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Abstract. In this paper we give a characterization of real hypersurfaces of type B, that is, a tube

over a totally real totally geodesic HPn in complex two-plane Grassmannians G2ðCmþ2Þ, m ¼ 2n with
the shape operator A satisfying A�þ �A ¼ k�, k is non-zero constant, for the structure tensor �.

2000 Mathematics Subject Classification: 53C40; 53C15
Key words: Complex two-plane Grassmannians, real hypersurfaces of type B, tubes, shape operator,

K€aahler structure, quaternionic K€aahler structure

0. Introduction

In the geometry of real hypersurfaces in complex space forms MmðcÞ or in
quaternionic space forms there have been many characterizations of model hyper-
surfaces of type A1;A2;B;C;D and E in complex projective space PmðCÞ, of type
A0;A1;A2 and B in complex hyperbolic space HmðCÞ or A1;A2;B in quaternionic
projective space HPm, which are completely classified by Cecil and Ryan [6],
Kimura [7], Berndt [2], Martinez and P�eerez [8], respectively. Among them there
were only a few characterizations of homogeneous real hypersurfaces of type B in
complex projective space PmðCÞ. For example, the condition that A�þ �A ¼ k�,
k is non-zero constant, is a model characterization of this kind of type B, which is a
tube over a real projective space RPn in PmðCÞ, m ¼ 2n (see Yano and Kon [13]).

Let M be a ð4m� 1Þ-dimensional Riemannian manifold with an almost contact
structure ð�; �; �Þ and an associated Riemannian metric g. We put

!ðX; YÞ ¼ gð�X; YÞ; ð0:1Þ
where ! defines a 2-form on M and rank ! ¼ rank � ¼ 4m� 2.

If there is a non-zero valued function � such that

�gð�X;YÞ ¼ �!ðX; YÞ ¼ d�ðX;YÞ; ð0:2Þ
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the rank of the matrix ð!Þ being 4m� 2, we have

� ^ ! ^ � � � ^ !
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{2m�1 times

¼ � ^ ��ð2m�1Þ d� ^ � � � ^ d�
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{2m�1 times

6¼ 0:

Let us denote by G2ðCmþ2Þ the set of all complex 2-dimensional linear sub-
spaces of Cmþ2. We call such a set G2ðCmþ2Þ complex two-plane Grassmannians.
This Riemannian symmetric space G2ðCmþ2Þ has a remarkable geometrical struc-
ture. It is the unique compact irreducible Riemannian manifold being equipped with
both a K€aahler structure J and a quaternionic K€aahler structure J ¼ Span fJ1; J2; J3g
not containing J. In other words, G2ðCmþ2Þ is the unique compact, irreducible,
K€aahler, quaternionic K€aahler manifold which is not a hyperk€aahler manifold (see
Berndt and Suh [4], [5]).

Now we consider a ð4m� 1Þ-dimensional real hypersurface M in complex two-

plane Grassmannians G2ðCmþ2Þ. Then from the K€aahler structure of G2ðCmþ2Þ
there exists an almost contact structure � on M. If the non-zero function � satisfies
(0.2), we call M a contact hypersurface of the K€aahler manifold. Moreover, it can
be easily verified that a real hypersurface M in G2ðCmþ2Þ is contact if and only if
there exists a non-zero constant function � defined on M such that

�Aþ A� ¼ k�; k ¼ 2�: ð�Þ
The formula ð�Þ means that

gðð�Aþ A�ÞX; YÞ ¼ 2d�ðX; YÞ;
where the exterior derivative d� of the 1-form � is defined by

d�ðX; YÞ ¼ ðrX�ÞY � ðrY�ÞX
for any vector fields X;Y on M in G2ðCmþ2Þ.

On the other hand, in G2ðCmþ2Þ we are able to consider two kinds of natural
geometric conditions for real hypersurfaces M that ½�� ¼ Span f�g or D? ¼
Span f�1; �2; �3g, �i ¼ �JiN, i ¼ 1; 2; 3, where N denotes a unit normal to M, is
invariant under the shape operator A of M in G2ðCmþ2Þ. The first result in this
direction is the classification of real hypersurfaces in G2ðCmþ2Þ satisfying both two
conditions. Namely, Berndt and the present author [4] have proved the following

Theorem A. Let M be a connected real hypersurface in G2ðCmþ2Þ, m5 3.
Then both ½�� and D? are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G2ðCmþ1Þ in
G2ðCmþ2Þ, or

(B) m is even, say m ¼ 2n, and M is an open part of a tube around a totally
geodesic HPn in G2ðCmþ2Þ.

In Theorem A the vector � contained in the one-dimensional distribution ½�� is said
to be a Hopf vector when it becomes a principal vector for the shape operator A of M
in G2ðCmþ2Þ. Moreover in such a situation M is said to be a Hopf hypersurface.
Besides this, a real hypersurface M in G2ðCmþ2Þ also admits the 3-dimensional
distribution D?, which is spanned by almost contact 3-structure vector fields
f�1; �2; �3g, such that TxM ¼ D�D?. Also in the paper [5] due to Berndt and
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the present author we have given a characterization of real hypersurfaces of type A
when the shape operator A of M in G2ðCmþ2Þ commutes with the structure tensor
�, which is equivalent to the condition that the Reeb flow on M is isometric.
Moreover, in the paper due to the present author [12] we have also given a
characterization of type A by vanishing Lie derivative of the shape operator A
in the direction of the structure vector field �.

Real hypersurfaces of type B in Theorem A is just the case that the one di-
mensional distribution ½�� is contained in D?. It was shown in the paper [11] that
the tube of type B satisfies the following formula on the orthogonal complement of
the one-dimensional distribution ½��

A�� � ��A ¼ 0; � ¼ 1; 2; 3:

From this view point, the present author [11] has given a characterization that
the almost contact 3-structure tensors f�1; �2; �3g and the shape operator A of a
real hypersurface M in G2ðCmþ2Þ commute with each other as follows:

Theorem B. Let M be a Hopf real hypersurface in G2ðCmþ2Þ satisfying ð�Þ on
the orthogonal complement of the one-dimensional distribution ½��. Then M is
locally congruent to an open part of a tube around a totally geodesic HPm in
G2ðCmþ2Þ, where m ¼ 2n.

