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REAL HYPERSURFACES WITH PARALLEL RICCI
TENSOR OF A COMPLEX SPACE FORM

By
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Introduction.

A Kaehlerian manifold of constant holomorphic sectional curvature $c$ is
called a complex space form, which is denoted by $M_{n}(c)$ . The complete and
simply connected complex space form consists of a complex projective space
$P_{n}C$ , a complex Euclidean space $C_{n}$ or a complex hyperbolic space $H_{n}C$ ,

according as $c>0,$ $c=0$ or $c<0$ . The induced almost contact metric structure
of real hypersurfaces of $M_{n}(c)$ will be denoted by $(J, g, P)$ .

Many subjects for real hypersurfaces of a complex projective space have
been studied by Cecil and Ryan [1], Kimura [8], [9], Kon [10], Maeda [13],

Okumura [15], Takagi [16], [17], [18] and so on. One of those, done by
Kimura, asserted the following interesting result.

THEOREM $K$ ([9]). There are no real hypersurfaces of $P_{n}C$ with parallel
Ricci tensor on which the structure vector $P$ is principal.

On the other hand, real hypersurfaces of a complex hyperbolic space $H_{n}C$

have also been investigated from different points of view and there are some
studies by Chen [2], Chen, Ludden and Montiel [3], Montiel [12] and Montiel
and Romero [14]. In particular, it is proved in [12] the following fact:

THEOREM M. There are no Einstein real hypersurfaces in $H_{n}C$ .

A Riemannian curvature tensor is said to be harmonic if the Ricci tensor
$S$ is of Codazzi type. Although the concept is closely related to a parallel

Ricci tensor, it was shown by Derdzi\’{n}ski [4] and Gray [5] that it is essentially

weaker than the latter one. Nakagawa, Umehara and the present author [6]

proved that there exist infinitely many hypersurfaces with harmonic curvature
and non-Ricci parallel in a Riemannian space form.

Recently, some studies about the non-existance for real hypersurfaces with
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harmonic curvature of $P_{n}C$ (resp. $H_{n}C$ ) have been made by Kwon and Nakagawa
[11] (resp. Kim [7]). Their results are following:

THEOREM KNK. There are no real hypersurfaces with harmonic curvature

of $M_{n}(c),$ $c\neq 0$ on which the structure vector is principal.

The main purpose of the present paper is to improve Theorem $K$ and
Theorem KNK, and study also real hypersurfaces with harmonic curvature of
a complex space form $M_{n}(c),$ $c\neq 0$ . We shall prove the followings:

THEOREM A. There are no real hypersurfaces with parallel Ricci tensor of
a complex space form $M_{n}(c),$ $c\neq 0$ .

THHOREM B. There are no real hypersurfaces with harmonic curvature $oj$

$M_{n}(c),$ $c\neq 0$ satisfying one of the following conditions:
(1) $P$ is an eigenvector corresponding to the Ricci tensor, (2) the number of

Ricci curvatures does not exceed 2.

1. Preliminaries.

We begin by recalling fundamental formulas on real hypersurfaces of a
Kaehlerian manifold. Let $N$ be a real $2n$-dimensional Kaehlerian manifold
equipped with a parallel almost complex structure $F$ and a Riemannian metric
tensor $G$ which is F-Hermitian, and covered by a system of coordinate neigh-

borhoods $\{U;x^{A}\}$ . Let $M$ be a real hypersurface of $N$ covered by a system of
coordinate neighborhoods {V; $y^{h}$ } and immersed isometrically in $N$ by the
immersion $i:M\rightarrow N$. Throughout the present paper the following convention
on the range of indices are used, unless otherwise stated:

$A,$ $B,$ $\cdots=1,2,$ $\cdots,$ $2n;i,$ $j,$ $\cdots=1,2,$ $\cdots,$ $2n-1$ .
The summation convention will be used with respect to those system of indices.
When the argument is local, $M$ need not be distinguished from $i(M)$ . Thus,
for simplicity, a point $p$ in $M$ may be identified with the point $i(p)$ and a
tangent vector $X$ at $p$ may also be identified with the tangent vector $i_{*}(X)$ at
$i(p)$ via the differential $i_{*}$ of $i$ . We represent the immersion $i$ locally by
$x^{A}=x^{A}(y^{h})$ and $B_{j}=(B_{j}^{A})$ are also $(2n-1)$-linearly independent local tangent
vectors of $M$, where $B_{j}^{A}=\partial_{j}x^{A}$ and $\partial_{j}=\partial/\partial y^{j}$ . A unit normal $C$ to $M$ may then
be chosen. The induced Riemannian metric $g$ with components $g_{ji}$ on $M$ is
given by $g_{ji}=G(B_{j}, B_{i})$ because the immersion is isometric.

