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ABSTRACT

It was proved in Chen’s paper (Arch. Math. (Basel) 67 (1996), 519–528) that every real hypersurface
in the complex projective plane of constant holomorphic sectional curvature 4 satisfies

δ(2) ≤ 9

4
H2 + 5,

where H is the mean curvature and δ(2) is a δ-invariant introduced by him. In this paper, we study
non-Hopf real hypersurfaces satisfying the equality case of the inequality under the condition that
the mean curvature is constant along each integral curve of the Reeb vector field. We describe how
to obtain all such hypersurfaces.
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1. Introduction

For a Riemannian m-manifold M with m > 2, Chen [2] introduced in the early 1990s the following invariant:

δ(2)(p) = τ(p)− inf{K(π) | π is a plane in TpM},

where τ is the scalar curvature and K(π) is the sectional curvature of π. If m = 3, then δ(2)(p) is equal to the
maximum Ricci curvature function Ric on M defined by Ric(p) = max{S(X,X) | X ∈ TpM, ||X|| = 1}, where
S is the Ricci tensor. For general δ-invariants, see [4] for details.

It was proved in [3] that every real hypersurface in the complex projective space CPn of complex dimension
n and constant holomorphic sectional curvature 4 satisfies

δ(2) ≤ (2n− 1)2(2n− 3)

4(n− 1)
H2 + 2n2 − 3, (1.1)

where H denotes the mean curvature. A real hypersurface in CPn is said to be δ(2)-ideal if it attains equality in
(1.1) at each point. Chen [3] completely classified δ(2)-ideal Hopf real hypersurfaces in CPn. In [7], the author
proved that a non-Hopf real hypersurface with constant mean curvature in CP 2 is δ(2)-ideal if and only if it
is a minimal ruled real hypersurface. In this paper, we classify δ(2)-ideal non-Hopf real hypersurfaces in CP 2

whose mean curvature is constant along each integral curve of the Reeb vector field.
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2. Preliminaries

Let M be a real hypersurface in the complex projective space CPn. We denote by J the almost complex
structure of CPn. For a unit normal vector field N , the vector field on M defined by ξ = −JN is called the Reeb
vector field. If ξ is a principal curvature vector at every point of M , then M is said to be Hopf.

LetH be the holomorphic distribution defined byH =
⋃
p∈M{X ∈ TpM | 〈X, ξ〉 = 0}, where 〈·, ·〉 denotes the

metric of CPn. If H is integrable and each leaf of its maximal integral manifolds is a totally geodesic complex
hypersurface, then M is said to be ruled.

Denote by ∇ and ∇̃ the Levi-Civita connections on M and CPn, respectively. The Gauss and Weingarten
formulas are respectively given by

∇̃XY = ∇XY + 〈AX,Y 〉N,
∇̃XN = −AX

for tangent vector fields X , Y and a unit normal vector field N , where A is the shape operator with respect to
N . The function H = trA/(2n− 1) is called the mean curvature. If it vanishes identically, then M is said to be
minimal.

For any vector field X tangent to M , we denote the tangential component of JX by φX . Then by the Gauss
and Weingarten formulas, we have

∇Xξ = φAX. (2.1)
We denote by R the Riemannian curvature tensor of M . Then, the equations of Gauss and Codazzi are
respectively given by

R(X,Y )Z = 〈Y,Z〉X − 〈X,Z〉Y + 〈φY,Z〉φX − 〈φX,Z〉φY (2.2)
− 2 〈φX, Y 〉φZ + 〈AY,Z〉AX − 〈AX,Z〉AY,

(∇XA)Y − (∇YA)X = 〈X, ξ〉φY − 〈Y, ξ〉φX − 2 〈φX, Y 〉 ξ. (2.3)

3. δ(2)-ideal real hypersurfaces

Applying [3, Theorem 2] to real hypersurfaces in CPn, we have the following general inequality.