Now in this paper as another characterization of real hypersurfaces of type B in
complex two-plane Grassmannians G2ðCmþ2Þ in terms of the contact hypersurface
we want to assert the following remarkable fact:

Theorem. Let M be a real hypersurface in G2ðCmþ2Þ with constant mean
curvature satisfying

A�þ �A ¼ k�;

where the function k is non-zero and constant. Then M is congruent to an open
part of a tube around a totally geodesic HPn in G2ðCmþ2Þ, where m ¼ 2n.

1. Riemannian Geometry of G2ðCmþ2Þ
In this section we summarize basic material about G2ðCmþ2Þ, for details we

refer to [3], [4] and [5]. The special unitary group G ¼ SUðmþ 2Þ acts transitively
on G2ðCmþ2Þ with stabilizer isomorphic to K ¼ SðUð2Þ�UðmÞÞ � G. Then
G2ðCmþ2Þ can be identified with the homogeneous space G=K, which we equip
with the unique analytic structure for which the natural action of G on G2ðCmþ2Þ
becomes analytic. Denote by g and k the Lie algebra of G and K, respectively, and
by m the orthogonal complement of k in g with respect to the Cartan-Killing form
B of g. Then g ¼ k�m is an AdðKÞ-invariant reductive decomposition of g.
We put o ¼ eK and identify ToG2ðCmþ2Þ with m in the usual manner. Since B
is negative definite on g, its negative restricted to m�m yields a positive definite
inner product on m. By AdðKÞ-invariance of B this inner product can be extended
to a G-invariant Riemannian metric g on G2ðCmþ2Þ. In this way G2ðCmþ2Þ
becomes a Riemannian homogeneous space, even a Riemannian symmetric space.
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For computational reasons we normalize g such that the maximal sectional cur-
vature of ðG2ðCmþ2Þ; gÞ is eight. Since G2ðC3Þ is isometric to the two-dimensional
complex projective space CP2 with constant holomorphic sectional curvature eight
we will assume m5 2 from now on. Note that the isomorphism Spinð6Þ ’ SUð4Þ
yields an isometry between G2ðC4Þ and the real Grassmann manifold Gþ

2 ðR6Þ of
oriented two-dimensional linear subspaces of R6.

The Lie algebra k has the direct sum decomposition k ¼ suðmÞ � suð2Þ �R,
where R is the center of k. Viewing k as the holonomy algebra of G2ðCmþ2Þ, the
center R induces a K€aahler structure J and the suð2Þ-part a quaternionic K€aahler
structure J on G2ðCmþ2Þ. If J1 is any almost Hermitian structure in J, then
JJ1 ¼ J1J, and JJ1 is a symmetric endomorphism with ðJJ1Þ2 ¼ I and
TrðJJ1Þ ¼ 0. This fact will be used frequently throughout this paper.

A canonical local basis J1; J2; J3 of J consists of three local almost Hermitian
structures J� in J such that J�J�þ1 ¼ J�þ2 ¼ �J�þ1J� , where the index is taken
modulo 3. Since J is parallel with respect to the Riemannian connection �rr of
ðG2ðCmþ2Þ; gÞ, there exist for any canonical local basis J1; J2; J3 of J three local
one-forms q1; q2; q3 such that

�rrXJ� ¼ q�þ2ðXÞJ�þ1 � q�þ1ðXÞJ�þ2 ð1:1Þ

for all vector fields X on G2ðCmþ2Þ.
Let p2G2ðCmþ2Þ and W a subspace of TpG2ðCmþ2Þ. We say that W is a quater-

nionic subspace of TpG2ðCmþ2Þ if JW � W for all J 2Jp. And we say that W is
a totally complex subspace of TpG2ðCmþ2Þ if there exists a one-dimensional sub-
space V of Jp such that JW � W for all J2V and JW ? W for all J 2V? � Jp.
Here, the orthogonal complement of V in Jp is taken with respect to the bundle
metric and orientation on J for which any local oriented orthonormal frame field of
J is a canonical local basis of J. A quaternionic (resp. totally complex) submanifold
of G2ðCmþ2Þ is a submanifold all of whose tangent spaces are quaternionic (resp.
totally complex) subspaces of the corresponding tangent spaces of G2ðCmþ2Þ.

The Riemannian curvature tensor �RR of G2ðCmþ2Þ is locally given by

�RRðX; YÞZ ¼ gðY ; ZÞX � gðX; ZÞY þ gðJY; ZÞJX � gðJX; ZÞJY � 2gðJX; YÞJZ

þ
X3

�¼1

fgðJ�Y ; ZÞJ�X � gðJ�X; ZÞJ�Y � 2gðJ�X; YÞJ�Zg

þ
X3

�¼1

fgðJ�JY ;ZÞJ�JX � gðJ�JX;ZÞJ�JYg; ð1:2Þ

where J1; J2; J3 is any canonical local basis of J.

2. Some Fundamental Formulas for Real Hypersurfaces
in G2ðCmþ2Þ

In this section we derive some fundamental formulas which will be used in the
proof of our main theorem. Let M be a real hypersurface in G2ðCmþ2Þ, that is, a
hypersurface in G2ðCmþ2Þ with real codimension one. The induced Riemannian
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metric on M will also be denoted by g, and r denotes the Riemannian connection
of ðM; gÞ. Let N be a local unit normal field of M and A the shape operator of M
with respect to N.

The K€aahler structure J of G2ðCmþ2Þ induces on M an almost contact metric
structure ð�; �; �; gÞ. Furthermore, let J1; J2; J3 be a canonical local basis of J.
Then each J� induces an almost contact metric structure ð��; ��; ��; gÞ on M. Using
the above expression (1.2) for the curvature tensor �RR, the Gauss and the Codazzi
equations are respectively given by

RðX; YÞZ ¼ gðY ; ZÞX � gðX; ZÞY þ gð�Y ; ZÞ�X � gð�X; ZÞ�Y � 2gð�X; YÞ�Z

þ
X3

�¼1

fgð��Y ; ZÞ��X � gð��X; ZÞ��Y � 2gð��X; YÞ��Zg

þ
X3

�¼1

fgð���Y ;ZÞ���X � gð���X; ZÞ���Yg

�
X3

�¼1

f�ðYÞ��ðZÞ���X � �ðXÞ��ðZÞ���Yg

�
X3

�¼1

f�ðXÞgð���Y ;ZÞ � �ðYÞgð���X; ZÞg��

þ gðAY ;ZÞAX � gðAX; ZÞAY

and

ðrXAÞY � ðrYAÞX ¼ �ðXÞ�Y � �ðYÞ�X � 2gð�X;YÞ�

þ
X3

�¼1

f��ðXÞ��Y � ��ðYÞ��X � 2gð��X; YÞ��g

þ
X3

�¼1

f��ð�XÞ���Y � ��ð�YÞ���Xg;

