Pacific

Journal of

 MathematicsREAL PALEY-WIENER THEOREMS FOR THE INVERSE FOURIER TRANSFORM ON A RIEMANNIAN SYMMETRIC SPACE

Nils Byrial Andersen

REAL PALEY-WIENER THEOREMS FOR THE INVERSE FOURIER TRANSFORM ON A RIEMANNIAN SYMMETRIC SPACE

Nils Byrial Andersen

Abstract

We prove real Paley-Wiener theorems for the inverse Fourier transform on a semisimple Riemannian symmetric space G / K of the noncompact type. The functions on G / K whose Fourier transform has compact support are characterised by a L^{2} growth condition. We also obtain real Paley-Wiener theorems for the inverse spherical transform.

1. Introduction.

The classical Fourier transform $\mathcal{F}_{\mathrm{cl}}$ is an isomorphism of the Schwartz space $\mathcal{S}\left(\mathbb{R}^{k}\right)$ onto itself. The space $C_{c}^{\infty}\left(\mathbb{R}^{k}\right)$ of smooth functions with compact support is dense in $\mathcal{S}\left(\mathbb{R}^{k}\right)$, and the classical Paley-Wiener theorem characterises the image of $C_{c}^{\infty}\left(\mathbb{R}^{k}\right)$ under $\mathcal{F}_{\mathrm{cl}}$ as rapidly decreasing functions having an holomorphic extension to \mathbb{C}^{k} of exponential type. Since \mathbb{R}^{k} is self-dual, the same theorem also applies to the inverse Fourier transform.

Let G be a noncompact semisimple Lie group and K a maximal compact subgroup of G. The Fourier transform \mathcal{F} on the Riemannian symmetric space $X=G / K$ is an analogue of the classical Fourier transform on \mathbb{R}^{k}. A Paley-Wiener theorem for the Fourier transform \mathcal{F}, which characterises the image of $C_{c}^{\infty}(X)$ under \mathcal{F} in terms of holomorphic extensions and growth behaviour, as in the classical case, was proved by Helgason, see [7]. Furthermore, the L^{2}-Schwartz space $\mathcal{S}^{2}(X)$ contains $C_{c}^{\infty}(X)$ as a dense subspace and \mathcal{F} is an isomorphism of $\mathcal{S}^{2}(X)$ onto some generalised Schwartz space, see [4].

Unlike the classical case, however, we can not use a duality argument to deduce a Paley-Wiener theorem for the inverse Fourier transform. So how can we characterise the functions whose Fourier transform \mathcal{F} has compact support?

The Fourier transform on X reduces to the spherical transform \mathcal{H} on G when restricted to K-invariant functions. The paper [8] provides an answer to the above question for the spherical transform on Schwartz functions in the rank one and complex cases. The characterisation is in analogy with the classical Paley-Wiener theorem given in terms of meromorphic extensions and growth conditions.

In this paper we prove (real) Paley-Wiener theorems for the inverse Fourier transform for general Riemannian symmetric spaces, i.e., we characterise, as a subset of $L^{2}(X)$, the set of functions f on X whose Fourier transform $\mathcal{F} f$ has compact support. More precisely, $f \in C^{\infty}(X)$ has to satisfy

$$
\lim _{n \rightarrow \infty}\left\|\Delta^{n} f\right\|_{2}^{1 / 2 n}<\infty
$$

where Δ is the Laplace-Beltrami operator (and $(1+|\cdot|)^{n} f \in L^{2}(X)$ for all $n \in \mathbb{N} \cup\{0\}$ if we also want the Fourier image to be smooth). Specialising to bi- K-invariant functions yields (real) Paley-Wiener theorems for the inverse spherical transform for general noncompact semisimple Lie groups.

Our approach is based on real analysis techniques developed by H. H. Bang, see [2] and [3], and V.K. Tuan, see [10]. Also see [11] for a history and overview of (real) Paley-Wiener theorems for certain transforms (Fourier, Mellin, Hankel...) on \mathbb{R}. In particular we use Parseval's formula, intertwining properties of \mathcal{F}, and the following characterisation of the radius of the support of a function g on \mathbb{R}^{n} :

$$
\sup _{\lambda \in \operatorname{supp} g}\|\lambda\|=\lim _{n \rightarrow \infty}\left\{\int_{\mathbb{R}^{n}}\|\lambda\|^{4 n}|g(\lambda)|^{2} d \lambda\right\}^{1 / 4 n}
$$

For completeness and comparison, we first consider the Fourier transform on \mathbb{R}^{k}. The results here are originally due to H.H. Bang, see [2] and [3], and V.K. Tuan, see [10]. Notice the beautiful symmetry between the (statements of the) results for the various transforms.

2. The Fourier transform on \mathbb{R}^{k}.

For background and details, please see [9, Chapter 7]. Let $\mathcal{F}_{\text {cl }}$ denote the classical Fourier transform on \mathbb{R}^{k} :

$$
\mathcal{F}_{\mathrm{cl}} f(\lambda):=\int_{\mathbb{R}^{k}} f(x) e^{-i \lambda \cdot x} d x
$$

defined for nice functions f, for all $\lambda \in \mathbb{C}^{k}$ for which the above integral makes sense. Let $\Delta=\frac{d^{2}}{d x_{1}^{2}}+\cdots+\frac{d^{2}}{d x_{k}^{2}}$ denote the Laplacian on \mathbb{R}^{k} and let $\mathcal{S}\left(\mathbb{R}^{k}\right)$ denote the Schwartz space of rapidly decreasing differentiable functions. Then $\mathcal{F}_{\mathrm{cl}}(\Delta f)(\lambda)=-\|\lambda\|^{2} \mathcal{F}_{\mathrm{cl}} f(\lambda),\left(\lambda \in \mathbb{R}^{k}\right)$, for all $f \in \mathcal{S}\left(\mathbb{R}^{k}\right)$, and the Fourier transform is an isomorphism of $\mathcal{S}\left(\mathbb{R}^{k}\right)$ onto itself, with inverse given by:

$$
\mathcal{F}_{\mathrm{cl}}^{-1} g(x)=(2 \pi)^{-k} \int_{\mathbb{R}^{k}} g(\lambda) e^{i \lambda \cdot x} d \lambda, \quad\left(x \in \mathbb{R}^{k}\right)
$$

for $g \in \mathcal{S}\left(\mathbb{R}^{k}\right)$. Parseval's formula states that

$$
\begin{aligned}
\left\langle f_{1}, f_{2}\right\rangle & :=\int_{\mathbb{R}^{k}} f_{1}(x) \overline{f_{2}(x)} d x=(2 \pi)^{-k} \int_{\mathbb{R}^{k}} \mathcal{F}_{\mathrm{cl}} f_{1}(\lambda) \overline{\mathcal{F}_{\mathrm{cl}} f_{2}(\lambda)} d \lambda \\
& =:\left\langle\mathcal{F}_{\mathrm{cl}} f_{1}, \mathcal{F}_{\mathrm{cl}} f_{2}\right\rangle,
\end{aligned}
$$

for $f_{1}, f_{2} \in \mathcal{S}\left(\mathbb{R}^{k}\right)$, which implies that $\|f\|_{2}=\left\|\mathcal{F}_{\text {cl }} f\right\|_{2}$, for all $f \in \mathcal{S}\left(\mathbb{R}^{k}\right)$, and hence that the Fourier transform extends to an isometry from $L^{2}\left(\mathbb{R}^{k}\right)$ onto itself.

