
Research Article

Real Network Traffic Collection and Deep Learning for Mobile
App Identification

Xin Wang ,1 Shuhui Chen ,1 and Jinshu Su1,2

1School of Computer, National University of Defense Technology, Changsha, Hunan 410073, China
2National Key Laboratory of Parallel and Distributed Processing (PDL), National University of Defense Technology, Changsha,
Hunan 410073, China

Correspondence should be addressed to Xin Wang; wangxin09@nudt.edu.cn

Received 15 June 2019; Revised 2 January 2020; Accepted 23 January 2020; Published 19 February 2020

Academic Editor: Marco Picone

Copyright © 2020 Xin Wang et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

*e proliferation of mobile devices over recent years has led to a dramatic increase in mobile traffic. Demand for enabling accurate
mobile app identification is coming as it is an essential step to improve a multitude of network services: accounting, security
monitoring, traffic forecasting, and quality-of-service. However, traditional traffic classification techniques do not work well for
mobile traffic. Besides, multiple machine learning solutions developed in this field are severely restricted by their handcrafted
features as well as unreliable datasets. In this paper, we propose a framework for real network traffic collection and labeling in a
scalable way. A dedicated Android traffic capture tool is developed to build datasets with perfect ground truth. Using our
established dataset, we make an empirical exploration on deep learning methods for the task of mobile app identification, which
can automate the feature engineering process in an end-to-end fashion. We introduce three of the most representative deep
learningmodels and design and evaluate our dedicated classifiers, namely, a SDAE, a 1D CNN, and a bidirectional LSTMnetwork,
respectively. In comparison with two other baseline solutions, our CNN and RNN models with raw traffic inputs are capable of
achieving state-of-the-art results regardless of TLS encryption. Specifically, the 1D CNN classifier obtains the best performance
with an accuracy of 91.8% and macroaverage F-measure of 90.1%. To further understand the trained model, sample-specific
interpretations are performed, showing how it can automatically learn important and advanced features from the uppermost bytes
of an app’s raw flows.

1. Introduction

Traffic through a typical network is heterogeneous and
consists of flows from multiple applications and utilities.
Associating traffic flows with the applications that generate
them is known as traffic classification (or traffic identifi-
cation), which is an essential step to prioritize, protect, or
prevent certain traffic [1]. With accurate and complete traffic
classification, various network actions or services, such as
accounting, monitoring, control, and optimization, can be
performed with the end goal of improving network per-
formance or security. In recent years, the increasingly
growing mobile traffic due to the proliferation of mobile
devices (mainly smartphones) has changed the character-
istics of network traffic greatly. *is trend is expected to

create a nearly 4-fold increase in global mobile data over the
next 4 years [2].*ereupon, mobile traffic analysis is coming
into focus along with the growing demand and difficulty to
implement mobile app identification (APP-ID). In addition
to the benefits for mobile operators, mobile app identifi-
cation is also important for companies when bring-your-
own-device (B OD) policies are enabled to manage access
to corporate resources [3]. Despite the fact that it may raise
privacy risks, some groups like advertisers and security
agencies are also interested in its potential for valuable
profiling information.

*e state of the art in traffic classification has experi-
enced a major boost in the past decade. From port-based,
deep packet inspection (DPI) to machine learning (ML)
approaches, the technology is in continuous development to

Hindawi
Wireless Communications and Mobile Computing
Volume 2020, Article ID 4707909, 14 pages
https://doi.org/10.1155/2020/4707909

mailto:wangxin09@nudt.edu.cn
https://orcid.org/0000-0002-2208-1433
https://orcid.org/0000-0001-7413-8174
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4707909

keep up with the ever-evolving Internet. *e requirements
and challenges of APP-ID in mobile networks are even more
formidable. Different from traditional desktop applications
whose communication patterns are usually simple, mobile
apps are hard to be identified by their protocols and port
numbers. Typically, they offer multiple services with dif-
ferent protocols (e.g., HTTP/HTTPS) using common or
arbitrary port numbers and rarely include unique signatures
within the packet as recommended for identification. Ad-
ditionally, many mobile apps use content delivery networks
(CDNs) and third-party services (e.g., advertisement, ana-
lytics), making strategies like domain name resolution and
IP address lookup unreliable [4].

As encryption technologies are gaining traction every
day, more and more traffic is being transmitted over
encrypted protocols (e.g., TLS) to avoid interception at the
network level. *is trend, however, makes DPI based on
signatures no longer viable and ML techniques gain more
and more attention from scientific research to commercial
applications. Multiple conventional ML classifiers have
proven successful in mobile as well as traditional traffic
classification [5–8]. Nevertheless, they are subject to the
manual process of feature engineering, which can be time-
consuming and prone to obsolescence. Based on intuition
and expert knowledge, feature engineering aims to find a
representation of raw data which conveys characteristics that
are most relevant to the learning problem. In fact, in many
applications including APP-ID, it reveals even greater im-
portance than the choice of the specific machine learning
algorithm [5, 9]. In this work, we thus explore whether we
can leverage deep learning to improve identification accu-
racy of mobile apps. Benefiting from the ability to process
natural data in their raw form, deep learning (DL) can
discover good features in an automatic way without human
engineering ahead of time [10].

Last but not least, we are confronted by the usual obstacle
to progress on APP-ID: lack of a variety of real-world mobile
traffic to serve as train-test data as well as ground truth (i.e.,
annotated flow objects used as reference) for validation.
Most of the previous works seem to neglect this quandary,
which is quite important for training and testing ML or DL
models [4–6]. Usually, they base their results on ground
truth built from private datasets and labeled by means of
unknown reliability. *erefore, a methodology that can
efficiently construct a trusted real network dataset is in high
demand.

*is paper proposes a solution to the problem of con-
structing real-world mobile datasets and performs a com-
plete evaluation of applying DL techniques to APP-ID. In
the experiment results, we demonstrate that our DL-based
APP-ID techniques can achieve state-of-the-art results in
spite of TLS encryption. For a better understanding of our
results, we also exploit state-of-the-art interpretation tech-
niques to interpret the predictions of our best-performing
DL model. *e contributions of this paper are fourfold:

(i) We develop NetLog—a novel Android app tool that
can capture all traffic from the smartphone and
accurately label flows by app names.

(ii) We construct a large mobile traffic dataset that
consists of 142 apps, including both considerable
unencrypted and encrypted traffic flows, for clas-
sification evaluation. *e dataset is of high richness
and is easy to scale with accurate ground truth
obtained using our dedicated tool.

(iii) We applymodern DL techniques to the task of APP-
ID and evaluate three different DL classifiers on our
dataset: Stacked Denoising Autoencoder (SDAE),
Convolutional Neural Network (CNN), and Long
Short-Term Memory (LSTM) network. All three
models are specially designed and optimized for our
task. To the best of our knowledge, it is the first
comprehensive DL evaluation practice in this field.

(iv) We use one of the state-of-the-art DL interpretation
techniques to explain our model. *e interpreta-
tions give insights into how a prediction can be
achieved through deep learning from raw traffic,
which can in turn guide the task of APP-ID.