þ
X3

�¼1

f�ðXÞ��ð�YÞ � �ðYÞ��ð�XÞg��;

where R denotes the curvature tensor of a real hypersurface M in G2ðCmþ2Þ.
The following identities can be proved in a straightforward method and will be

used frequently in subsequent calculations:

��þ1�� ¼ ���þ2; ����þ1 ¼ ��þ2;

��� ¼ ���; ��ð�XÞ ¼ �ð��XÞ;
����þ1X ¼ ��þ2X þ ��þ1ðXÞ��;
��þ1��X ¼ ���þ2X þ ��ðXÞ��þ1:

ð2:1Þ

Then in this section let us give some basic formulas which will be used
later.

Real Hypersurfaces of Type B 341



Now let us put

JX ¼ �X þ �ðXÞN; J�X ¼ ��X þ ��ðXÞN

for any tangent vector X of a real hypersurface M in G2ðCmþ2Þ, where N denotes a
normal vector of M in G2ðCmþ2Þ. Then from this and the formulas in Section 1 we
have that

ðrX�ÞY ¼ �ðYÞAX � gðAX; YÞ�; rX� ¼ �AX; ð2:2Þ

rX�� ¼ q�þ2ðXÞ��þ1 � q�þ1ðXÞ��þ2 þ ��AX; ð2:3Þ

ðrX��ÞY ¼ �q�þ1ðXÞ��þ2Y þ q�þ2ðXÞ��þ1Y þ ��ðYÞAX � gðAX;YÞ��: ð2:4Þ

Summing up these formulas, we know the following

rXð���Þ ¼ ðrX��Þ� þ ��ðrX�Þ
¼ �q�þ1ðXÞ��þ2� þ q�þ2ðXÞ��þ1� þ ��ð�ÞAX � gðAX; �Þ�� þ ���AX:

ð2:5Þ

Moreover, from JJ� ¼ J�J, � ¼ 1; 2; 3; it follows that

���X ¼ ���X þ ��ðXÞ� � �ðXÞ��: ð2:6Þ

3. Some Key Propositions

Before going to give the proof of our main Theorem in the introduction let us
check that ‘‘What kind of model hypersurfaces given in Theorem A satisfy the
formula ð�Þ.’’ In other words, it will be an interesting problem to know whether
there exist any real hypersurfaces in G2ðCmþ2Þ satisfying the condition ð�Þ.

In this section we will show that only real hypersurfaces of type B in
G2ðCmþ2Þ, that is, a tube over a quaternionic projective space HPn in G2ðCmþ2Þ
satisfies the formula A�þ �A ¼ k�, m ¼ 2n, where the function k is non-zero and
constant.

Now in order to solve such a problem let us recall some Propositions given by
Berndt and the present author [4] as follows:

For a tube of type A in Theorem A we have the following

Proposition A. Let M be a connected real hypersurface of G2ðCmþ2Þ. Suppose
that AD�D, A� ¼ ��, and � is tangent to D?. Let J1 2J be the almost Hermitian
structure such that JN ¼ J1N. Then M has three (if r ¼ �=2

ffiffiffi
8

p
) or four (other-

wise) distinct constant principal curvatures

� ¼
ffiffiffi
8

p
cot ð

ffiffiffi
8

p
rÞ; � ¼

ffiffiffi
2

p
cot ð

ffiffiffi
2

p
rÞ; 	 ¼ �

ffiffiffi
2

p
tan ð

ffiffiffi
2

p
rÞ; 
 ¼ 0

with some r2ð0; �=4Þ. The corresponding multiplicities are

mð�Þ ¼ 1; mð�Þ ¼ 2; mð	Þ ¼ 2m� 2 ¼ mð
Þ;
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and the corresponding eigenspaces we have

T� ¼ R� ¼ RJN ¼ R�1;

T� ¼ C?� ¼ C?N ¼ R�2 � R�3;

T	 ¼ fX jX?H�; JX ¼ J1Xg;
T
 ¼ fX jX?H�; JX ¼ �J1Xg;

where R�, C� and Q� repectively denotes real, complex and quaternionic span of
the structure vector � and C?� denotes the orthogonal complement of C� in H�.

For such kind of real hypersurfaces of type A mentioned above let us check
whether this type satisfies the formula ð�Þ or not.

Now let us assume that real hypersurfaces of type A satisfies the formula ð�Þ.
In Proposition A let us put X ¼ �2 2T�, � ¼ �2 ¼ �3, and � ¼ �1. Then by the
formula (2.1) we have

A��2 þ �A�2 ¼ A�2�1 þ �A�2

¼ �A�3 þ �2��2

¼ ��3�3 � �2�3

¼ �2
ffiffiffi
2

p
cot

ffiffiffi
2

p
r�3:

From this, together with the formula ð�Þ we know

�k�3 ¼ k��2 ¼ �2
ffiffiffi
2

p
cot

ffiffiffi
2

p
r �3

which means k ¼ 2
ffiffiffi
2

p
cot

ffiffiffi
2

p
r.

