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Abstract. From the classical differential equation of Jacobi fields, one naturally
defines the Jacobi operator of a Riemannian manifold with respect to any tangent
vector. A straightforward computation shows that any real, complex and quaternionic
space forms satisfy that any two Jacobi operators commute. In this way, we classify
the real hypersurfaces in quaternionic projective spaces all of whose tangent Jacobi
operators commute.
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1. Introduction. Jacobi fields along geodesics of a given Riemannian manifold
(M̃, g̃) satisfy a very well-known differential equation. This classical differential
equation naturally inspires the so-called Jacobi operator. That is, if R̃ is the curvature
operator of M̃, and X is any tangent vector field to M̃, the Jacobi operator (with
respect to X) at p ∈ M, R̃X ∈ End (TpM̃), is defined as (R̃X Y )(p) = (R̃ (Y, X)X)(p)
for all Y ∈ TpM̃, being a selfadjoint endomorphism of the tangent bundle TM̃ of M̃.
Clearly, each tangent vector field X to M̃ provides a Jacobi operator with respect to
X . The study of Riemannian manifolds by means of their Jacobi operators has been
developed following several ideas (see [1] and [4] among many others). For instance,
given a submanifold in M̃, some authors have studied whether the Jacobi operators
with respect to certain vector fields commute with the Weingarten endomorphism.
Regarding this, we have been able to find the following in the literature.

1. Let M be a real hypersurface in a non-flat complex space form M̄n, and let ξ be
the (local) vector field of the almost contact metric structure of M naturally induced
from the complex structure of M̄n. In [7], the authors classified those real hypersurfaces
in non-flat complex space forms M̄n, such that the Jacobi operator with respect to
ξ commutes with the Weingarten endomorphism, obtaining a characterization of
the tubes over totally geodesic complex space forms M̄k with k ∈ {0, . . . , n − 1} and
horospheres. See also [5].

2. J. Berndt introduced the definition of curvature-adapted hypersurfaces in a
Riemannian manifold M̃ in [2]. We will keep the above notations. Indeed, let M be a
connected hypersurface in M̃. Given N a unit normal vector of M at p ∈ M, let A be the
shape operator associated with N. He considered the normal Jacobi operator of M with
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respect to N, KN := R̃(·, N )N ∈ End(TpM). Thus, curvature-adapted hypersurfaces in
M̃ are those satisfying KN ◦ A = A ◦ KN for all unit normal vector fields N or M.
For instance, curvature-adapted real hypersurfaces in non-flat complex space forms
are those whose structure vector field ξ is principal (on the whole real hypersurface).
In the case of a quaternionic projective space �Pm, J. Berndt obtained the complete
classification of curvature-adapted real hypersurfaces in �Pm in the following

THEOREM A. Let M be a connected real hypersurface in �Pm, m ≥ 2. Then M is
curvature-adapted if and only if M is congruent to an open part of one of the following
real hypersurfaces in �Pm:

(a) a tube of radius r, 0 < r < π/2, over a totally geodesic �Pk, for some k ∈ {1, . . . ,

m − 1};
(b) a tube of radius r, 0 < r < π/4, over a totally geodesic embedded complex

projective space �Pm.

This theorem is a cornerstone of the theory of real hypersurfaces in �Pm because,
as far as the authors know, most of the results involving real hypersurfaces in �Pm

make use of it.
3. Furthermore, J. Berndt and L. Vanhecke in [3] generalized the definition of

curvature-adapted real hypersurfaces to submanifolds in �Pm. Let R̄ be the curvature
operator of �Pm. They called a submanifold P in �Pm curvature-adapted if for every
normal vector N to P at each point p ∈ P, the normal Jacobi operator R̄N with respect
to N satisfies R̄N(TpP) ⊂ TpP and R̄N commutes with the shape operator AN . They
also obtained the complete classification of curvature-adapted submanifolds in �Pm.

These ideas have made us think of another point of view to study Riemannian
manifolds by means of the behaviour of the Jacobi operators. Thus, we consider the
following problem:

Problem 1: To classify the Riemannian manifolds all of whose Jacobi operators
commute.

A straightforward computation shows that all real, complex and quaternionic
space forms satisfy this property. We would like to make an approach to the solution
of Problem 1 by studying a certain family of Riemannian manifolds, namely, real
hypersurfaces in the quaternionic projective space �Pm of quaternionic dimension
m ≥ 2, endowed with the metric g of constant quaternionic sectional curvature 4.
Since we are going to use both the normal Jacobi operator and the (usual) Jacobi
operator, we will introduce the following notation. If R is the curvature operator of
a real hypersurface M in �Pm, given a tangent vector X to M at p ∈ M, we will
call the tangent Jacobi operator (with respect to X) of M the endomorphism of TpM
given by RX = R(·, X)X . Thus, this paper is devoted to classifying the (connected) real
hypersurfaces in �Pm, m ≥ 3, all of whose tangent Jacobi operators commute in the
following