For the unit normal $C$ to $M$, the following representations are obtained in
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each coordinate neighborhood:

(1.1) $FB_{i}=J_{i}^{h}B_{h}+p_{i}C$ , $FC=-p^{i}B_{i}$ ,

where we have put $J_{ji}=G(FB_{j}, B_{i})$ and $p_{i}=G(FB_{i}, C),$ $p^{h}$ being components

of a vector field $P$ associated with $P_{i}$ and $J_{ji}=J_{j}^{r}g_{ri}$ . By the properties of the
almost Hermitian structure $F$ , it is clear that $J_{ji}$ is skew-symmetric. A tensor

field of type $(1, 1)$ with components $J_{i}^{h}$ will be denoted by $J$. By the properties
of the almost complex structure $F$ , the following relations are then given:

$J_{i}^{r}J_{r}^{h}=-\delta_{i}^{h}+p_{i}p^{h}$ , $p^{r}J_{r}^{h}=0$ , $p_{r}J_{i}^{r}=0$ , $p_{i}p^{i}=1$ ,

that is, the aggregate $(J, g, P)$ defines an almost contact metric structure.
Denoting by $\nabla_{j}$ the operator of van der Waerden-Bortolotti covariant differenti-
ation formed with $g_{ji}$ , the equations of Gauss and Weingarten for $M$ are
respectively obtained:

(1.2) $\nabla_{j}B_{i}=h_{ji}C$ , $\nabla_{j}C=-h_{j}^{r}B_{r}$ ,

where $h_{ji}$ are components of a second fundamental form $\sigma,$ $A=(h_{j}^{k})$ which is
related by $h_{ji}=h_{j}^{r}g_{ri}$ being the shape operator derived from $C$ . We notice
hear that $h_{jt}$ is symmetric. By means of (1.1) and (1.2) the covariant derivatives
of the structure tensors are yielded:

(1.3) $\nabla_{j}J_{ih}=-h_{ji}p_{h}+h_{jh}p_{i}$ , $\nabla_{j}p_{i}=-h_{jr}J_{i}^{r}$ .
In the sequel, the ambient Kaehlerian manifold $N$ is assumed to be of

constant holomorphic sectional curvature $c$ and real dimension $2n$ , which is
called a complex space form and denoted by $M_{n}(c)$ . Then the components of
the curvature tensor $K$ of $M_{n}(c)$ take the following form:

$K_{DCBA}=\frac{C}{4}(G_{DA}G_{CB}-G_{DB}G_{CA}+F_{DA}F_{CB}-F_{DB}F_{CA}-2F_{DC}F_{BA})$ .

Thus, the equations of Gauss and Codazzi for $M$ are respectively obtained:

(1.4) $R_{kjih}=\frac{c}{4}(g_{kh}g_{ji}-g_{jh}g_{ki}+J_{kh}J_{ji}-J_{jh}J_{ki}-2J_{kj}J_{ih})+h_{kh}h_{ji}-h_{jh}h_{ki}$ ,

(1.5) $\nabla_{k}h_{ji}-\nabla_{j}h_{ki}=\frac{c}{4}(p_{k}J_{ji}-p_{j}J_{ki}-2p_{i}J_{kj})$ ,

where $R_{kjih}$ are the components of the Riemannian curvature tensor $R$ of $M$.
To be able to write our formulas in a convention form, the components

$X_{ji}^{m}$ of a tensor field $X^{m}$ and a function $X_{m}$ on $M$ for any integer $m(\geqq 2)$ are
introduced as follows:

$X_{ji}^{m}=X_{ji_{1}}X_{i_{2}}^{i_{1}}\cdots X_{\iota^{m-1}}^{i}$ , $X_{m}=\sum_{i}X_{ii}^{m}$ .
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In our notation, the Gauss equation (1.4) implies

(1.6) $S_{ji}=\frac{c}{4}\{(2n+1)g_{ji}-3p_{j}p_{i}\}+hh_{ji}-h_{ji}^{2}$ ,

where $S_{ji}$ denotes components of the Ricci tensor $S$ of $M$, and $h$ the trace of

the shape operator $A$ .