On the other hand, by the paper [5] of Berndt and the present author we know
that the distributions T	 and T
 in Proposition A are �-invariant, that is �T	 � T	
and �T
 � T
 respectively. By virtue of this fact we know that for any X2T	,
	 ¼ �

ffiffiffi
2

p
tan

ffiffiffi
2

p
r

A�X þ �AX ¼ �2
ffiffiffi
2

p
tan

ffiffiffi
2

p
r�X:

Then in this time k ¼ �2
ffiffiffi
2

p
tan

ffiffiffi
2

p
r. From this, together with the above formula

we get cot 2
ffiffiffi
2

p
r ¼ �1, which makes a contradiction. So real hypersurfaces of

type A can not satisfy the formula ð�Þ.
Moreover, for a tube of type B in Theorem A we introduce the following

Proposition B. Let M be a connected real hypersurface of G2ðCmþ2Þ. Suppose
that AD�D, A� ¼ ��, and � is tangent to D. Then the quaternionic dimension m
of G2ðCmþ2Þ is even, say m ¼ 2n, and M has five distinct constant principal
curvatures

� ¼ �2 tan ð2rÞ; � ¼ 2 cot ð2rÞ; � ¼ 0; 	 ¼ cot ðrÞ; 
 ¼ � tan ðrÞ
with some r2ð0; �=4Þ. The corresponding multiplicities are

mð�Þ ¼ 1; mð�Þ ¼ 3 ¼ mð�Þ; mð	Þ ¼ 4n� 4 ¼ mð
Þ
and the corresponding eigenspaces are

T� ¼ R�; T� ¼ JJ�; T� ¼ J�;T	; T
;
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where

T	 � T
 ¼ ðHC�Þ?; JT	 ¼ T	; JT
 ¼ T
; JT	 ¼ T
:

Of course we have proved that all of the principal curvatures and its eigen-
spaces of the tube of type A (resp. the tube of type B) in Theorem A satisfies all of
the properties in Proposition A (resp. Proposition B).

Now by using this Proposition B we show that a tube of type B in Theorem A,
that is, a tube over a totally geodesic HPn in G2ðCmþ2Þ, m ¼ 2n satisfies the
formula ð�Þ for a constant k ¼ 2 cot 2r as follows:

For any �2T�, � ¼ �2 tan 2r, we have

A�� þ �A� ¼ 0 ¼ k��:

For any �� 2T�, � ¼ 2 cot 2r, the eigen space T� ¼ J� gives ��� 2T� .
This implies A��� ¼ 0 for any � ¼ 1; 2; 3. From this we have the following for
k ¼ 2 cot 2r

A��� þ �A�� ¼ 2 cot 2r ���:

For any X2T	, 	 ¼ cot r we know that JT	 ¼ T
 gives

A�X þ �AX ¼ � tan r�X þ cot r�X ¼ 2 cot 2r�X:

This means that the formula ð�Þ holds for k ¼ 2 cot 2r.
Finally, for the case ��� 2T� , � ¼ 1; 2; 3, the formula ð�Þ also holds for

k ¼ 2 cot 2r.

4. Some Key Lemmas and Theorems

In order to give a characterization of type B among the classes of real hyper-
surfaces M in complex two-plane Grassmannians G2ðCmþ2Þ we will prepare some
lemmas and a proposition as follows:

Lemma 1. Let M be a real hypersurface in G2ðCmþ2Þ satisfying
A�þ �A ¼ k�;

where the function k is non-zero and constant. Then Tr A ¼ �þ nk, where
n ¼ 2m� 1

Proof. Now suppose that �Aþ A� ¼ k�. By applying � to the left, we have

�2Aþ �A� ¼ k�2:

Then it follows that

AX � �A�X � kX þ ðk � �Þ�ðXÞ� ¼ 0:

Now let us take an orthonormal basis fei j i ¼ 1; . . . ; 4m� 1g for M in above
formula. Then we have

Tr A� Tr �A�� ð4m� 1Þk þ ðk � �Þ ¼ 0: ð4:1Þ
On the other hand, we know

Tr �A� ¼ Tr A�2 ¼ �Tr Aþ �:
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Because we have

A�2X ¼ �AX þ �ðXÞA� ¼ �AX þ ��ðXÞ�:
From this, together with (4.1), we have

Tr A ¼ ð2m� 1Þk þ �;

which completes the proof of Lemma 1. &

Now let us assume that the structure vector � is principal and denote by H
the orthogonal complement of the real span ½�� of the structure vector � in TM.
Then taking an inner product of the Codazzi equation in section 2 with � and using
A� ¼ �� imply

� 2gð�X;YÞ þ 2
X3

�¼1

f��ðXÞ��ð�YÞ � ��ðYÞ��ð�XÞ � gð��X; YÞ��ð�Þg

¼ gððrXAÞY � ðrYAÞX; �Þ
¼ gððrXAÞ�;YÞ � gððrYAÞ�;XÞ
¼ ðX�Þ�ðYÞ � ðY�Þ�ðXÞ þ �gððA�þ �AÞX; YÞ � 2gðA�AX; YÞ: ð4:2Þ

Putting X ¼ �, we have

Y� ¼ ð��Þ�ðYÞ � 4
X3

�¼1

��ð�Þ��ð�YÞ ð4:3Þ

for any tangent vector field Y on M. Substituting this formula into (4.2), then we
have

� 2gð�X;YÞ þ 2
X3

�¼1

f��ðXÞ��ð�YÞ � ��ðYÞ��ð�XÞ � gð��X; YÞ��ð�Þg

¼ 4
X3

�¼1

f�ðXÞ��ð�YÞ � �ðYÞ��ð�XÞg��ð�Þ þ �gððA�þ �AÞX;YÞ

� 2gðA�AX; YÞ:
From this formula we are able to assert

Lemma 2. If A� ¼ �� and X2H with AX ¼ 	X, then

0 ¼ ð2	� �ÞA�X � ð2 þ 	�Þ�X þ 2
X3

�¼1

f2��ð�Þ��ð�XÞ� � ��ðXÞ���

� ��ð�XÞ�� � ��ð�Þ��Xg:
Lemma 3. Let M be a real hypersurface in G2ðCmþ2Þ satisfying

A�þ �A ¼ k�, k is non-zero and constant. Then � is principal. Moreover, the
principal curvature function � is constant provided that �2D? or �2D.

Proof. Then by applying the structure vector � to the above assumption in
the right side, we know �A� ¼ 0. This means A� ¼ ��, that is, the structure vector
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� is principal. Then we are able to use (4.2) and (4.3). The formula (4.3) means
that

grad � ¼ ð��Þ� þ 4
X3

�¼1

��ð�Þ���: ð4:4Þ

For the case where �2D?. We may put � ¼ �1. Then (4.4) implies

grad � ¼ ð��Þ�: ð4:5Þ

For the case where �2D. Then naturally the formula (4.4) gives (4.5). Now
differentiating (4.5), we have

rXðgrad �Þ ¼ Xð��Þ� þ ð��Þ�AX:
Then this implies

0 ¼ gðrXðgrad �Þ; YÞ � gðrYðgrad �Þ;XÞ
¼ Xð��Þ�ðYÞ � Yð��Þ�ðXÞ þ ð��Þgðð�Aþ A�ÞX; YÞ:

This gives

kð��Þgð�X; YÞ ¼ Yð��Þ�ðXÞ � Xð��Þ�ðYÞ:
From this, putting X ¼ �, we have Yð��Þ ¼ �ð��Þ�ðYÞ. Then it follows that

kð��Þgð�X; YÞ ¼ 0:

By virtue of k 6¼ 0, we have �� ¼ 0. From this, together with (4.5) we have

grad � ¼ 0;

which means that the principal curvature � is constant. &

Then by using Lemmas 1 and 3 we have the following Proposition.