Let $f \in C^{\infty}\left(\mathbb{R}^{k}\right)$ such that $\Delta^{n} f \in L^{2}\left(\mathbb{R}^{k}\right)$ for all $n \in \mathbb{N} \cup\{0\}$ and let $f_{2} \in C_{c}^{\infty}\left(\mathbb{R}^{k}\right)$. Then:

$$
\begin{aligned}
\left\langle\mathcal{F}_{\mathrm{cl}}(\Delta f), \mathcal{F}_{\mathrm{cl}} f_{2}\right\rangle & =\left\langle\Delta f, f_{2}\right\rangle=\left\langle f, \Delta f_{2}\right\rangle=\left\langle\mathcal{F}_{\mathrm{cl}} f, \mathcal{F}_{\mathrm{cl}}\left(\Delta f_{2}\right)\right\rangle \\
& =\left\langle\mathcal{F}_{\mathrm{cl} 1} f,-\|\lambda\|^{2} \mathcal{F}_{\mathrm{cl}} f_{2}\right\rangle=\left\langle-\|\lambda\|^{2} \mathcal{F}_{\mathrm{cl}} f, \mathcal{F}_{\mathrm{cl}} f_{2}\right\rangle,
\end{aligned}
$$

and we conclude that $\mathcal{F}_{\mathrm{cl}}(\Delta f)(\lambda)=-\|\lambda\|^{2} \mathcal{F}_{\mathrm{cl}} f(\lambda)$ a.e., by a density argument, whence $\mathcal{F}_{\mathrm{cl}}\left(\Delta^{n} f\right)(\lambda)=(-1)^{n}\|\lambda\|^{2 n} \mathcal{F}_{\mathrm{cl}} f(\lambda)$ a.e., and

$$
\begin{equation*}
\int_{\mathbb{R}^{k}}\left|\Delta^{n} f(x)\right|^{2} d x=(2 \pi)^{-k} \int_{\mathbb{R}^{k}}\|\lambda\|^{4 n}\left|\mathcal{F}_{\mathrm{cl}} f(\lambda)\right|^{2} d \lambda, \tag{1}
\end{equation*}
$$

for all $\in \mathbb{N} \cup\{0\}$.
We define the support, $\operatorname{supp} g$, of $g \in L^{2}\left(\mathbb{R}^{k}\right)$ to be the smallest closed set, outside which the function g vanishes almost everywhere, and $R_{g}:=$ $\sup _{\lambda \in \operatorname{supp} g}\|\lambda\|$ to be the radius of the support of $g ; R_{g}$ is finite if, and only if, g has compact support.

Lemma 2.1. Let $g \in L^{2}\left(\mathbb{R}^{k}\right)$ such that $\|\lambda\|^{2 n} g(\lambda) \in L^{2}\left(\mathbb{R}^{k}\right)$ for all $n \in$ $\mathbb{N} \cup\{0\}$. Then

$$
R_{g}=\lim _{n \rightarrow \infty}\left\{\int_{\mathbb{R}^{k}}\|\lambda\|^{4 n}|g(\lambda)|^{2} d \lambda\right\}^{1 / 4 n}
$$

Proof. Assume g has compact support with $R_{g}>0$. Then:

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty}\left\{\int_{\mathbb{R}^{k}}\|\lambda\|^{4 n}|g(\lambda)|^{2} d \lambda\right\}^{1 / 4 n} \\
& \leq R_{g} \limsup _{n \rightarrow \infty}\left\{\int_{\|\lambda\| \leq R_{g}}|g(\lambda)|^{2} d \lambda\right\}^{1 / 4 n}=R_{g} .
\end{aligned}
$$

On the other hand,

$$
\int_{R_{g}-\varepsilon \leq\|\lambda\| \leq R_{g}}|g(\lambda)|^{2} d \lambda>0,
$$

for any $\varepsilon>0$, hence

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty}\left\{\int_{\mathbb{R}^{k}}\|\lambda\|^{4 n}|g(\lambda)|^{2} d \lambda\right\}^{1 / 4 n} \\
& \geq \liminf _{n \rightarrow \infty}\left\{\int_{R_{g}-\varepsilon \leq\|\lambda\| \leq R_{g}}\|\lambda\|^{4 n}|g(\lambda)|^{2} d \lambda\right\}^{1 / 4 n} \\
& \geq\left(R_{g}-\varepsilon\right) \liminf _{n \rightarrow \infty}\left\{\int_{R_{g}-\varepsilon \leq\|\lambda\| \leq R_{g}}|g(\lambda)|^{2} d \lambda\right\}^{1 / 4 n}=R_{g}-\varepsilon,
\end{aligned}
$$

and thus

$$
\lim _{n \rightarrow \infty}\left\{\int_{\mathbb{R}_{n}}\|\lambda\|^{4 n}|g(\lambda)|^{2} d \lambda\right\}^{1 / 4 n}=R_{g}
$$

Now assume that g has unbounded support. Then

$$
\int_{\|\lambda\| \geq N}|g(\lambda)|^{2} d \lambda>0
$$

for any $N>0$, so:

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty}\left\{\int_{\mathbb{R}^{k}}\|\lambda\|^{4 n}|g(\lambda)|^{2} d \lambda\right\}^{1 / 4 n} \\
& \geq \liminf _{n \rightarrow \infty}\left\{\int_{\|\lambda\| \geq N}\|\lambda\|^{4 n}|g(\lambda)|^{2} d \lambda\right\}^{1 / 4 n} \\
& \geq N \liminf _{n \rightarrow \infty}\left\{\int_{\|\lambda\| \geq N}|g(\lambda)|^{2} d \lambda\right\}^{1 / 4 n}=N,
\end{aligned}
$$

for arbitrary $N>0$, and we conclude that

$$
\liminf _{n \rightarrow \infty}\left\{\int_{\mathbb{R}^{k}}\|\lambda\|^{4 n}|g(\lambda)|^{2} d \lambda\right\}^{1 / 4 n}=\infty
$$

Let $L_{c}^{2}\left(\mathbb{R}^{k}\right)$ denote the subspace of $L^{2}\left(\mathbb{R}^{k}\right)$ of functions with compact support and let $L_{R}^{2}\left(\mathbb{R}^{k}\right):=\left\{g \in L_{c}^{2}\left(\mathbb{R}^{k}\right) \mid R_{g}=R\right\}$. Let also $C_{R}^{\infty}\left(\mathbb{R}^{k}\right):=$ $\left\{g \in C_{c}^{\infty}\left(\mathbb{R}^{k}\right) \mid R_{g}=R\right\}$.
Definition 2.2. We define the L^{2}-Paley-Wiener space $\mathrm{PW}^{2}\left(\mathbb{R}^{k}\right)$ to be the space of all functions $f \in C^{\infty}\left(\mathbb{R}^{k}\right)$ satisfying:
(a) $\Delta^{n} f \in L^{2}\left(\mathbb{R}^{k}\right)$ for all $n \in \mathbb{N} \cup\{0\}$.
(b) $R_{f}^{\Delta}:=\lim _{n \rightarrow \infty}\left\|\Delta^{n} f\right\|_{2}^{1 / 2 n}<\infty$.