*e rest of this paper is structured as follows. Section 2
gives the related work on APP-ID as well as the use of DL
models for traffic classification. In Section 3, we describe the
methodology of our work including dataset collection ap-
proach and applied DL models. We give the evaluation
results and discussion in Section 4 and model interpretation
in Section 5. A conclusion to our work is presented at last in
Section 6.

2. Related Work

*ere have been a plethora of works in the field of traffic
classification research including papers representing at-
tempts to classify various traffic samples with various
techniques. Here, we give a brief overview of most recent
achievements focused on APP-ID. Several efforts intro-
ducing DL to Internet traffic classification are also discussed.

2.1. TrafficClassification forAPP-ID. *e research on mobile
app identification mainly falls into two categories under
different assumptions: (1) unencrypted traffic and (2)
encrypted traffic. In the first scenario, researchers focus on
how to improve app coverage or flow coverage (i.e., iden-
tification covers as many apps or flows as possible) in ad-
dition to accuracy. Typically, they use DPI and analyze
HTTP headers to extract app fingerprints, assuming that the
app network traces are already given or generated from
automatic UI exploration techniques [11–14]. Some other
works use static analysis of apps to guide the signature
discovery, enabling APP-ID in a massive scale [15, 16].
However, all previous cases do not deal with encrypted
traffic about which the second category of research cares
most. Our paper also takes it into consideration.

Previous work dealing with encrypted traffic mostly
applies ML techniques. Wang et al. [17] propose a system for
identifying smartphone apps from encrypted wireless traffic.
*ey collect data from 13 arbitrarily chosen apps by running
them dynamically and training a Random Forest (RF)

2 Wireless Communications and Mobile Computing

classifier with features from Layer 2 frames. To overcome
their weaknesses, Taylor et al. propose AppScanner [5], a
framework to classify apps with encrypted traffic by
leveraging only side-channel information. It is trained and
tested on 110 apps with traffic collected using a demulti-
plexing technique to obtain ground truth. *e multiclass
classification accuracy for the dataset is up to 73.1% using
RF. *e authors further attempt to improve results by in-
troducing an approach to separate ambiguous traffic at the
cost of reducing classified flows. Without this practice, their
model’s robustness is frustrated in terms of devices and app
versions [4]. Recently, Aceto et al. [6] proposed a multi-
classification approach of intelligently combining outputs
from state-of-the-art classifiers to improve the performance
of APP-ID. *e performance can be improved according to
all considered metrics up to +9.5% recall score with respect
to the best base classifier. On the whole, the state-of-the-art
solutions on APP-ID considering encrypted traffic rely on
traditional ML techniques with handcrafted features. Be-
sides, the datasets they use give little attention to either
accurate ground truth labeling or richness of real-world
data.

2.2. DL Practices in Traffic Classification. Recently, as much
larger and much deeper neural networks have shown im-
pressive capability across a range of difficult problem do-
mains, researchers have begun to apply deep learning on
Internet traffic classification and reveal promise for that. *e
first successful attempt is introduced in [18] by a security
engineer. It focuses on Multilayer Perceptron (MLP) and
Stacked Autoencoder (SAE) with raw traffic as input. It uses
the real data collected from enterprise network and shows
that the deep learning approach works well on the appli-
cations of feature learning, protocol classification, and
anomalous protocol detection. Wang et al. [19] propose an
end-to-end method of encrypted traffic classification with
one-dimensional convolution neural networks (1D CNN).
*ey evaluate the model on the public ISCX VPN-non-VPN
traffic dataset and show that it achieves outstanding per-
formance on both non-VPN and VPN traffic, about 10%
higher than the state-of-the-art method in precision and
recall.*e same dataset is also used in [20], which proposes a
framework embedding SAE and CNN to classify network
traffic. Differently, it keeps the IP header and the first 1480
bytes of each IP packet as input and performs classification
at packet level. *e framework achieves F1 score of 0.95 in
application identification task and 0.97 in traffic charac-
terization task. In addition to CNN, Recurrent Neural
Network (RNN) is also introduced for traffic classification in
[21]. It presents a technique based on combination of CNN
and RNN, which can be used for Internet of *ings (IoT)
traffic. In order to get better results, the authors try different
set of features that include header and statistic information
other than payloads. It is shown that port numbers play an
important role in IoT traffic classification, which is in-
tuitive, as many services keep their assigned ports. *e DL
practices on traffic classification mainly focus on public
datasets that rarely include mobile traffic. In this paper, we

are dedicated to constructing a reliable mobile dataset and
evaluating a variety of deep learning models for APP-ID
comprehensively.

3. Methodology

In this section, we first give the problem definition of APP-
ID, declaring some key concepts and principles. *en we
give a description of our dataset methodology, specifically on
how to achieve the goal of collecting traffic with trusted
ground truth as well as scalability using NetLog. A brief
introduction of our DL models for APP-ID is provided at
last.*eir architectures are specially designed and optimized
for the data and task.

3.1. Preliminaries. In this work, we follow the majority of
prior works and formulate APP-ID as a multiclass classi-
fication problem. Namely, we perform a supervised multi-
class classification to find a function that maps a traffic
bidirectional flow (biflow) to a mobile app that generated
it. More formally, suppose that a biflow f that was
created by an app a is an instance of the form (f, a).
Given a set of observed biflows from the network,
S � (fi, aj): fi ∈ F, aj ∈ A{ }, where F is the set of unla-
beled biflows and A is the set of all possible apps that
generate them, the problem is to find a function g: F⟶ A,
such that each unlabeled biflow fs ∈ F can be assigned to an
app at ∈ A, satisfying as much as possible the fact that
(fs, at) ∈ S.

In the context of APP-ID, a traffic flow is a sequence of
packets defined by the typical 5-tuple data structure
(IPsrc,Portsrc, IPdest,Portdest, ProtocolL4), namely, the source
and destination IP addresses as well as port numbers plus the
Layer 4 protocol. On the basis of that, a biflow is the
combination of two flows right in the opposite direction,
which can be treated as packets in a session between amobile
device and a remote host. We believe that a biflow is the
largest granularity we can use for APP-ID, which requires
the least effort to classify all the traffic. *at is why we
consider it as our classification object.

In this work, we apply various DL methods to APP-ID,
which train deep neural network classifiers that can be fed
with raw data and automatically discover the features needed
for identification. In practice, the raw data for the DLmodels
to consume would be a fix-length sequence of bytes from the
payloads in a biflow. We will remove all the packet headers
in a datagram (i.e., the Ethernet header, the IP header, and
the TCP/UDP header) and only use as input the top hun-
dreds of bytes in a biflow’s payloads. Our choice of this input
is supported by the knowledge that the first few packets
within a biflow normally capture the application negotiation
phase in their payloads, which is distinct among applica-
tions. Moreover, byte sequences can be easily normalized or
encoded to feed the networks without losing much infor-
mation. Although some packet header fields such as IP and
ports may also contribute to the identification, they are not
so trustworthy due to reasons we mentioned; thus we want
to totally avoid them.

