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Abstract

I develop and estimate a general equilibrium model for the term structures of nominal and

real interest rates in the UK that incorporates Markov-switching. The model allows for non-

neutralities, nonlinear dynamics, and ßexibility in the dynamics of the risk premia - features that

are all present in the data. I use the model to assess how accurately the term structure reßects

changing expectations of future yields and inßation. This analysis shows that the presence of

time-varying risk premia make it very hard to accurately track changes in the expected path of

real or nominal yields over horizons of less than Þve years. By contrast, variations in inßation

expected over the next two to three years are very accurately reßected by changes in spread

between real and nominal yields, or by changes in nominal yields alone. Over longer horizons,

the term structures closely track changing expectations regarding future nominal and real yields

but not future inßation.
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1 Introduction

How accurately does the term structure of interest rates reßect expectations regarding future yields and

inßation? This is an old and important question for researchers and policy-makers alike, but it has yet to

be precisely answered. After more than a decade of regression-based tests rejecting forms of the expecta-

tions hypothesis, it appears that changing expectations and time-varying risk premia both contribute to

the dynamics of the term structure.2 To date, however, no consensus has emerged around a model that

incorporates both facets. Without such a model, it is impossible to accurately assess the degree to which

variations in the current term structure reßect changing expectations or risk premia.

This paper develops a new model with the aim of quantifying the inßuence of time-varying risk premia

on the behavior of the UK term structure. Following Cox, Ingersoll and Ross (1985) (CIR), a large literature

has developed using general equilibrium bond-pricing models to study the behavior of the US nominal term

structure. In this paper, I focus on UK interest rates in order to exploit the information contained in the

term structures of real and nominal yields. There has been a well-established market for both conventional

and index-linked debt in the UK for the past seventeen years. In Evans (1998a) I showed how prices from

this market could be used to construct nominal and real yield curves. These data provide information on the

source of interest rate dynamics that cannot be found by studying the behavior of nominal rates alone. In

particular, they allow us to separately identify the risk premia within the nominal and real term structures

and the inßation risk premium linking nominal and real yields with expected inßation.3 The behavior of

these risk premia critically determines the accuracy with which expectations regarding future yields and

inßation are reßected in the current term structure.

The model I present has its antecedents in the models of Vasicek (1977) and CIR. It is related to the

Affine class of general equilibrium models that have been recently used by Backus, Foresi, Mozummdar and

Wu (1997), Duffee (1998), Dai and Singleton (2000), Fisher and Gilles (1996), and Roberds and Whiteman

(1999) to study the US term structure. All these models relate equilibrium bond prices to a stochastic

discount factor, or pricing kernel, that in a representative agent model would be identiÞed by the discounted

intertemporal marginal rate of substitution. They generate time-varying risk premium by assuming that

the pricing kernel process exhibits heteroskedasticity. The key feature that differentiates my model from the

Affine class is that it incorporates Markov-switching into pricing kernel process. The Þrst use of Markov-

switching appears in Naik and Lee (1994), who extend Vasicek�s model so that the mean and variance of

the short rate switches.4 Markov-switching plays a more extensive role in my model; it not only affects the

mean and variance of real and nominal short rates, but also their degree of mean reversion, correlations with

2Recent surveys of this research include; Bekaert, Hodrick and Marshall (1997a), Campbell (1995) and Evans and Lewis
(1994). A related literature considers statistical problems with the regression-based tests of the expectations hypothesis. For
example, Evans and Lewis (1994) and Bekaert, Hodrick and Marshall (1997b) examine how changes in the time-series behavior
of interest rates during the sample could affect the sample properties of standard tests. Although the evidence against the
expectations hypothesis is weakened under these circumstances, it is not entirely eliminated.

3Earlier studies of UK real rates include Brown and Schaefer (1995), Arak and Kreichner (1985), Deacon and Derry (1994)
and Barr and Campbell (1997). To account for the incomplete indexation of UK index-linked debt, these papers used a variety
of assumptions about the behavior of risk premia to construct real yields. The analysis here uses real and nominal yield curves
that are constructed from index-linked and nominal bond prices without assumptions concerning the behavior of the risk premia
or inßation risk premia; see Evans (1998a) for details.

4Markov-switching models have also been used to study the term structure in conjunction with the expectations hypothesis
by Hamilton (1988) and Sola and Driffill (1994). These model rule out time-varying risk premia and so ascribe all term structure
movements to changing expectations regarding future yields.
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inßation, and the link between the risk premia and volatility.5 These facets allow the model greater ßexibility

to simultaneously account for the time series and cross-sectional behavior of yields. In particular, the model

produces behavior in short-term real and nominal rates consistent with the evidence of nonlinear dynamics

found by Ait-Sahalia (1996), Conley et al. (1997) and Stanton (1997) relating the degree of mean-reversion

to the level of the short rate in US data. The model also allows the risk premia to vary independently of

interest rate volatility. Duffee (1998) argues that the absence of this feature in Affine models contributes

signiÞcantly to their poor empirical performance.

The incorporation of Markov-switching has another important beneÞt. Over the past two decades there

have been a series of widely documented changes in UK monetary policy. For example, the UK�s departure

from the EMS in 1992 represented a signiÞcant change in policy regime. Such changes may well have resulted

in a discrete shift in the behavior of inßation and its relation to real interest rates. Remolona, Wickens and

Gong (1996) argue that the inßation risk premium fell by 30 percent after the UK left the EMS. The model

I present allows for discrete shifts in the whole structure of the joint process for inßation and real rates and

derives their implications for expectations regarding future interest rates and inßation.

The beneÞts from incorporating Markov switching do not come without some costs. In particular, the risk

premia identiÞed by the model are solely functions of the state variable governed by the switching process.

As such, the risk premia can only take on a Þnite number of values. In principle this is not an important

restriction on the behavior of the risk premia because the model can be solved for any Þnite number states.

In practice, though, it is impossible to estimate a model with many states because it contains a very large

number of parameters. Thus, the cost of my modeling approach arises from the fact that it may be impossible

to estimate models with a sufficiently large number of states to adequately represent the dynamics of the

true risk premia and their correlations with other variables. Fortunately, this does not appear to be a serious

problem here. I Þnd that a three-state model is able to closely replicate the statistical features of the data.