THEOREM 1. Let M be a connected real hypersurface in �Pm, m ≥ 3. All tangent
Jacobi operators of M commute if and only if M is locally congruent to one of the
following real hypersurfaces:

1. a tube of radius r, 0 < r < π/2, over a totally geodesic �Pk, for some k ∈ {1, . . . ,

m − 1};
2. a tube of radius r, 0 < r < π/4, over a totally geodesic embedded complex

projective space �Pm.
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2. Preliminaries. Throughout this paper, all manifolds, vector fields, etc., will
be considered of class C∞ unless otherwise stated. Let M be a connected real
hypersurface in �Pm without boundary. The restriction of g to M will also be called
g. Let N be a locally defined unit normal vector field of M. Given a local basis
{J1, J2, J3} of the quaternionic structure of �Pm, we put Uk = −JkN, k = 1, 2, 3. Let
� be the maximal quaternionic distribution of M. We will denote the orthogonal
complement of � in TM by �⊥, which is locally spanned by {U1, U2, U3}. Also, let A
be the Weingarten endomorphism associated with N. Let X be a tangent vector field
to M. We put JiX = φiX + fi(X)N, i = 1, 2, 3, where φiX is the tangent component of
JiX , and fi(X) = g(Ui, X), i = 1, 2, 3. As J2

i = −Id, i = 1, 2, 3, where Id denotes the
identity endomorphism on T�Pm, we get

φ2
i X = −X + fi(X)Ui, fi(φiX) = 0, φiUi = 0, i = 1, 2, 3, (2.1)

for any tangent vector X to M. As JiJj = −JjJi = Jk, where (i, j, k) is a cyclic
permutation of (1, 2, 3), we obtain

φiX = φjφkX − fk(X)Uk = −φkφjX + fj(X)Uk, i = 1, 2, 3
(2.2)

fi(X) = fj(φkX) = −fk(φjX),

for any tangent vector X to M, where (i, j, k) is a cyclic permutation of (1, 2, 3). It is
also easy to check that for any tangent vectors X, Y to M and i = 1, 2, 3,

g(φiX, Y ) + g(X, φiY ) = 0, g(φiX, φiY ) = g(X, Y ) − fi(X)fi(Y ), (2.3)

and

φiUj = −φjUi = Uk, (2.4)

(i, j, k) being a cyclic permutation of (1, 2, 3). Given a tangent vector X ∈ �, we denote
Q(X) = Span{X, φ1X, φ2X, φ3X}.

From the expression of the curvature tensor of �Pm, m ≥ 2, we obtain the equation
of Gauss and Codazzi respectively:

R(X, Y )Z = g(Y, Z)X − g(X, Z)Y +
3∑

k=1

{g(φkY, Z)φkX − g(φkX, Z)φkY

− 2g(φkX, Y )φkZ} + g(AY, Z)AX − g(AX, Z)AY, (2.5)

and

(∇X A)Y − (∇Y A)X =
3∑

k=1

{fk(X)φkY − fk(Y )φkX − 2g(φkX, Y )Uk}, (2.6)

for any tangent vectors X, Y, Z to M, where ∇ denotes the covariant derivative on M.
From the expressions of the covariant derivatives of Ji, i = 1, 2, 3, it is easy to see

∇X Ui = −pj(X)Uk + pk(X)Uj + φiAX, (2.7)

for any tangent vector X to M, (i, j, k) being a cyclic permutation of (1, 2, 3) and
pi, i = 1, 2, 3, local 1-forms on �Pm.
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A tangent vector X to M is said to be principal if it is an eigenvector of A
everywhere, and its associated eigenfunction will be called a principal curvature.
Sometimes, we may call a locally defined tangent vector X to M principal if there
is an open subset of M where it is defined and principal.

J. Berndt proved in [2] that a real hypersurface is curvature-adapted if and only
if A� ⊂ �, equivalently, A�⊥ ⊂ �⊥. Given a subset � of M, we will say that a
real hypersurface is curvature-adapted on � if Ap�p ⊂ �p, equivalently, Ap�⊥

p ⊂ �⊥
p

for all p ∈ �. Furthermore, we may say that M is (not) curvature-adapted at a
point p ∈ M if it is (not) curvature-adapted on {p}. Moreover, all real hypersurfaces
appearing in Theorem A have constant principal curvatures. In the case (a), for
k ∈ {1, . . . , m − 1} and r ∈ (0, π/2), the principal curvatures are cot(r) with multiplicity
4(m − k − 1),−tan(r) with multiplicity 4k, whose eigenspaces are contained in �, and
2 cot(2r) with multiplicity 3, whose eigenspace is �⊥. In the case (b), for r ∈ (0, π/4),
the principal curvatures are cot(r), −tan(r) with multiplicity 2m − 2 respectively, whose
eigenspaces are contained in �, and 2cot(2r) with multiplicity 1 and −2 tan(2r) with
multiplicity 2, whose eigenspaces are contained in �⊥.