Let also $\mathrm{PW}_{R}^{2}\left(\mathbb{R}^{k}\right):=\left\{f \in \mathrm{PW}^{2}\left(\mathbb{R}^{k}\right) \mid R_{f}^{\Delta}=R\right\}$, for $R \geq 0$.
The proof of Theorem 2.3 below shows that the limit in (b) above is welldefined. The real version of the L^{2}-Paley-Wiener theorem for the inverse Fourier transform can now be formulated as follows:

Theorem 2.3. The inverse Fourier transform $\mathcal{F}_{\mathrm{cl}}^{-1}$ is a bijection of $L_{c}^{2}\left(\mathbb{R}^{k}\right)$ onto $\mathrm{PW}^{2}\left(\mathbb{R}^{k}\right)$, mapping $L_{R}^{2}\left(\mathbb{R}^{k}\right)$ onto $\mathrm{PW}_{R}^{2}\left(\mathbb{R}^{k}\right)$.
Proof. Let $g \in L_{R}^{2}\left(\mathbb{R}^{k}\right)$. Then $\|\lambda\|^{n} g(\lambda) \in L^{1}\left(\mathbb{R}^{k}\right)$ for all $n \in \mathbb{N} \cup\{0\}$, and $\mathcal{F}_{\mathrm{cl}}^{-1} g \in C_{o}^{\infty}\left(\mathbb{R}^{k}\right)$. We also have $\Delta^{n}\left(\mathcal{F}_{\mathrm{cl}}^{-1} g\right)=\mathcal{F}_{\mathrm{cl}}^{-1}\left((-1)^{n}\|\lambda\|^{2 n} g\right) \in L^{2}\left(\mathbb{R}^{k}\right)$ for all $n \in \mathbb{N} \cup\{0\}$, by the formula for $\mathcal{F}_{\text {cl }}^{-1}$, and (1) thus yields:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left\{\int_{\mathbb{R}^{k}}\left|\Delta^{n}\left(\mathcal{F}_{\mathrm{cl}}^{-1} g\right)(x)\right|^{2} d x\right\}^{1 / 4 n} \\
& =\lim _{n \rightarrow \infty}\left\{(2 \pi)^{-k} \int_{\mathbb{R}^{k}}\|\lambda\|^{4 n}|g(\lambda)|^{2} d \lambda\right\}^{1 / 4 n}=R,
\end{aligned}
$$

whence $\mathcal{F}_{\mathrm{cl}}^{-1} g \in \mathrm{PW}_{R}^{2}\left(\mathbb{R}^{k}\right)$.
Let now $f \in \mathrm{PW}_{R}^{2}\left(\mathbb{R}^{k}\right)$. Then $\mathcal{F}_{\mathrm{cl}}\left(\Delta^{n} f\right)(\lambda)=(-1)^{n}\|\lambda\|^{2 n} \mathcal{F}_{\mathrm{cl}} f(\lambda) \in$ $L^{2}\left(\mathbb{R}^{k}\right)$ for all $n \in \mathbb{N}$, and another application of (1) shows that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left\{(2 \pi)^{-k} \int_{\mathbb{R}^{k}}\|\lambda\|^{4 n}\left|\mathcal{F}_{\mathrm{cl}} f(\lambda)\right|^{2} d \lambda\right\}^{1 / 4 n} \\
& =\lim _{n \rightarrow \infty}\left\{\int_{\mathbb{R}^{k}}\left|\Delta^{n} f(x)\right|^{2} d x\right\}^{1 / 4 n}=R,
\end{aligned}
$$

and we conclude that $\mathcal{F}_{\mathrm{cl}} f$ has compact support with $R_{\mathcal{F}_{\mathrm{cl}} f}=R$.
Remark 2.4. The classical (complex) L^{2}-Paley-Wiener theorem implies that $\mathrm{PW}_{R}^{2}\left(\mathbb{R}^{k}\right)$ exactly consists of those $L^{2}\left(\mathbb{R}^{k}\right)$ functions that can be extended to holomorphic functions of exponential type R on \mathbb{C}^{k}.
Remark 2.5. Let $f \in \operatorname{PW}^{2}(\mathbb{R})$. Then $\frac{d^{n}}{d x^{n}} f \in L^{p}(\mathbb{R})$ for all $n \in \mathbb{N} \cup\{0\}$, and:

$$
\lim _{n \rightarrow \infty}\left\|\frac{d^{n}}{d x^{n}} f\right\|_{p}^{1 / n}=R_{\mathcal{F}_{\mathrm{cl}} f}=R_{f}^{\Delta}
$$

for all $1 \leq p \leq \infty$. This follows from [2, Theorem 1]. Similar results hold for $\mathbb{R}^{k}, k>1$, see [3, Theorem 3] and [10, Theorem 4].

Definition 2.6. We define the Paley-Wiener space $\mathrm{PW}\left(\mathbb{R}^{k}\right)$ as the space of all functions $f \in C^{\infty}\left(\mathbb{R}^{k}\right)$ satisfying:
(a) $(1+|x|)^{m} \Delta^{n} f \in L^{2}\left(\mathbb{R}^{k}\right)$ for all $m, n \in \mathbb{N} \cup\{0\}$.
(b) $R_{f}^{\Delta}:=\lim _{n \rightarrow \infty}\left\|\Delta^{n} f\right\|_{2}^{1 / 2 n}<\infty$.

Let again $\mathrm{PW}_{R}\left(\mathbb{R}^{k}\right):=\left\{f \in \mathrm{PW}\left(\mathbb{R}^{k}\right) \mid R_{f}^{\Delta}=R\right\}$, for $R \geq 0$.

We notice that the only difference between $\mathrm{PW}^{2}\left(\mathbb{R}^{k}\right)$ and $\mathrm{PW}\left(\mathbb{R}^{k}\right)$ is an extra requirement of polynomial decay, to help ensure that $\mathcal{F}_{\mathrm{cl}} f \in C^{\infty}\left(\mathbb{R}^{k}\right)$.