To take full advantage of the UK data, the model focuses on the behavior of both nominal and real yields

and their interaction with inßation. In this respect it is most closely related to Remolona, Wickens and

Gong (1996) who use UK data to estimate a generalized version of the CIR model. My model contains a

real risk factor that identiÞes the short term real interest rate, and an inßation risk factor proportional to

the expected rate of inßation. The joint switching process for the two risk factors allows for the presence of

a time-varying correlation between inßation and real rates. The presence of this correlation contrasts with

the strong neutrality assumption found in earlier models of inßation and nominal rates (see, for example,

Pearson and Sun 1991, Gong and Remolona 1996), and is strongly supported by the model estimates.

I use the monthly yields on four real and four nominal bonds to estimate versions of the model with one,

two and three states in the Markov-switching process. A formal comparison of the estimates reveals that the

three state version of the model best characterizes the UK data. This model does a remarkably good job at

matching the behavior of real and nominal yields over the sample period. It also identiÞes distinct differences

in the behavior of the term structure across the three states. State one is characterized by upward sloping

5The model in this paper was developed independently and con-currently with a model by Bansal and Zhou (1999). They
developed a Markov-switching extension of the CIR model for the U.S. nominal term structure. This study differs from their
paper in its focus on the both the real and nominal term structures in the UK and the role of inßation risk. It also differs at
technical a level. With the introduction of switching, the model falls outside the Affine class where analytically solutions for
equilibrium bond prices are readily calculated. One advantage of the speciÞcation adopted here over Bansal and Zhou�s model
is that analytic solutions for equilibrium bond prices can still be found.
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yield curves for both nominal and real rates. In state two, the real yield curve is inverted and the nominal

curve is U-shaped. State three is also characterized by a U-shaped nominal curve but the real curve is now

sharply positively sloped.

The next step in the analysis considers the question: What does the model imply about the ability

of the real and nominal term structures to predict the future path of real and nominal yields? For this

purpose, I use the model estimates to decompose the variance of the spread between long and short-term

yields into a component due to changing yield expectations and a component due time-varying risk premia.

The relative contribution of these components can also be estimated by the slope coefficients in familiar

forecasting regressions. I estimate these regressions using real and nominal yields and compare the results

against the predictions of the three state model. My principle Þndings are that:

� Time-varying risk premia make a signiÞcant contribution to the variance of nominal spreads. Changing
expectations regarding future 12-month rates account for 20 to 98 percent of the spread�s variance as

the maturity of the long bond rises from 24 to 240 months. Expectations regarding future long-term

yields only account for 3 to 73 percent of the variance. These estimates do not signiÞcantly differ from

those implied by the forecasting regressions estimated in the data.

� Time-varying risk premia are somewhat less important in the real term structure. The model estimates
imply that as the maturity of the long bond rises from 24 to 240 months, between 70 and 97 percent

of the variance in the spread can be accounted for by changing expectations regarding 12-month

yields, and 39 to 61 percent by expectations regarding long term yields. Although these estimates are

somewhat higher than those obtained from the forecasting regressions, the difference is most probably

due to measurement error bias in the regression estimates.

These Þndings indicate that predicting the future path of real or nominal yields with any accuracy is extremely

difficult over horizons of less than 5 years. The link between the current term structure and expectations

of future yields only approaches the simple relation implied by the expectations hypothesis at very long

horizons.

The last step in my analysis asks: Can real and nominal yields provide a reliable indicator of inßation

expectations? The answer to this question depends on the size and variability of the inßation risk premium

linking nominal and real yields with expected inßation. I use the model estimates to compute the term

structure of inßation risk and variance decompositions for nominal yields and the spread between nominal

and real yields. I Þnd that:

� The states identiÞed by the model can be closely associated with three distinct inßation regimes: A
regime of slowly rising inßation, quickly rising inßation, and slowly falling inßation.

� The spread between nominal and real yields provides an unreliable estimate of the level of inßation
expectations because the size of the inßation risk premium differs signiÞcantly across states at all

horizons. Depending on the state, the spread overstates the rate of expected inßation by between 1

and 0.6 percent at the one month horizon. At the ten year horizon, the spread understates the rate of

expected inßation by between 1 and 3.5 percent.
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� Variations in the inßation risk premium contribute little to variance of the spread over horizons ranging
from 1 to 36 months. Beyond 5 years, variations in the inßation risk premium imply that changes in

the spread understate the change in expected inßation by 11 to 32 percent.

� Variations in real rates and the inßation risk premium combine so that changes in nominal yields

understate the variations in expected inßation at very short and long horizons. At the two to three

year horizon, however, changes in real yields and the inßation risk premium offset one another so that

nominal yields move almost one-to-one with expected inßation.

These results provide straightforward guidance on how best to draw accurate inferences about changing

inßation expectations. Over horizons of one to twelve months, more accurate inferences can be derived from

the spread between nominal and real yields than from nominal yields alone. For longer horizons, inferences

based on the spread and nominal yields are quite similar. They are reasonably accurate over horizons of two

to three years. Beyond this point, changes in the term structure increasingly understate changes in inßation

expectations.

It is worth emphasizing that these results are derived from the maximum likelihood estimates of a

general equilibrium bond-pricing model. This is a distinctly different approach from the many papers that

use forecasting equations and time-series models to study the sources of term structure dynamics. For

example, Fama (1990) and Mishkin (1990) used inßation forecasting equations to examine how much changing

inßation expectations contributed to the variance of the US nominal yields, while Barr and Pesaran (1995)

and Barr and Campbell (1997) calculated variance decompositions for the UK term structure based on

Vector Autoregressions. The analysis presented here has two main advantages over these time-series based

approaches. First, the model estimates incorporate information from both the time series and cross-sectional

behavior of real and nominal yields. This enables investors� expectations to be estimated with much greater

precision (given the presence of time-varying risk premia), than would be possible from a couple of yields,

say, in a forecasting equation. This is an important consideration when studying the accuracy with which

the term structure reßects long-horizon expectations of yields or inßation. The second advantage concerns

possible instability in the time-series behavior of yields and inßation induced by policy changes.6 Simple

time series models will generally be unable to accurately estimate the expectations of investors who are

anticipating the consequences of a policy change (see, for example, Evans 1998b). By contrast, estimates

of investors� expectations identiÞed by the Markov-switching model incorporate the effects of anticipated

future shifts in the behavior of yields and inßation.