Wireless Communications and Mobile Computing 3

3.2. Mobile Traffic Collection and Dataset Construction.
Most previously proposed APP-ID solutions report decent
performance with results based on private datasets, usually
labeled by approaches of unknown reliability. In order to
obtain the ground truth, the most common way is running
apps one by one separately and manually label the trace [6].
It is, however, not viable due to the background traffic
generated by system or sleeping apps. *ough some public
tools may aid the process of labeling [4], they are basically
obsolete with the need for ROOT access. Automatic ground
truth labeling is by no means a trivial work. We thus develop
NetLog—an Android monitoring tool for accurate mobile
trace labeling. With the help of it, the construction of real
network mobile traffic datasets for APP-ID is quite
convenient.

3.2.1. NetLog. NetLog is capable of monitoring all network
access attempts and communications originating from both
user and system apps. It can generate logs for each app’s
TCP/UDP communications and export all raw traffic as pcap
files. *e exported pcap traffic files and the corresponding
logs will be uploaded to a server through HTTP, where
further analysis can be performed, including automatically
associating each flow with its generating app.

*e core functions of NetLog are built upon the
VpnService class—a standard API provided by the Android
SDK. It creates a virtual network interface (i.e., TUN in-
terface), configures addresses and routing rules, and returns
a file descriptor to NetLog. *en NetLog will be able to
operate raw network traffic at user space by reading or
writing the special file descriptor, which is why root per-
missions are no longer needed.*e networking procedure of
NetLog is illustrated in Figure 1. All the smartphone’s
generated traffic that passed through the network stack is
routed to the tunX interface first. NetLog then has access to
all the outgoing IP packets by reading the/dev/tunX file. It
deals with the raw packets like a Layer 3/4 network stack,
ensuring that all packets are sent to their intended desti-
nation through the socket. Meanwhile, a duplicate copy of
the packets is created and exported for further uploading.
*e process is similar for incoming packets. In order to
accurately distinguish traffic from different apps, NetLog
obtains UIDs to each flow by reading the/proc/net/tcp and/
proc/net/udp files. An UID can be mapped to a specific app
by Android’s PackageManager API. Finally, a log for all
observed app-flow mappings is created and waits to be
uploaded to a cloud server along with the traffic files.

3.2.2. Dataset. NetLog is designed to automatically upload
raw packets and app-flow mapping files to a shared cloud
server when connected to Wi-Fi. It is efficient to scale up,
since the tool is completely transparent to users. For a wide
collection campaign, we distributed NetLog to different
volunteered Android users both on and off campus. With no
guidelines or interferences, all the volunteers needed to do is
using their smartphones normally as usual. *e data col-
lection process is divided into two periods. *e first lasted 4
weeks (August 2018–September 2018) with 12 volunteers on

campus involved and the second lasted 10 weeks (May
2019–July 2019) with 16 off-campus volunteers involved.
Eventually, we are able to achieve our goal of building a
large-scale dataset for APP-ID which is (1) accurately labeled
and (2) scalable and (3) produces high richness in real
network.

We collected traffic from 142 mobile apps in total, which
add up to a volume of 70.4 Gigabytes, covering a variety of
categories like messaging, social, shopping, videos, and so
forth. All of them are among the most popular apps in
China. Some of the most prevalent ones like WeChat, QQ,
and Taobao contributed the largest part. After collection, the
traffic was first divided to be labeled by different app name
based on the app-flow mapping list. *en the traffic was
filtered to include only TCP and UDP packets that were
error-free. Using a modified open source package, Joy [22],
we further analyzed the cleaned traffic and resolved it into
file of “biflows.” *e “biflow” here is a data structure con-
taining a big amount of statistical information, including 5-
tuples, packets length/interval sequences, and payload bytes
of fixed length. *e packet sequences are used for extracting
statistical features to feed the traditional ML classifier. *e
payload data, segmented from the chronologically concat-
enated packet payloads in a biflow, is used as inputs of the
DL models.

In association with the app name labels, our dataset was
finally constructed, consisting of 850K+ biflows
(300K+TLS biflows). As the traffic was collected through a
process of freely using the smartphones in daily life, we can
see from Figure 2 that the quantity of samples for each app is
highly unbalanced. *e longest bar on the graph stands for
WeChat, the predominant messaging and social app in
China. *e encrypted traffic biflows represented by TLS are
shown in red.

3.3.DLModels forAPP-ID. Deep learning methods can train
supervised neural network classifiers with raw data. During
the training, DL models learn multiple levels of features in
which higher layers amplify aspects of the input which are
important for discrimination and suppress irrelevant vari-
ations [10]. To demonstrate DL’s superior ability of feature
learning for APP-ID, we apply three major types of DL
models here: Autoencoders, Convolutional Neural Net-
works, and Recurrent Neural Networks. *ey are among the
most popular and well-studied deep learning technologies
and will probably provide empirical insights into solutions
to APP-ID.

3.3.1. Autoencoders. An Autoencoder (AE) is a shallow
feedforward neural network designed for learning efficient
data representations by simply learning to copy its input to
its output [23]. *e network is always composed of two
parts: an encoder (or recognition network) that converts
the inputs to an internal representation, followed by a
decoder (or generative network) that converts the internal
representation to the outputs. Usually AEs are designed to
be restricted in ways that allow them to copy the inputs
only approximately and unable to learn to copy perfectly,

4 Wireless Communications and Mobile Computing

yet they must find a way to output a copy of the inputs.
*ey are forced to prioritize which aspects of the inputs
should be copied and learn the most important features in
the data. One way to force the autoencoder to learn useful
features is to add noise to its inputs, training it to recover
the original, noise-free inputs. *is is called Denoising
Autoencoder (DAE). Chaining multiple DAEs together,
we will have a Stacked Denoising Autoencoder (SDAE). It
can extract data from the input hierarchically to learn
features of different levels of abstraction. Geoffrey Hinton
et al. [24] discovered that deep neural networks can be
pretrained for better performance in an unsupervised
fashion, which also works for autoencoders. *us, we can
pretrain a SDAE using all data and reuse its encoder layers
to create a new neural network for classification. *e new
model will learn to classify the input by back-propagating
the classification errors in a supervised way.

To build our SDAE for APP-ID, we stack multiple
hidden layers and add noise by randomly switching off
inputs using the dropout layer. We first train the SDAE
using all the data and then reuse its encoder layers to create
a new neural network for classification, as depicted in
Figure 3.

3.3.2. Convolutional Neural Networks. A Convolutional
Neural Network (CNN) is quite similar to an ordinary
neural network. It is specifically designed to process data that
come in the form of multiple arrays. *ere are four key ideas
behind CNN, which take advantage of the properties of
natural signals: local connections, shared weights, pooling,
and the use of many layers [10]. *e most important
building block of a CNN is the convolutional layer. Each
neuron in the convolutional layer is connected only to
neurons located within a small rectangle in the preceding
layer. *is allows the network to concentrate on low-level
features and assemble them into higher-level features in the
next layer. *e pooling layer is used by a CNN to subsample
the input in order to reduce the computational load and the
number of parameters, thereby limiting the risk of over-
fitting. Typical CNN architectures stack a whole series of
convolution and pooling layers, and the resulting outputs
need to be flattened and concluded by at least one regular
fully connected layer prior to classification. Since many data
modalities are in the form of multiple arrays, 1D for signals
and sequences including language, 2D for images or audio
spectrograms, and 3D for video or volumetric images, CNNs
have been applied in a variety of tasks and achieved

0 20 40 60 80

Index of apps

100 120 140

35000

30000

25000

20000

15000

10000N
u

m
b

er
 o

f
b

if
lo

w
s

5000

0

Non-TLS biflows

TLS biflows

Figure 2: Description of the dataset.