3. Proof of Theorem 1. Before starting the proof of Theorem 1, we need a lemma.

LEMMA 3.1. There are no real hypersurfaces in �Pm, m ≥ 2, satisfying both of the
following:

(a) there exists a unit tangent vector Z ∈ �⊥ and a smooth function µ defined on
M such that AZ = µZ;

(b) there exists a distribution � ⊂ � such that φi� ⊂ �, i = 1, 2, 3, and A� =
{0}.

Proof. Suppose that there is a real hypersurface in �Pm, m ≥ 2, satisfying
statements (a) and (b). We can assume that M is connected. If m = 2, then � = �, so
that M is curvature-adapted. Then M is one of the real hypersurfaces of Theorem A.
But none of them has 0 as a principal curvature, which is a contradiction. Thus,
we have to assume m ≥ 3. Choose a point p ∈ M. As it is shown in [6], there is a
connected open neighbourhood G̃ of p in �Pm, and a basis {J1, J2, J3} defined on G̃
of the quaternionic structure of �Pm such that the corresponding vectors U1, U2, U3

are defined on G = G̃ ∩ M, and U1 = Z. Take a unit X ∈ � defined on G. Then
AX = Aφ1X = 0. Putting Y = φ1X and inserting X and Y in (2.6), by (2.4) and (2.7),

g((∇X A)Y − (∇Y A)X, U1) =
3∑

k=1

{−2g(φkX, Y )g(Uk, U1)} = −2

= −g(A∇X Y, U1) + g(A∇Y X, U1)

= µ{−g(∇X Y, U1) + g(∇Y X, U1)}
= µ{g(Y, φ1AX) − g(X, φ1AY )} = 0,

which is a contradiction. �
Proof of Theorem 1: Given a point p ∈ M, let G be a connected neighbourhood of

p ∈ M where the local vector fields N, U1, U2, U3, etc. are defined. As is it shown in
[10], shrinking G if necessary, we can assume

g(AUi, Uj) = 0, for any i, j ∈ {1, 2, 3}, i 
= j on G.
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We will use this assumption as well as equations (2.1), (2.3), (2.2) and (2.4) very often,
although we may not explicitly say it. From now on, all the computations will be made
on G unless otherwise stated.

From (2.5) and our hypothesis, as RU1 (RU2 (U1)) = 0, we have

− g(AU2, U2)g(AU1, U1)U1 + g(AU2, U2)(1 − g(AU1, AU1))AU1

+ g(AU1, U1)g(AU2, U2)A2U1 = 0. (3.1)

This means that at each point p ∈ G, either g(AU2, U2) = 0 or −g(AU1, U1)U1 + (1 −
g(AU1, AU1))AU1 + g(AU1, U1)A2U1 = 0.

From RU1 (RU2 (U3)) = RU2 (RU1 (U3)) we obtain

3g(AU1, U1)AU3 + 3g(AU2, U2)g(AU3, U3)U3 − g(AU2, U2)g(AU3, AU1)AU1

= 3g(AU2, U2)AU3 + 3g(AU1, U1)g(AU3, U3)U3 − g(AU1, U1), g(AU3, AU2)AU2.

(3.2)

If we take the scalar product of (3.2) with U1 we get

g(AU1, U1)g(AU2, U2)g(AU3, AU1) = 0.

Similarly, we obtain

g(AUi, Ui)g(AUj, Uj)g(AUk, AUi) = 0, for distincti, j, k ∈ {1, 2, 3}. (3.3)

Thus, if at a point q ∈ G, g(AU3, AU1) and g(AU3, AU2) are both nonzero, we get
g(AU1, U1)g(AU2, U2) = 0, so that either g(AU1, U1) = 0 or g(AU2, U2) = 0 at q. If
g(AU1, U1) = 0, from (3.2), then 3g(AU2, U2){g(AU3, U3)U3 − g(AU3, AU1)AU1} =
3g(AU3, U3)U3 − g(AU3, AU1)AU1 = 3AU3. Taking the scalar product with AU1

we get (3 + ‖AU1‖2)g(AU3, AU1) = 0, which is a contradiction. Similarly, we get a
contradiction if g(AU2, U2) = 0.

If at a point q ∈ G, g(AU3, AU1) is zero and g(AU3, AU2) is not zero, then g(AU1,

U1)g(AU2, U2) = 0. Therefore, either g(AU1, U1) = 0 or g(AU2, U2) = 0 at q. If g(AU1,

U1) = 0, from (3.2), g(AU2, U2)g(AU3, U3)U3 = g(AU2, U2)AU3. If g(AU2, U2) 
= 0,
AU3 = g(AU3, U3)U3, that is to say, U3 is principal at q. A similar result is obtained if
we suppose g(AU3, AU1) 
= 0 and g(AU3, AU2) = 0 at q ∈ G.