The real version of the Paley-Wiener theorem for the inverse Fourier transform is the following:
Theorem 2.7. The inverse Fourier transform $\mathcal{F}_{\mathrm{cl}}^{-1}$ is a bijection of $C_{c}^{\infty}\left(\mathbb{R}^{k}\right)$ onto $\mathrm{PW}\left(\mathbb{R}^{k}\right)$, mapping $C_{R}^{\infty}\left(\mathbb{R}^{k}\right)$ onto $\mathrm{PW}_{R}\left(\mathbb{R}^{k}\right)$.
Proof. Let $g \in C_{R}^{\infty}\left(\mathbb{R}^{k}\right)$, then $\mathcal{F}_{\text {cl }}^{-1} g \in \mathcal{S}\left(\mathbb{R}^{k}\right)$, and $\mathcal{F}_{\text {cl }}^{-1} g \in \mathrm{PW}_{R}^{2}\left(\mathbb{R}^{k}\right)$ by Theorem 2.3.

Let $f \in \mathrm{PW}_{R}\left(\mathbb{R}^{k}\right) \subset \mathrm{PW}_{R}^{2}\left(\mathbb{R}^{k}\right)$. Then $\mathcal{F}_{\mathrm{cl}} f \in C^{\infty}\left(\mathbb{R}^{k}\right)$ since f has polynomial decay, and $\mathcal{F}_{\mathrm{cl}} f$ has compact support with $R_{\mathcal{F}_{\mathrm{cl}} f}=R$ by Theorem 2.3.

3. Lie group notation.

In this section we introduce the Lie group notation we need in the next sections. We refer to $[5],[6]$ and $[7]$ for further details.

Let G be a real connected noncompact semisimple Lie group with finite center and let θ be a Cartan involution of G. Then the fixed point group $K:=G^{\theta}$ is a maximal compact subgroup. Let \mathfrak{g} and \mathfrak{k} denote their Lie algebras, and let $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ be the Cartan decomposition of \mathfrak{g} into the ± 1 eigenspaces of θ. The Killing form on \mathfrak{g} induces an $\operatorname{Ad} K$-invariant scalar product on \mathfrak{p} and hence a G-invariant Riemannian metric on $X:=G / K$. With this structure, X becomes a Riemannian globally symmetric space of the noncompact type.

Fix a maximal abelian subspace \mathfrak{a} of \mathfrak{p}. Denote its real dual by \mathfrak{a}^{*} and its complex dual by $\mathfrak{a}_{\mathbb{C}}^{*}$. The Killing form of \mathfrak{g} induces a scalar product $\langle\cdot, \cdot\rangle$ and hence a norm $\|\cdot\|$ on $\mathfrak{a}_{\mathbb{C}}$ and $\mathfrak{a}_{\mathbb{C}}^{*}$. Let $\Sigma \subset \mathfrak{a}^{*}$ denote the root system of $(\mathfrak{g}, \mathfrak{a})$ and let W be the associated Weyl group. Choose a set $\Sigma_{+} \subset \Sigma$ of positive roots, let $\mathfrak{n}:=\bigoplus_{\alpha \in \Sigma_{+}} \mathfrak{g}_{\alpha}$ be the corresponding nilpotent subalgebra of \mathfrak{g} and let $\mathfrak{a}_{+}:=\left\{H \in \mathfrak{a} \mid \alpha(H)>0 \forall \alpha \in \Sigma_{+}\right\}$be the positive Weyl chamber with $\overline{\mathfrak{a}_{+}}$it's closure. Denote by \mathfrak{a}_{+}^{*} and $\overline{\mathfrak{a}_{+}^{*}}$ the similar cones in \mathfrak{a}^{*}, and define the element $\rho \in \mathfrak{a}^{*}$ by: $\rho(H):=\frac{1}{2} \sum_{\alpha \in \Sigma_{+}} m_{\alpha} \alpha(H), H \in \mathfrak{a}$, where $m_{\alpha}=\operatorname{dim} \mathfrak{g}_{\alpha}$.

Let $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$ be the Iwasawa decomposition of \mathfrak{g} and $G=K A N=$ $N A K$ the corresponding Iwasawa decompositions of G, where A and N are the Lie groups generated by \mathfrak{a} and \mathfrak{n} respectively. Every $g \in G$ can be represented as: $g=K \exp H(g) N=N \exp A(g) K$, where the projections onto the A-parts $A(g) \in \mathfrak{a}$ and $H(g) \in \mathfrak{a}$ are uniquely determined. We note that $A(g)=-H\left(g^{-1}\right)$. Let $M:=Z_{K}(\mathfrak{a})$, then $B:=K / M$ is a compact homogeneous space. We define the vector $A(x, b) \in \mathfrak{a}$ as $A(x, b):=A\left(k^{-1} g\right)$, for $x=g K \in X$ and $b=k M \in B$.

Put $A_{+}=\exp \left(\mathfrak{a}_{+}\right)$, then $\overline{A_{+}}=\exp \left(\overline{\mathfrak{a}_{+}}\right)$. The Cartan decomposition implies that the natural mapping from $K / M \times A_{+} \times K$ into $G=K \overline{A_{+}} K$ is a
diffeomorphism onto its dense open image. We define the norm of an element $g \in G$ as: $|g|=\left|k_{1} \exp (H) k_{2}\right|=\|H\|$, with $H \in \overline{\mathfrak{a}_{+}} ;$this is the K-invariant geodesic distance to the origin $e K$. We denote by $B_{R}:=\{g \in G| | g \mid \leq R\}$ the K-invariant ball of radius R around e.

We identify functions on X with right- K-invariant functions on G. We normalise the invariant measure on X as:

$$
\int_{X} f(x) d x=\int_{K} \int_{\mathfrak{a}_{+}} \int_{K} f\left(k_{1} \exp (H) k_{2}\right) J(H) d k_{1} d H d k_{2},
$$

for $f \in C_{c}^{\infty}(X)$, where the Jacobian J is given by: $J(H)=\prod_{\alpha \in \Sigma_{+}}\left(e^{\alpha(H)}-\right.$ $\left.e^{-\alpha(H)}\right)^{m_{\alpha}}, d H$ is the Lebesgue measure on \mathfrak{a} and $d k$ is the measure on K such that $\int_{K} d k=1$. We notice that $0 \leq J(H) \leq C e^{2 \rho(H)}$, for $H \in \overline{\mathfrak{a}_{+}}$, where C is a positive constant.

