REAL HYPERSURFACES WITH PARALLEL RICCI TENSOR OF A COMPLEX SPACE FORM

By
U-Hang KI*

Introduction.

A Kaehlerian manifold of constant holomorphic sectional curvature c is called a complex space form, which is denoted by $M_{n}(c)$. The complete and simply connected complex space form consists of a complex projective space $P_{n} C$, a complex Euclidean space C_{n} or a complex hyperbolic space $H_{n} C$, according as $c>0, c=0$ or $c<0$. The induced almost contact metric structure of real hypersurfaces of $M_{n}(c)$ will be denoted by (J, g, P).

Many subjects for real hypersurfaces of a complex projective space have been studied by Cecil and Ryan [1], Kimura [8], [9], Kon [10], Maeda [13], Okumura [15], Takagi [16], [17], [18] and so on. One of those, done by Kimura, asserted the following interesting result.

Theorem K ([9]). There are no real hypersurfaces of $P_{n} C$ with parallel Ricci tensor on which the structure vector P is principal.

On the other hand, real hypersurfaces of a complex hyperbolic space $H_{n} C$ have also been investigated from different points of view and there are some studies by Chen [2], Chen, Ludden and Montiel [3], Montiel [12] and Montiel and Romero [14]. In particular, it is proved in [12] the following fact:

ThEOREM M. There are no Einstein real hypersurfaces in $H_{n} C$.
A Riemannian curvature tensor is said to be harmonic if the Ricci tensor S is of Codazzi type. Although the concept is closely related to a parallel Ricci tensor, it was shown by Derdziński [4] and Gray [5] that it is essentially weaker than the latter one. Nakagawa, Umehara and the present author [6] proved that there exist infinitely many hypersurfaces with harmonic curvature and non-Ricci parallel in a Riemannian space form.

Recently, some studies about the non-existance for real hypersurfaces with

[^0]harmonic curvature of $P_{n} C$ (resp. $H_{n} C$) have been made by Kwon and Nakagawa [11] (resp. Kim [7]). Their results are following:

Theorem KNK. There are no real hypersurfaces with harmonic curvature of $M_{n}(c), c \neq 0$ on which the structure vector is principal.

The main purpose of the present paper is to improve Theorem K and Theorem KNK, and study also real hypersurfaces with harmonic curvature of a complex space form $M_{n}(c), c \neq 0$. We shall prove the followings:

Theorem A. There are no real hypersurfaces with parallel Ricci tensor of a complex space form $M_{n}(c), c \neq 0$.

ThHorem B. There are no real hypersurfaces with harmonic curvature of $M_{n}(c), c \neq 0$ satisfying one of the following conditions:
(1) P is an eigenvector corresponding to the Ricci tensor, (2) the number of Ricci curvatures does not exceed 2.

1. Preliminaries.

We begin by recalling fundamental formulas on real hypersurfaces of a Kaehlerian manifold. Let N be a real $2 n$-dimensional Kaehlerian manifold equipped with a parallel almost complex structure F and a Riemannian metric tensor G which is F-Hermitian, and covered by a system of coordinate neighborhoods $\left\{U ; x^{A}\right\}$. Let M be a real hypersurface of N covered by a system of coordinate neighborhoods $\left\{V ; y^{h}\right\}$ and immersed isometrically in N by the immersion $i: M \rightarrow N$. Throughout the present paper the following convention on the range of indices are used, unless otherwise stated:

$$
A, B, \cdots=1,2, \cdots, 2 n ; i, j, \cdots=1,2, \cdots, 2 n-1
$$

The summation convention will be used with respect to those system of indices. When the argument is local, M need not be distinguished from $i(M)$. Thus, for simplicity, a point p in M may be identified with the point $i(p)$ and a tangent vector X at p may also be identified with the tangent vector $i_{*}(X)$ at $i(p)$ via the differential i_{*} of i. We represent the immersion i locally by $x^{A}=x^{A}\left(y^{h}\right)$ and $B_{j}=\left(B_{j}^{A}\right)$ are also ($2 n-1$)-linearly independent local tangent vectors of M, where $B_{j}^{A}=\partial_{j} x^{A}$ and $\partial_{j}=\partial / \partial y^{j}$. A unit normal C to M may then be chosen. The induced Riemannian metric g with components $g_{j i}$ on M is given by $g_{j i}=G\left(B_{j}, B_{i}\right)$ because the immersion is isometric.