If at a point q ∈ G, g(AU3, AU1) = g(AU3, AU2) = 0, then from (3.2) we obtain
g(AU1, U1)AU3 + g(AU2, U2)g(AU3, U3)U3 = g(AU2, U2)AU3 + g(AU1, U1)g(AU3,

U3)U3. This yields {g(AU1, U1)−g(AU2, U2)}AU3 ={g(AU1, U1)−g(AU2, U2)}g(AU3,

U3)U3. If at q ∈ G, g(AU1, U1) 
= g(AU2, U2), then AU3 = g(AU3, U3)U3, that is to
say, U3 is principal at q ∈ G.

Summing up, on a connected neighbourhood G of any point p ∈ M, there are two
possibilities. Either

g(AU1, AU3) = g(AU2, AU3) = 0. In this case,
(3.4)

either g(AU1, U1) = g(AU2, U2) or U3 is principal.

or

g(AU1, U1)g(AU2, U2) = 0. In this case, either

g(AU1, U1) = g(AU2, U2) = 0, or there exists i, j ∈ {1, 2}, i 
= j, (3.5)

such that g(AUi, Ui) = 0, g(AUj, Uj) 
= 0, and U3 is principal.

Similar results to (3.4) and (3.5) hold for a cyclic permutation of (1, 2, 3).
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Now, we consider RU1 (RU2 (X)) = RU2 (RU1 (X)) for any X ∈ �,

−g(AU2, U2)g(AX, U1)U1 + 3g(AU2, U2)g(AX, U3)U3 − g(AU1, U1)g(AX, U2)A2U2

− g(AU2, U2)g(AX, AU1)AU1 + g(AX, U2)g(AU2, AU1)AU1

= −g(AU1, U1)g(AX, U2)U2 + 3g(AU1, U1)g(AX, U3)U3

− g(AU2, U2)g(AX, U1)A2U1 − g(AU1, U1)g(AX, AU2)AU2

+ g(AX, U1)g(AU1, AU2)AU2. (3.6)

Developing RX (RU1 (U2)) = RU1 (RX (U2)) for any unit X ∈ �,

−g(AU1, U1)g(AU2, X)X + 3g(AU1, U1)
3∑

i=1

g(AU2, φiX)φiX + 3g(AX, X)AU2

−3g(U2, AX)AX − g(AU1, U1)g(AU2, AX)AX

= g(AU2, X)g(AU1, X)U1 − 3g(AU2, X)g(AU3, X)U3 + 3g(AX, X)g(AU2, U2)U2

−3g(AU2, X)2U2 − g(AU1, U1)g(AU2, X)A2X − g(AX, X)g(AU2, AU1)AU1.

(3.7)

In order to prove the theorem, and bearing in mind (3.4) and (3.5), we discuss the
following cases. All the computations will be made on G, shrinking it if necessary.

Case 1. Suppose g(AUi, Ui) = 0, i = 1, 2, 3, on G. This implies AUi ∈ �, i =
1, 2, 3. From (3.7), for all unit X ∈ �,

3g(AX, X)AU2 − 3g(U2, AX)AX

= g(AU2, X)g(AU1, X)U1 − 3g(AU2, X)g(AU3, X)U3

−3g(AU2, X)2U2 − g(AX, X)g(AU2, AU1)AU1. (3.8)

Taking the scalar product of (3.8) and U1 we get

− 3g(U2, AX)g(AX, U1) = g(U2, AX)g(AX, U1).

By similar reasonings taking cyclic permutations of (1, 2, 3), we have

g(AUi, X)g(AUj, X) = 0, (3.9)

for any X ∈ � on G, and any i, j ∈ {1, 2, 3}, i 
= j. This implies g(AUi, AUj) = 0 for any
i, j ∈ {1, 2, 3}, i 
= j. By (3.8) and (3.9), and similar expressions we obtain

g(Ui, AX)AX = g(AUi, X)2Ui + g(AX, X)AUi, (3.10)

for any unit X ∈ �, i ∈ {1, 2, 3} on G. Now, as AUi ∈ �, given i 
= j, we put X =
AUi + AUj and we insert it in (3.9), so that ‖AUj‖2‖AUi‖2 = 0. Therefore, at most one
of the vectors AUi 
= 0 at a certain point q ∈ G. Suppose that there is a point q ∈ G such
that AU1(q) 
= 0. Then, there is an open neighbourhood V ⊂ G of p on which AU1 =
δX1 ∈ �, where δ ∈ C∞(V ), X1 is a unit vector lying in � on V , and AU2 = AU3 = 0
on V . If we take X ∈ � orthogonal to X1, and we insert it in (3.10), g(AX, X) = 0,
that is to say, g(AX, Y ) = 0 for any X, Y ∈ � orthogonal to X1. Moreover, if we insert
X1 in (3.10), then AX1 = δU1 + g(AX1, X1)X1. As m ≥ 3, Q(X1)⊥ ∩ � 
= {0}. From all
this, if X ∈ Q(X1)⊥ ∩ �, then AX = 0, and AU2 = 0. But this is impossible due to
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Lemma 3.1. Therefore, AUi = 0 for all i ∈ {1, 2, 3} at any point of G, that is to say, G
is a curvature-adapted real hypersurface in �Pm.