My analysis begins, in Section 2, with the presentation of the Markov-switching model. This section also

discusses the distinctive features of the model. Econometric identiÞcation, estimation and testing issues are

discussed in Section 3. Section 4 presents estimates of the one, two and three-state versions of the model,

tests for the number of states, and compares the model estimates with the data. My analysis of the model

estimates is presented in Section 5. Section 6 concludes.

6For evidence of instability in US data, see Evans and Lewis (1994, 1995) and Travalis and Wickens (1996); in UK data, see
Remolona, Wickens and Gong (1996).
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2 The Markov-Switching Model

The model I develop extends recent Affine models of the term structure to include Markov-switching as in

Naik and Lee (1994). I take full advantage of the UK data by focusing on the behavior of both nominal

and real yields and their interaction with inßation. I begin by describing the equilibrium pricing equations

that lie at the heart of the model. Next, I present the dynamics of the model and solve for equilibrium bond

prices. I then discuss the distinctive features of the model in terms of the behavior of spot rates and the risk

premia.

2.1 Bond Pricing

Let Mt+1 be a random variable that prices one-period state-contingent claims. If the economy admits no

pure arbitrage opportunities, it can be shown that the one-period real return on all traded assets must satisfy

Et[Mt+1Rit+1] = 1, (1)

where Rit+1 is the gross real return on asset i between t and t+1. Et [.] denotes the expectation conditioned
on investors� period t information set, It. (Time periods are assumed to be discrete.) I shall refer toMt as the

real pricing kernel. In economies where there is a complete set of markets for state-contingent claims, there is

a unique random variable Mt > 0 satisfying (1). Under other circumstances, this no-arbitrage condition still

holds but for a range of Mts (Duffie 1992). In economies with a representative agent, Mt+1 is the discounted

intertemporal marginal rate of substitution so that (1) also represents a Þrst-order condition.

We can use (1) to Þnd equations that price both real and nominal bonds. Let Qnk,t denote the nominal

price of a zero coupon bond at period t paying £1 at period t+k. The one period real return on this k-period

bond is (Qnk−1,t+1/Q
n
k,t)(Pt/Pt+1) where Pt is the (known) price level at t. Substituting this expression for

Rit+1 in (1) and rearranging gives (for k > 0),

Qnk,t = Et

·
Mt+1Pt
Pt+1

Qnk−1,t+1

¸
. (2)

We can derive a similar equation for real bonds. Let Qrk,t denote the nominal price of a zero coupon

bond at time t paying £(Pt+k/Pt) at period t + k. Qrk,t also deÞnes the real price of a claim to one unit

of consumption at t + k. Now consider the real return from holding this k-period claim for one period. In

t+1 the nominal price of a claim to £(Pt+k/Pt+1) is Qrk−1,t+1 so the price of a claim to £(Pt+k/Pt) must be
Qrk−1,t+1(Pt+1/Pt). The real return on holding the k-period claim is therefore Qrk−1,t+1/Q

r
k,t. Substituting

this for Rit+1 in (1) gives (for k > 0),

Qrk,t = Et
h
Mt+1Q

r
k−1,t+1

i
. (3)

Equations (2) and (3) determine the complete set of real and nominal bond prices in the economy in

terms of the dynamics of the pricing kernel, Mt, and aggregate price level, Pt. Notice that Qr0,t and Q
n
0,t

must equal unity. Hence, once the dynamics of the pricing kernel and the aggregate price level have been

speciÞed, we can use (2) and (3) to solve recursively for a complete set of nominal and real bond prices.
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The analysis below examines the behavior of yields and risk premia. Let qjk,t denote the log price of a k-

period bond, lnQjk,t. Continuously compounded k-period real and nominal yields are deÞned by y
r
k,t ≡ − 1

kq
r
k,t

and ynk,t ≡ − 1
k q
n
k,t respectively. In the case of one-period yields, I drop the k subscript and refer to y

j
t as

the nominal (j = n) or real (j = r) spot rate. I focus on two sets of risk premia: the term premia, and the

inßation risk premia. The former are deÞned as the expected excess log return on a k-period bond relative

to the one-period yield, yjt , or spot rate:

θjk,t ≡ Et
h
qjk−1,t+1 − qjk,t

i
− yjt ,

for j = {n, r}. Below I refer to θnk,t and θrk,t as the nominal and real term premia. The inßation risk premia

is deÞned as

ψt ≡ ynt −Et[∆pt+1]− yrt ,

where ∆pt+1 ≡ ln(Pt+1/Pt) is the rate of inßation. This is the expected excess log real return on nominal
bonds relative to the real rate over a one period horizon.

2.2 The Model

My model for the term structure uses (2) and (3) together with a speciÞcation for the dynamics of the pricing

kernel and inßation. SpeciÞcally I assume that the log pricing kernel, mt ≡ lnMt, follows

−mt+1 = κm(st) + zm,t + λm(st)ωm(st)um,t+1, (4)

zm,t+1 = µm(st+1) + αm(st)(zm,t − µm(st)) + ωm(st)umt+1, (5)

where um,t+1 is an i.i.d. N(0, 1) shock. The terms κm(.), λm(.), µm(.), αm(.) and ωm(.) ≥ 0 are functions of a
discrete-valued variable st that follows an independent Markov process with constant transition probabilities.

The process for inßation is also characterized by a switching structure:

∆pt+1 = κp(st) + zp,t + λp(st) (ρ(st)ωm(st)um,t+1 + ωp(st)up,t+1) , (6)

zp,t+1 = µp(st+1) + αp(st)(zp,t − µp(st)) + αpm(st)(zm,t − µm(st)) (7)

+ρ(st)ωm(st)um,t+1 + ωp(st)up,t+1,

where up,t+1 is a i.i.d. N(0, 1) shock. As above, κp(.), λp(.), ρ(.), µp(.), αp(.), αpm(.) and ωp(.) ≥ 0 are all
functions of st. Investors� information, It, includes the parameters, the current values of the risk factors,
zm,t, and zp,t, and the state variable, st.7

Equations (4)-(7) describe a recursive dynamic system. From (3) we see that real bond prices depend

only on mt so the behavior of the real term structure is determined by (4) and (5). I will refer to zm,t as

the real risk factor. Nominal bond prices depend on both the real pricing kernel and inßation so both risk

factors affect the behavior of the nominal term structure. I will refer to zp,t is the inßation risk factor.