REMARK 1. We notice here that the structure vector $P$ cannot be parallel

provided that $c\neq 0$ . In fact, if $P$ is parallel along $M$, then the second equation

of (1.3) becomes $h_{jr}J_{i}^{r}=0$ . Thus, it is not hard to see that $h_{ji}=hp_{j}p_{j}$ because

of properties of the almost contact metric structure. Hence it follows that
$\nabla_{k}h_{ji}=(\nabla_{k}h)p_{j}p_{i}$ , which together with (1.5) give

$\frac{c}{4}(p_{k}J_{jt}-p_{j}J_{ki}-2p_{i}J_{kj})=\{(\nabla_{k}h)p_{j}-(\nabla_{j}h)p_{k}\}p_{i}$ .

By transvecting $p^{i}J^{kj}$ , we have $c(n-1)=0$ . Thus the assumption $c\neq 0$ will
produce a contradiction.

2. Real hypersurfaces with harmonic curvature.

Let $M$ be a real hypersurface with harmonic curvature of a complex space
form $M_{n}(c),$ $c\neq 0$ , that is, the Ricci tensor $S$ satisfies $\nabla_{k}S_{ji}=\nabla_{j}S_{ki}$ . Then, we
easily, using the second Bianchi identity, see that the scalar curvature $r$ of $M$

is constant everywhere. Moreover, the Ricci formula for $S_{ji}$ gives rise to

$\nabla_{m}\nabla_{k}S_{ji}=\nabla_{j}\nabla_{i}S_{mk}-R_{mjkr}S_{i}^{r}-R_{mjir}S_{k}^{r}$ ,

which together with the first Bianchi identity and the Ricci formula imply that

(2.1) $R_{mkir}S_{j}^{r}+R_{kjir}S_{m}^{r}+R_{jmir}S_{k}^{r}=0$ ,

where $S_{j}^{h}=S_{ji}g^{ih},$ $g^{ji}$ being the contravariant components of $g_{ji}$ . Therefore,
it follows that

$J^{kj}R_{kjih}S_{m}^{h}+2J^{rk}R_{kmih}S_{r}^{h}=0$

and hence, in consequence of (1.4),

$(-n+\frac{3}{2})cS_{jr}J_{i}^{r}+\frac{c}{2}\{S_{ir}J_{j}^{r}-(r-A_{1})J_{ji}-p_{i}(S_{rt}p^{r})J_{j}^{t}-2p_{j}(S_{tr}p^{r})J_{i}^{t}\}$

$+2h_{tr}h_{is}J^{rs}S_{j}^{t}-2h_{jt}h_{ir}J^{sr}S_{s}^{t}=0$ ,

where we have put $A_{1}=S_{ji}p^{j}p^{i}$ . By the way, the last two terms of this

reduces to $-\frac{3}{2}cp_{j}(h_{rt}p^{l})h_{is}J^{rs}$ by virtue of (1.6). Accordingly we have

$S_{ir}J_{j}^{r}-(2n-3)S_{jr}J_{i}^{r}-(r-A_{1})J_{ji}-S_{tr}p^{r}(p_{i}J_{j}^{t}+2p_{j}J_{i}^{t})-3h_{rt}p^{t}h_{is}J^{rs}p_{j}=0$
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because of the fact that $c\neq 0$ is assumed, which implies

$3h_{rt}p^{t}h_{is}J^{rs}+(2n-1)S_{rt}p^{t}J_{i}^{r}=0$ .