For the unit normal C to M, the following representations are obtained in
each coordinate neighborhood:

$$
\begin{equation*}
F B_{i}=J_{i}^{h} B_{h}+p_{i} C, \quad F C=-p^{i} B_{i}, \tag{1.1}
\end{equation*}
$$

where we have put $J_{j i}=G\left(F B_{j}, B_{i}\right)$ and $p_{i}=G\left(F B_{i}, C\right)$, p^{h} being components of a vector field P associated with P_{i} and $J_{j i}=J_{j}^{r} g_{r i}$. By the properties of the almost Hermitian structure F, it is clear that $J_{j i}$ is skew-symmetric. A tensor field of type $(1,1)$ with components J_{i}^{h} will be denoted by J. By the properties of the almost complex structure F, the following relations are then given:

$$
J_{i}^{r} J_{r}^{h}=-\delta_{i}^{h}+p_{i} p^{h}, \quad p^{r} J_{r}^{h}=0, \quad p_{r} J_{i}^{r}=0, \quad p_{i} p^{i}=1,
$$

that is, the aggregate (J, g, P) defines an almost contact metric structure. Denoting by ∇_{j} the operator of van der Waerden-Bortolotti covariant differentiation formed with $g_{j i}$, the equations of Gauss and Weingarten for M are respectively obtained:

$$
\begin{equation*}
\nabla_{j} B_{i}=h_{j i} C, \quad \nabla_{j} C=-h_{j}^{r} B_{r}, \tag{1.2}
\end{equation*}
$$

where $h_{j i}$ are components of a second fundamental form $\sigma, A=\left(h_{j}^{k}\right)$ which is related by $h_{j i}=h_{j}^{r} g_{r i}$ being the shape operator derived from C. We notice hear that $h_{j i}$ is symmetric. By means of (1.1) and (1.2) the covariant derivatives of the structure tensors are yielded:

$$
\begin{equation*}
\nabla_{j} J_{i n}=-h_{j i} p_{h}+h_{j n} p_{i}, \quad \nabla_{j} p_{i}=-h_{j r} J_{i}^{r} . \tag{1.3}
\end{equation*}
$$

In the sequel, the ambient Kaehlerian manifold N is assumed to be of constant holomorphic sectional curvature c and real dimension $2 n$, which is called a complex space form and denoted by $M_{n}(c)$. Then the components of the curvature tensor K of $M_{n}(c)$ take the following form:

$$
K_{D C B A}=\frac{c}{4}\left(G_{D A} G_{C B}-G_{D B} G_{C A}+F_{D A} F_{C B}-F_{D B} F_{C A}-2 F_{D C} F_{B A}\right) .
$$

Thus, the equations of Gauss and Codazzi for M are respectively obtained:

$$
\begin{gather*}
R_{k j i h}=\frac{c}{4}\left(g_{k h} g_{j i}-g_{j h} g_{k i}+J_{k h} J_{j i}-J_{j h} J_{k i}-2 J_{k j} J_{i n}\right)+h_{k h} h_{j i}-h_{j h} h_{k i}, \tag{1.4}\\
\nabla_{k} h_{j i}-\nabla_{j} h_{k i}=\frac{c}{4}\left(p_{k} J_{j i}-p_{j} J_{k i}-2 p_{i} J_{k j}\right),
\end{gather*}
$$

where $R_{k j i n}$ are the components of the Riemannian curvature tensor R of M.
To be able to write our formulas in a convention form, the components $X_{j i}^{m}$ of a tensor field X^{m} and a function X_{m} on M for any integer $m(\geqq 2)$ are introduced as follows:

$$
X_{j i}^{m}=X_{j i_{1}} X_{i_{2}}^{i_{1}} \cdots X_{i}^{i m-1}, \quad X_{m}=\sum_{i} X_{i i}^{m}
$$

In our notation, the Gauss equation (1.4) implies

$$
\begin{equation*}
S_{j i}=\frac{c}{4}\left\{(2 n+1) g_{j i}-3 p_{j} p_{i}\right\}+h h_{j i}-h_{j i}^{2} \tag{1.6}
\end{equation*}
$$

where $S_{j i}$ denotes components of the Ricci tensor S of M, and h the trace of the shape operator A.