Proposition 4. Let M be a real hypersurface in G2ðCmþ2Þ satisfying
A�þ �A ¼ k�, k is non-zero and constant. Then we have

2A2X � 2kAX þ ð�k þ 2ÞX

�
�
�ðXÞð2�2 � �k þ 2Þ þ 4

X
�

��ð�Þ��ðXÞ � 4
X
�

�2
�ð�Þ�ðXÞ

�
�

� 2
X
�

�
��ð�XÞ��� � ��ðXÞ�� þ �ðXÞ��ð�Þ�� þ ��ð�Þ���X

�
¼ 0;

where
P

� denotes the sum from � ¼ 1 to � ¼ 3.

Proof. Now substituting (4.3) into (4.2), we have

� 2gð�X;YÞ þ 2
X
�

f��ðXÞ��ð�YÞ � ��ðYÞ��ð�XÞ � gð��X; YÞ��ð�Þg

¼ �4
X
�

��ð�Þ��ð�XÞ�ðYÞ þ 4
X
�

��ð�Þ��ð�YÞ�ðXÞ

þ �gððA�þ �AÞX; YÞ � 2gðA�AX; YÞ: ð4:6Þ
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On the other hand, from the assumption we have

gðA�AX; YÞ ¼ kgðA�X;YÞ � gðA2�X; YÞ:

Then from this together with formula (4.6) we have

2A2�X � 2kA�X þ ð�k þ 2Þ�X � 4
X
�

��ð�Þ��ð�XÞ� � 4
X
�

��ð�Þ�ðXÞ���

¼ 2
X
�

�
���ðXÞ��� � ��ð�XÞ�� � ��ð�Þ��Xg:

Replacing X by �X, we have

2A2X ¼ 2�ðXÞA2� þ 2kAX � 2k�ðXÞA� � ð�k þ 2ÞX
þ �ðXÞð�k þ 2Þ� þ 4

X
�

��ð�Þ��ðXÞ� � 4
X
�

�2
�ð�Þ�ðXÞ�

þ 2
X
�

f��ð�XÞ��� � ��ðXÞ�� þ �ðXÞ��ð�Þ�� þ ��ð�Þ���Xg

¼
�
�ðXÞð2�2 � �k þ 2Þ þ 4

X
�

��ð�Þ��ðXÞ � 4
X
�

�2
�ð�Þ�ðXÞ

�
�

� ð�k þ 2ÞX þ 2kAX þ 2
X
�

f��ð�XÞ���

� ��ðXÞ�� þ �ðXÞ��ð�Þ�� þ ��ð�Þ���Xg:
&

Now we are going to prove a key Lemma which will be useful in the proof of
our Main Theorem.

Lemma 5. Under the same assumption as in Proposition 4 we have

Xðk � Tr AÞ ¼ �ðXÞ�ðk � Tr AÞ þ 4
X
�

��ð�XÞ��ð�Þ:

Proof. Differentiating ð�Aþ A�ÞX ¼ k�X covariantly, we have

ðrY�ÞAX þ �ðrYAÞX þ ðrYAÞ�X þ AðrY�ÞX ¼ ðYkÞ�X þ kðrY�ÞX:

Then substituting the formula (2.2) into the above equation, we have

�ðXÞfA2Y þ �AY � kAYg � gðA2X þ �AX � kAX;YÞ� þ �ðrYAÞX
þ ðrYAÞ�X ¼ ðYkÞ�X:

From this, using Proposition 4, we have

�ðXÞ
�
�AY � �k þ 2

2
Y þ

�
�ðYÞ

�
�2 � �

2
k þ 1

	

þ 2
X
�

��ð�Þ��ðYÞ � 2
X
�

�2
�ð�Þ�ðYÞ



�
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þ
X
�

f��ð�YÞ��� � ��ðYÞ�� þ �ðYÞ��ð�Þ�� þ ��ðYÞ���Yg
�

� g

�
�AX��kþ 2

2
X;Y

	
�

þ g

��
�ðXÞ

�
�2 ��

2
kþ 1

	
þ 2

X
�

��ð�Þ��ðXÞ � 2
X
�

�2
�ð�Þ�ðXÞ



�;Y

	
�

þ
X
�

gðf��ð�XÞ��� � ��ðXÞ�� þ �ðXÞ��ð�Þ�� þ ��ð�Þ���Xg;YÞ�

þ �ðrYAÞXþ ðrYAÞ�X
¼ ðYkÞ�X:

From this, contracting, we haveX
i

ðEikÞ�Ei ¼ �A� � �k þ 2

2
� � �

X
i

gðAEi;EiÞ�

þ �k þ 2

2

X
i

gðEi;EiÞ� �
X
i;�

��ð�EiÞgð���;EiÞ�

þ
X
i;�

��ðEiÞ��ðEiÞ� �
X
i;�

�ðEiÞ��ð�Þ��ðEiÞ�

�
X
i;�

��ð�Þgð���Ei;EiÞ� þ �ðrEi
AÞEi þ ðrEi

AÞ�Ei;

where
P

i (resp.
P

�) denotes the sum from i ¼ 1 to i ¼ 4m� 1 (resp. from � ¼ 1
to � ¼ 3). Then by virtue of formulas defined in (2.1) we have

X
i

ðEikÞ�Ei ¼ �A���kþ 2

2
���ðTr AÞ�þ�kþ 2

2
ð4m� 1Þ�þ 6�� 2

X
�

�2
�ð�Þ�

�
X
�

��ð�ÞðTr ���Þ�þ
X
i

�ðrEi
AÞEi þ

X
i

ðrEi
AÞ�Ei: ð4:7Þ

On the other hand, the first term in the fourth line of (4.7) becomesX
i

gð�ðrEi
AÞEi;XÞ ¼ �

X
i

gððrEi
AÞEi; �XÞ ¼ �

X
i

gðEi; ðrEi
AÞ�XÞ:

Also by virtue of the Codazzi equation in section 2 the last term of the above
equation can be changed intoX

i

gððrEi
AÞ�X � ðr�XAÞEi;EiÞ

¼
X
�

�ðXÞ�2
�ð�Þ �

X
�

��ðXÞ��ð�Þ þ
X
�

��ðXÞTr ���

� �ðXÞ
X
�

��ð�ÞTr ����
X
�

��ðXÞ��ð�Þ þ �ðXÞ
X
�

�2
�ð�Þ: ð4:8Þ
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Also let us use the Codazzi equation in the final term of the fourth line of (4.7).
Then it follows thatX
i

gð�Ei; ðrEi
AÞXÞ ¼

X
i

gð�Ei; ðrXAÞEiÞ � �ðXÞ
X
i

gð�Ei; �EiÞ

þ
X
�;i

��ð�EiÞgð���X; �EiÞ þ
X
�;i

f��ðEiÞgð��X; �EiÞ

� ��ðXÞgð��Ei; �EiÞ � 2gð��Ei;XÞ��ð�EiÞg
þ
X
�;i

f�ðEiÞ��ð�XÞ � �ðXÞ��ð�EiÞg��ð�EiÞ: ð4:9Þ

Now from the third term in the right side of (4.9) let us calculate term by term as
follows:X

�

��ð�EiÞgð���X; �EiÞ ¼ �
X
�

��ð�2���XÞ ¼
X
�

��ðXÞ��ð�Þ�
X
�

�ðXÞ�2
�ð�Þ;

X
i;�

��ðEiÞgð��X; �EiÞ ¼ �
X
�

��ð���XÞ ¼ 3�ðXÞ �
X
�

��ðXÞ�ð��Þ;

�
X
i;�

��ðXÞgð��Ei; �EiÞ ¼
X
�

��ðXÞTr���;

�2
X
i;�

gð��Ei;XÞ��ð�EiÞ ¼ �6�ðXÞ þ 2
X
�

��ð�Þ��ðXÞ;

and

�
X
�

�ðXÞ��ð�EiÞ��ð�EiÞ ¼ �3�ðXÞ þ
X
�

�ðXÞ�ð��Þ2:

Substituting all of these formulas into (4.9), we have the followingX
i

gððrEi
AÞ�Ei;XÞ ¼

X
i

gð�Ei; ðrXAÞEiÞ � ð4m� 1Þ�ðXÞ

þ 3�ðXÞ �
X
�

��ðXÞ�ð��Þ þ
X
�

��ðXÞTr ��� � 6�ðXÞ

þ 2
X
�

��ð�Þ��ðXÞ � 3�ðXÞ þ
X
�

�ðXÞ�ð��Þ2

þ
X
�

��ðXÞ��ð�Þ �
X
�

�ðXÞ��ð�Þ2: ð4:10Þ

Now substituting (4.8) and (4.10) into (4.7), then by Lemma 1 and Lemma 3 we haveX
i

ðEikÞgð�Ei;XÞ ¼ ð4mþ 4Þ�ðXÞ � 2
X
�

�2
�ð�Þ�ðXÞ �

X
�

��ð�ÞTrð���Þ�ðXÞ

�
X
i

gðEi; ðr�XAÞEiÞ �
X
�

�ðXÞ�2
�ð�Þ þ

X
�

��ðXÞ��ð�Þ
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�
X
�

��ðXÞTr ���þ�ðXÞ
X
�

��ð�ÞTr ���þ
X
�

��ðXÞ��ð�Þ

��ðXÞ
X
�

��ð�Þ2 þ
X
i

gð�Ei;ðrXAÞEiÞ

�ð4m�1Þ�ðXÞþ3�ðXÞ�
X
�

��ðXÞ�ð��Þ

þ
X
�

��ðXÞTr ��� �6�ðXÞþ2
X
�

��ð�Þ��ðXÞ

�3�ðXÞþ
X
�

�ðXÞ�ð��Þ2 þ
X
�

��ðXÞ��ð�Þ�
X
�

�ðXÞ��ð�Þ2

¼��ðXÞ�4
X
�

�2
�ð�Þ�ðXÞþ4

X
�

��ðXÞ��ð�Þ�Tr ðr�XAÞ;

where we have used that the structure vector � is principal and Tr ðrXAÞ� ¼ 0.
Then it can be written as follows:

�XðkÞ ¼ �XðTr AÞ þ �ðXÞ þ 4
X
�

�2
�ð�Þ�ðXÞ � 4

X
�

��ðXÞ��ð�Þ:

From this, replacing X by �X, we have

�2Xðk � Tr AÞ ¼ �4
X
�

��ð�XÞ��ð�Þ:

Finally, we have arrived at the following formula

Xðk � Tr AÞ ¼ �ðXÞ�ðk � Tr AÞ þ 4
X
�

��ð�XÞ��ð�Þ:

From this we complete the proof of Lemma 5. &

By Lemma 1 we know that the mean curvature is constant if and only if the
function � is constant. By the result in Lemma 5 we know that if the function
k � Tr A is constant, then X

�

��ð�XÞ��ð�Þ ¼ 0 ð4:11Þ

for any X2TxM. Then the formula (4.11) is equal toX
�

��ð�Þ��� ¼ 0: ð4:12Þ

On the other hand, the formula
P

� ��ð�Þ�2�� ¼ 0 is equivalent toX
�

��ð�Þ��� ¼ 0;

because
P

� ��ð�Þ��� is orthogonal to the structure vector field �. From this, (4.12)
is equivalent to

�ðYÞ
X
�

�2
�ð�Þ ¼

X
�

��ð�Þ��ðYÞ ¼ 0
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for any Y 2D. By virtue of this formula (4.11) is also equivalent to

�2D or �2D?: ð4:13Þ
Accordingly, by Lemma 5 we know that the constancy of the function � implies the
formula (4.13). Moreover, conversely, by Lemma 3 we are able to see that (4.13)
implies that the function � is constant. Now we summarize this content as follows:

Theorem 4.1. Let M be a real hypersurface in G2ðCmþ2Þ satisfying the formula
A�þ �A ¼ k�;

where the function k is non-zero and constant. Then the following are equivalent to
each other

(1) the mean curvature is constant,
(2) the function � is constant,
(3) �2D or �2D?.