Theorem 3.1. Let M be a real hypersurface in CPn. For any point p ∈M and any plane π ⊂ TpM , we have

τ −K(π) ≤ (2n− 1)2(2n− 3)

4(n− 1)
H2 + 2n2 − 3− 3 〈Je1, e2〉2 , (3.1)

where {e1, e2} is an orthonormal basis of π. The equality sign in (3.1) holds at a point p ∈M if and only if there exists an
orthonormal basis {e1, e2, . . . , e2n−1} at p such that the shape operator at p is represented by a matrix

A =


α β 0 . . . 0
β γ 0 . . . 0
0 0 µ . . . 0
...

...
...

. . .
...

0 0 0 . . . µ

 , (3.2)

where α+ γ = µ.

We note that 〈Je1, e2〉2 in (3.1) is independent of the choice of the orthonormal basis {e1, e2} of π.
The following Corollary immediately follows from Theorem 3.1.

Corollary 3.1 ([3]). Let M be a real hypersurface in CPn. Then, we have

δ(2) ≤ (2n− 1)2(2n− 3)

4(n− 1)
H2 + 2n2 − 3 (3.3)

at each point of M . The equality sign in (3.3) holds at a point p ∈M if and only if there exists an orthonormal basis
{e1, e2, . . . , e2n−1} at p such that

(1) 〈Je1, e2〉 = 0,
(2) K(e1 ∧ e2) = infK,
(3) the shape operator at p is represented by a matrix (3.2) with α+ γ = µ.
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Remark 3.1. It follows from (3.1) that if (1) and (3) in Corollary 3.1 hold, then (2) is automatically satisfied.
A real hypersurface in CPn is said to be δ(2)-ideal if it attains equality in (3.3) at each point. In [3], Chen

proved that a Hopf real hypersurface in CPn is δ(2)-ideal if and only if it is an open part of one of the
following hypersurfaces: (i) a geodesic sphere with radius π/4 in CPn, (ii) a tubular hypersurface with radius
r = tan−1((1 +

√
5−

√
2 + 2

√
5)/2) over a complex quadric curve Q1 in CP 2.

We now present a class of δ(2)-ideal non-Hopf hypersurfaces in CP 2.

Example 3.1. Suppose that α(s), β(s), γ(s) and µ(s) satisfy

α′ = β(α+ γ − 3µ),

β′ = β2 + γ2 + µ(α− 2γ) + 1,

γ′ =
(γ − µ)(γ2 − αγ − 1)

β
+ β(2γ + µ),

(3.4)

on an open interval I ⊂ R, where β(s) are nowhere zero. According to Theorem 5 in [5], there exists a
smooth immersion Φ : I ×R2 → CP 2 determining a non-Hopf real hypersurface in CP 2, such that the shape
operator A is represented by (3.2) with respect to an orthonormal frame field {ξ,X, φX}, where φX = ∂/∂s.
The distribution D spanned by ξ and X is integrable, and Φ maps the R2-factors onto the D-leaves. Clearly, the
mean curvature of the hypersurface is constant along each integral curve of the Reeb vector field.

If α+ γ = µ on I , then Corollary 3.1 and Remark 3.1 imply that Φ is δ(2)-ideal. In particular, if α = γ = µ = 0
on I , then trA = 0 and 〈AX,Y 〉 = 0 for any tangent vector field X , Y on M orthogonal to ξ, and hence Φ is
minimal ruled (see [1, p.445] and [6]).

Remark 3.2. Substitution of α+ γ = µ into (3.4) gives a autonomous system. It follows from Picard’s theorem
that for given initial values α(s0) = α0, β(s0) = β0, γ(s0) = γ0 with β0 6= 0 and α0 + γ0 6= 0, the initial value
problem of (3.4) with α+ γ = µ has a unique solution satisfying β 6= 0 and α+ γ 6= 0 on some open interval
containing s0. Therefore, there exist infinity many δ(2)-ideal real hypersurfaces in CP 2 which are non-Hopf
and non-minimal.
Remark 3.3. Let M be a real hypersurface in the complex hyperbolic space CHn of constant holomorphic
sectional curvature −4. Then we have

δ(2) ≤ (2n− 1)2(2n− 3)

4(n− 1)
H2 + 6− 2n2.