Remark 1. We notice here that the structure vector P cannot be parallel provided that $c \neq 0$. In fact, if P is parallel along M, then the second equation of (1.3) becomes $h_{j r} J_{i}^{r}=0$. Thus, it is not hard to see that $h_{j i}=h p_{j} p_{j}$ because of properties of the almost contact metric structure. Hence it follows that $\nabla_{k} h_{j i}=\left(\nabla_{k} h\right) p_{j} p_{i}$, which together with (1.5) give

$$
\frac{c}{4}\left(p_{k} J_{j i}-p_{j} J_{k i}-2 p_{i} J_{k j}\right)=\left\{\left(\nabla_{k} h\right) p_{j}-\left(\nabla_{j} h\right) p_{k}\right\} p_{i} .
$$

By transvecting $p^{i} J^{k j}$, we have $c(n-1)=0$. Thus the assumption $c \neq 0$ will produce a contradiction.

2. Real hypersurfaces with harmonic curvature.

Let M be a real hypersurface with harmonic curvature of a complex space form $M_{n}(c), c \neq 0$, that is, the Ricci tensor S satisfies $\nabla_{k} S_{j i}=\nabla_{j} S_{k i}$. Then, we easily, using the second Bianchi identity, see that the scalar curvature r of M is constant everywhere. Moreover, the Ricci formula for $S_{j i}$ gives rise to

$$
\nabla_{m} \nabla_{k} S_{j i}=\nabla_{j} \nabla_{i} S_{m k}-R_{m j k r} S_{i}^{r}-R_{m j i r} S_{k}^{r}
$$

which together with the first Bianchi identity and the Ricci formula imply that

$$
\begin{equation*}
R_{m k i r} S_{j}^{r}+R_{k j i r} S_{m}^{r}+R_{j m i r} S_{k}^{r}=0 \tag{2.1}
\end{equation*}
$$

where $S_{j}^{h}=S_{j i} g^{i n}$, $g^{j i}$ being the contravariant components of $g_{j i}$. Therefore, it follows that

$$
J^{k j} R_{k j i n} S_{m}^{h}+2 J^{r k} R_{k m i n} S_{r}^{h}=0
$$

and hence, in consequence of (1.4),

$$
\begin{aligned}
(-n+ & \left.\frac{3}{2}\right) c S_{j r} J_{i}^{r}+\frac{c}{2}\left\{S_{i r} J_{j}^{r}-\left(r-A_{1}\right) J_{j i}-p_{i}\left(S_{r t} p^{r}\right) J_{j}^{t}-2 p_{j}\left(S_{t r} p^{r}\right) J_{i}^{t}\right\} \\
& +2 h_{t r} h_{i s} J^{r s} S_{j}^{t}-2 h_{j t} h_{i r} J^{s r} S_{s}^{t}=0,
\end{aligned}
$$

where we have put $A_{1}=S_{j i} p^{j} p^{i}$. By the way, the last two terms of this reduces to $-\frac{3}{2} c p_{j}\left(h_{r t} p^{t}\right) h_{i s} J^{r s}$ by virtue of (1.6). Accordingly we have

$$
S_{i r} J_{j}^{r}-(2 n-3) S_{j r} J_{i}^{r}-\left(r-A_{1}\right) J_{j i}-S_{t r} p^{r}\left(p_{i} J_{j}^{t}+2 p_{j} J_{i}^{t}\right)-3 h_{r t} p^{t} h_{i s} J^{r s} p_{j}=0
$$

because of the fact that $c \neq 0$ is assumed, which implies

$$
3 h_{r t} p^{t} h_{i s} J^{r s}+(2 n-1) S_{r t} p^{t} J_{i}^{r}=0 .
$$

Thus, the last equation can be written as

$$
\begin{equation*}
(2 n-3)\left\{S_{j r} J_{i}^{r}-\left(S_{t r} p^{r}\right) p_{j} J_{i}^{t}\right\}-S_{i r} J_{j}^{r}+\left(S_{r t} p^{t}\right) p_{i} J_{j}^{r}+\left(r-A_{1}\right) J_{j i}=0 \tag{2.2}
\end{equation*}
$$

from which, taking the symmetric parts,

$$
S_{j r} J_{i}^{r}+S_{i r} J_{j}^{r}=S_{t r} p^{r}\left(p_{j} J_{i}^{t}+p_{i} J_{j}^{t}\right) .
$$