Thus, the last equation can be written as

(2.2) $(2n-3)\{S_{jr}J_{i}^{r}-(S_{tr}p^{r})p_{j}J_{i}^{t}\}-S_{ir}J_{j}^{r}+(S_{rt}p^{t})p_{i}J_{j}^{r}+(\gamma-A_{1})J_{ji}=0$ ,

from which, taking the symmetric parts,

$S_{jr}J_{i}^{r}+S_{ir}J_{j}^{r}=S_{tr}p^{r}(p_{j}J_{i}^{t}+p_{i}J_{j}^{t})$ .
Hence, the relationship (2.2) turns out to be

$2(n-1)\{S_{jr}J_{i}^{r}-(S_{tr}p^{r})p_{j}J_{i}^{t}\}+(r-A_{1})J_{ji}=0$ .

Transforming this by $J_{k}^{i}$ and utilizing properties of the almost contact metric
structure, it is reduced to

(2.3) $2(n-1)\{S_{ji}-p_{i}S_{jr}p^{r}-p_{j}S_{ir}p^{r}\}-(r-A_{1})g_{ji}+\{r+(2n-3)A_{1}\}p_{j}p_{i}=0$ ,

which implies immediately that

(2.4) $2(n-1)(S_{2}-2A_{2}+A_{1}^{2})=(r-A_{1})^{2}$ ,

where $A_{2}=S_{ji}^{2}p^{j}p^{i}$ .

PROPOSITION 2.1. Let $M$ be a real hypersurface zuath harmonic curvature of
a complex space form $M_{n}(c),$ $c\neq 0$ . If the structure vector $P$ is an eigenvector

of the Ricci tensor, namely, if
(2.5) $S_{jr}p^{r}=A_{1}p_{j}$ ,

then $M$ is Ricci parallel.

PROOF. By means of (2.5), the relationship (2.3) reduces to

(2.6) $2(n-1)S_{ji}-(r-A_{1})g_{ji}+\{r-(2n-1)A_{1}\}p_{j}p_{i}=0$ ,

which implies

(2.7) $2(n-1)S_{ji}^{2}-\{r+(2n-3)A_{1}\}S_{ji}+A_{1}(r-A_{1})g_{ji}=0$ .

Differentiating (2.6) covariantly, we find

(2.8) $2(n-1)\nabla_{k}S_{ji}+(\nabla_{k}A_{1})g_{ji}-(2n-1)(\nabla_{k}A_{1})p_{j}p_{i}$

$+\{r-(2n-1)A_{1}\}\{(\nabla_{k}p_{j})p_{i}+(\nabla_{k}p_{i})p_{j}\}=0$

because the scalar curvature $r$ is constant. Since the Ricci tensor $S$ is of
Codazzi type, it is seen that
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(2.9) $(\nabla_{k}A_{1})g_{ji}-(\nabla_{j}A_{1})g_{ki}-(2n-1)\{(\nabla_{k}A_{1})p_{j}-(\nabla_{j}A_{1})p_{k}\}p_{i}$

$+\{r-(2n-1)A_{1}\}\{(\nabla_{k}p_{j}-\nabla_{j}p_{k})p_{i}+(\nabla_{k}p_{i})p_{j}-(\nabla_{j}p_{i})p_{k}\}=0$ .

If we transvect this with $g^{ji}$ , then we obtain

$\nabla_{k}A_{1}-(2n-1)(p^{r}\nabla_{r}A_{1})p_{k}+\{r-(2n-1)A_{1}\}p^{r}\nabla_{r}p_{k}=0$

and hence $p^{r}\nabla_{r}A_{1}=0$ . Thus, it follows that $\nabla_{k}A_{1}+\{r-(2n-1)A_{1}\}p^{r}\nabla_{r}p_{k}=0$ .
Transvecting (2.9) with $p^{j}p^{i}$ and taking account of the last equation, we can
verify that $A_{1}$ is constant everywhere. Therefore, by differentiating (2.7)

covariantly, we find

$2(n-1)\nabla_{k}S_{ji}^{2}-\{r+(2n-3)A_{1}\}\nabla_{k}S_{ji}=0$ ,

which shows that $S_{ji}^{2}$ is of Codazzi type. Thus, the Ricci tensor $S$ is parallel

because the scalar curvature of $M$ is constant (see Umehara, Theorem 1.3 of
[19]). This completes the proof of Proposition 2.1.