By virtue of this theorem we also assert the following

Theorem 4.2. Let M be a real hypersurface in G2ðCmþ2Þ with constant mean
curvature satisfying the formula

A�þ �A ¼ k�;

where the function k is non-zero and constant. Then we have the following

(1) The structure vector field � is principal,
(2) The function � is constant,
(3) �2D or �2D?.

5. Proof of the Main Theorem

Let M be a real hypersurface in a two-plane complex Grassmannians G2ðCmþ2Þ
with constant mean curvature. Now let us denote by H the orthogonal compo-
nent of the structure vector � in the tangent space of M in G2ðCmþ2Þ. Then by
Theorem 4.2 let us consider the following two cases:

Now we consider the first case �2D?. In this case we may put � ¼ �1. Then by
Proposition 4 we have for any X2H ¼ ½��?

2A2X � 2kAX þ ð�k þ 2ÞX � 2
X
�

f��ð�XÞ��� � ��ðXÞ�� þ ��ð�Þ���Xg ¼ 0:

ð5:1Þ
From this formula we are able to assert the following

Proposition 5.1. Let M be a real hypersurface in G2ðCmþ2Þ satisfying the
formula ð�Þ with constant mean curvature. Then the principal curvature � is
constant and for all X2H with AX ¼ 	X one of the following two statements
holds:

(1) 2	2 � 2k	þ �k ¼ 0 and �DX ¼ ��1DX,
(2) 2	2 � 2k	þ ð�k þ 4Þ ¼ 0 and �1DX ¼ �DX.
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Proof. In order to prove this Proposition we use the formulas in (2.1) to the
formula (5.1). Then for any principal vector X2H such that AX ¼ 	X the equation
(5.1) can be given by

f2	2 � 2k	þ ð�k þ 2ÞgX þ 4f�2ðXÞ�2 þ �3ðXÞ�3g � 2�1�X ¼ 0: ð5:2Þ
Now we decompose the vector X2H as follows:

X ¼ DX þ �2ðXÞ�2 þ �3ðXÞ�3;

where DX denotes the D component of the vector X2H. Then by the formula
(2.1) again we have

�1�X ¼ �1�DX þ �2ðXÞ�2 þ �3ðXÞ�3:

From this, together with (5.2) it follows that

f2	2 � 2k	þ �k þ 2gDX þ f2	2 � 2k	þ �k þ 4g�2ðXÞ�2

þ f2	2 � 2k	þ �k þ 4g�3ðXÞ�2 � 2�1�DX ¼ 0:

From this, together with the fact that �1�D � D we have the following

f2	2 � 2k	þ ð�k þ 2ÞgDX � 2�1�DX ¼ 0;

f2	2 � 2k	þ ð�k þ 4Þg�2ðXÞ�2 ¼ 0;

f2	2 � 2k	þ ð�k þ 4Þg�3ðXÞ�3 ¼ 0:

If 2	2 � 2k	þ ð�k þ 4Þ ¼ 0, from the first equation we know DX ¼ ��1�DX,
that is, �1DX ¼ �DX. Thus we assert the formula (2) in our Proposition.

Now when we consider 2	2 � 2k	þ ð�k þ 4Þ 6¼ 0, then �2ðXÞ ¼ �3ðXÞ ¼ 0.
This means X2D. Then by the first equation we know that �1�DX and DX are
proportional. From this we have

�1�DX ¼ �DX:

If �1�DX ¼ �DX, then ð2	2 � 2k	þ �k þ 4ÞDX ¼ 0, which makes a contra-
diction. So �1�DX ¼ DX, that is �DX ¼ ��1DX. Then we have our assertion
(1). From this we complete the proof of our Proposition. &

In this section we have assumed that the mean curvature of M in G2ðCmþ2Þ is
constant. Then by Theorem 4.2 we know that the function � is constant. Accord-
ingly, all principal curvatures satisfying the formulas (1) and (2) in Proposition 5.1
are constant. Also by virtue of these two formulas the number of principal curva-
tures in the subspace H is at most four. Since the function k is given by 2� as in the
introduction, the formulas in Proposition 5.1 can be written by

	2 � k	þ �� ¼ 0 ð5:3Þ

and

	2 � k	þ ��þ 2 ¼ 0: ð5:4Þ
In (5.3) the function k ¼ 2� is given by the sum of two roots of the quadratic
equation. Then it follows that two roots are equal to each other, that is � ¼ �. By
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virtue of this fact we also know that there cannot exist any roots satisfying
the formula (5.4). So we are able to assert that H ¼ T�, where T� ¼
fX2H jAX ¼ �Xg.

Since we know that the structure vector � is principal with principal curvature
�, we assert that M is locally congruent to a totally umbilic hypersurface in
G2ðCmþ2Þ. But in a paper [10] due to the present author it is proved that there
does not exist such a real hypersurface in G2ðCmþ2Þ. So we conclude here that
the first case �2D? cannot appear.

Now let us consider the second case �2D. Then by Lemma 2 for any X2H
and A� ¼ ��, we have

0 ¼ ð2	� �ÞA�X � ð2 þ 	�Þ�X � 2
X
�

f��ðXÞ��� þ ��ð�XÞ��g; ð5:5Þ

where H ¼ ½�1; �2; �3; ��1; ��2; ��3� � G and G is the orthogonal complement of
the subspace ½�1; . . . ; . . . ; ��3� in H. Then any vector X2H can be expressed by

X ¼ GX þ
X
�

��ðXÞ�� �
X
�

��ð�XÞ���;

where GX denotes the G-component of the vector X2H. If AX ¼ 	X, then by the
assumption ðA�þ �AÞX ¼ k�X we know that A�X ¼ ðk � 	Þ�X. From this,
together with (5.5) we have