Outputs

Hidden 3

Hidden 2

Inputs

Hidden 1

Dropout

Dropout

Inputs

Hidden 1

Dropout

Dropout

Hidden 2

FC

SoftMax

≈ Inputs ≈ Labels

Copy
parameters

Step1: Pretrain SDAE
using all the data

Step2: Train a classifier on
the training set

Figure 3: SDAE for APP-ID.

Socket API

Installed apps

Network stack

/dev/tunX
T
C
P

tunX

U
D
P

R
A
W

Socket API

NetLog

T
C
P

U
D
P

R
A
W

User

Kernel

NetLog
server

Network stack

WLAN

Internet

Figure 1: *e workflow of NetLog.

Wireless Communications and Mobile Computing 5

superhuman performance. Taking network traffic as byte
sequences, it is intuitive to fit a 1D CNN model to it for
classification.

Our raw data inputs are fixed-length byte segments, where
the location of the feature within the segment is not of high
relevance, thus making a 1D CNN, which is effective to derive
features from fixed-length segments of the overall dataset, an
idealmodel. Unlike the densely connected neural network layer
that needs 1D data as input, a 1D CNN accepts 2D matrices.
*erefore, each byte in our segments can be encoded into
vectors of fixed size to feed the model. *e typical 1D CNN
architecture for APP-ID is depicted in Figure 4.

3.3.3. Recurrent Neural Networks. A Recurrent Neural
Network (RNN) is a type of neural network architecture
particularly suited for modeling sequential phenomena.
Given a standard feedforwardMLP network, an RNN can be
thought of as the addition of loops to the architecture. For
example, in a given layer, each neuron may pass its signal
laterally (sideways) in addition to forwarding to the next
layer.*e output of the network may feedback as an input to
the network with the next input vector, and so on. *e
recurrent connections add state or memory to the network
and allow it to learn broader abstractions from the input
sequences theoretically. In practice, however, learning long-
range dependencies with a vanilla RNN is difficult due to
vanishing/exploding gradients [25]. Long Short-Term
Memory (LSTM) addresses the problem by augmenting the
RNN with a memory cell vector at each time step [26]. *is
allows deep networks with multiple layers to be created,
which is often crucial for obtaining competitive performance
on various tasks.

As RNNs typically deal with sequential data to capture
the contextual information, we have to divide each sample in
our dataset into multiple small segments to feed the network
one by one. Considering that the RNN is a biased model,
where later inputs are more dominant than earlier inputs, we
use bidirectional RNNs for better learning. A bidirectional
model simply put two independent RNNs together, while the
input sequence is fed in normal time order for one network
and in reverse time order for another.*e outputs of the two
networks are usually concatenated, allowing the networks to
have both backward and forward information about the
sequence at every time step, thus mitigating the bias.
Combining bidirectional RNNs with LSTM gives bidirec-
tional LSTM, which can access long-range context in both
input directions. *e final bidirectional LSTM network for
APP-ID is depicted in Figure 5.

4. Evaluation

In this section, we provide a thorough experimental eval-
uation for the three different DL models based on our
dataset. *e performance measures and metrics are given
first. *en we investigate the selection of some important
parameters. After this, the performance evaluation of our DL
models including comparisons with the baseline methods is
presented.

4.1. Performance Measures and Metrics. *ere are several
metrics for evaluating our methods. Before the definitions,
we first introduce four related terms. For each app in the test
set, True Positives (TP) indicates the number of biflows
identified as this app which indeed belong to it. True
Negatives (TN) is the number of biflows that are correctly
judged as not belonging to this app. False Positives (FP)
refers to the number of biflows that are wrongly identified as
this app. False Negatives (FN) is the number of biflows
belonging to this app while incorrectly classified as be-
longing to other apps.

For evaluation of the test set, we have Precision, Recall,
and F-measure (also F1 score or F-score) for every target
app:

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

F − measure �
2(Precision × Recall)

Precision + Recall
.

(1)

*e Precision can be seen as a measure of exactness or
fidelity, whereas Recall is a measure of completeness. F-
measure, the harmonic mean of Precision and Recall, gives
equal importance to them. We also have the global accuracy
for all the target apps:

accuracy �
∑Ni�1 TPi
Total

. (2)

where N is the number of apps, Total is the total number of
biflows in the training set, and TPi means the number of app
i’s TPs. Besides, considering the presence of class imbalance
in our multiclass settings, we use the macroaveraged F-
measure as the main performance measure due to its equal
emphasis on rare classes.

To make our DL models suitable for classification tasks,
we use the SoftMax function in the output layer to produce a
probability distribution. *e training loss that expresses the
errors is a categorical entropy:

E � −
1

N
∑
N

i�1

pilog pi(), (3)

where pi is a returned probability for the predicted class with
N categories in total. A classifier confident of its decisions
gives a high probability for each predicted class, which
results in a minimized entropy.

4.2. Parameter Selection. *ere are several important pa-
rameters for training our DL models including the number
of payload bytes as input and the hyperparameters for the
neural networks. Here we give the selection and setting of
those parameters.

4.2.1. Number of Input Payload Bytes. For a couple of
reasons, we have chosen a fixed-length payload segment as

6 Wireless Communications and Mobile Computing

raw input data for our DL models. Considering that too
short a payload segment may miss some key features while
too long an input suggests redundant data and unnecessary
training cost, it is very useful to set an appropriate length for
it in practice.

To find the optimal input payload length for APP-ID, we
evaluated the skill of 1D CNN model on various numbers of
valid input bytes. *e dedicated 1D CNNmodel for APP-ID
has a fixed input length of 1014, within which we believe
adequate features for classification can be derived. We
formatted each sample in the dataset into a shorter payload
segment and padded it to the length of 1014 with zeros at the
bottom in order to feed the model for training. *rough a
series of tests, we can find out the optimal length of payload
segments.

*e evaluation results are shown in Figure 6, presented
with the model’s best validation accuracy after training for
20 epochs. We can see that the model’s performance rises
dramatically when the number of payload bytes for input
increases from 0 to 100 and steadily grows until the number
reaches around 300. With input payload bytes more than
300, the accuracy shows no evident signs of improvement
any more. *e results indicate that 300 bytes are generally
sufficient for DL models to learn features for APP-ID (other
models perform not as good as 1D CNN). It is probably the
optimum number of input payload bytes we should apply.

4.2.2. Hyperparameters of the DL Models. *e performance
of many contemporary DL algorithms depends crucially on

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM…

…

Concat Concat Concat Concat

FC

So�max

Last output vector

Forward
layer

Backward
layer

Input sequences

Input sequences
(reversed) Segmentn Segmentn−1 Segmentn−2 Segment1

Segment1 Segment2 Segment3 Segmentn

Figure 5: Bidirectional LSTM network for APP-ID.