REMARK 2. If the structure vector $P$ is principal, that is, $h_{jr}p^{r}=\alpha p_{j}$ , we
can see from (1.6) that $P$ is the eigenvector of the Ricci tensor and hence the

Ricci tensor is parallel.
Now, transforming (2.3) by $S_{k}^{i}$ , we obtain

(2.10) $2(n-1)\{S_{jk}^{2}-(S_{kt}p^{t})(S_{jr}p^{r})-p_{j}S_{kr}^{2}p^{r}\}-(r-A_{1})S_{jk}$

$+\{r+(2n-3)A_{1}\}p_{j}S_{kr}p^{r}=0$ ,

which enables us to obtain

$(2(n-1)S_{kr}^{2}p^{r}-\{r+(2n-3)A_{1}\}S_{kr}p^{r})p_{j}-(2(n-1)S_{jr}^{2}p^{r}$

$-\{r+(2n-3)A_{1}\}S_{jr}p^{r})p_{k}=0$ .

Thus, it is seen that

(2.11) $2(n-1)S_{kr}^{2}p^{r}-\{r+(2n-3)A_{1}\}S_{kr}p^{r}=(2(n-1)A_{2}-A_{1}\{r+(2n-3)A_{1}\})p_{k}$ .
Making use of the last equation, (2.10) turns out to be

(2.12) $2(n-1)\{S_{jk}^{2}-(S_{jt}p^{t})(S_{kr}p^{r})\}-(r-A_{1})S_{jk}+\mu p_{j}p_{k}=0$ ,

where $\mu=A_{1}(r-A_{1})-2(n-1)(A_{2}-A_{1}^{2})$ . Transforming (2.12) by $S_{i}^{k}$ and utilizing
(2.3), (2.11) and (2.12), we get

(2.13) $4(n-1)^{2}S_{ji}^{S}-4(n-1)\{r+(n-2)A_{1}\}S_{ji}^{2}$

$+\{(r-A_{1})(r+(4n-5)A_{1})-4(n-1)^{2}(A_{2}-A_{1}^{2})\}S_{ji}-\mu(r-A_{1})g_{ji}=0$ ,

or, equivalently
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$(S_{j}^{r}-\frac{r-A_{1}}{2(n-1)}\delta_{j}^{r})\{2(n-1)S_{ir}^{2}-\lambda S_{ir}+\mu g_{ir}\}=0$ ,

where we have put $\lambda=r+(2n-3)A_{1}$ . Thus the minimal polynomial for $S$ tells
us that there exist at most three Ricci curvatures of $M:(r-A_{1})/2(n-1)$ ,
$(\lambda\pm\sqrt{D})/4(n-1)$ , where

(2.14) $D=\{r-(2n-1)A_{1}\}^{2}+16(n-1)^{2}(A_{2}-A_{1}^{2})$ .
And their multiplicities are respectively denoted by $2n-1-l_{1}-1_{2},$ $I_{1}$ and $l_{2}$ .
Therefore the scalar curvature $r$ of $M$ satisfies

(2.15) $(l_{1}+l_{2}-2)\{r-(2n-1)A_{1}\}=\sqrt{D}(I_{1}-l_{2})$ .

We also have

$4(n-1)^{2}S_{2}=\frac{1}{4}(\lambda^{2}+D)(l_{1}+l_{2})+\frac{1}{2}\lambda\sqrt{D}(l_{1}-J_{2})+(r-A_{1})^{2}(2n-1-l_{1}-J_{2})$ ,

which together with (2.4), (2.14) and (2.15) imply that

(2.16) $(A_{2}-A_{1}^{2})(J_{1}+l_{2}-2)=0$ .
Now, suppose that the number of distinct Ricci curvatures does not exceed

2. Then we can easily see that $A_{2}=A_{1}^{2}$ because of (2.15). Thus, it follows
that $S_{jr}p^{r}=A_{1}p_{j}$ .

According to Proposition 2.1, we have

PROPOSITION 2.2. Let $M$ be a real hypersurface with harmonic curvature of
a complex space form $M_{n}(c),$ $c\neq 0$ . Then the number of distinct Ricci curvature
is at most 3. In particular, it does not exceed 2, then $M$ is Ricci parallel.