7This assumption rules out the possibility that investors have to learn about the current process for the risk factors. Allowing
for learning in the model (i.e., by excluding st from It) would greatly add to its complexity and make estimation intractable.
For a discussion of the modelling problems induced by the introduction of learning, see Evans (1998b).
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This model is a multivariate version of the Vasicek (1977) model extended to incorporate Markov switch-

ing.8 As is well-known, the Vasicek model implies that all the risk premia are constant. In this model, both

the term premia and the inßation risk premia vary with the state variable st. This feature differentiates the

model from a large class of term structure models following CIR and provides a very ßexible framework for

modeling the dynamics of the term structures.

The relationship between the pricing kernel and inßation plays an important role in the analysis. If

investors (correctly) perceive that the real pricing kernel and inßation evolve independently, the price of a

nominal bond is equal to the price of a real bond multiplied by the expectation of the future real value of

money (Campbell, Lo and MacKinlay, 1997). Although the model admits this possibility when αpm(s) =

ρ(s) = 0, this restriction imposes a strong neutrality assumption on the data (in the absence of state

variations). In particular, the restriction implies that; (i) real yields are uncorrelated with inßation, and (ii)

there is no inßation risk premium. The Þrst implication is easily demonstrated if we assume a single state.

Equations (5) and (7) then imply that

Cov(zm,t, zp,t) =

µ
αpmαm
1− α2m

+ ρ

¶
ω2m

(1− αpαm) ,

(where the state-dependence of the parameters has been omitted for clarity). This covariance is proportional

to the covariance between (expected) inßation and real yields. So when αpm = ρ = 0, real yields cannot

be correlated with inßation. The second implication follows from the fact that ρ(s) governs the covariance

between innovation in the pricing kernel and inßation (see equations (4) and (6) above). As I discuss below,

ρ(s) affects the inßation hedging properties of nominal bonds, which in turn, determine the inßation risk

premium. In particular, when ρ(s) = 0, nominal bonds have no hedging value and the inßation risk premium

equals zero. Both implications of the neutrality assumption appear at odds with the UK data. The results

in Evans (1998a) support the presence of a time-varying inßation risk premium and a negative correlation

between inßation and real yields.

To solve for equilibrium bond prices, let x0t ≡ [−mt,∆pt], z0t ≡ [zm,t, zp,t], and u0t ≡ [um,t, up,t] so that
(4) - (7) can be written in vector form as

xt+1 = κ(st) + zt + Λ(st)Ω
1/2(st)ut+1, (8)

zt+1 = µ(st+1) + α(st)(zt − µ(st)) +Ω1/2(st)ut+1,

where κ(s)0 = [κm(s), κp(s)] , µ(s)0 =
£
µm(s), µp(s)

¤
,

α(s) =

"
αm(s) 0

αpm(s) αp(s)

#
, Λ(s) =

"
λm(s) 0

0 λp(s)

#
, and Ω1/2(s) =

"
ωm(s) 0

ρ(s)ωm(s) ωp(s)

#
.

8The development of term structure models in discrete time is now standard; see, for example, Campbell, Lo, and MacKinlay
(1996, Chapter 11) and Sun (1992). The Vasicek model has served as the basis for other models linking yields and inßation
including; Pennacchi (1991), Foresi, Penati and Pennacchi (1996) and Campbell and Viceria (2001).
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The equilibrium conditions in (2) and (3) can now be written as

Qjk,t = Et
h
exp

¡−djxt+1¢Qjk−1,t+1i j = {r, n}, (9)

with dr = [1, 0] and dn = [1, 1]. As in the Vasicek model, equilibrium bond prices in this model depend only

on dj (κ(s) + µ(s)) so the elements in κ(s) and µ(s) cannot be identiÞed separately from term structure data

alone. To resolve this indeterminacy, I choose the elements of κ(s) so that djκ(s) = 1
2d
jΛ(s)Ω(s)Λ(s)0dj0 for

j = {n, j}. This choice implies that yjt = djzt so the real risk factor identiÞes the real spot rate, and the sum
of the real and inßation risk factors equals the nominal spot rate.

Solving (9) recursively with the aid of (8) gives the following expression for equilibrium log bonds prices:

−qjk,t = Ajk(st) +Bjk(st)zt, j = {n, r}, k = 0, 1, . . . (10)

where Ajk(.) is a scalar and B
j
k(.) is a 1× 2 vector of functions that depend on the state variable s, and the

maturity of the bond, k. Because s is a discrete-valued variable, the Ajk(.) and B
j
k(.) functions are completely

described by the state-dependent parameters Ajk(s) and B
j
k(s) for s ∈ S, where S is the set of possible states.

These parameters follow the recursions

Ajk(s) = Es
h
Ajk−1(�s) +B

j
k−1(�s, ) (µ(�s)− α(s)µ(s))

i
+ θjk (s) ,

(11)

Bjk(s) = Es
h
Bjk−1(�s)α(s)

i
+ dj ,

where Es{f(�s)} =
P

�s=1,0 f(�s) Pr(st+1 = �s|st = s) , with Aj1(s) = 0 and Bj1 = [1, 1]. The appendix provides
a detailed derivation of these recursions and contains a description of the state-dependent function θjk (.)

that determines the term premium on a k-period bond: θjk,t = θjk(st). In particular, the appendix shows

that the θjk (.) function depends on the values of B
j
k−1(s), Λ(s), Ω(s) and κ(s) for s = 1, 2, ... so that (11)

deÞnes a set of nonlinear recursions for the Ajk(s) and B
j
k(s) parameters.

