2.13), we obtain

(6.45) (Am—1)(ApePo’+ Aredo)= — " { Asal Ace Ap*)+ Aun( Ace Ad)}
— Vg {Ap W —( At} —vp { Apew® —(Aceut®)e0,}
Fwo { Apev®+(Aett)0, +wy { Agev®+(Aceu®)8,°}
from which, multiplying A(U, U) and substituting (6.44),
(6.46) 22m—1D AU, UX Apea’+ Aueds®)
=AU, U){(Aeev)wy—(Aaew Iyt (ApetIWa—(Apewva}
—4{AU, U)— AW, W} {(Azev®)wy+(Apev®)wa}
—4{A(V, V)= AU, U} {(Agew)vp+(Apew®)va}
+ AU, U {ua(Aeett®)po’ +up( Acett®) ot —2AU, U)YA(V, W) (vav,—waws)
+ AU, UY{A(V, V)— AW, W)} (w,wy+wavs) .
Transvecting v®?® to (6.46) and using (2.5)~(2.13) imply
AU, UYA(V, W)=0.
Thus transvecting u° to (6.46) gives
(4m—3)A(U, UY Agett®9,*=0,

and hence AU, U){A,u*—A(U, U)u,} =0. Moreover, substituting this equa-
tion into (6.43), we also find

AU, UY{Apv®— AV, VIu,} =0, AU, U){Apew®— AW, W)w,} =0.
Accordingly (6.46) becomes
@m—1D AU, UXApepa’+ Aaedp)=AWU, UY{AW, W)— AV, V)} (vswa-+wpva) ,
from which, transvecting v’ w®, we find
AU, UY{A(W, W)—A(V, V) =0,
and consequently
AU, UX Apetpa®+ Aaepp)=0.
Similarly, using (6.39) and (6.42), we can derive

AU, UX(Apeda®+Aaes)=0, AU, UYAWV,V)—AW, W)} =0,
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(6.47) AV, V)(Apetha®+ Aseh)=0, AV, V){AWU, U)—AW, W)} =0,
AW, WY Apella®+ Aaedy)=0, AW, WH{AU, U)—A(V, V)}=0.

Now, we consider the following three cases. Let P be an arbitrarily fixed
point of M.

Case [ A(U,U),=0 and A(V,V),#0.

Case 1. AU, U),=0, AV,V),=0 and AW, W),#0.

Case III. AU, U),=A(V, V), =AW, W),=0.

In Case I, we have from (6.47)

(Abesl}ae"i_ Aae(/’be)PZO s
from which, transvecting u’z* and ¢,v® respectively,
AU, W)p=0 and AU, V)p=0.
Hence, from (6.42) we obtain (A,.u®)»=0.
In Case II, we can similarly prove that (A4,u%p=0 by using (6.24) and
(6.47).
In case III, using (6.42), at the point P
| Acett®||® Apau®=4A(U, Vv, +4 AU, W)w,,
[ Acevll* Apav*=4 AU, V Yuy +4AV, W)w,,
| Acew®||* Apaw®=4 AU, W )uy+4 AV, W)v, .

Suppose that A(U, V)p#0. Then we have ||A. u®|*s=4 and [A.v°[|*s=4, and
consequently

A= AW, Vv, + AU, Wiw,, A=A, Vuy+ AV, W)w,,
I Acew’||* Apgw*=4AU, W)uy+4 AV, W)v,

at that point P. Substituting these relations into (6.41) and transvecting 6%,
we can easily see that 4m—1)A(U, V)p=0 because of | A..u°|*=4. In contra-
dicts the assumption A(U, V)p+0. Hence A(U, V)p=0 and similarly AU, W)p
=0 will be obtained.