0

1

0

0

…

Convolutions Max-pooling Conv and pool.
layers

Fully connected
layers

Class 1

Class 2

Class 3

Class 4

So�Max
output

Input byte

Figure 4: 1D CNN for APP-ID.

Wireless Communications and Mobile Computing 7

the specific initialization of hyperparameters such as the
general architecture, the optimizers, regularization param-
eters, and many others. We set hyperparameters of our DL
models with best effort to achieve decent classification
performance and to enhance their capabilities to generalize
well to unlabeled traffic. Table 1 presents the details.

*e proposed SDAE architecture has 3 hidden encoding
layers stacked on top of each other with respective dropout
layers ahead of them.We limit the size of the encoding layers
to 200 and 100, making it undercomplete. For the APP-ID
task, a SoftMax classifier is added to the encoder part, which
is pretrained over the whole dataset. Besides, we use 300-byte
payload segments as input, which has been discussed before.

*e proposed CNN is designed to accept fixed-length
inputs of 1014 bytes, which is tested to be sufficient for our
purpose. We use two identical 1D convolutional layers and
1Dmax-pooling layers in pairs to learn traffic representations.
*e convolutional layers have stride of 1 and pooling layers
are all nonoverlapping ones. *ey are followed by flatten and
fully connected layers in preparation for the final SoftMax
classifier. We also insert a dropout layer with dropout rate of
0.5 after the fully connected layer for regularization.

Different from SDAE or CNN whose input data is the
whole payload segment, the input for our LSTM network is a
sequence of small segments equally divided from the original
payload bytes. *e length of the small segment consumed by
a LSTM cell is set to 20, which is long enough to capture the
critical information. *e dimension of LSTM is set to 100.
We use two connected bidirectional LSTM layers, with the
first generating a sequence of concatenated vectors and the
second outputting the last one vector. A dropout layer is also
added for regularization.

In the training step, we choose Adam—an adaptive
learning rate optimization algorithm, as our optimizer in
terms of speed of training. For SDAE and CNN, training with
20 epochs will achieve global optimal accuracy. *e process is
longer for LSTM network, which needs 100 epochs.

4.3. xperimental Results. Here we provide the performance
evaluation for our proposed DL models. A comparison with

two baseline approaches is also included. *e first baseline
approach is a multiclass Random Forest Classifier based on
statistical features extracted from traffic flows. *is method
is proposed in [4, 5], which represents the state-of-the-art
mobile traffic classifier using traditional machine learning
techniques. To reflect the benefits of “deep” learning models,
we use a Multilayer Perceptron (MLP) classifier with two
hidden layers of 100 nodes as our second baseline approach.
*is has been introduced to the task of traffic protocol
identification in [18], which also takes raw payload data as
input and shows impressive capability of feature extraction.

4.3.1. xperiment Setup. *e evaluation for our proposed
DL models and the baseline approaches are based on the
same dataset that is split into train/test set in proportion of
75%/25% with stratifying and shuffling. *e dataset is
constructed from preprocessed traffic data to include both
flow statistical features and payload segments required by
the tests. According to [5], the statistical features are derived
from three packet length sequences (i.e., incoming, outgo-
ing, and bidirectional) within a biflow. *e three packet
sequences actually represent a burst part rather than the
whole biflow with the burst threshold set as 1 second. For
each of the sequences, 18 statistical values are computed.
*en a feature selection is performed to keep the top 40 of
the total 54 values as final features for the baseline RF
classifier. On the other hand, the payload segments of
biflows can be accessed much more easily. *ey can be
conveniently used as inputs for our end-to-end DL models
as well as the baseline MLP directly after a simple nor-
malization. To normalize a byte sequence for the neural
network that accepts vector of values in the range [− 1, 1], we
only require each byte to be divided by 255, namely, the
maximum value of a byte. For the 1D CNN that accepts
inputs with an additional feature number dimension, we
replace every byte by a vector of size 256 using the one-hot
encoding method.

In addition to the evaluation with the whole dataset, we
also run experiments on the encrypted part of the dataset to
estimate our models’ skill to classify encrypted traffic. It is
hard to recognize every single biflow that has applied en-
cryption. Considering that HTTPS/TLS is widely used
nowadays and the TLS biflows account for a considerable
proportion of over 30% in our dataset, we separate them

Table 1: Hyperparameters of the proposed DL models.

Hyperparameters SDAE 1D CNN LSTM

Input units 300 1014 20
Hidden layer units 300,200,100 — 100
Number of layers 7 8 5
Dropout rate 0.05 0.5 0.5
Activation Tanh ReLU ReLU
Optimizer Adam Adam Adam
Batch size 30 30 30
Training epochs 20 20 100
Number of filters — 256 —
Filter size — 7 —
Pooling size — 3 —0 100 200 300 400 500

Number of payload bytes as input

600 700 800

val_acc of CNN

900 1000

0.9

0.8

0.7

V
al

id
at

io
n

 a
cc

u
ra

cy

0.6

0.5

0.4

0.3

0.2

Figure 6: Impact on the CNN’s performance with a growing
number of input payload bytes.

8 Wireless Communications and Mobile Computing

from the original dataset to create a new dataset representing
the encrypted traffic. Evaluations with the new dataset are
performed in the same way.

Training a network to find the global minimum loss
generally requires iterating many times through the whole
training set, which is reflected in the hyperparameter setting
of epochs. During epochs of training, we checkpoint all
observed improvements and save the model with the best
accuracy on the validation set for analysis. In order to
control the model variance, we apply a tenfold cross vali-
dation for each considered test. *e average of each per-
formance measure will be reported as the final evaluation
result.

Our DL experiments are all carried out on a workstation
with a Nvidia GeForce GTX 1080 GPU (2560 cores and 8GB
memory). *e DL models are built by Keras API with the
backend of TensorFlow.

4.3.2. valuation Results. In the experiment settings, we
perform evaluation tests on the DL and baseline models with
two datasets, respectively. To present the final results con-
cisely, we use accuracy and macro-average F-measure as the
performance metrics. All results are reported in Table 2 with
the best ones highlighted.

From the results, we can see that the DL models of CNN
and LSTM significantly outperform the baseline models of
RF and MLP with accuracy and macro-F1 all higher than
80%. It is worth noting that those two DL models plus MLP
all have shown far better performance than the RF with
improvements over 20 percent, which implies that the
features they learn from raw traffic data are far superior to
the statistical features for the task of APP-ID. However,
despite the outstanding results, the DL model of SDAE has
presented poor performance, which is even worse than the
RF classifier. We may find some clues by drawing a com-
parison between SDAE and MLP, since they share a similar
structure of fully connected layers as well as the inputs. *e
SDAE classifier has pretrained layers with frozen weights for
the purpose of preserving the ability of learning good
representations of data. Nevertheless, the representations
learned by the intermediate layers of SDAE in an unsu-
pervised fashion do not need to have general “goodness” for
other types of tasks like classification. *us, a supervised
trained MLP classifier would likely be a better choice for our
task.