9

2.3 Features

This model differs from CIR-type models in its implications for the behavior of spot rates and the risk

premia. Consider Þrst the behavior of the real spot rate. Combining the equilibrium condition yrt = zm,t

with (5) gives

yrt+1 = µm(st+1) + αm(st)(y
r
t − µm(st)) + νt+1, (12)

where νt+1 ∼ N(0, ω2m(st)). (12) shows the real spot rate following a switching AR(1) process with het-

eroskedastic innovations. This process introduces two features that are absent in CIR-type models. First it

breaks the link between the level and volatility of the spot rate. Volatility may increase or decrease with the

level of the spot rate depending on the form of the ωm(.), µm(.) and αm(.) functions. This also means that

the level and conditional variance of yields need not display the same degree of persistence. Persistence in

9The appendix also contains derivations for many of the results presented below along with details of the methods used to
identify, estimate and test the model.
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the level depends on the form of the αm(.) function and the persistence in st, whereas persistence in volatility

only depends on the latter. In CIR-type models, by contrast, volatility is a linear function of the spot rate

so volatility must display the same degree of persistence as the level.

Switching also introduces nonlinearity into the spot rate process. In particular, the drift function

E
£
yrt+1|yrt

¤
can now be nonlinear in yrt . Intuitively, a rise in y

r
t increases the forecast of y

r
t+1 given st+1

and st by α(st), and changes the probability distribution of st+1 and st. The combined effect determines

how E
£
yrt+1|yrt

¤
changes and may differ according to the level of yrt . This means, for example, that real yields

could display greater mean reversion the further yrt is from its unconditional mean. Ang and Bekaert (1998)

study this effect using a switching speciÞcation like (12) to model nominal interest rates. Their estimates

of the implied drift functions closely correspond to the estimates obtained by Ait-Sahalia (1996), Conley et

al. (1997) and Stanton (1997) using non-parametric methods. The presence of switching allows the model

to capture nonlinearity in the dynamics of spot rates and permits us to study their implications for the

behavior of the term structure.

The model also differs from CIR-type models in the way it links the term premia to the behavior of spot

rates. To illustrate this point, consider the following approximation to the term premium on a two-period

real bond:

θr2,t +
1

2
V art(q

r
t+1) ' −Covt(mt+1, q

r
t+1),

= −λm(st)ω2m (st) , (13)

where V art(.) and Covt(.) denote the variance and covariance conditioned on time t information, It.10 The
variance term on the left is a Jensen Inequality adjustment that appears because the term premium was

deÞned in terms of log returns. The right hand side of (13) identiÞes the hedging value of real bonds. Recall

that mt+1 is the log of the real intertemporal marginal rate of substitution in representative agent models.

So when the covariance on the right is positive, long-term real bonds provide a hedge against states where

marginal utility is high, and the premium is smaller to compensate. According to the model, this covariance

is proportional to the within-state variance of the spot rate, ω2m(st), and so varies over time. The term

premium also varies through the price of risk parameter λm(st).11 This second source of variation is absent

in CIR-type models and adds greater ßexibility to the dynamics of the real term premium. In particular,

because ω2m(st) must be non-negative, the sign of the term premium is determined by λm(st), and can

therefore change signs over the sample.

10 (13) and(14) are derived by taking a lognormal approximation to (9) for the k = 2 case, (i.e., by assuming that mt+1 and
qjt+1 have a joint normal distribution conditioned on It). The approximation error arises because qjt+1 = −djzt+1 and the
conditional distribution of zt+1 is non-normal unless there is a single state. The model estimates and the empirical analysis
below are based on the exact term premia, θjk(st), derived in the Appendix. I present the approximations here because the

θjk(.) function is too complex to develop much intuition about the role of Markov-switching.
11The price of real risk is the ratio of the expected excess log return on a real bond, plus one half its own variance to adjust

for Jensen�s Inequality, to the standard deviation of the excess log return on the bond. In this model, the price of risk on a real
two-period bond is −λm(st)ωm (st) , and so varies with the state via λm(st) and ωm (st) . In CIR-type models, all variations
in the price of risk come through the standard deviation of the spot rate that is proportional to the square root of the state
variable.
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The term premium on a two-period nominal bond may be approximated by

θnt,2 +
1

2
V art(q

n
t+1) ' −Covt(mt+1 −∆pt+1, qnt+1),

= − (λm(st) + λp(st)ρ(st)) (1 + ρ(st))ω2m(st)− λp(st)ω2p(st). (14)

In this case, the term premium depends on the within-state variance terms, ω2m(.) and ω
2
p(.) and so could

change signs even if λm(.) and λp(.) remained constant. The switching model used here allows for greater

ßexibility in the dynamics of the term premia via variations in ρ() and the risk price terms. In this respect,

the model resembles the Semi-Affine class of models developed by Duffee (1998) that introduces a more

general speciÞcation for the time-varying price of risk into a CIR-type structure.

A Þnal feature of the model worth noting concerns the state-dependence between the real pricing kernel

and inßation. This is governed by the functions αpm(.) and ρ(.). Variations in the current real rate affect

expectations of future inßation according to the value of αpm(s). Although the micro foundations of the

inßation process are not speciÞed in the model, it is not unreasonable to think that variations in αpm(s),

αp(s) and µp(s) could reßect the effects of changing monetary policy regimes.

The value of ρ(st) affects the covariance between inßation and the pricing kernel. This is the key

determinant of the inßation risk premium, ψt. Combining (8) and (9) with the solution for real and nominal

spot rates gives

ψt +
1

2
V art (∆pt+1) = Covt(∆pt+1,mt+1) = −λm(st)λp(st)ρ(st)ω2m(st). (15)

As above, the variance term on the left is a Jensen�s inequality adjustment. The covariance term on the right

identiÞes the real hedging value of nominal bonds. In a representative agent model, a positive covariance

implies that the realized real return on nominal bonds will be unexpectedly low in states where marginal

utility is high. This makes nominal bonds less attractive to investors so the equilibrium inßation risk premium

has to rise to compensate. In this model the (adjusted) inßation risk premia has four sources of variation:

the within-state variance of the real spot rate, ω2m(st), the risk price terms λm(st) and λp(st), and ρ(st).

Clearly, the inßation risk premium can vary independently of both the nominal and real term premia and

the variance of spot rates.