Hence, the relationship (2.2) turns out to be

$$
2(n-1)\left\{S_{j r} J_{i}^{r}-\left(S_{t r} p^{r}\right) p_{j} J_{i}^{t}\right\}+\left(r-A_{1}\right) J_{j i}=0 .
$$

Transforming this by J_{k}^{i} and utilizing properties of the almost contact metric structure, it is reduced to

$$
\begin{equation*}
2(n-1)\left\{S_{j i}-p_{i} S_{j r} p^{r}-p_{j} S_{i r} p^{r}\right\}-\left(r-A_{1}\right) g_{j i}+\left\{r+(2 n-3) A_{1}\right\} p_{j} p_{i}=0, \tag{2.3}
\end{equation*}
$$

which implies immediately that

$$
\begin{equation*}
2(n-1)\left(S_{2}-2 A_{2}+A_{1}^{2}\right)=\left(r-A_{1}\right)^{2}, \tag{2.4}
\end{equation*}
$$

where $A_{2}=S_{j i}^{2} p^{j} p^{i}$.
Proposition 2.1. Let M be a real hypersurface with harmonic curvature of a complex space form $M_{n}(c), c \neq 0$. If the structure vector P is an eigenvector of the Ricci tensor, namely, if

$$
\begin{equation*}
S_{j r} p^{r}=A_{1} p_{j} \tag{2.5}
\end{equation*}
$$

then M is Ricci parallel.
Proof. By means of (2.5), the relationship (2.3) reduces to

$$
\begin{equation*}
2(n-1) S_{j i}-\left(r-A_{1}\right) g_{j i}+\left\{r-(2 n-1) A_{1}\right\} p_{j} p_{i}=0 \tag{2.6}
\end{equation*}
$$

which implies

$$
\begin{equation*}
2(n-1) S_{j i}^{2}-\left\{r+(2 n-3) A_{1}\right\} S_{j i}+A_{1}\left(r-A_{1}\right) g_{j i}=0 . \tag{2.7}
\end{equation*}
$$

Differentiating (2.6) covariantly, we find

$$
\begin{align*}
& 2(n-1) \nabla_{k} S_{j i}+\left(\nabla_{k} A_{1}\right) g_{j i}-(2 n-1)\left(\nabla_{k} A_{1}\right) p_{j} p_{i} \tag{2.8}\\
& \quad+\left\{r-(2 n-1) A_{1}\right\}\left\{\left(\nabla_{k} p_{j}\right) p_{i}+\left(\nabla_{k} p_{i}\right) p_{j}\right\}=0
\end{align*}
$$

because the scalar curvature r is constant. Since the Ricci tensor S is of Codazzi type, it is seen that

$$
\begin{align*}
& \left(\nabla_{k} A_{1}\right) g_{j i}-\left(\nabla_{j} A_{1}\right) g_{k i}-(2 n-1)\left\{\left(\nabla_{k} A_{1}\right) p_{j}-\left(\nabla_{j} A_{1}\right) p_{k}\right\} p_{i} \tag{2.9}\\
& \quad+\left\{r-(2 n-1) A_{1}\right\}\left\{\left(\nabla_{k} p_{j}-\nabla_{j} p_{k}\right) p_{i}+\left(\nabla_{k} p_{i}\right) p_{j}-\left(\nabla_{j} p_{i}\right) p_{k}\right\}=0 .
\end{align*}
$$

If we transvect this with $g^{j i}$, then we obtain

$$
\nabla_{k} A_{1}-(2 n-1)\left(p^{r} \nabla_{r} A_{1}\right) p_{k}+\left\{r-(2 n-1) A_{1}\right\} p^{r} \nabla_{r} p_{k}=0
$$

and hence $p^{r} \nabla_{r} A_{1}=0$. Thus, it follows that $\nabla_{k} A_{1}+\left\{r-(2 n-1) A_{1}\right\} p^{r} \nabla_{r} p_{k}=0$. Transvecting (2.9) with $p^{j} p^{i}$ and taking account of the last equation, we can verify that A_{1} is constant everywhere. Therefore, by differentiating (2.7) covariantly, we find

$$
2(n-1) \nabla_{k} S_{j i}^{2}-\left\{r+(2 n-3) A_{1}\right\} \nabla_{k} S_{j i}=0,
$$

which shows that $S_{j i}^{2}$ is of Codazzi type. Thus, the Ricci tensor S is parallel because the scalar curvature of M is constant (see Umehara, Theorem 1.3 of [19]). This completes the proof of Proposition 2.1.