Case 2. Suppose g(AU1, U1) = g(AU2, U2) = 0 and g(AU3, U3) 
= 0 on G.
From (3.5) we have AU1 = AU2 = 0. Shrinking G if necessary, we can write AU3 =

g(AU3, U3)U3 + δX3, where X3 ∈ � is a unit tangent vector to M on G and δ ∈ C∞. It is
easy to obtain a similar equation to (3.7) by changing U2 by U3, so that δg(AX, X)X3 =
0 for any X ∈ � ∩ Span{X3}⊥ on G. Thus, if there is an open subset V ⊂ G where δ 
= 0,
we get a contradiction by a similar reasoning as in the case 1, using Lemma 3.1. As
δ is continuous, δ vanishes on the whole G and then G is a curvature-adapted real
hypersurface in �Pm.

Case 3. Suppose g(AU1, U1) = 0 and g(AU2, U2)g(AU3, U3) 
= 0 on G.
From (3.5), U2 and U3 are principal and by (3.3), g(AU1, AU2) = g(AU1, AU3) =

0. This and (3.4) imply that either U1 is also principal or g(AU2, U2) = g(AU3, U3).
Suppose that there is a point q ∈ G where U1 is not principal. Then, there is a connected
open subset V ⊂ G where 0 
= AU1 ∈ �. On it, g(AU2, U2) = g(AU3, U3). There is a
non-vanishing C∞ function γ defined on V such that AU2 = γ U2, AU3 = γ U3. By
(3.6), given X ∈ � on V ,

g(AX, U1)U1 + g(AX, AU1)AU1 = g(AX, U1)A2U1. (3.11)

Taking the scalar product of (3.11) with U1, then g(AX, U1)(1 − g(AU1, AU1)) = 0
for all X ∈ � on V . As M is not curvature-adapted at any point of V, g(AX, U1) 
= 0
for some X ∈ � and then g(AU1, AU1) = 1. This allows us to write AU1 = X1, where
X1 ∈ � is a unit tangent vector to V . Then from (3.11) we obtain g(AX, X1) = 0 for
any X ∈ � ∩ Span{X1}⊥ and AX1 = U1 + g(AX1, X1)X1.

Take unit X2, X3 ∈ � ∩ Span{X1}⊥ on V . We must have RX2 (RX3 (U1)) =
RX3 (RX2 (U1)). By (2.5),

g(AX3, X3)
3∑

k=1

g(X1, φkX2)φkX2 = g(AX2, X2)
3∑

k=1

g(X1, φkX3)φkX3. (3.12)

Take X3 ∈ Q(X1)⊥ ∩ �, and X2 = φ1X1, and insert them in (3.12). Now we
get g(AX3, X3) = 0. If we take X2, X3 ∈ Q(X1) ∩ Span{X1}⊥, from (3.12) we obtain
g(AX3, X3)X1 = g(AX2, X2)X1, that is to say, g(AX3, X3) = g(AX2, X2). Lemma 3.1
readily gives now a contradiction. Therefore, M is curvature-adapted on G.

Case 4. Suppose g(AUi, Ui) 
= 0, i = 1, 2, 3, on G. From (3.3) we know
g(AUi, AUj) = 0 for any i, j ∈ {1, 2, 3}, i 
= j.

Case 4.1. If g(AUi, Ui) 
= g(AUj, Uj) for all i, j ∈ {1, 2, 3}, i 
= j. From (3.4), all
Ui, i ∈ {1, 2, 3}, are principal. Then, G is a curvature-adapted real hypersurface in
�Pm with three distinct principal curvatures on �⊥. But this is impossible due to
Theorem A.

Case 4.2. We suppose g(AU1, U1) = g(AU2, U2) 
= g(AU3, U3) on G.
If M is curvature-adapted on G, we simply resort to Theorem A. Thus, we suppose

that there is a point q ∈ G where M is not curvature-adapted. From (3.4), U1, U2

are principal with non-vanishing principal curvature γ , defined on G. Then, U3 is
not principal, and there is an open subset V ⊂ G where U3 is not principal. We put
AU3 = γ3U3 + εX3, where γ3, ε ∈ �∞(V ), and X3 ∈ � is a unit tangent vector to V .
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By (3.6), taking a cyclic permutation of (1, 2, 3) we get

g(AX, U3)A2U3 = g(AX, U3)U3 + g(AX, AU3)AU3,

for any X ∈ � on V . If we choose X ∈ � ∩ Span{X3}⊥ and insert it in the above
equation, then εg(AX, X3)AU3 = 0, and as ε 
= 0, X3 
= 0, then g(AX, X3) = 0. This
case is finished by a similar reasoning as in the case 3.