3. Real hypersurfaces with parallel Ricci tensor.

In this section we devote to investigate the real hypersurfaces with parallel
Ricci tensor of a complex space form $M_{n}(c),$ $c\neq 0$ . Since the Ricci tensor $S$ is
assumed to be parallel, we have (2.13) and hence

$4(n-1)^{2}S_{3}-4(n-1)rS_{2}-4(n-1)(n-2)S_{2}A_{1}+r(r-A_{1})^{2}+4(n-1)rA_{1}(r-A_{1})$

$+2(n-1)r(A_{2}-A_{1}^{2})-2(n-1)(2n-1)A_{1}(A_{2}-A_{1}^{2})-(2n-1)A_{1}(r-A_{1})^{2}=0$ ,

which together with (2.4) yield

$\frac{1}{2(n-1)}(r-A_{1})^{3}+2(n-1)A_{1}^{3}+3rA_{1}(r-A_{1})-3(2n-3)S_{2}A_{1}-3rS_{2}$

$+4(n-1)S_{3}=0$ .
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Thus, $A_{1}$ is a root of the cubic equation with constant coefficients because $S_{i}$

is constant for each number $i$ . Accordingly $A_{1}$ is constant. By the definition
of $A_{1}$ , it is not hard to see that

(3.1) $S_{ir}p^{i}\nabla_{k}p^{r}=0$

because the Ricci tensor is parallel. By differentiating (2.3) covariantly, we find

(3.2) $2(n-l)\{(\nabla_{k}p_{i})S_{jr}p^{r}+(\nabla_{k}p_{j})S_{ir}p^{r}+p_{i}S_{jr}\nabla_{k}p^{r}+p_{j}S_{ir}\nabla_{k}p^{r}\}$

$=\{r+(2n-3)A_{1}\}\{(\nabla_{k}p_{j})p_{i}+(\nabla_{k}p_{i})p_{j}\}$ .
If we apply $p^{j}$ to this and sum for $j$ , and make use of (3.1), we obtain

$2(n-1)S_{ir}\nabla_{k}p^{r}=(r-A_{1})\nabla_{k}p_{i}$ .

Thus, (3.2) turns out to be

$(\nabla_{k}p_{i})S_{jr}p^{r}+(\nabla_{k}p_{j})S_{ir}p^{r}=A_{1}(p_{i}\nabla_{k}p_{j}+p_{j}\nabla_{k}p_{i})$ .
Transvecting the last equation with $S_{t}^{j}p^{t}$ and utilizing (3.1), we get

(3.3) $(A_{2}-A_{1}^{2})\nabla_{k}p_{\ell}=0$ .
By means of Remark 1, it follows that $A_{2}=A_{1}^{2}$ and hence $S_{jr}p^{r}=A_{1}p_{j}$ . There-
fore, the relationship (2.3) is reduced to

$2(n-1)S_{ji}=(r-A_{1})g_{ji}-\{r-(2n-1)A_{1}\}p_{j}p_{i}$ .
The Ricci tensor of $M$ being parallel, it is seen that

$\{r-(2n-1)A_{1}\}(p_{i}\nabla_{k}p_{j}+p_{j}\nabla_{k}p_{i})=0$

and hence $r-(2n-1)A_{1}=0$ . Thus, $M$ is Einstein. But, there are no Einstein
real hypersurfaces of $M_{n}(c),$ $c\neq 0$ because of Theorem $K$ and Theorem $M$ (see

also [10]). Hence Theorem A is completely proved.

PROOF OF THEOREM B. Due to Theorem $A$ , Proposition 2.1 and Proposition
2.2.

By means of (2.16), Theorem A and Proposition 2.2, it is clear that $l_{1}=l_{2}=1$ .
Therefore we can state the following fact:

REMARK 3. Let $M$ be a real hypersurface with harmonic curvature of
$M_{n}(c),$ $c\neq 0$ . Then $M$ has three distinct Ricci curvatures: $(r-A_{1})/2(n-1)$ ,
$(\lambda+\sqrt{D})/4(n-1),$ $(\lambda-\sqrt{D})/4(n-1)$ with multiplicities $2n-3,1,1$ respectively.
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