For the evaluations based on the TLS dataset, the results
are close to those on the whole dataset with even small
improvements of accuracy. *is reveals the fact that
encrypted TLS traffic can be classified by its raw data as well.
When looking into the input payload information of TLS
biflows, the Client Hello and Server Hello messages that are
transmitted in cleartext are typically found within. More-
over, these messages generally contain distinguished fields
like server_name that can be learned by DL models for the
task of classification. It is probably the reason why TLS
biflows are showing no difficulties to be classified just as the
ordinary biflows do. We will substantiate this with inter-
pretation results later.

*roughout the experiments, the LSTM network model
has exhibited impressive potential for APP-ID, while the
best model for the task is undoubtedly the 1D CNN, which
presents 91.80% accuracy and 90.10% macroaverage F-
measure that overshadow all others. Technically, the 1D
CNN is an unbiased model that can fairly determine dis-
criminative patterns in a sequence with a max-pooling layer.
*us, it may better capture the local features compared to the
RNNs. To further demonstrate the APP-ID skill of these two
DL models and discover their error patterns, we create their
confusion matrices, respectively. Due to the limitation of
space, we rank all the apps according to their F-measure
values and only select the worst 50 to display. From the
heatmaps in Figure 7, we can naturally see that these two DL
models’ confusion matrices are quite alike. For example,
they both have the same two dark nodes at the location of (6,
5) and (22, 21), right adjacent to the diagonal line. It in-
dicates that both models have a poor classification recall on
app 5 (Jingdong) and app 21 (Tmall). *e strong resem-
blance actually implies that the two models with different
architectures are trained to learn a set of similar features for
APP-ID. Besides, we can also infer from the matrices that
app 22 (Taobao), which has a large number of FPs and FNs,
is probably one of the most complicated apps. In general,
there are only few apps in the app set which have very poor
classification results. *ey are mostly related to each other
and offer the same or similar services, which makes them
lack unique signatures.

4.3.3. ffect of Training App Set Size. To evaluate the ro-
bustness of our DL models when training with a larger app
set, we run experiments with different sizes of training app
set to test the performance of the models. For each different
size, a certain number of apps are randomly selected and a
subdataset including only these apps is created to train the
models. *e random app selection and training for each app
set size is repeated 10 times with the average as the final
result.

Figure 8 shows the impact of the training app set size on
the performance of the DL models. On the whole, the
performances of two DL models show similar trends.
Consistent with the previous results, the 1D CNN out-
performs the LSTM network. When the app set size is
limited to a minimum, that is, 2, the F-measures are both
higher than 0.96, since the majority of the apps are easy to
distinguish from each other as mentioned before. As the
training app set size increases, the performance slowly
declines, since those apps that are difficult to classify are
more likely to be included. Although the performance of
the DL models has been degraded in terms of the results, it
does not mean that the models will not be as effective with a
larger app set. When the app set is close to complete, the
performance remains stable around the previous evalua-
tion results. *is indicates that further increasing the
number of apps would probably not degrade the perfor-
mance, since the added apps are very likely to be easy to
identify and the models are able to learn effective features to
classify as many of them as possible.

Wireless Communications and Mobile Computing 9

4.3.4. Limitations and Open Issues. Deep learning archi-
tectures with a large number of parameters typically need a
proportional number of samples to train to achieve good
performance. Our dataset, though delicately established,
may not be sufficient to train a very deep state-of-the-art
neural network model. It is also unbalanced with few apps

only having hundreds of biflows, which is prone to leading to
biased results. With our proposed NetLog and the scalable
approach, however, the dataset can be enlarged regularly in a
convenient way.

It seems that the DL models trained for APP-ID mainly
learn useful features from the top hundreds of payload bytes
in a similar way to performing text classification. We will
give detailed information through model interpretation in
the following section. *e ability to deal with the actual
encrypted traffic is yet to be explored.

In previous research, the SAE has been proposed to be
effective for the task of traditional traffic classification [20].
However, in our systematic experiments, the classifier using
autoencoders did not show any potential on the task of APP-
ID, while training an MLP with the same layers would do
much better. It seems that a loss layer of our interested task
rather than a loss layer of reconstruction is preferable. On
the other hand, the success of DLmodels like CNN and RNN
has encouraged hybrid and more advanced network ar-
chitectures, like ResNet or Inception layers, to be applied for
APP-ID.

5. Model Interpretation

Understanding why a model makes a certain prediction can
be as crucial as the prediction’s accuracy in many

0 2 4 6 8 10 12 14 16 18 20 22 24

Predicted app ID

26 28 30 32 34 36 38 40 42 44 46 48

48

46

44

42

40

38

36

34

32

30

28

26

24

22

T
ru

e
ap

p
 I

D

20

18

16

14

12

10

8

6

4

2

0

N
u

m
b

er
 o

f
sa

m
p

le
s

100

80

60

40

20

0

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24

Predicted app ID

26 28 30 32 34 36 38 40 42 44 46 48

48

46

44

42

40

38

36

34

32

30

28

26

24

22

T
ru

e
ap

p
 I

D

20

18

16

14

12

10

8

6

4

2

0

N
u

m
b

er
 o

f
sa

m
p

le
s

100

80

60

40

20

0

(b)

Figure 7: Confusion matrices for two DL models. (a) 1D CNN. (b) LSTM network.

Table 2: Accuracy and macroaverage F-measure for the baseline and DL models on two datasets, respectively.

Model
Dataset-all Dataset-TLS

Accuracy (%) Macro-F1 (%) Accuracy (%) Macro-F1 (%)

Baseline
RF 61.32 50.30 62.91 50.07
MLP 81.24 70.64 83.57 65.79

DL
SDAE 58.73 39.86 60.37 41.45
1D CNN 91.80 90.10 93.14 84.25

LSTM 85.09 80.77 89.36 80.51

0
80

82

84

86

88

90

92

94

96

98

100

F
-m

ea
su

re
 (

%
)

50

Training app set size (%)

100

1D-CNN

LSTM

Figure 8: Impact of the training app set size on the F-measures of
two DL models. 100% training app set size refers to using the
training set with all the apps (142).

10 Wireless Communications and Mobile Computing

applications. A well-performing prediction model probably
discovers patterns that users would very much like to un-
derstand. In some cases, interpretation of outputs can also
help to learn the reason why a model might fail and provides
insight into how it may be improved. Here, after training and
evaluation, we will give our sample-specific explanations on
the best-performing DL model of 1D CNN by using Deep
SHAP [27]. It is a high-speed approximation algorithm for
SHAP values in deep learning models, which builds on a
connection with DeepLIFT [28], a recursive prediction
explanation method for deep learning, which can be thought
of as a fast approximation of the SHAP values.

*e SHAP value is an alternative formulation of the
Shapley values [29], which can be used to calculate the
importance of an input by comparing what a model predicts
with and without the input. It measures the average marginal
effect of including an input over all possible orderings in
which inputs can be included. Here we use the Python
package shap, which implements several explanation
methods including Deep SHAP in a unified approach, to
explain ourmodel predictions. For simplicity, we choose one
representative app for explanation and calculate the SHAP
values for each sample of it. WeChat, the most popular

messaging and social app in China, has revealed the largest
complexity in the model prediction, thus becoming our
target.