To summarize, the switching model introduces a great deal of ßexibility into modeling the term structure.

It accommodates nonlinearities in the dynamics of spot rates and adds ßexibility to the relationship between

the risk premia and volatility. The cost of this added ßexibility comes in two forms. First, there are no

parameter restrictions to insure that nominal yields are bounded above zero even in the continuous time

limit. In principle this problem could be mitigated by making the st process dependent on the level of

nominal yields through the transition probabilities. By this means, the volatility of nominal yields could

approach zero with the level of yields in the manner of CIR-type models. Unfortunately, a modiÞcation of

this type would make the model much less tractable. I regard the possibility of negative nominal yields to be

a small price to pay for tractability and ßexibility of the model.12 The second cost concerns the behavior of

12Backus, Foresi, Mozumdar and Wu (1997) and Dai and Singleton (2000) make the same argument in context of their
models. My estimates of the three state model imply a 2.8 percent probability that 12-month nominal yields are negative. The
probability falls quickly with maturity, reaching 0.2 percent at 84 months.
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the state variable. The derivation of the parameter recursions in (11) characterizing equilibrium bond prices

critically relies on the assumption that st follows a discrete-valued process. Although st can take on any

Þnite number of states in principle, in practice estimating models with many states is impossible because

they contain a very large number of parameters. I consider models with one, two and three states below

and show that the three-state model closely replicates the statistical features of the UK data.The Empirical

Model

2.4 Estimation

The model is estimated by maximum likelihood using the yields on real and nominal bonds of 1, 3, 5 and 7

year maturities. As in other studies (e.g., Duffee 1998, and Campbell and Viceira 2001), I introduce a pricing

error into the equation for equilibrium yields when estimating the model. SpeciÞcally, I assume that the

observed yields, �yjt,k, are related to the theoretically determined yields, yk,t ≡ − 1
k q
j
k,t, by �yjk,t = y

j
k,t + ξ

j
k,t

where ξjk,t ∼ i.i.d.N(0,Σjk) for j = {r, n}.13 The vector of observed yields, �yt = [�yjk,t], is then related to the
risk factors and the state variable by

�yt = A(st) +B(st)zt + ξt, (16)

where the i�th rows of A(st) and B(st) are given by A
j
k(st)/k and B

j
k(st)/k and satisfy the recursions in

(11). The other equations in the model comprise (8), governing the dynamics of zt, and the Markov process

for st.

When there is one state, (i.e., st = 1), (8) and (16) constitute a state space form in which the vector of

yields is related to the unobserved risk factors. In this case maximum likelihood estimates of the parameters

can be obtained using the Kalman Filter, as in Pennacchi (1991). When there is more than one state, the

vector of observed yields is now a function of both zt and st, which are unobserved and follow non-gaussian

processes. Kim (1993) provides a method for approximating the likelihood under these circumstances based

on an extension of the Kalman Filter and Hamilton�s (1988) algorithm for Markov processes. When I initially

used this technique to estimate the two and three-state versions of the model, I found that the estimated

variances of the pricing errors for 3 year real and nominal yields were very small. To obtain greater precision,

I then re-estimated the models without these pricing errors. In this case, zt can be inferred directly from

�yt for each state, so st becomes the only unobservable variable in the model. With this simpliÞcation, the

exact likelihood can be calculated with the Hamilton algorithm. The second set of estimates obtained in

this manner are almost identical to the Þrst and are reported in the tables below.

2.5 IdentiÞcation

A notable feature of the model is that it utilizes data on real and nominal yields but not inßation. This

speciÞcation choice has one advantage and one disadvantage. The advantage is that we do not have to deal

with complications caused by the reporting lag in the Retail Price Index. The lag means that the RPI for

month t, Pt, is reported two weeks into month t+1. As a result, we cannot simply add the equation for ∆pt to

13Recall that �yjt,k almost surely contains a sampling error because it is derived from an estimated yield curve.
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(16) because this would have the counter-factual implication that Pt is an element of investor�s information,

It. By excluding the inßation data, we avoid having to model the degree to which investors anticipate the
value of Pt when pricing bonds at the end of the month.14

The disadvantage of omitting inßation is that we cannot identify the rate of expected inßation or the

inßation risk premium from the parameter estimates without a further restriction. To see why, suppose we

amend (8) to

xt+1 = φ+ κ(st) + z̄t + Λ(st)Ω
1/2(st)ut+1 +Σ

1/2et+1,

z̄t+1 = ϕ(st+1) + α(st)(z̄t − ϕ(st)) +Ω1/2(st)ut+1,

where et+1 is a vector of i.i.d.N(0, 1) shocks, φ
0 =

£
φm, φp

¤
is a vector of constants and ϕ(s) = µ(s) − φ.

If we choose φm and φp such that d
jφ = 1

2d
jΣdj0 for j = {n, r}, it is easy to show that equilibrium bond

prices satisfy (10) with z̄t replacing zt and ϕ(s) replacing µ(s) in the parameter recursions (11). Adding

homoskedastic shocks to the pricing kernel and inßation processes in this manner has no effect on the

dynamics of real or nominal yields. All it does is shift the long run levels of the risk factors from µ(s) to

ϕ(s). This means that we cannot identify the parameters in Σ (or equivalently φ) from the behavior of yields

alone. And, since the expected rate of inßation is given by Et∆pt+1 = (dn − dr)(κ(st) + φ+ z̄t), we cannot
therefore identify the rate of expected inßation, or the inßation risk premia, ψτ ≡ ynt − yrt − Et∆pt+1.
To resolve this identiÞcation problem, I set the parameters in Σ so that the sample average of three year

nominal and real yields equals the long run average implied by the model parameters. This is a minimal

rational expectations assumption. Importantly, as the appendix shows, it has no impact on the differences

in the behavior of term structure across regimes, the dynamics of yields, or the dynamics of the term and

inßation risk premia. The model estimates reported below are based on this normalization.