Case 4.3. g(AUi, Ui) = g(AUj, Uj) 
= 0 for any i, j,∈ {1, 2, 3}.
From (3.3), g(AUi, AUj) = 0 for any i, j ∈ {1, 2, 3}, i 
= j. We denote the �-

component of a tangent vector X to M by (X)∗. If we call �1 = Span{(AUi)∗ : i =
1, 2, 3}, we will discuss on the dimension of �1.

Case 4.3.1. Let q ∈ G be a point where dim�1 = 0. M is curvature-adapted at q.
Case 4.3.2. Let q ∈ G be a point where dim�1 = 1. There is an open

neighbourhood of q contained in G where we can assume AU1 = γ U1 + δX1, γ, δ

being non-vanishing C∞ functions defined on V , and X1 ∈ � a unit tangent vector to
V . Moreover, AU2 = γ U2 and AU3 = γ U3. Once again, a similar reasoning as above
making use of (3.6) makes us get a contradiction.

Case 4.3.3. Let q ∈ G be a point where dim�1 = 2. There is an open
neighbourhood V of q contained in G where we can assume AU1 = γ U1 +
δ1X1 and AU2 = γ U2 + δ2X2, where γ, δ1, δ2 are non-vanishing C∞ functions defined
on V , and X1, X2 ∈ � are orthonormal tangent vectors to V . As a consequence, AU3 =
γ U3 on V . From (3.6) we have g(AX, U1)U1 + g(AX, U2)A2U2 + g(AX, AU1)
AU1 = g(AX, U2)U2 + g(AX, U1)A2U1 + g(AX, AU2)AU2. If we take X ∈ � ∩
Span{X1}⊥ and insert it in the above expression, and taking the scalar product
and U1, we obtain γ δ1g(AX, X1) = 0. This yields g(AX, X1) = 0. Similarly, for any
X ∈ � ∩ Span{X2}⊥ we see

g(AX, Xi) = 0, for any X ∈ �, g(X, Xi) = 0, i = 1, 2, on V. (3.13)

Take a unit Y ∈ � ∩ Span{X1, X2}⊥. Developing RX2 (RY (U1)) = RY (RX2 (U1)) we
get

g(AY, Y )
3∑

i=1

g(X1, φiX2)φiX2 = g(AX2, X2)
3∑

i=1

g(X1, φiY )φiY. (3.14)

If we choose X ∈ � such that g(X, X2) = 0, and we insert it in (3.7) we obtain

0 = γ

3∑

i=1

g(X2, φiX)φiX + g(AX, X)X2. (3.15)

According to this equation, g(AX1, X1) 
= 0 if and only if Q(X1) = Q(X2) and
g(AX1, X1) = 0 if and only if Q(X1) ⊥ Q(X2). Once again, we need to discuss two
subcases:

Case 4.3.3.1. There is a point x ∈ V where g(AX1, X1) 
= 0. Then, there is an open
subset W ⊂ V where g(AX1, X1) 
= 0, so that g(AX, X) = −γ for any unit X ∈ Q(X1)
which is orthogonal to X2 on W . Similarly, we obtain g(AX2, X2) = −γ . By (3.14),
g(AY, Y ) = 0 for any Y ∈ � ∩ Q(X1)⊥. This implies g(AY, Z) = 0 for any orthogonal
Y, Z ∈ � ∩ Q(X1)⊥. We choose unit Z ∈ Q(X1) and unit Y ∈ Q(X1)⊥ ∩ �. From our
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hypothesis, 0 = RY (RZ(Y )) and by (2.5) we have

0 = g(AZ, Z)(1 − ‖AY‖2)AY − g(AZ, Y ){AZ − g(AZ, Y )Y

+ 3
3∑

i=1

g(AZ, φiY )φiY − g(AZ, AY )AY} (3.16)

If we insert Z = X1 in (3.16), then 0 = −γ (1 − ‖AY‖2)AY , so that AY = ‖AY‖2AY .
As g(AY, Z) = 0 for any Y, Z ∈ � ∩ Q(X1)⊥, we know AY ∈ Q(X1) ∩ Span{X1, X2}⊥.
Thus, at most there are two linearly independent tangent vector fields Y1, Y2 ∈ � ∩
Q(X1)⊥ such that ‖AYi‖ = 1, i = 1, 2, and if Z ∈ � ∩ Q(X1)⊥ ∩ Span{Y1, Y2}⊥, then
AZ = 0.