*e interpretation of our 1D CNN model based on Deep
SHAP is sample-specific and here we give four representative
outcomes in detail, as shown in Figure 9. Different from
Figure 8(a) whose outcome is derived from the model trained
on Dataset-All (model_all), the other three plots are all based
on the Dataset-TLS trained model (model_tls). In the plots, a
higher SHAP value means a greater contribution of the input
to the target output, which gives different importance to the
byte segments across the whole input with respect to the
predicted app class. Generally, the SHAP values larger than
0.01 turn out to be the most prominent in the distribution and
correspond to the most distinguished patterns found in the
input bytes. Sample 1 represents a non-TLS traffic flow of
WeChat typically with the top few bytes highly scored.
However, the recognized patterns are not always the common
HTTP header fields like GET, POST, and so forth. Here, in
Figure 9(a), for example, the pattern stands for the byte se-
quence “032714eab5c49c” which is unknown. Sample 2 is a
typical TLS flow with the greatest values located in the Ex-
tension: server_name field. Server Name Indication (SNI)

0 200 400

Input byte

600 800 1000

0.04

0.03

0.02

0.01

SH
A

P
 v

al
u

e
(m

o
d

el
_

al
l)

0.00

–0.01

w.r.t WeChat

(a)

0 200 400

Input byte

600 800 1000

0.06

0.05

0.04

0.03

0.02

0.01

0.00SH
A

P
 v

al
u

e
(m

o
d

el
_

tl
s)

–0.01

w.r.t WeChat

(b)

0 200 400

Input byte

600 800 1000

SH
A

P
 v

al
u

e
(m

o
d

el
_

tl
s)

0.015

0.010

0.005

0.000

–0.005

w.r.t WeChat

(c)

0 200 400

Input byte

600 800 1000

SH
A

P
 v

al
u

e
(m

o
d

el
_

tl
s)

0.020

0.015

0.010

0.005

0.000

–0.005

w.r.t WeChat

w.r.t JingDong

(d)

Figure 9: Distribution of SHAP values on input bytes for 4 different test samples of WeChat. (a) Test sample 1. (b) Test sample 2. (c) Test
sample 3. (d) Test sample 4.

Wireless Communications and Mobile Computing 11

indicates which hostname the client is attempting to connect,
and it is probably themost well-known service-related pattern
at the start of the TLS handshake process. Specifically, the
pattern revealed in Figure 9(b), “mp.weixin.qq.com,” is
contained in 134 TLS flows among the training set, with 117
of which belonging toWeChat. Sample 3 is a special TLS flow
that has a deceptive SNI but is properly predicted. *e SNI
“http://www.zhihu.com” would have attributed the request to
the Zhihu app instead of WeChat as it appears 46 times in the
Zhihu training set compared to only 4 times in the WeChat
training set. Despite that, the model has made correct pre-
diction by learning more complex features. It is shown in
Figure 9(c) that a part of the Cipher Suites, “cca8cc14cc13,”
receives the highest scores rather than the SNI. In fact, these
three cipher suites exist only in WeChat and other 14 apps,
not including Zhihu, which explains why they are so im-
portant for the model to make the decision. No model is
perfect. Sample 4 gives a false negative example showing how
our model may fail for the task. *e red plot in Figure 9(d)
represents the calculated values with respect to the false app.
*ey are much more positive compared to the blue ones
calculated with respect to the true label, making the model
confident enough to give the wrong prediction. *ere are two
peaks in the red plot, which stand for the SNI “item.m.jd.com”
and a Certificate subject “Beijing Jingdong Shangke Infor-
mation Technology Co., Ltd.,” respectively. Unfortunately,
both of them frequently appear in the Jingdong training set
and show little connection with WeChat. *e model cannot
learn good features from the limited samples of information
to divide them.

To better illustrate the overall SHAP value distributions
on theWeChat samples, we present two stacked scatter plots
in Figure 10. *e red dots represent positive SHAP values
that increase the probability of the class, while the blue dots
represent negative SHAP values that reduce the probability
of the class. Due to the different training and testing sets,
those two plots vary in a range of aspects. In Figure 10(a), the
values are quite large and clustered within the top few bytes,
which is reasonable, as a majority of flows are transmitted in
form of HTTP and the header fields of URI are quite dis-
tinguished. In Figure 10(b), the most clustered part is

between bytes 100 and 170, where the Cipher Suites and SNI
extensions are generally located. Besides, the distribution
also shows a greater fluctuation with positive values across
the whole input. As is shown in the previous examples, it is
common that an app’s traffic has no exclusive signatures in
the flows and the model needs to learn more complex
features from multiple patterns to recognize them. Some-
times those patterns even contribute to the opposite because
of the ambiguous flows. In most cases, the top 300 bytes,
which have been tested in the evaluation section, hold the
useful and important patterns needed for APP-ID.

*rough model interpretation, we can see that the 1D
CNN model for APP-ID is powerful at discovering app
signatures whether they are prominent or not and utilizing
them to learn advanced features that a rule-based classifier
would hardly manage to do. Still, the model is challenged by
the fact that modernmobile apps have been integratingmore
and more functions and services, which increases the dif-
ficulty of rigid traffic classification. In general, given suffi-
cient data, a DL classifier is promised to learn the differences
between different classes as long as they exist among the
inputs. *e knowledge and features a DL model can learn
from raw traffic data are meaningful and robust. Most
importantly, it is completely in an automatic way.

6. Conclusion

In this paper, we propose a mobile traffic collection
framework to construct dataset for APP-ID. We develop
NetLog for Android smartphones and combine with a cloud
server to collect real network traffic with accurate ground
truth labeling and high scalability. A new approach based on
deep learning technology for APP-ID is proposed and
evaluated on our dataset. It takes advantage of DL methods
to process raw packet payloads to automatically learn useful
traffic representations for classification. Specifically, three
most representative DL architectures, namely, AE, CNN,
and RNN, are introduced to carry out the task. We have
designed the dedicated classifiers, a SDAE, a 1D CNN, and a
bidirectional LSTM network, respectively. In our systematic
evaluation experiments, the CNN and LSTM show an

0.20

0.15

0.10

0.05

SH
A

P
 v

al
u

e
w

.r
.t

. W
eC

h
at

 (
m

o
d

el
_

al
l)

0.00

–0.05

–0.10

0 200 400 600 800 1000

Input byte

0.0100

0.0075

0.050

0.0025

0.0000

–0.0025

–0.0050

–0.0075

–0.0100

(a)

0.30

0.20

0.25

0.15

0.10

0.05

SH
A

P
 v

al
u

e
w

.r
.t

. W
eC

h
at

 (
m

o
d

el
_

tl
s)

0.00

–0.05

0 200 400 600 800 1000

Input byte

0.0100

0.0075

0.050

0.0025

0.0000

–0.0025

–0.0050

–0.0075

–0.0100

(b)

Figure 10: Stacked SHAP values over WeChat test samples for two different trained models. (a) Calculated based on model_all. (b)
Calculated based on model_tls.

12 Wireless Communications and Mobile Computing

impressive performance improvement over two baseline
classifiers, RF and MLP. To further understand how deep
learning is qualified for the task of APP-ID, sample-specific
interpretations of the best-performing 1D CNN model are
performed with state-of-the-art tools. In summary, a DL
classifier can automatically learn important and effective
features for each app from the uppermost bytes of its raw
traffic flows.*e approach also shows promise for classifying
the majority of the real-world mobile traffic, provided that
mass ground truth data can be achieved through the
methodology of our traffic collection.