2.6 Testing For Markov-Switching

In the next section I present estimates of one, two and three-state versions of the model. To assess their

relative performance, we will need to test for Markov-switching. Standard hypothesis tests (i.e., Likelihood

Ratio, Wald, and Lagrange Multiplier) cannot be used to test for the presence of switching between multiple

states in the model speciÞed by (8) and (16). The reason is that unidentiÞed nuisance parameters present

under the null hypothesis of fewer states invalidate the use of standard asymptotic theory (see, Hamilton

1988, and Hansen 1992). To overcome this problem, I follow Garcia and Perron (1996) by utilizing the

test proposed by Gallant (1977) to compare models with different number of states. Under this procedure

(described in the appendix), a large set of predicted values for the yields are calculated from estimates of

the model with more states using randomly drawn values for the unidentiÞed parameters. Several principle

components are then extracted from this set of yields, added to the model with fewer states and their

signiÞcance judged according to an F -test.15

14Evans (1998a) contains a further discussion of the potential problems caused by the reporting lag in the RPI. That paper
also examines how realized inßation relates to the behavior of real and nominal yields. The focus of my analysis below is on
the relationship between the term structures and inßation expectations.
15Hansen (1992) has also developed a test for switching but, as the appendix explains, it is too computationally intensive to

apply here.
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As in Garcia and Perron (1996), I also compare different versions of the model with the Davidson and

MacKinnon J-test. To illustrate, let �ys1t and �ys2t denote the predicted values for the observed yields from

estimates of a one and two-state version of the model respectively. The J-test is computed by Þrst estimating

the matrix regression

�yt = (I − β)�ys1t + β�ys2t +wt,

where β =diag(βi), and then testing for the joint signiÞcance of βi (the individual regression coefficients).

The idea behind this test is that under the null of one state, predictions from the two-state version should

not account for any of the discrepancy between observed yields and the predictions of the one-state model.

3 Empirical Results

3.1 Data

The analysis in this paper uses data on nominal and real yield curves derived from the secondary market

prices of nominal and index-linked bonds that trade in the UK on the last business day of the month from

January 1983 until November 1995. The nominal yields come from The Bank of England and are constructed

using the method described in Deacon and Derry (1994) while the real yields come from Evans (1998a). The

procedure for calculating real yields is summarized in the appendix. As there were relatively few nominal

or index-linked bonds with short maturities trading during the sample period, it is not possible to precisely

estimate the short end of the real and nominal yield curves. Estimated yields for one and two month bonds

would surely contain signiÞcant sampling errors. To minimize the possible inßuence of these errors, I will

focus on the behavior of yields for bonds with maturities of at least 12 months.16

Table 1 reports summary statistics on the log yields for nominal and real bonds on the last business

day of the month from January 1983 until November 1995. The upper panel of the table shows that the

nominal yield curve was on average mildly upward sloping while the real yield curve was downward sloping.

Short-term yields are much more volatile than long-term yields in both term structures but volatility falls

more quickly along the real term structure. From the skewness and kurtosis statistics, the unconditional

distributions for both sets of yields appear non-normal. Variations in nominal yields of all maturities are

very persistent as measured by the high values of the sample autocorrelations. In the case of real yields,

persistence increases with maturity but remains below the level displayed by nominal yields.

3.2 Model Estimates

Table 2 reports the maximum likelihood estimates for one, two and three-state versions of the model. The

upper rows show the state-dependent parameters of the process for the real and inßation risk factors expressed

in annual percentage points. The parameters ϕm(s) and ϕp(s) respectively determine the long-run level of

the real and inßation risk factors in each state. The estimates imply sizable cross-state differences in these

16The poor coverage of the UK market at the short-end of the maturity spectrum is widely recognized. Barr and Campbell
(1995), for example, supplement the data on government bond prices with the one and three-month interbank rates to obtain
their term structure estimates. They note, however, that these rates probably include a risk premium relative to the equivalent-
maturity government bond, and so are not ideal.
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Table 1: Summary Statistics

k months Autocorrelations
Nominal yields: ynt,k mean st.d. skewness kurtosis lag 1 lag 2 lag 3

12 9.468 2.292 -0.265 2.479 0.958 0.912 0.874
24 9.464 1.923 -0.476 2.657 0.951 0.893 0.845
36 9.548 1.742 -0.541 2.712 0.945 0.877 0.821
60 9.626 1.636 -0.525 2.687 0.941 0.869 0.809
84 9.680 1.559 -0.481 2.637 0.939 0.867 0.805
120 9.665 1.252 -0.314 2.645 0.929 0.864 0.799

Real yields: yrt,k mean st.d. skewness kurtosis lag 1 lag 2 lag 3
12 5.031 2.992 1.242 4.859 0.491 0.443 0.441
24 4.426 1.465 0.926 4.441 0.547 0.480 0.455
36 4.246 0.996 0.583 3.975 0.610 0.519 0.472
60 4.122 0.660 0.068 3.436 0.718 0.589 0.510
84 4.067 0.538 -0.175 3.287 0.791 0.646 0.552
120 4.009 0.465 -0.287 3.191 0.856 0.713 0.615

Notes: Sample statistics for nominal and real yields derived from the secondary market
prices of nominal and index-linked bonds that trade in the UK on the last business day
of the month from January 1983 until November 1995.The yields are calculated as yrk,t ≡
−1200

k lnQrk,t and y
n
k,t ≡- 1200k lnQnk,t. The asymptotic standard errors for the skewness

and kurtosis statistics are 0.197 and 0.395.

long-run levels for both risk factors in the multiple state models. For example, in the three-state model, the

largest cross-state difference between the long run levels of the real and inßation risk factors are approximately

8 and 10 percent. The parameters in the α(s) matrix determine the degree of within-state mean-reversion in

the risk factors. There are much smaller differences in these estimates across states. The estimates of αm(s)

and αp(s) are close to unity and the estimates of αpm(s) are positive and signiÞcant. Thus, the estimated

within-state rate of mean-reversion is very low for both risk factors.

The next three rows of the table report estimates of covariance matrix for the risk factor innovations.

In the multi-state models, the estimates of ωm(s), ωp(s) and ρ(s) differ from state to state and imply the

presence of state-dependent heteroskedasticity in the innovations to the risk factors. The largest cross-state

differences appear in the estimates of ωm(s) and ρ(s). The former parameter identiÞes the standard deviation

of innovations to the real risk factor that varies from approximately 1.6 to 2.3 percent in the three state model.