We choose X3, X4 such that Q(X1) = Span{X1, X2, X3, X4} is an orthonormal basis
satisfying g(AX3, X4) = 0. If we insert Z = X3 in (3.16), we get

0 = g(AX3, Y ){AX3 − g(AX3, Y )Y + 3
3∑

i=1

g(AX3, φiY )φiY − g(AX3, AY )AY},

for any Y ∈ � ∩ Q(X1)⊥. Suppose that there is a unit tangent vector field Y1 ∈ � ∩
Q(X1)⊥ on W such that g(AX3, Y1) 
= 0. Then

0 = AX3 − g(AX3, Y1)Y1 + 3
3∑

i=1

g(AX3, φiY1)φiY1 − g(AX3, AY1)AY1.

If we take the scalar product of the above equation and φiY1, we get 0 = g(AX3, φiY1).
This yields

0 = AX3 − g(AX3, Y1)Y1 − g(AX3, AY1)AY1. (3.17)

Taking the scalar product of (3.17) and X3 (respectively, X4), we obtain 0 = −γ −
g(AX3, AY1)g(AY1, X3), 0 = g(AX3, AY1)g(AY1, X4). From here, g(AY1, X4) = 0, that
is to say, AY1 ∈ Q(X1) ∩ Span{X1, X2, X4}⊥, and therefore AY1 = g(AY1, X3)X3, but
since AY1 
= 0, we know ‖AY1‖ = 1 and up to a change of sign, g(AX3, Y1) = 1. Thus,
AX3 = −γ X3 + Y1, AY1 = X3. We obtain a similar result if we exchange X3 and X4.

Firstly, if X3 and X4 are not principal on a certain open subset contained on W ,
there are orthonormal Y1, Y2 ∈ � ∩ Q(X1)⊥ such that

AX3 = −γ X3 + Y1, AY1 = X3,

AX4 = −γ X4 + Y2, AY2 = X4, (3.18)

AZ = 0 for all Z ∈ � ∩ Q(X1)⊥ ∩ Span{Y1, Y2}⊥.

The dimension of ker A is dim ker A = dim� ∩ Q(X1)⊥ ∩ Span{Y1, Y2}⊥ = 4m −
10 ≥ 2. Given Z1, Z2 ∈ ker A, by (2.6), 2g(Z1, φ3Z2) = g((∇Z1 A)Z2 − (∇Z2 A)Z1, U3) =
γg([Z2, Z1], U3) = γ {g(Z2, φ3AZ1) + g(Z1, φ3AZ2)} = 0, that is to say, φ3 ker A ⊂
(kerA)⊥. But by (2.3), φ3 ker A ⊂ Span{Y1, Y2}, and then 4m − 10 = dim ker A ≤ 2,
which implies m ≤ 3. Moreover, φ3 ker A = Span{Y1, Y2}, yielding ker A =
Span{φ3Y1, φ3Y2}. Now, we insert φ3Y1 and X3 in (2.6), bearing in mind (3.18),

g
((∇φ3Y 1 A)X3 − (∇X3 A

)
φ3Y1, U3

) = 2g(φ3Y1, φ3X3) = 0

= g
(∇φ3Y1 AX3, U3

) + g
(
A∇X3φ3Y1, U3

)

= −g(AX3, φ3Aφ3Y1) − γg(φ3Y1, φ3AX3) = −γg(Y1, AX3) = −γ,

which is a contradiction.
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Secondly, we assume that X3 is not principal and X4 is principal on a certain open
subset included in W . We have now AZ = 0 for all Z ∈ � ∩ Q(X1)⊥ ∩ Span{Y1}⊥. In
particular, Aφ1Y1 = Aφ2Y2 = 0. By (2.6), a similar computation as above considering
g((∇φ1Y 1 )A)φ2Y1 − (∇φ2Y1 A)φ1Y1, U3) gives a contradiction.

Thirdly, if X3 and X4 are principal, we know g(AX3, Y ) = g(AX4, Y ) = 0 for all
Y ∈ � ∩ Q(X1)⊥ on the whole W . This together with the fact that g(AY, Y ) = 0 for
all Y ∈ � ∩ Q(X1)⊥ implies AY = 0 for all Y ∈ � ∩ Q(X1)⊥. Lemma 3.1 gives now a
contradiction.

Case 4.3.3.2. g(AX1, X1) = 0 on the whole V . We already have pointed out that
in this case, Q(X1) ⊥ Q(X2). We insert X ∈ � ∩ Span{X1, X2}⊥ in (3.7), bearing in
mind (3.12), and we obtain g(AX, X)γ U2 = g(AX, X)AU2 = g(AX, X){γ U2 + δ2X2},
which implies g(AX, X) = 0. This together with (3.12) yields AX = 0 for all X ∈
� ∩ Span{X1, X2}⊥. In particular, Aφ1X1 = Aφ2X2 = 0. Developing

g
((∇φ1X1 )A)φ2X1 − (∇φ2X1 A)φ1X1, U3

)
,

we get a contradiction as above
Case 4.3.4. Finally, we study the case in which there is a point q ∈ G where

dim�1 = 3. There exist an open neighbourhood V of p contained in G, three
orthonormal tangent vectors X1, X2, X3 ∈ �, and δ1, δ2, δ3 ∈ C∞(V ) such that AUi =
γ Ui + δiXi, i = 1, 2, 3. As above, from (3.6), we get g(AX, Xi) = 0 for any X ∈
� ∩ Span{Xi}⊥ and i ∈ {1, 2, 3}. This means