Data Availability

*e related dataset in this paper is not made public due to
privacy and ethical issues. Requests for the original data, 6
months after publication of this article, will be considered by
the corresponding author.

Conflicts of Interest

*e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

*is work was partially supported by the National Natural
Science Foundation of China under Grant no. 61806216.

References

[1] A. Dainotti, A. Pescape, and K. C. Claffy, “Issues and future
directions in traffic classification,” I Network, vol. 26,
no. 1, 2012.

[2] Cisco Visual Networking Index, “Cisco visual networking
index: Forecast and trends, 2017–2022,”White Paper 1, 2018.

[3] A. Ghosh, P. K. Gajar, and S. Rai, “Bring your own device
(byod): security risks and mitigating strategies,” Journal of
Global Research in Computer Science, vol. 4, no. 4, pp. 62–70,
2013.

[4] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Robust
smartphone app identification via encrypted network traffic
analysisfication via encrypted network traffic analysis,” I
Transactions on Information Forensics and Security, vol. 13,
no. 1, pp. 63–78, 2018.

[5] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic,
“Appscanner: Automatic fingerprinting of smartphone apps
from encrypted network traffic,” in Proceedings of the 2016
I uropean Symposium on Security and Privacy
(uroS&P), pp. 439–454, IEEE, Saarbrucken, Germany,
March 2016.

[6] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Multi-
classification approaches for classifying mobile app trafficfi-
cation approaches for classifying mobile app traffic,” Journal
of Network and Computer Applications, vol. 103, pp. 131–145,
2018.

[7] T. Auld, A. W. Moore, and S. F. Gull, “Bayesian neural
networks for internet traffic classificationfic classification,”
I Transactions on Neural Networks, vol. 18, no. 1,
pp. 223–239, 2007.

[8] J. Zhang, X. Chen, . Xiang, W. Zhou, and J. Wu, “Robust
network traffic classificationfic classification,” I /ACM

Transactions on Networking, vol. 23, no. 4, pp. 1257–1270,
2015.

[9] K. Al-Naami, S. Chandra, A. Mustafa et al., “Adaptive
encrypted traffic fingerprinting with bidirectional depen-
dence,” in Proceedings of the 32nd Annual Conference on
Computer Security Applications, pp. 177–188, ACM, Los
Angeles, CA, USA, December 2016.

[10] . LeCun, . Bengio, and G. Hinton, “Deep learning,”Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[11] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song,
“Networkprofiler: towards automatic fingerprinting of an-
droid apps,” in Proceedings of the INFOCOM, vol. 13,
pp. 809–817, Turin, Italy, April 2013.

[12] S. Miskovic, G. M. Lee, . Liao, and M. Baldi, “Appprint:
automatic fingerprinting of mobile applications in network
traffic,” in Proceedings of the International Conference on
Passive and Active Network Measurement, pp. 57–69,
Springer, Boston, MA, USA, March–April 2015.

[13] Q. Xu, . Liao, S. Miskovic et al., “Automatic generation of
mobile app signatures from traffic observations,” in Pro-
ceedings of the 015 I Conference on Computer Commu-
nications (INFOCOM), pp. 1481–1489, IEEE, Kowloon, Hong
Kong, April–May 2015.

[14] H. ao, G. Ranjan, A. Tongaonkar, . Liao, and Z. M. Mao,
“Samples: self adaptive mining of persistent lexical snippets
for classifying mobile application traffic,” in Proceedings of the
21st Annual International Conference on Mobile Computing
and Networking, pp. 439–451, ACM, Paris, France, September
2015.

[15] G. Ranjan, A. Tongaonkar, and R. Torres, “Approximate
matching of persistent lexicon using search-engines for
classifying mobile app traffic,” in Proceedings of the INFO-
COM 2016-Ce 35th Annual I International Conference on
Computer Communications, pp. 1–9, IEEE, San Francisco, CA,
USA, April 2016.

[16] . Chen, W. ou, . Lee, K. Chen, X. Wang, and W. Zou,
“Mass discovery of android traffic imprints through instan-
tiated partial execution,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Se-
curity, pp. 815–828, ACM, Dallas, TX, USA, October 2017.

[17] Q. Wang, A. ahyavi, B. Kemme, and W. He, “I know what
you did on your smartphone: inferring app usage over
encrypted data traffic,” in Proceedings of the 2015 I
Conference on Communications and Network Security (CNS),
pp. 433–441, IEEE, Florence, Italy, September 2015.

[18] Z. Wang, “*e applications of deep learning on traffic
identification,” BlackHat USA, vol. 24, no. 11, pp. 1–10, 2015.

[19] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. ang, “End-to-
end encrypted traffic classification with one-dimensional
convolution neural networks,” in Proceedings of the 2017 I
International Conference on Intelligence and Security Infor-
matics (ISI), pp. 43–48, IEEE, Beijing, China, July 2017.

[20] M. Lotfollahi, R. Shirali, M. J. Siavoshani, and M. Saberian,
“Deep packet: a novel approach for encrypted traffic classi-
fication using deep learning,” 2017, http://arxiv.org/abs/1709.
02656.

[21] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and
J. Lloret, “Network traffic classifier with convolutional and
recurrent neural networks for Internet of thingsfic classifier
with convolutional and recurrent neural networks for internet
of things,” I Access, vol. 5, pp. 18042–18050, 2017.

[22] Cisco, “joy”, GitHub repository, https://github.com/cisco/joy.
[23] P. Vincent, H. Larochelle, I. Lajoie, . Bengio, and

P.-A. Manzagol, “Stacked denoising autoencoders: learning

Wireless Communications and Mobile Computing 13

http://arxiv.org/abs/1709.02656
http://arxiv.org/abs/1709.02656
https://github.com/cisco/joy

useful representations in a deep network with a local
denoising criterion,” Journal of Machine Learning Research,
vol. 11, pp. 3371–3408, 2010.

[24] G. E. Hinton, S. Osindero, and .-W. Teh, “A fast learning
algorithm for deep belief nets,” Neural Computation, vol. 18,
no. 7, pp. 1527–1554, 2006.

[25] . Bengio, P. Simard, P. Frasconi et al., “Learning long-term
dependencies with gradient descent is difficultficult,” I
Transactions on Neural Networks, vol. 5, no. 2, pp. 157–166,
1994.

[26] S. Hochreiter and J. Schmidhuber, “Long short-term mem-
ory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[27] S. M. Lundberg and S.-I. Lee, “A unified approach to inter-
preting model predictions,” in Proceedings of the Advances in
Neural Information Processing Systems, Long Beach, CA, USA,
December 2017.

[28] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning
important features through propagating activation differ-
ences,” in Proceedings of the 34th International Conference on
Machine Learning, vol. 70, Sydney, Australia, August 2017.

[29] L. S. Shapley, “17. A value for n-person games,” in Contri-
butions to the Ceory of Games (AM-28), Volume II,
pp. 307–318, Princeton University Press, Princeton, NJ, USA,
1953.

14 Wireless Communications and Mobile Computing