0 ¼ fð2	� �Þðk � 	Þ � ð2 þ 	�Þg�X � 2
X
�

f��ðXÞ��� þ ��ð�XÞ��g: ð5:6Þ

From this, multiplying � and using ��� ¼ ��� , � ¼ 1; 2; 3, we have

f2	2 � 2k	þ ð�k þ 2ÞgGX þ f2	2 � 2k	þ ð�k þ 2Þ þ 2g
X
�

��ðXÞ��

� f2	2 � 2k	þ ð�k þ 2Þ þ 2g
X
�

��ð�XÞ��� ¼ 0;

where we have used the above decomposition for the expression of X2H. Accord-
ingly, we are able to assert the following:

f2	2 � 2k	þ ð�k þ 2ÞgGX ¼ 0;

f2	2 � 2k	þ ð�k þ 4Þg��ðXÞ�� ¼ 0; � ¼ 1; 2; 3

f2	2 � 2k	þ ð�k þ 4Þg��ð�XÞ��� ¼ 0; � ¼ 1; 2; 3:

ð5:7Þ

From these equations we know that if 2	2 � 2k	þ ð�k þ 4Þ 6¼ 0, then the vector X
is orthogonal to �� and ��� for any � ¼ 1; 2; 3. Then naturally X ¼ GX. From this
fact we know that all of principal curvatures corresponding to eigenspaces in the
space H satisfy one of the following equations:

2	2 � 2k	þ ð�k þ 2Þ ¼ 0 or 2	2 � 2k	þ ð�k þ 4Þ ¼ 0:

On the other hand, by Theorem 4.2 the functions � and k are known to be
constant. From this together with the above equation all of the principal curvatures
are constant.
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Now without loss of generality we may put � ¼ �2 tan 2r and 	 ¼ cot r for a
real number r with 0< r< �

4
. Then by (5.6) (also by Lemma 2), we know for any

X2G withAX ¼ 	X that

A�X ¼ 
�X; 
 ¼ �	þ 2

2	� �
:

Then the function 
 ¼ � tan r. So it follows that

k ¼ 	þ 
 ¼ cot r � tan r ¼ 2 cot 2r;

which implies �k ¼ �4. Then its principal curvatures in H satisfy

	2 � k	� 1 ¼ 0 or 	2 � k	 ¼ 0:

Then, including principal curvature � the real hypersurface has at most five dis-
tinct constant principal curvatures. Then by the above formulas and the quadratic
equations the other possible principal curvatures are

� ¼ 2 cot 2r; � ¼ 0; 	 ¼ cot r; 
 ¼ � tan r:

Note that the principal curvature 	 and 
 are two different roots of the equation

2x2 � 2kxþ ð�k þ 2Þ ¼ 0;

where k ¼ 2 cot 2r.
A basic role in the geometry of Riemannian symmetric space is played by

the so-called maximal flats. In the case of G2ðCmþ2Þ, a maximal flat is a two-
dimensional totally geodesic submanifold isometric to some flat two-dimensional
torus. A non-zero tangent vector X of G2ðCmþ2Þ is said to be singular if X is
tangent to more than one maximal flat of G2ðCmþ2Þ. In G2ðCmþ2Þ there are two
types of singular tangent vectors X which are characterized by the properties
JX ? JX and JX2JX. We will have to compute explicitly Jacobi vector fields
along geodesics whose tangent vectors are all singular. For this we need the eigen-
values and eigenspaces of the Jacobi operator �RRX :¼ �RRð:;XÞX, where �RR denotes the
curvature tensor of G2ðCmþ2Þ mentioned in Section 1. If JN ?JN then the eigen-
values and eigenspaces of �RRN are given by (see Berndt and Suh [4])

0 RN � JJN ¼ N � ½�1�; �2�; �3��;
1 ðHCNÞ? ¼ ½N; �; �1; �2; �3; �1�; �2�; �3��?;
4 RJN � JN ¼ R� � ½�1; �2; �3�;

ð5:8Þ

where HCN ¼ RN � RJN � JN � JJN and ½. . . ; . . . ; . . .� denotes the linear real
span of the given vectors.

For p2M denote by cp the geodesic in G2ðCmþ2Þ with cpð0Þ ¼ p and
_ccpð0Þ ¼ Np, and by F the smooth map

F : M ! G2ðCmþ2Þ; p 7! cpðrÞ:
Geometrically, F is the displacement of M at distance r in direction of the normal
field N. For each p2M the differential dpF of F at p can be computed by means of
Jacobi vector fields by

dpFðXÞ ¼ ZXðrÞ:
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Here, Z is the Jacobi vector field along cp with initial values ZXð0Þ ¼ X and
Z 0
Xð0Þ ¼ �AX. Using the explicit descriptions (5.8) of the Jacobi operator �RRN

for the case JN ? JN mentioned above and of the shape operator A of M we get

ZXðrÞ ¼
fcos ð2rÞ � �

2
sin ð2rÞgEXðrÞ if �2f�; �g

fcos ðrÞ � � sin ðrÞgEXðrÞ if �2f	; 
g
f1 � �gEXðrÞ if �2f�g

8<
:

where EX denotes the parallel vector field along cp with EXð0Þ ¼ X. This shows
that the kernel of dF is T� � T	 ¼ JN � T	 and that F is of constant rank
dimðT� � T� � T
Þ ¼ 4n. So, locally, F is a submersion onto a 4n-dimensional
submanifold B of G2ðCmþ2Þ. Moreover, the tangent space of B at FðpÞ is obtained
by parallel translation of ðT� � T� � T
ÞðpÞ ¼ ðH� � T
ÞðpÞ, which is a quater-

nionic and real subspace of TpG2ðCmþ2Þ.
Since both J and J are parallel along cp, also TFðpÞB is a quaternionic and real

subspace of TFðpÞG2ðCmþ2Þ. Thus B is a quaternionic and real submanifold of
G2ðCmþ2Þ. Since B is quaternionic, it is totally geodesic in G2ðCmþ2Þ (see
Alekseevski [1]). The only quaternionic totally geodesic submanifolds of
G2ðCmþ2Þ, m ¼ 2n5 4, of half dimension are G2ðCnþ2Þ and HPn (see Berndt [3]).
But only HPn is embedded in G2ðCmþ2Þ as a real submanifold. So we conclude
that B is an open part of a totally geodesic HPn in G2ðCmþ2Þ. Rigidity of totally
geodesic submanifolds finally implies that M is an open part of the tube with
radius r around a totally geodesic HPn in G2ðCmþ2Þ. Thus we have proved our
main Theorem. &
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