The spherical functions $\varphi_{\lambda}, \lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$, on G are defined as:

$$
\varphi_{\lambda}(g):=\int_{K} e^{(i \lambda+\rho) A\left(k^{-1} g\right)} d k=\int_{K} e^{-(i \lambda+\rho) H\left(g^{-1} k\right)} d k .
$$

We note that φ_{λ} is Weyl group invariant, $\varphi_{w \lambda}=\varphi_{\lambda}, w \in W$. Let $U(\mathfrak{g})$ denote the universal enveloping algebra of \mathfrak{g}. We write $D f(g)$ for the action of $D \in U(\mathfrak{g})$ on $f \in C^{\infty}(G)$ from the left at $g \in G$. The L^{p}-Schwartz space $\mathcal{S}^{p}(X), 0<p \leq 2$, is defined as the space of all functions $f \in C^{\infty}(X)$ such that:

$$
\sup _{g \in G}(1+|g|)^{m} \varphi_{o}(g)^{-\frac{2}{p}}|D f(g)|<\infty
$$

for all $D \in U(\mathfrak{g})$ and $m \in \mathbb{N} \cup\{0\}$. We can also characterise $\mathcal{S}^{p}(X)$ as the space of all functions $f \in C^{\infty}(X)$ satisfying:

$$
(1+|g|)^{m} D f(g) \in L^{p}(X)
$$

for all $D \in U(\mathfrak{g})$ and $m \in \mathbb{N} \cup\{0\}$. We note that $\mathcal{S}^{p}(X) \not \subset L^{q}(X)$ for $0<q<p \leq 2$.

4. The Fourier transform.

In this section, we recall some facts and theorems for the Fourier transform on a noncompact semisimple Riemannian symmetric space, see [7, Chapter 3] for details and references.

The Fourier transform of a function f on X is defined as:

$$
\mathcal{F} f(\lambda, b):=\int_{X} f(x) e^{(-i \lambda+\rho)(A(x, b))} d x
$$

for all $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}, b \in B$ for which the integral exists. In particular, $\mathcal{F} f$ extends to a smooth function on $\mathfrak{a}_{\mathbb{C}}^{*} \times B$, holomorphic in the first variable, for $f \in$ $C_{c}^{\infty}(X)$, see also below.

The plane wave eigenfunction

$$
\begin{equation*}
e_{\lambda, b}(x):=e^{(i \lambda+\rho)(A(x, b))} \tag{2}
\end{equation*}
$$

is a joint eigenfunction of $\mathbb{D}(X)$, the commutative algebra of G-invariant differential operators on X, for all $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}, b \in B$, or, more precisely

$$
D e_{\lambda, b}=\Gamma(D)(i \lambda) e_{\lambda, b}, \quad \forall D \in \mathbb{D}(X), \quad\left(\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}, b \in B\right)
$$

where $\Gamma: \mathbb{D}(X) \rightarrow S\left(\mathfrak{a}^{*}\right)^{W}$ is the Harish-Chandra isomorphism. In particular,

$$
\Delta e_{\lambda, b}=-\left(\langle\lambda, \lambda\rangle+\|\rho\|^{2}\right) e_{\lambda, b}, \quad\left(\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}, b \in B\right)
$$

for the Laplace-Beltrami operator Δ on X, and hence

$$
\mathcal{F}(\Delta f)(\lambda, b)=-\left(\langle\lambda, \lambda\rangle+\|\rho\|^{2}\right) \mathcal{F} f(\lambda, b), \quad\left(\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}, b \in B\right)
$$

for all $f \in C_{c}^{\infty}(X)$, by self-adjointness of Δ, see also (6).
A C^{∞}-function $\psi(\lambda, b)$ on $\mathfrak{a}_{\mathbb{C}}^{*} \times B$, holomorphic in λ, is called a holomorphic function of uniform exponential type R, if there exists a constant $R \geq 0$, such that, for each $N \in \mathbb{N}$, we have:

$$
\sup _{\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}, b \in B} e^{-R|\Im \lambda|}(1+|\lambda|)^{N}|\psi(\lambda, b)|<\infty .
$$

The space of holomorphic functions of uniform exponential type R will be denoted $\mathcal{H}_{R}\left(\mathfrak{a}_{\mathbb{C}}^{*} \times B\right)$ and we denote by $\mathcal{H}\left(\mathfrak{a}_{\mathbb{C}}^{*} \times B\right)$ their union over all $R>0$. Let furthermore $\mathcal{H}\left(\mathfrak{a}_{\mathbb{C}}^{*} \times B\right)^{W}$ denote the space of all functions $\psi \in \mathcal{H}\left(\mathfrak{a}_{\mathbb{C}}^{*} \times B\right)$ satisfying the symmetry condition:

$$
\begin{equation*}
\int_{B} e^{(i w \lambda+\rho)(A(x, b))} \psi(w \lambda, b) d b=\int_{B} e^{(i \lambda+\rho)(A(x, b))} \psi(\lambda, b) d b \tag{3}
\end{equation*}
$$

for $w \in W$ and all $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}, x \in X$.
The Paley-Wiener theorem states that the Fourier transform is a bijection of the space $C_{c}^{\infty}(X)$ onto the space $\mathcal{H}\left(\mathfrak{a}_{\mathbb{C}}^{*} \times B\right)^{W}$, with the following inversion formula:

$$
\begin{equation*}
f(x)=\int_{\mathfrak{a}_{+}^{*}} \int_{B} e^{(i \lambda+\rho)(A(x, b))} \mathcal{F} f(\lambda, b)|c(\lambda)|^{-2} d \lambda d b, \quad(x \in X) \tag{4}
\end{equation*}
$$

where $c(\lambda)$ is the Harish-Chandra c-function, for $f \in C_{c}^{\infty}(X)$. Moreover, $\mathcal{F} f \in \mathcal{H}_{R}\left(\mathfrak{a}_{\mathbb{C}}^{*} \times B\right)^{W}$ if, and only if, supp $f \subset B_{R}$. We note that $|c(\lambda)|^{-2}$ is bounded by some polynomial for $\lambda \in \mathfrak{a}^{*}$.

Let $f_{1}, f_{2} \in C_{c}^{\infty}(X)$, then Parseval's formula for \mathcal{F} is given by:

$$
\begin{equation*}
\int_{X} f_{1}(x) \overline{f_{2}(x)} d x=\int_{\mathfrak{a}_{+}^{*}} \int_{B} \mathcal{F} f_{1}(\lambda, b) \overline{\mathcal{F} f_{2}(\lambda, b)}|c(\lambda)|^{-2} d \lambda d b \tag{5}
\end{equation*}
$$

We conclude that the Fourier transform extends to an isometry of $L^{2}(X)$ onto $L^{2}\left(\mathfrak{a}_{+}^{*} \times B,|c(\lambda)|^{-2} d \lambda d b\right)$. In the following we adopt the convention $L^{2}\left(\mathfrak{a}_{+}^{*} \times B\right):=L^{2}\left(\mathfrak{a}_{+}^{*} \times B,|c(\lambda)|^{-2} d \lambda d b\right)$.

Let $f \in C^{\infty}(X)$ such that $\Delta^{n} f \in L^{2}(X)$ for all $n \in \mathbb{N} \cup\{0\}$ and let $f_{2} \in C_{c}^{\infty}(X)$. Then self-adjointness of the Laplace-Beltrami operator Δ :

$$
\begin{equation*}
\int_{X} \Delta^{n} f(x) f_{2}(x) d x=\int_{X} f(x) \Delta^{n} f_{2}(x) d x \tag{6}
\end{equation*}
$$

Parseval's formula (5) and density of $C_{c}^{\infty}(X)$ imply, as in the classical case, that

$$
\begin{equation*}
\mathcal{F}\left(\Delta^{n} f\right)(\lambda, b)=(-1)^{n}\left(\|\lambda\|^{2}+\|\rho\|^{2}\right)^{n} \mathcal{F} f(\lambda, b) \tag{7}
\end{equation*}
$$

a.e., for all $n \in \mathbb{N} \cup\{0\}$.