Remark 2. If the structure vector P is principal, that is, $h_{j r} p^{r}=\alpha p_{j}$, we can see from (1.6) that P is the eigenvector of the Ricci tensor and hence the Ricci tensor is parallel.

Now, transforming (2.3) by S_{k}^{i}, we obtain

$$
\begin{align*}
& 2(n-1)\left\{S_{j k}^{2}-\left(S_{k t} p^{t}\right)\left(S_{j r} p^{r}\right)-p_{j} S_{k r}^{2} p^{r}\right\}-\left(r-A_{1}\right) S_{j k} \tag{2.10}\\
& \quad+\left\{r+(2 n-3) A_{1}\right\} p_{j} S_{k r} p^{r}=0,
\end{align*}
$$

which enables us to obtain

$$
\begin{aligned}
& \left(2(n-1) S_{k r}^{2} p^{r}-\left\{r+(2 n-3) A_{1}\right\} S_{k r} p^{r}\right) p_{j}-\left(2(n-1) S_{j r}^{2} p^{r}\right. \\
& \left.\quad-\left\{r+(2 n-3) A_{1}\right\} S_{j r} p^{r}\right) p_{k}=0 .
\end{aligned}
$$

Thus, it is seen that
(2.11) $2(n-1) S_{k r}^{2} p^{r}-\left\{r+(2 n-3) A_{1}\right\} S_{k r} p^{r}=\left(2(n-1) A_{2}-A_{1}\left\{r+(2 n-3) A_{1}\right\}\right) p_{k}$.

Making use of the last equation, (2.10) turns out to be

$$
\begin{equation*}
2(n-1)\left\{S_{j k}^{2}-\left(S_{j t} p^{t}\right)\left(S_{k r} p^{r}\right)\right\}-\left(r-A_{1}\right) S_{j k}+\mu p_{j} p_{k}=0, \tag{2.12}
\end{equation*}
$$

where $\mu=A_{1}\left(r-A_{1}\right)-2(n-1)\left(A_{2}-A_{1}^{2}\right)$. Transforming (2.12) by S_{i}^{k} and utilizing (2.3), (2.11) and (2.12), we get
(2.13) $4(n-1)^{2} S_{j i}^{3}-4(n-1)\left\{r+(n-2) A_{1}\right\} S_{j i}^{2}$

$$
+\left\{\left(r-A_{1}\right)\left(r+(4 n-5) A_{1}\right)-4(n-1)^{2}\left(A_{2}-A_{1}^{2}\right)\right\} S_{j i}-\mu\left(r-A_{1}\right) g_{j i}=0,
$$

or, equivalently

$$
\left(S_{j}^{r}-\frac{r-A_{1}}{2(n-1)} \delta_{j}^{r}\right)\left\{2(n-1) S_{i r}^{2}-\lambda S_{i r}+\mu g_{i r}\right\}=0,
$$

where we have put $\lambda=r+(2 n-3) A_{1}$. Thus the minimal polynomial for S tells us that there exist at most three Ricci curvatures of $M:\left(r-A_{1}\right) / 2(n-1)$, $(\lambda \pm \sqrt{D}) / 4(n-1)$, where

$$
\begin{equation*}
D=\left\{r-(2 n-1) A_{1}\right\}^{2}+16(n-1)^{2}\left(A_{2}-A_{1}^{2}\right) . \tag{2.14}
\end{equation*}
$$

And their multiplicities are respectively denoted by $2 n-1-l_{1}-l_{2}, l_{1}$ and l_{2}. Therefore the scalar curvature r of M satisfies

$$
\begin{equation*}
\left(l_{1}+l_{2}-2\right)\left\{r-(2 n-1) A_{1}\right\}=\sqrt{D}\left(l_{1}-l_{2}\right) . \tag{2.15}
\end{equation*}
$$