Summing up the results obtained in these Cases I, Il and III, we can say
that if there exists a point P M such that A(U, V)p=0, then (A,u%)p=0. On
the other hand, (6.47) implies that at the point P satisfying A(U, U)r=0 at least
one of A(V,V) and AW, W), say A(V, V), is zero. Then (4,.v%p,=0. Trans-
vecting w®v® to (6.45) and taking account of (4,,u%),=0 and (A,.0%) =0, we have
AW, W)p=0 and consequently (A;.w%)p=0. Summing up, if we put S={Pc M|
(AvePa’+ Aeepr?)p#0}, then we have

(6.48) Agew’'=0,  Ag'=0,  Agw'=0 on S,

since (6.47) implies A(U, U)=0 on S. As was proved in section 6, (6.34) with
A2=0 implies (6.35) with 2=0. Thus, (6.48) implies (6.35) with A=0, that is,
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vbwa—wbva_¢ba_AbeAad¢de:0 on S:
from which, transvecting A4.%, we have
~¢deAbeAadAca:Ace¢be on S.

Hence, from (6.45) we have A,.@.°+ As.¢:°=0 on S, and consequently the set
S should be void. Therefore, the equation Ap.@,'+ A..¢,°=0 holds identically
in M. Similarly, using (6.42) and (6.47), we obtain

Abe¢ae+Aae¢be:O » Abe¢ae+Aae¢be:O » Abeﬁae+Aae0lze:O ’

which completes the proof of Lemma 6.4.
Thus, joining Theorem 2, Lemmas 6.2, 6.3 and 6.4, we have

THEOREM 9. Let M be a real hypersurface of QP(m) and a: M—M the
submersion which 1s compatible with the Hopf fibration S*™*—QP(m). Then the
Sfollowing conditions (1)~(5) are equivalent to each other:

(1) The second fundamental tensor of M 1s parallel.

(2) The induced almost contact 3-structure in M 1s normal.

(3) The induced almost contact 3-structure tensors {§, ¢, 0} wn M commute
with its second fundamental tensor.

(4) The square of the length of the derwatwe of the second fundamental
tensor in M 1s equal to a constant 24(m—1).

(5) The global tensor field ¥, defined by (1.6) vanishes.

§7. Characterizations of hypersurfaces M9 (a,b) in QP(m)

Before we state our main results we should explain model subspaces which
will appear in our theorems. We denote by S$*?**(a) the hypersphere of radius
a centered at the origin in Q**'. If we identify Q?*?** with the product space
QP 1% Q" then, taking spheres S*?*%(q) in @Q?** and S$*¢*(b) in @, we con-
sider the product space M9 ,(a, b)=S*"*¥(a)x S***(b), which is naturally consi-
dered as a submanifold in Q?*%*2, When a®+b*=1, M (a, b) is a hypersurface
in SHPrerOBNC QPR Thus, if a®*+b*=1, for any portion (p, ¢) of an integer
m—1 such that p+g=m-—1, p=0, ¢=0, Mg,q(a, b) may be considered as a real
hypersurface of S*™**(1)C@Q™"'. Considering the Hopf fibering #: S (1)—
QP(m), we put Mg (a, b):ﬁ(Mg,q(a, b)), which gives an example for submani-
folds satisfying the commutative diagram shown in the previous section. We
are now going to prove

THEOREM 10. Let M be a complete real hypersurface of QP(m). Suppose
one of the following conditions (1), (2) and (3) which are equwalent to each other
is valid :

(1) The induced almost contact 3-structure in M 1s normal.

(2) The derwvative of the second fundamental tensor in M has constant

norm 24(m—1).
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(3) The global tensor field 2, defined by (1.6) vanishes.
Then M=M$,, (a,b) for some portion (p,q) of m—1 and some a, b such that
a*+b=1.

However in order to prove this theorem we need the following Lemmas
7.1 and 7.2.