The equality sign of the inequality holds identically if and only if M is an open part of the horosphere in CH2

(see [3]).

4. Main result

The following theorem is the main result of this paper.

Theorem 4.1. Let M be a δ(2)-ideal non-Hopf real hypersurface in CP 2. If the mean curvature is constant along each
integral curve of the Reeb vector field, then M is locally obtained by the construction described in Example 3.1.

Proof. Let M be a δ(2)-ideal non-Hopf real hypersurface in CP 2. Let {e1, e2, e3} be a local orthonormal
frame field described in Corollary 3.1. We put ξ = pe1 + qe2 + re3 for some functions p, q and r. It follows
from 〈Je1, e2〉 = 0 that r 〈Je3, e1〉 = r 〈Je3, e2〉 = 0. If r 6= 0, then ξ = e3. However, this contradicts 〈Je1, e2〉 = 0.
Hence, r = 0 holds, that is, ξ lies in Span{e1, e2}. We may assume that e1 = ξ and Je2 = e3. From (3) of Corollary
3.1, we see that the shape operator satisfies the following:

Aξ = (µ− γ)ξ + βe2, Ae2 = γe2 + βξ, Ae3 = µe3. (4.1)

Let Ω be an open set where β 6= 0. We work in Ω. Using (2.1) and (4.1), we get

∇e2ξ = γe3, ∇e3ξ = −µe2, ∇ξξ = βe3. (4.2)

Since 〈∇ei, ej〉 = −〈∇ej , ei〉 holds, by (4.2) we have

∇e2e2 = κ1e3, ∇e3e2 = κ2e3 + µξ, ∇ξe2 = κ3e3,

∇e2e3 = −κ1e2 − γξ, ∇e3e3 = −κ2e2, ∇ξe3 = −κ3e2 − βξ
(4.3)
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for some functions κ1, κ2 and κ3.
Assume that the mean curvature H = µ/3 is constant along each integral curve of the Reeb vector field ξ,

that is,
ξµ = 0. (4.4)

From (4.1), (4.2), (4.3) and the equation (2.3) of Codazzi, it follows that

e2µ = 0, (4.5)
e3γ = (γ − µ)κ1 + β(γ + 2µ), (4.6)

e3β = −γ2 + βκ1 − 2γµ+ µ2 + 2, (4.7)
e2β = ξγ, (4.8)
e2γ = −ξβ, (4.9)

βκ1 + (µ− γ)κ3 = β2 + γ2 − 1, (4.10)
κ2 = 0, (4.11)

e3(µ− γ) = β(κ3 − 2µ− γ). (4.12)

Taking into account (4.11), the equation (2.2) of Gauss for 〈R(e2, e3)e3, e2〉 and 〈R(ξ, e2)e3, e2〉 yields

e3κ1 = 2µγ + κ21 + (γ + µ)κ3 + 4, (4.13)
ξκ1 = e2κ3. (4.14)

Using (4.2), (4.3), (4.4) and (4.5) we have

0 = [e2, ξ]µ = (∇e2ξ −∇ξe2)µ = (γ − κ3)e3µ. (4.15)

Thus, we obtain that γ = κ3 or e3µ = 0.
Case (a): e3µ = 0 on an open subset U ⊂ Ω. In this case, combining (4.4) and (4.5) implies that µ is constant,

that is, the mean curvature is constant on U . Hence, by virtue of [7, Theorem 1.2], we conclude that U is minimal
ruled.