AUi = γ Ui + δiXi, AXi = δiUi + g(AXi, Xi)Xi, i = 1, 2, 3 on V. (3.19)

Now we take a unit vector Y ∈ Span{X1, X2, X3}⊥ ∩ �. Developing RX2 (RY (U1)) =
RY (RX2 (U1)) we obtain a similar formula to (3.14). Given X ∈ � ∩ Span{X2}⊥, by (3.7),
we obtain a similar formula to (3.15). We have to make a similar discussion to the above
case.

Case 4.3.4.1. There is a point x ∈ V where g(AX1, X1)g(AX2, X2)g(AX3, X3) 
= 0.
As in the case 4.3.3.1, Q(X1) = Q(X2) = Q(X3). By repeating the computations,
we obtain g(AX, X) = −γ for all unit X ∈ Q(X1) that is orthogonal to X2 and
g(AX2, X2) = −γ . By (3.14), g(AY, Y ) = 0 for all Y ∈ Q(X1)⊥. We also obtain a
formula like (3.16). Repeating the computations we have 0 = (1 − ‖AY‖2)AY for
all Y ∈ Q(X1)⊥. We extend {X1, X2, X3} to an orthonormal basis {X1, X2, X3, X4} of
Q(X1).

Suppose that there is a unit Y ∈ Q(X1)⊥ such that ‖AY‖ = 1 on V (or in a
smaller open subset). The same reasoning as in case 4.3.3.1 shows AZ = 0 for all Z ∈
Q(X1)⊥ ∩ Span{Y}⊥, AY = X4, AX4 = −γ X4 + Y . If we develop Rφ1Y (RU1 (X4)) =
RU1 (Rφ1Y (X4)), we get 0 = 3g(AX4, Y )Y , that is to say, Y = 0, which is a contradiction.

Therefore, given Y ∈ Q(X1)⊥, AY = 0. Take a unit Y ∈ Q(X1)⊥. By (2.6),
developing (∇Y A)φ1Y − (∇φ1Y A)Y we obtain

A[φ1Y, Y ] = −2U1.

If we take scalar product of this equation and U1 (respectively, X1), we see −2 =
δ1g([φ1Y, Y ], X1), respectively 0 = −γg([φ1Y, Y ], X1). These two equations clearly
contradict each other.

Case 4.3.4.2. We can assume that there is an open subset W contained in
V where Q(X1) = Q(X2) ⊥ Q(X3). By the same computations as before, we obtain
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g(AX, X) = −γ for all X ∈ Q(X1), but now AX3 = δ3U3. Again, g(AY, Y ) = 0 for all
Y ∈ � ∩ Q(X1)⊥. As in the case 4.3.4.1, either ‖AU3‖ = 0 or 1. As δ3 
= 0, AX3 =
U3. By developing Rφ3X3 (RU1 (X3)) = RU1 (Rφ3X3 (X3)), we get γ U3 = 4γ U3, which
contradicts γ 
= 0.

Case 4.3.4.3. We assume Q(Xi) ⊥ Q(Xj) for all i, j ∈ {1, 2, 3}, i 
= j. This implies
m ≥ 4. Taking X = X1 in (3.6) we see

−δ1U1 = −δ1A2U1 + γ δ1AU1.

As δ1 
= 0 we have A2U1 = U1 + γ AU1. This yields δ1AX1 = U1, and therefore AX1 =
(1/δ1)U1. But since 1/δ1 = g(AX, U1) = g(X1, AU1) = δ1, we see δ2

1 = 1. The same
reasoning implies δ2

2 = δ2
3 = 1. Up to a change of sign, we assume

AUi = γ Ui + Xi, AXi = Ui, i = 1, 2, 3. (3.20)

Similarly as above cases, from (3.7) we obtain on one hand g(AZ, Z) = 0 for all
Z ∈ Q(X1)⊥ and g(AZ, Z) = −γ for all Z ∈ Q(X1) ∩ Span{X1}⊥. But this contradicts
(3.20), since Q(X1) ⊥ Q(X3).

All these computations show that there is a dense open subset of M where it is
curvature-adapted. In such case, that open subset is locally congruent to one of the
real hypersurfaces of Theorem A. A connectedness reasoning bearing in mind the
constancy of their principal curvatures show that M is an open subset of one of them.

Finally, let M be one of the real hypersurfaces in Theorem A. By considering a
locally defined orthonormal frame of principal vectors, a long but straightforward
computation shows that all of them satisfy that any two tangent Jacobi operators
commute. This concludes the proof.
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