LEMMA 7.1. Assume the relations
Abe¢ae+Aae¢be:0 ) Abe¢ae+Aae¢be:O ) Abeﬁae_}'Aaeﬁbe:O

are valid. Then the second fundamental tensor A, of M has exactly two
aigenvalues whose multiplicities are 4p+3 and 4q+3 respectively, where p+g=
m_lyp?;oy CIZO'

Proof. As shown in Lemma 6.3 the assumption implies
(71) AﬁrAar':zAﬁa_}_gﬂa;

where 1 is constant defined by A=A,,u"u®. Denoting by p the eigenvalue
corresponding to an eigenvector of A,°, the equation (7.1) implies p*—Ap—1
=0. Consequently A,° has exactly two eigenvalues p,=(2++/2*+4)/2 and
0:=(A— v 2*+4)/2. On the other hand, transvecting (7.1) with &%, »* and ¢
and using (6.23), we have respectively

Apui=2ug+Eg,  Agv’=Avgtns,  Agw=lws+{s,
from which, taking account of p.*=21p,+1,
AL(pu+E=p(pu®+£7),  AL(ow +nM=p(o’+77),
AL(pw ™+ =p.(0 +P).

Therefore p,u"+&°, pv*+7* and p,w*+L which will be denoted by e, &°
and e,” respectively, are eigenvectors of A,° corresponding to p,, where e
¢,* and ¢;" are mutually orthogonal because of (6.25). Assume there exists
another eigenvector ¢, of A,f corresponding to p;. Suppose e,” is orthogonal
to ¢,% ¢," and ¢,°. Then we find

(7.2)  pr(ua)+(6400=0,  p1(v.e)+(M.e)=0,  pi(wee,)+(L=0.
On the other side, taking account of (6.23) and A/e,“=p.e,% we get
(73) (a0 —0:(62,0=0, (Vo) —0:(7.9=0,  (w.,)—p:(.e,)=0.
Since p,*+1+#0, (7.2) and (7.3) give
7.4 Ugl, "=V 0, =wae,"=0, e =n0,={,0,"=0.
Moreover, by means of (6.25), (6.31) and

PLEG=0,"E%,  QLEV=0,"EPy,  O0LEN=0,"E",,
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our assumption implies
A;9T¢a7+AaT¢57:O > A.Brgbar_l_Am’gb,Br:O ) Aﬁrﬁar—i-Aaraﬁr:O ’

from which, taking account of skew-symmetry of ¢z, ¢p, and g, we find

AF(gie)=pple),  AP(PleN=p(dle”),  AP(0.7e,)=pi(0,Fe).
Thus ¢,%¢,% ¢.%e,* and 8,°¢,” are also eigenvectors of A,° corresponding to p,,
which are mutually orthogonal and also orthogonal to ¢,% e, ¢;* and ¢, be-
cause of (7.4). Hence multiplicity of the eigenvalue p, is necessarily 4p+3 for
some integer p. Similarly we can prove that multiplicity of p, is 4¢-+3, where
g=m+1—p.
By means of Lemma 7.1 and V,A,f=0 the eigenspaces corresponding to p; and
p: define respectively (4p+-3)- and (4¢9-+3)-dimensional distributions D,, and
D,, over M which are both integrable and parallel. Moreover each integral
manifold of D,, is totally geodesic in M and so is each integral manifold of
D,,.

Let {F G H} be the natural quaternionic Kaehlerian structure of Q™!
Whose numerical components {F 4 ,G 4 ,H (&} are given by (3.9). Denoting by
B,* and B,“ the differentials of the isometric immersions 1,: M(CS™*)C Q™+
and i,: S™PCQ™! in terms of local coordinates respectively, we can see that
B, A=B,B,". Accordingly the vector N*=N*B,* and the position vector N4
of S**** can be chosen as unit normals for the immersion 7, and then (6.21)
implies