Case (b): γ = κ3 on an open subset V ⊂ Ω. In this case, since ∇e2ξ −∇ξe2 = 0 holds, the distribution D
spanned by ξ and e2 is integrable. Eliminating e3γ from (4.6) and (4.12), we obtain

e3µ = (γ − µ)κ1 + βγ. (4.16)

Equations (4.10) and (4.13) become

βκ1 = β2 + 2γ2 − µγ − 1, (4.17)

e3κ1 = κ21 + γ2 + 3γµ+ 4, (4.18)

respectively. From (4.9) and (4.14), it follows that

ξκ1 = −ξβ. (4.19)

Elimination of κ1 from (4.7) and (4.17) leads to

e3β = β2 + γ2 − 3γµ+ µ2 + 1. (4.20)

Using (4.2), (4.3), (4.6), (4.8), (4.11), (4.19) and (4.20), we have the following:

e3(ξβ) = (∇e3ξ −∇ξe3)β + ξ(e3β)

= (γ − µ)ξγ + β(ξβ) + ξ(β2 + γ2 − 3γµ+ µ2 + 1)

= 3β(ξβ) + (3γ − 4µ)ξγ, (4.21)
e3(ξγ) = (∇e3ξ −∇ξe3)γ + ξ(e3γ)

= (µ− γ)ξβ + β(ξγ) + ξ[(γ − µ)κ1 + β(γ + 2µ)]

= (4µ− γ)ξβ + (2β + κ1)ξγ. (4.22)
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Differentiating (4.17) with respect to ξ, and using (4.4) and (4.19), we obtain

(κ1 − 3β)ξβ + (µ− 4γ)ξγ = 0. (4.23)

Moreover, differentiating (4.23) with respect to e3, we have

(e3κ1 − 3e3β)ξβ + (κ1 − 3β)e3(ξβ) + (e3µ− 4e3γ)ξγ + (µ− 4γ)e3(ξγ) = 0. (4.24)

Substitution of (4.6), (4.16), (4.18), (4.20), (4.21) and (4.22) into (4.24) gives

(κ21 − 12β2 + 2γ2 + µ2 − 5µγ + 3βκ1 + 1)ξβ + (6βµ− 20βγ − 4γκ1)ξγ = 0. (4.25)

Equations (4.23) and (4.25) could be rewritten as(
a11 a12
a21 a22

)(
ξβ
ξγ

)
=

(
0
0

)
, (4.26)

where the components of the square matrix are given by

a11 = κ1 − 3β,

a12 = µ− 4γ,

a21 = κ21 − 12β2 + 2γ2 + µ2 − 5µγ + 3βκ1 + 1,

a22 = 6βµ− 20βγ − 4γκ1.

We divide Case (b) into two subcases.
Case (b.1): a11a22 − a21a12 6= 0 on an open neighborhood V1 of a point p ∈ V . In this case, by (4.26), we have

ξβ = ξγ = 0. It follows from (4.8) and (4.9) that e2β = e2γ = 0. This, together with (4.4) and (4.5), implies that
all the components of the shape operator A are constant along the D-leaves. Moreover, equations (4.6), (4.7)
and (4.12) imply that (3.4) with α+ γ = µ, where d/ds stands for the derivative with respect to e3. Note that the
existence of such a hypersurface is guaranteed by Example 3.1.

Case (b.2): a11a22 − a21a12 = 0 on an open neighborhood V2 of a point p ∈ V . In this case, eliminating κ1 from
this condition and (4.17) yields

p1(γ, µ)ω2 + p2(γ, µ)ω + p3(γ, µ) = 0, (4.27)
where ω = β2, and pi are polynomials given by

p1 = 16γ − 4µ,

p2 = 16γ3 − 24γ2µ+ 8γµ2 − µ3 − 2µ,

p3 = −µ(2γ2 − γµ− 1)2.