We also have

$$
4(n-1)^{2} S_{2}=\frac{1}{4}\left(\lambda^{2}+D\right)\left(l_{1}+l_{2}\right)+\frac{1}{2} \lambda \sqrt{D}\left(l_{1}-l_{2}\right)+\left(r-A_{1}\right)^{2}\left(2 n-1-l_{1}-l_{2}\right),
$$

which together with (2.4), (2.14) and (2.15) imply that

$$
\begin{equation*}
\left(A_{2}-A_{1}^{2}\right)\left(l_{1}+l_{2}-2\right)=0 \tag{2.16}
\end{equation*}
$$

Now, suppose that the number of distinct Ricci curvatures does not exceed 2. Then we can easily see that $A_{2}=A_{1}^{2}$ because of (2.15). Thus, it follows that $S_{j r} p^{r}=A_{1} p_{j}$.

According to Proposition 2.1, we have
Proposition 2.2. Let M be a real hypersurface with harmonic curvature of a complex space form $M_{n}(c), c \neq 0$. Then the number of distinct Ricci curvature is at most 3. In particular, it does not exceed 2, then M is Ricci parallel.

3. Real hypersurfaces with parallel Ricci tensor.

In this section we devote to investigate the real hypersurfaces with parallel Ricci tensor of a complex space form $M_{n}(c), c \neq 0$. Since the Ricci tensor S is assumed to be parallel, we have (2.13) and hence

$$
\begin{aligned}
& 4(n-1)^{2} S_{3}-4(n-1) r S_{2}-4(n-1)(n-2) S_{2} A_{1}+r\left(r-A_{1}\right)^{2}+4(n-1) r A_{1}\left(r-A_{1}\right) \\
& \quad+2(n-1) r\left(A_{2}-A_{1}^{2}\right)-2(n-1)(2 n-1) A_{1}\left(A_{2}-A_{1}^{2}\right)-(2 n-1) A_{1}\left(r-A_{1}\right)^{2}=0
\end{aligned}
$$

which together with (2.4) yield

$$
\begin{aligned}
& \frac{1}{2(n-1)}\left(r-A_{1}\right)^{3}+2(n-1) A_{1}^{3}+3 r A_{1}\left(r-A_{1}\right)-3(2 n-3) S_{2} A_{1}-3 r S_{2} \\
& \quad+4(n-1) S_{3}=0
\end{aligned}
$$

Thus, A_{1} is a root of the cubic equation with constant coefficients because S_{i} is constant for each number i. Accordingly A_{1} is constant. By the definition of A_{1}, it is not hard to see that

$$
\begin{equation*}
S_{i r} p^{i} \nabla_{k} p^{r}=0 \tag{3.1}
\end{equation*}
$$

because the Ricci tensor is parallel. By differentiating (2.3) covariantly, we find

$$
\begin{align*}
2(n-1) & \left\{\left(\nabla_{k} p_{i}\right) S_{j r} p^{r}+\left(\nabla_{k} p_{j}\right) S_{i r} p^{r}+p_{i} S_{j r} \nabla_{k} p^{r}+p_{j} S_{i r} \nabla_{k} p^{r}\right\} \tag{3.2}\\
& =\left\{r+(2 n-3) A_{1}\right\}\left\{\left(\nabla_{k} p_{j}\right) p_{i}+\left(\nabla_{k} p_{i}\right) p_{j}\right\} .
\end{align*}
$$

If we apply p^{j} to this and sum for j, and make use of (3.1), we obtain

$$
2(n-1) S_{i r} \nabla_{k} p^{r}=\left(r-A_{1}\right) \nabla_{k} p_{i}
$$

Thus, (3.2) turns out to be

$$
\left(\nabla_{k} p_{i}\right) S_{j r} p^{r}+\left(\nabla_{k} p_{j}\right) S_{i r} p^{r}=A_{1}\left(p_{i} \nabla_{k} p_{j}+p_{j} \nabla_{k} p_{i}\right) .
$$

Transvecting the last equation with $S_{t}^{j} p^{t}$ and utilizing (3.1), we get

$$
\begin{equation*}
\left(A_{2}-A_{1}^{2}\right) \nabla_{k} p_{i}=0 . \tag{3.3}
\end{equation*}
$$