FABEHA:¢aﬁ§ﬂﬁ+uaﬁB+§aNB:
(7.5) G 2B A= PB % 40 NP +7,N?,
H.PBA=0,B " +w, N°+{ N®.
and
Fat(o, N2+ NB)=—(p,u*+E9B,,  Fa*(p. NP+ NP)=—(ou"+£9B 2,
(76) Crt(p, NP+ N®)=—(p"+79B,A, G (0:lVP+ NB)=—(pw "+ 78B4,
Hs4(p NP+ N2 =—(0,w™+{)B2,  Hy%(0No+N?)=—(p,w+{)B,A.
In this case the equations of Gauss and Weingarten are given by
7‘@§QA:AﬁaﬁA+g‘@aNA,

(7.7 N ~ _ ~
VIQNA:'—AﬁUBaA, VﬂNA:*BﬁA.

If we put ¢ *q“ﬁ 4 for an eigenvector ¢* of A,°, then the direct sums

{341 q* eDol}@{plNA—l-NA}* and {q g* EDPZ}EB{OZNA—FNA}* are both invariant

under the actions of £, G and B because of (7.5) and (7.6), where {p,NA N4 *

is the linear closure of the set {plNA—I-NA} Moreover we can verify from
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(7.7) that ¢F (0.N*+N*)=0, ¢*D,, and p¥ (0,N4+N4)=0, p*=D,, because
p1p:=—1. Therefore the maximal integral manifolds M, of D, and M,, of
D,, can be considered as real hypersurfaces in Q?*' and in Q¢! respectively.
Now we can easily prove

LEMMA 7.2. The M, and M,

02

are both totally umbilical in Q™*,

Proof of Theorem 10. Combining Theorem 9, Lemma 7.1 and Lemma 7.2
implies immediately the theorem.
We shall next prove

THEOREM 11. Let M be a complete real hypersurface in QP(m) whose second
Jundamental tensor Ay, 1s of the form

(7.8) Ape= pt8pa—(Uplia VoV T W) ,
¢ being a differentiable function. Then M:M%_l,,,(:/l?, %)

Proof. First by using (2.3)~(2.13) we can easily verify that (7.8) gives
Abe¢ae+Aae¢be:O 5 Abe¢ae+Aae¢be:O » Abeﬁae_l_Aaeﬁbe:O .

Since #=1 which is a consequence of Theorem 4 and ¢=4, A, has exactly
two eigenvalues 1 and —1 whose multiplicities are 4m—1 and 3 respectively
because of Lemma 6.1. Thus by the same way as in the proof of Theorem 10
we can complete the proof.

Combining Theorem 6 and Theorem 11, we have

THEOREM 12. Let M be a compact real hypersurface in QP(m). If the
second fundamental tensor A, is semi-definite and the mean curvature B con-

stant and if Ay, A<d(m—1), then M:M?,L_m(Vl?, 717).
Combining Theorem 7 and Theorem 11, we have

THEROEM 13. Let M be a compact real hypersurface wn QP(m). If the
second fundamental tensor Ayq 1s semi-definite. the mean curvature B constant

and B*<(4m—4)? then 1M:M%_1,0<—5A7~, —\71?)

Combining Theorem 8 and Theorem 10, we have

THEOREM 14. Let M be a compact and orientable real hypersurface in

QP(m). If
§ 020n—D+BCA, U)+ AWV, V)-+ AW, W))=3 4, A% 4120,

then M=M$ (a,b) for some portion (p,q) of m—1 and some a,b such that
a*+b*=1.
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COROLLARY 15. Let M be a compact and orientable real hypersurface in

QP(m). If
12(m—1)+B(AU, UY+ AV, V)+ AW, W))—34,,A"*=0
at each point of M. then M=M$, (a,b), p+g=m—1, p=0,¢=0 and a*+b°=1

COROLLARY 16. (See also Lawson [6]). Let M be a compact and orientable
mimmal real hypersurface n QP(m). If A, ,A**<4(m—1) at each pont of M,
then M=MS$ ,(a,b), p+g=m~1, p=0,¢=0 and a®>+b*=1.
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