5. The inverse Fourier transform.

We define the inverse Fourier transform $\mathcal{F}^{-1} g$ of a function g on $\mathfrak{a}_{+}^{*} \times B$ via (4):

$$
\mathcal{F}^{-1} g(x):=\int_{\mathfrak{a}_{+}^{*}} \int_{B} e^{(i \lambda+\rho)(A(x, b))} g(\lambda, b)|c(\lambda)|^{-2} d \lambda d b
$$

for all $x \in X$ for which the integral exists.
We define the support, $\operatorname{supp} g$, of $g \in L^{2}\left(\mathfrak{a}_{+}^{*} \times B\right)$ to be the smallest closed set in $\mathfrak{a}_{+}^{*} \times B$, outside which the function g vanishes almost everywhere, and $R_{g}:=\sup _{(\lambda, b) \in \operatorname{supp} g}\|\lambda\|$ to be the 'radius' of the support of g.
Lemma 5.1. Let $g \in L^{2}\left(\mathfrak{a}_{+}^{*} \times B\right)$ such that $\|\lambda\|^{2 n} g(\lambda, b) \in L^{2}\left(\mathfrak{a}_{+}^{*} \times B\right)$ for all $n \in \mathbb{N} \cup\{0\}$. Then

$$
R_{g}=\lim _{n \rightarrow \infty}\left\{\int_{\mathfrak{a}_{+}^{*}} \int_{B}\|\lambda\|^{4 n}|g(\lambda, b)|^{2}|c(\lambda)|^{-2} d \lambda d b\right\}^{1 / 4 n}
$$

Proof. As for Lemma 2.1.
Let $L_{c}^{2}\left(\mathfrak{a}_{+}^{*} \times B\right)$ denote the subspace of $L^{2}\left(\mathfrak{a}_{+}^{*} \times B\right)$ of functions with bounded support and let $L_{R}^{2}\left(\mathfrak{a}_{+}^{*} \times B\right):=\left\{g \in L_{c}^{2}\left(\mathfrak{a}_{+}^{*} \times B\right) \mid R_{g}=R\right\}$.
Definition 5.2. We define the L^{2}-Paley-Wiener space $\mathrm{PW}^{2}(X)$ as the space of all functions $f \in C^{\infty}(X)$ satisfying:
(a) $\Delta^{n} f \in L^{2}(X)$ for all $n \in \mathbb{N} \cup\{0\}$.
(b) $R_{f}^{\Delta}:=\lim _{n \rightarrow \infty}\left\|\left(\Delta+\|\rho\|^{2}\right)^{n} f\right\|_{2}^{1 / 2 n}<\infty$.

Let also $\mathrm{PW}_{R}^{2}(X):=\left\{f \in \mathrm{PW}^{2}(X) \mid R_{f}^{\Delta}=R\right\}$, for $R \geq 0$.
The real L^{2}-Paley-Wiener theorem for the inverse Fourier transform can now be formulated as follows:

Theorem 5.3. The inverse Fourier transform \mathcal{F}^{-1} is a bijection of $L_{c}^{2}\left(\mathfrak{a}_{+}^{*} \times\right.$ B) onto $\mathrm{PW}^{2}(X)$, mapping $L_{R}^{2}\left(\mathfrak{a}_{+}^{*} \times B\right)$ onto $\mathrm{PW}_{R}^{2}(X)$.

Proof. Let $g \in L_{R}^{2}\left(\mathfrak{a}_{+}^{*} \times B\right)$. Then $\mathcal{F}^{-1} g \in C^{\infty}(X)$ by Lebesgue's dominated convergence theorem. Equation (2) gives, for $D \in \mathbb{D}(X)$,

$$
D\left(\mathcal{F}^{-1} g\right)(x)=\int_{\mathfrak{a}_{+}^{*}} \int_{B} \Gamma(D)(i \lambda) e^{(i \lambda+\rho)(A(x, b))} g(\lambda, b)|c(\lambda)|^{-2} d \lambda d b,
$$

which in particular shows that $(\Delta+\|\rho\|)^{n} \mathcal{F}^{-1} g=\mathcal{F}^{-1}\left((-1)^{n}\|\lambda\|^{2 n} g\right) \in$ $L^{2}(X)$ for all $n \in \mathbb{N} \cup\{0\}$. Parseval's formula (5) with

$$
f_{1}=f_{2}=\mathcal{F}^{-1}\left((-1)^{n}\|\lambda\|^{2 n} g\right)
$$

yields:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left\{\int_{X}\left|(\Delta+\|\rho\|)^{n}\left(\mathcal{F}^{-1} g\right)(x)\right|^{2} d x\right\}^{1 / 4 n} \\
& =\lim _{n \rightarrow \infty}\left\{\int_{\mathfrak{a}_{+}^{*}} \int_{B}\|\lambda\|^{4 n}|g(\lambda, b)|^{2}|c(\lambda)|^{-2} d \lambda d b\right\}^{1 / 4 n}=R,
\end{aligned}
$$

whence $\mathcal{F}^{-1} g \in \mathrm{PW}_{R}^{2}(X)$.
Let now $f \in \operatorname{PW}_{R}^{2}(X)$. Then $\mathcal{F}\left((\Delta+\|\rho\|)^{n} f\right)(\lambda, b)=(-1)^{n}\|\lambda\|^{2 n} \mathcal{F} f(\lambda, b)$ $\in L^{2}\left(\mathfrak{a}_{+}^{*} \times B\right)$ for all $n \in \mathbb{N}$ by (7). Another application of Parseval's formula as above with $f_{1}=f_{2}=(\Delta+\|\rho\|)^{n} f$ shows that $R_{\mathcal{F} f}=R_{f}^{\Delta}=R$, and we conclude that $\mathcal{F} f$ has bounded support.

Corollary 5.4. Let $f \in C^{\infty}(X)$ be such that $\Delta^{n} f \in L^{2}(X)$ for all $n \in$ $\mathbb{N} \cup\{0\}$. It then follows that $\lim _{n \rightarrow \infty}\left\|\Delta^{n} f\right\|_{2}^{1 / 2 n}<\infty$ if, and only if, $\lim _{n \rightarrow \infty}\left\|\left(\Delta+\|\rho\|^{2}\right)^{n} f\right\|_{2}^{1 / 2 n}<\infty$. Furthermore, $\lim _{n \rightarrow \infty}\left\|\Delta^{n} f\right\|_{2}^{1 / 2 n}=\left(R^{2}+\right.$ $\left.\|\rho\|^{2}\right)^{1 / 2}$, for $f \in \mathrm{PW}_{R}^{2}(X)$ with $R>0$.