By means of Remark 1, it follows that $A_{2}=A_{1}^{2}$ and hence $S_{j r} p^{r}=A_{1} p_{j}$. Therefore, the relationship (2.3) is reduced to

$$
2(n-1) S_{j i}=\left(r-A_{1}\right) g_{j i}-\left\{r-(2 n-1) A_{1}\right\} p_{j} p_{i}
$$

The Ricci tensor of M being parallel, it is seen that

$$
\left\{r-(2 n-1) A_{1}\right\}\left(p_{i} \nabla_{k} p_{j}+p_{j} \nabla_{k} p_{i}\right)=0
$$

and hence $r-(2 n-1) A_{1}=0$. Thus, M is Einstein. But, there are no Einstein real hypersurfaces of $M_{n}(c), c \neq 0$ because of Theorem K and Theorem M (see also [10]). Hence Theorem A is completely proved.

Proof of Theorem B. Due to Theorem A, Proposition 2.1 and Proposition 2.2.

By means of (2.16), Theorem A and Proposition 2.2, it is clear that $\ell_{1}=\ell_{2}=1$. Therefore we can state the following fact:

Remark 3. Let M be a real hypersurface with harmonic curvature of $M_{n}(c), c \neq 0$. Then M has three distinct Ricci curvatures: $\left(r-A_{1}\right) / 2(n-1)$, $(\lambda+\sqrt{D}) / 4(n-1),(\lambda-\sqrt{D}) / 4(n-1)$ with multiplicities $2 n-3,1,1$ respectively.

References

[1] Cecil, T.E. and Ryan, P. J., Focal sets and real hypersurfaces in complex projec tive space, Trans. Amer. Math. Soc., 269 (1982), 481-499.
[2] Chen, B. Y., Differential geometry of real submanifolds in a Kaehlerian manifold, Mh. Math., 91 (1981), 257-274.
[3] Chen, B. Y., Ludden, G.D. and Montiel, S., Real submanifolds of a Kaehlerian manifold, Algebraic, Groups and Geometries, 1 (1984), 174-216.
[4] Derdziński, A., Compact Riemannian manifolds with harmonic curvature and nonparallel Ricci tensor, Global Differential Geometry and Global Analysis, Lecture notes in Math., Springer, 838 (1979), 126-128.
[5] Gray, A., Einstein-like manifolds which are not Einstein, Geometriae Dedicata, 7 (1978), 259-280.
[6] Ki, U-H., Nakagawa, H. and Umehara, M., On complete hypersurfaces with harmonic curvature in a Riemannian manifold of constant curvature, Tsukuba J. Math. 11 (1987), 61-76.
[7] Kim, H.-J., A note on real hypersurfaces of a complex hyperbolic space, to appear in Tsukuba J. Math.
] 8] Kimura, M., Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc., 296 (1986), 137-149.
[9] Kimura, M., Real hypersurfaces in a complex projective space, Bull. Austral Math. Soc., 33 (1986), 383-387.
[10] Kon, M., Pseudo-Einstein real hypersurfaces in complex space forms, J. Differential Geometry, 14 (1979), 339-354.
[11] Kwon, J.-H. and Nakagawa, H., A note on real hypersurfaces of a complex projective space, Preprint.
[12] Montiel, S., Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan, 37 (1985), 515-535.
[13] Maeda, S., Real hypersurfaces of a complex projective space II, Bull. Austral, Math. Soc., 29 (1984), 123-127.
[14] Montiel, S. and Romero, A., On some real hypersurfaces of a complex hyperbolic space, Geometriae Dedicata, 20 (1986), 245-261.
[15] Okumura, M., Real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc., 213 (1975), 355-364.
[16] Takagi, R., On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math., 10 (1973), 495-506.
[17] Takagi, R., Real hyperssurface in a complex projective space with constant prin cipal curvatures, J. Math. Soc. Japan, 27 (1975), 43-53.
[18] Takagi, R., Real hypersurfaces in a complex projective space, J. Math. Soc. Japan, 27 (1975), 506-516.
[19] Umehara, M., Hypersurfaces with harmonic curvature, Tsukuba J. Math. 10 (1986), 79-88.
[20] Yano, K. and Kon, M., CR Submanifolds of Kaehlerian and Sasakian manifolds, Birkhäuser, 1983.

Kyungpook University
Taegu 702-701
Korea

[^0]: *) Partially supported by KOSEF. Received December 14, 1987.