Differentiating (4.27) with respect to e3, and using (4.6), (4.16) and (4.20), we obtain

κ1(12β4 − 12β4µ+ 24β2γ3 − 56β2γ2µ+ 37β2γµ2 − 2β2γ

− 5β2µ3 + 2β2µ− 4γ5 − 4γ4µ+ 17γ3µ2 + 4γ3

− 11γ2µ3 + 2γµ4 − 6γµ2 − γ + 2µ3 + µ)

+ 76β5γ + 16β5µ+ 120β3γ3 − 192β3γ2µ+ 37β3γµ2

+ 62β3γ − 2β3µ3 − 20β3µ+ 28βγ5 − 152βγ4µ

+ 169βγ3µ2 + 36βγ3 − 76βγ2µ3 − 48βγ2µ+ 18βγµ4

+ 42βγµ2 − βγ − 2βµ5 − 10βµ3 − 4βµ = 0.

(4.28)

Eliminating κ1 from (4.28) and (4.17), we get

q1(γ, µ)ω3 + q2(γ, µ)ω2 + q3(γ, µ)ω + q4(γ, µ) = 0, (4.29)

where ω = β2, and qi are polynomials given by

q1 =88γ + 4µ,

q2 =168γ3 − 284γ2µ+ 86γµ2 + 48γ − 7µ3 − 6µ,

q3 =72γ5 − 292γ4µ+ 316γ3µ2 + 12γ3 − 134γ2µ3

+ 14γ2µ+ 25γµ4 − 3γµ2 − 2µ5 − 3µ3 − 5µ,

q4 =(µ− γ)(2γ2 − γµ− 1)2(2γ2 + 5γµ− 2µ2 − 1).
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The resultant R1(γ, µ) of the left-hand sides of (4.27) and (4.29) with respect to ω is found to be the following
polynomial:

R1(γ, µ) = 32(4γ − µ)(2γ2 − γµ− 1)3
(

1536γ8 +

7∑
i=0

gi(µ)γi
)
,

where gi are polynomials given by

g0 = 3µ8 − 8µ6 + 6µ4,

g1 = −78µ7 + 60µ5 + 52µ3,

g2 = 720µ6 + 204µ4 + 160µ2,

g3 = −3040µ5 − 1016µ3 + 112µ,

g4 = 6752µ4 + 576µ2 + 32,

g5 = −9152µ3 − 608µ,

g6 = 8256µ2 − 192,

g7 = −4480µ.

Case (b.2.i): 4γ − µ = 0 on an open subset V21 ⊂ V2. Differentiating this condition with respect to e3, and
using (4.6), (4.16) and (4.17), we obtain

6γ3 − 9γ2µ+ 3(µ2 + 2β2 − 1)γ + (5β2 + 3)µ = 0.

Eliminating γ from this equation and 4γ − µ = 0 yields

µ(9µ2 + 208β2 + 72) = 0,

which shows that µ = γ = 0 and hence V21 is minimal ruled.
Case (b.2.ii): 2γ2 − γµ− 1 = 0 on an open subset V22 ⊂ V2. Differentiating this condition with respect to e3,

and using (4.6), (4.16) and (4.17), we get

6γ4 − 11γ3µ+ (6µ2 + 6β2 − 3)γ2 + (4µ+ 3β2µ− µ3)γ − µ2 − β2µ2 = 0.

Eliminating γ from this equation and 2γ2 − γµ− 1 = 0, we have

β2(2µ4 + 15µ2 − 9) = 0,

which implies that µ is a non-zero constant because of β 6= 0. However, this contradicts [7, Theorem 1.2].
Therefore, V22 is an empty set.

Case (b.2.iii): f(γ, µ) := 1536γ8 +
∑7

i=0 gi(µ)γi = 0 on an open subset V23 ⊂ V2. We differentiate this condition
with respect to e3, and use (4.6), (4.16) and (4.17). Then, putting ω = β2, we obtain

ω(7808γ8 − 6464γ7µ− 1856γ6µ2 − 1760γ6 + 19744γ5µ3 − 2160γ5µ

− 24576γ4µ4 − 2840γ4µ2 + 240γ4 + 16304γ3µ5 + 444γ3µ3 + 664γ3µ

+ 444γ3µ3 + 664γ3µ− 5826γ2µ6 − 1224γ2µ4 + 484γ2µ2 + 939γµ7

+ 66γµ5 + 158γµ3 − 51µ8 + 54µ6 + 14µ4)