Proof. Let $f \in \mathrm{PW}_{R}^{2}(X)$, with $R>0$, then $\mathcal{F} f \in L_{R}^{2}\left(\mathfrak{a}_{+}^{*} \times B\right)$. Parseval's formula and an easy adaption of the proof of Lemma 2.1 shows that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left\|\Delta^{n} f\right\|_{2}^{1 / 2 n} \\
& =\lim _{n \rightarrow \infty}\left\{\int_{\mathfrak{a}_{+}^{*}} \int_{B}\left(\|\lambda\|^{2}+\|\rho\|^{2}\right)^{2 n}|\mathcal{F} f(\lambda, b)|^{2}|c(\lambda)|^{-2} d \lambda d b\right\}^{1 / 4 n} \\
& =\left(R^{2}+\|\rho\|^{2}\right)^{1 / 2} .
\end{aligned}
$$

Assume that $\lim _{n \rightarrow \infty}\left\|\Delta^{n} f\right\|_{2}^{1 / 2 n}<\infty$. Then $\mathcal{F}\left(\Delta^{n} f\right)(\lambda, b)=(-1)^{n}\left(\|\lambda\|^{2}\right.$ $\left.+\|\rho\|^{2}\right)^{n} \mathcal{F} f(\lambda, b) \in L^{2}\left(\mathfrak{a}_{+}^{*} \times B\right)$, for all $n \in \mathbb{N}$, and

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left\{\int_{\mathfrak{a}_{+}^{*}} \int_{B}\|\lambda\|^{4 n}|\mathcal{F} f(\lambda, b)|^{2}|c(\lambda)|^{-2} d \lambda d b\right\}^{1 / 4 n} \\
& \leq \lim _{n \rightarrow \infty}\left\{\int_{\mathfrak{a}_{+}^{*}} \int_{B}\left(\|\lambda\|^{2}+\|\rho\|^{2}\right)^{2 n}|\mathcal{F} f(\lambda, b)|^{2}|c(\lambda)|^{-2} d \lambda d b\right\}^{1 / 4 n} \\
& =\lim _{n \rightarrow \infty}\left\|\Delta^{n} f\right\|_{2}^{1 / 2 n}<\infty
\end{aligned}
$$

that is, $\mathcal{F} f$ has bounded support.
Remark 5.5. Assume that $f \in \mathcal{S}^{p}(X)$, with $0<p<2$, then $\mathcal{F} f$ extends to an analytic function on a small tube domain around $\mathfrak{a}^{*} \times B$ in $\mathfrak{a}_{\mathbb{C}}^{*} \times B$. Hence $\mathcal{F} f$ cannot have compact support on $\mathfrak{a}^{*} \times B$ and we conclude that $\mathcal{S}^{p}(X) \cap \mathrm{PW}^{2}(X)=\{0\}$ for any $0<p<2$.

Definition 5.6. We define the Paley-Wiener space $\mathrm{PW}(X)$ as the space of all functions $f \in C^{\infty}(X)$ satisfying:
(a) $(1+|x|)^{m} \Delta^{n} f \in L^{2}(X)$ for all $m, n \in \mathbb{N} \cup\{0\}$.
(b) $R_{f}^{\Delta}=\lim _{n \rightarrow \infty}\left\|\left(\Delta+\|\rho\|^{2}\right)^{n} f\right\|_{2}^{1 / 2 n}<\infty$.

Let also $\mathrm{PW}_{R}(X):=\left\{f \in \mathrm{PW}(X) \mid R_{f}^{\Delta}=R\right\}$, for $R \geq 0$.
Here $|x|:=|g|$, for $x=g K \in X$. Again, the only difference between the Paley-Wiener spaces $\mathrm{PW}(X)$ and $\mathrm{PW}^{2}(X)$ is the polynomial decay condition (a), ensuring that $\mathcal{F} f \in C^{\infty}\left(\mathfrak{a}^{*} \times B\right)^{W}$ (see below).

The space $C_{c}^{\infty}\left(\mathfrak{a}^{*} \times B\right)^{W}$ is defined as the subspace of functions $\psi \in$ $C_{c}^{\infty}\left(\mathfrak{a}^{*} \times B\right)$ satisfying the symmetry condition (3) for all $w \in W$ and all $\lambda \in \mathfrak{a}^{*}, x \in X$. Let finally $C_{R}^{\infty}\left(\mathfrak{a}^{*} \times B\right):=\left\{F \in C_{c}^{\infty}\left(\mathfrak{a}^{*} \times B\right) \mid R_{g}=R\right\}$.

The real Paley-Wiener theorem for the inverse Fourier transform then is:
Theorem 5.7. The inverse Fourier transform \mathcal{F}^{-1} is a bijection of $C_{c}^{\infty}\left(\mathfrak{a}^{*} \times\right.$ $B)^{W}$ onto $\mathrm{PW}(X)$, mapping $C_{R}^{\infty}\left(\mathfrak{a}^{*} \times B\right)^{W}$ onto $\mathrm{PW}_{R}(X)$.
Proof. Let $g \in C_{R}^{\infty}\left(\mathfrak{a}^{*} \times B\right)^{W}$, then $g \in L_{R}^{2}\left(\mathfrak{a}_{+}^{*} \times B\right)$ and thus $\mathcal{F}^{-1} g \in$ $\mathrm{PW}_{R}^{2}(X)$ by Theorem 5.3. We furthermore see that $\mathcal{F}^{-1} g \in \mathcal{S}^{2}(X)$ by [4, Theorem 4.1.1], whence $\mathcal{F}^{-1} g$ satisfies the polynomial decay condition (a).

Let now $f \in \mathrm{PW}_{R}(X)$. The basic estimate $\|A(g)\| \leq C|g|$, for all $g \in G$, gives us a polynomial estimate (in x) of the derivatives (with respect to λ) of the plane wave eigenfunctions $e_{\lambda, b}(x)$. It is also well-known that $(1+|x|)^{-r} \varphi_{0} \in L^{2}(X)$ for some large $r \in \mathbb{N}$. All this, the polynomial decay condition (a), the Cauchy-Schwartz theorem and Lebesgue's dominated convergence theorem imply that $\mathcal{F} f \in C^{\infty}\left(\mathfrak{a}^{*} \times B\right)^{W}$. Furthermore $\mathcal{F} f$ has the desired compact support by Theorem 5.3.

6. The inverse spherical transform.

In this section, we specialise our results to bi- K-invariant functions, that is, we consider the (inverse) spherical transform. We refer to $[\mathbf{1}],[\mathbf{5}]$ and $[\mathbf{6}]$ for background concerning Paley-Wiener theorems for the spherical transform. Let $C^{\infty}(K \backslash G / K) \subset C^{\infty}(G)$ denote the subspace of bi- K-invariant differentiable functions on G. We will use similar notation for the L^{2}, Paley-Wiener and Schwartz spaces of K-invariant differentiable functions.