+ 7808γ10 − 26560γ9µ+ 48256γ8µ2 − 5664γ8 − 59296γ7µ3

+ 12080γ7µ+ 50976γ6µ4 − 17256γ6µ2 + 1120γ6 − 31888γ5µ5

+ 18356γ5µ3 + 360γ5µ+ 13998γ4µ6 − 11596γ4µ4 − 960γ4µ2

− 120γ4 − 3795γ3µ7 + 6138γ3µ5 + 434γ3µ3 − 208γ3µ

+ 528γ2µ8 − 2511γ2µ6 − 1346γ2µ4 + 90γ2µ2 − 27γµ9

+ 480γµ7 + 386γµ5 + 200γµ3 − 27µ8 + 6µ6 + 38µ4 = 0.

(4.30)

Computing the resultant of the left hand sides of (4.27) and (4.30) with respect to ω, we obtain

(2γ2 − γµ− 1)

18∑
i=0

hi(µ)γi = 0,
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where hi(µ) are polynomials given by

h0 =1377µ19 − 4527µ17 + 1284µ15 + 4728µ13

+ 1468µ11 − 4908µ9,

h1 =− 66060µ18 + 143388µ16 + 45504µ14 − 74376µ12

− 90176µ10 − 24512µ8,

h2 =1397709µ17 − 1823607µ15 − 1459380µ13 − 146496µ11

+ 289596µ9 + 119828µ7,

h3 =− 17308746µ16 + 11826810µ14 + 14566216µ12 + 6035952µ10

+ 2043336µ8 + 763816µ6,

h4 =140724708µ15 − 40031364µ13 − 73716152µ11 − 29812064µ9

− 6305728µ7 + 511024µ5,

h5 =− 801068376µ14 + 56606496µ12 + 232622128µ10 + 61803936µ8

− 3732032µ6 − 1748096µ4,

h6 =3336681024µ13 + 31432448µ11 − 555418672µ9 − 78779056µ7

+ 7995776µ5 − 2476096µ3,

h7 =− 10529445888µ12 − 118321664µ10 + 1089457312µ8 + 68763808µ6

+ 4847488µ4 − 430976µ2,

h8 =25909096832µ11 − 541759232µ9 − 1652978624µ7 + 6159040µ5

+ 14641152µ3 + 625920µ,

h9 =− 50856105728µ10 + 3160585216µ8 + 1852903808µ6 − 128791552µ4

+ 12595200µ2 + 230400,

h10 =80930532864µ9 − 8199388160µ7 − 1406354176µ5 + 71124736µ3

− 3322880µ,

h11 =− 105451162624µ8 + 14029552640µ6 + 551636480µ4 − 60403200µ2

− 3379200,

h12 =112905166848µ7 − 17520074752µ5 + 317690880µ3 − 40262656µ,

h13 =− 98991538176µ6 + 16388972544µ4 − 537110528µ2 + 27381760,

h14 =70233264128µ5 − 11463987200µ3 + 441262080µ,

h15 =− 39343300608µ4 + 5679833088µ2 − 109936640,

h16 =16633511936µ3 − 1843052544µ,

h17 =− 4831674368µ2 + 243859456,

h18 =767557632µ.

Since Case (b.2.ii) does not occur, we have
∑18

i=0 hi(µ)γi = 0. The resultant R2(µ) of f(γ, µ) and
∑18

i=0 hi(µ)γi

with respect to γ is given by
R2(µ) = µ36k(µ),

where k(µ) is a polynomial in µ with constant coefficients of degree 116. Since the explicit form of k(µ) is not
important for the argument, we do not list it. Thus, we deduce that µ is constant, that is, the mean curvature is
constant. According to [7, Theorem 1.2], we conclude that V23 is minimal ruled.

Consequently, M is locally obtained by the construction described in Example 3.1. The proof is finished.
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