Let $f \in C_{c}^{\infty}(K \backslash G / K)$. The spherical transform $\mathcal{H} f$ of f is defined as:

$$
\mathcal{H} f(\lambda):=\int_{G} f(x) \varphi_{-\lambda}(x) d x
$$

for $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$. We note that $\mathcal{F} f(\lambda, b)=\mathcal{H} f(\lambda)$ for all $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ and all $b \in B$. This follows from left- K-invariance of f, the identity $A(k \cdot x, b)=A\left(x, k^{-1} \cdot b\right)$ and integrating over K.

The spherical transform is an isomorphism of $\mathcal{S}^{2}(K \backslash G / K)$ onto $\mathcal{S}\left(\mathfrak{a}^{*}\right)^{W}$, the Weyl group invariant Schwartz functions on \mathfrak{a}^{*}. The inversion formula is given by:

$$
\begin{equation*}
f(x)=\frac{1}{|W|} \int_{\mathfrak{a}^{*}} \mathcal{H} f(\lambda) \varphi_{\lambda}(x)|c(\lambda)|^{-2} d \lambda, \quad(x \in G) \tag{8}
\end{equation*}
$$

for $f \in \mathcal{S}^{2}(K \backslash G / K)$. We use (8) to define the inverse spherical transform $\mathcal{H}^{-1} g$ for a general function g on \mathfrak{a}^{*} :

$$
\mathcal{H}^{-1} g(x):=\frac{1}{|W|} \int_{\mathfrak{a}^{*}} g(\lambda) \varphi_{\lambda}(x)|c(\lambda)|^{-2} d \lambda .
$$

Let $f \in C^{\infty}(K \backslash G / K)$ be such that $\Delta^{n} f \in L^{2}(K \backslash G / K)$ for all $n \in$ $\mathbb{N} \cup\{0\}$. Then $\mathcal{H}\left(\left(\Delta+\|\rho\|^{2}\right)^{n} f\right)(\lambda)=(-1)^{n}\|\lambda\|^{2 n} \mathcal{H} f(\lambda)$ a.e., and Parseval's formula for \mathcal{H} gives:

$$
\int_{G}\left|\left(\Delta+\|\rho\|^{2}\right)^{n} f(x)\right|^{2} d x=\frac{1}{|W|} \int_{\mathfrak{a}^{*}}\|\lambda\|^{4 n}|\mathcal{H} f(\lambda)|^{2}|c(\lambda)|^{-2} d \lambda,
$$

for all $n \in \mathbb{N} \cup\{0\}$. It also follows that the spherical transform extends to an isometry from $L^{2}(K \backslash G / K)$ onto $L^{2}\left(\mathfrak{a}^{*}, \frac{1}{|W|}|c(\lambda)|^{-2} d \lambda\right)^{W}$, where superscript W denotes Weyl group invariance.

Let $L_{c}^{2}\left(\mathfrak{a}^{*}\right)^{W}$ denote the Weyl group invariant L^{2}-functions on \mathfrak{a}^{*} with compact support and let subscript R denote the radius of the support. The real versions of the Paley-Wiener theorems for the inverse spherical transform then becomes:

Theorem 6.1. The inverse spherical transform \mathcal{H}^{-1} is a bijection of $L_{c}^{2}\left(\mathfrak{a}^{*}\right)^{W}$ onto $\mathrm{PW}^{2}(K \backslash G / K)$, mapping $L_{R}^{2}\left(\mathfrak{a}^{*}\right)^{W}$ onto $\mathrm{PW}_{R}^{2}(K \backslash G / K)$.
Theorem 6.2. The inverse spherical transform \mathcal{H}^{-1} is a bijection of $C_{c}^{\infty}\left(\mathfrak{a}^{*}\right)^{W}$ onto $\operatorname{PW}(K \backslash G / K)$, mapping $C_{R}^{\infty}\left(\mathfrak{a}^{*}\right)^{W}$ onto $\mathrm{PW}_{R}(K \backslash G / K)$.

Proof. The above theorems are special cases of Theorem 5.3 and Theorem 5.7. We note, however, that we can prove them independently using Parseval's formula and intertwining properties of \mathcal{H}.

Remark 6.3. Let $f \in \mathrm{PW}(K \backslash G / K)$ and consider f as a function on \mathfrak{a} by the application $H \mapsto f(\exp (H))$. Then f does not extend to an entire function on $\mathfrak{a}_{\mathbb{C}}$, due to the poles of the spherical function $\varphi_{\lambda}(\exp (H))$. There is, however, a description of the Paley-Wiener space $\mathrm{PW}(K \backslash G / K)$ as functions having an explicit meromorphic extension and satisfying some exponential growth conditions for the rank 1 and the complex cases, see [8] for details.

References

[1] J.-Ph. Anker, The spherical Fourier transform of rapidly decreasing functions. A simple proof of a characterization due to Harish-Chandra, Helgason, Trombi, and Varadarajan, J. Funct. Anal., 96 (1991), 331-349, MR 92d:22008, Zbl 0732.43006.
[2] H.H. Bang, A property of infinitely differentiable functions, Proc. Amer. Math. Soc., 108 (1990), 73-76, Zbl 0707.26015.
[3] \qquad , Functions with bounded spectrum, Trans. Amer. Math. Soc., 347 (1995), 1067-1080, MR 95e:42008, Zbl 0828.42009.
[4] M. Eguchi, Asymptotic expansions of Eisenstein integrals and Fourier transform on symmetric spaces, J. Funct. Anal., 34 (1979), 167-216, MR 81e:43022, Zbl 0433.43012.
[5] R. Gangolli and V.S. Varadarajan, Harmonic Analysis of Spherical Functions on Real Reductive Groups, Springer-Verlag, Berlin, 1988, MR 89m:22015, Zbl 0675.43004.
[6] S. Helgason, Groups and Geometric Analysis, Academic Press, Orlando, 1984, MR 86c:22017, Zbl 0543.58001.
[7] ___ Geometric Analysis on Symmetric Spaces, Mathematical Surveys and Monographs, 39, American Mathematical Society, Providence, Rhode Island, 1994, MR 96h:43009, Zbl 0809.53057.
[8] A. Pasquale, A Paley-Wiener theorem for the inverse spherical transform, Pacific J. Math., 193 (2000), 143-176, MR 2001c:22011, Zbl 1014.22010.
[9] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1991, MR 92k:46001, Zbl 0867.46001.
[10] V.K. Tuan, Paley-Wiener-type theorems, Fract. Calc. Appl. Anal., 2 (1999), 135-143.
[11] V.K. Tuan and A.I. Zayed, Paley-Wiener-type theorems for a class of integral transforms, J. Math. Anal. Appl., 266 (2002), 200-226, MR 2002k:44005, Zbl 0998.44001.

Received October 14, 2002 and revised February 11, 2003. The author is supported by a research grant from the Australian Research Council.

School of Mathematics
University of New South Wales
Sydney NSW 2052
Australia
E-mail address: byrial@maths.unsw.edu.au