Since yrt = zmt, ωm(s) is also the standard deviation of innovations to the real spot rate. The estimates of

ρ(s) range from approximately -0.88 to -1.44 and are all statistically signiÞcant. Together, the estimates

of ωm(s), ωp(s) and ρ(s) imply that the correlation between the innovations to the real and inßation risk

factors (given by ρ(s)ωm(s)(ω2p(s) + ρ(s)
2ω2m(s))

−1/2) are -0.95, -0.97 and -0.96 is states one, two and three
respectively. Recall that real yields will only vary independently of inßation risk if αpm(s) = 0 and ρ(s) = 0.

This neutrality restriction can be rejected with a high signiÞcance level based on the estimates of αpm(s)

and ρ(s) in all three models. The negative values for ρ(s) also imply that nominal spot rates are much less

volatile than real rates within a state. Within-state innovations in nominal rates are equal to the sum of the

innovations to both risk factors and so their standard deviation is given by
¡
(1 + ρ(s))2ω2m(s) + ω

2
p(s)

¢1/2
.
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This is estimated to be equal to 65, 91 and 67 basis points in states one, two and three respectively.

The term and inßation risk premia are governed by the covariance parameters and the price of risk

parameters, λm(s) and λp(s). In the one state model, both parameters are insigniÞcantly different from zero.

In the multi-state models the estimates are statistically signiÞcant and vary considerably across regimes.

Recall that variations in the price of risk parameters add ßexibility to the relationship between the term

premium and volatility. In the case of the real term premium on two-month bonds, the estimates of the

three-state model imply a positive premium of 24 and 37 basis points in states ones and three and a negative

premium of 16 basis points in state two. Since real spot rates exhibit least volatility in state two, this

implies that the term premium can change sign and be positively correlated with volatility - a combination

of features that single factor CIR-type models cannot replicate. In the case of the three state model, the

estimates imply a negative nominal term premium (on two-month bonds) of 72 and 7 basis points in states

two and three, and a positive premium of 3 basis bonds in state one. Again, there is no simple relationship

between the premium and the volatility of spot rates. Cross-state differences in the estimates of λm(s), λp(s)

ρ(s) and ωm(s) all contribute to the inßation risk premium identiÞed in equation (15) above. The estimates

from the three-state model imply that the risk premium is equal to 1.09, 1.15 and 1.24 percent in states one,

two and three respectively.17

The table reports estimates of the Markov transition probability matrix, Π, in the rows following the

price of risk parameters. The diagonal elements of Π identify the probability of st remaining in the same

state from one month until the next. In both multi-state models, estimates of these probabilities are close

to one in every state. This means that variations in the state contribute more to the variance of the pricing

kernel and inßation over longer horizons. Consequently, the possibility of a change in state impacts more on

the behavior of long-term rather than short-term yields.18

The last four rows show how the behavior of real and nominal spot rates differs across states. In state s,

the vector of risk factors converge to ϕ(s) so the within-state long-run level for the spot rate is E[yjt ] = d
jϕ(s).

These averages differ signiÞcantly across states (and models). Concentrating on the case of the three-state

model, the average real spot rate rises from 2.3 percent in state one to 7.6 percent in state two, and then

falls to -0.5 percent in state three. Nominal rates, by contrast, are approximately equal to 8.6 percent in

states one and two, and rise to 10.4 percent in state three. We can also characterize these differences in

terms of the average level of the inßation risk factor, ϕp(s) = E[y
n
t ] − E[yrt ]. From this perspective, states

one and three are characterized by much higher average levels of the inßation risk factor than state two. The

standard deviation of innovations to spot rates within each state are reported in the last two rows. There is

no simple relationship between the within-state averages and these volatility measures. In the case of real

rates, the state with the lowest average has the highest volatility and vice-versa. Nominal rates, by contrast,

display most volatility in state two where the average level is similar to state one.

Although many of the parameter estimates reported in Table 2 are broadly similar across the three

model versions, there are some striking differences. In particular some of the parameter estimates in ϕ(s),

Ω(s) and Λ(s) differ signiÞcantly from model to model. Since these parameters play an important role in

17Another way to interpret the parameter estimates is in terms of the price of risk. Estimates from the three-state model
imply that the price of real (nominal) risk is 0.109 (0.047),-0.102 (-0.792), and 0.156 (-0.104) in states one, two and three.
18To conserve space, Table 2 omits the estimates of the pricing error variances. With the exception of the 12-month real

yield, the estimated variances are very small. A table comparing the Þtted values from each model against the data is provided
in the appendix.
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Table 3: Tests

Tests for the number of States
One vs. Two States Two vs. Three States

Gallant 61.534∗∗ 65.550∗∗

J-tests
yr12 6.060∗∗ 3.484∗∗

yr60 7.267∗∗ 5.342∗∗

yr84 8.580∗∗ 1.392 ∗

yn12 15.728∗∗ 1.688 ∗

yn60 15.407∗∗ 0.856
yn84 12.351∗∗ 1.481
Joint 14.511∗∗ 15.774∗∗

Coefficient Tests
Two State Model Three State Model

1, 2 1, 2 1, 3 2, 3
ϕm(.) 74.627∗∗ 561.174∗∗ 176.772∗∗ 727.838∗∗

ϕp(.) 497.943∗∗ 1022.666∗∗ 260.791∗∗ 1051.475∗∗

αm(.) 165.349∗∗ 25.728∗∗ 0.001 10.270∗∗

αp(.) 0.001 0.001 0.001 0.001
αpm(.) 102.421∗∗ 98.232∗∗ 0.507 50.533∗∗

ωm(.) 2340.863∗∗ 271.187∗∗ 17.928∗∗ 170.093∗∗

ωp(.) 653.186∗∗ 34.519∗∗ 8.078∗∗ 9.762
ρ(.) 1743.243∗∗ 1531.375∗∗ 45.378∗∗ 1823.851∗∗

λm(.) 16.722∗∗ 80.401∗∗ 81.345∗∗ 101.071∗∗

λp(.) 63.089∗∗ 228.562∗∗ 3.087 18.168∗∗

Notes: The upper panel reports Gallant and J−test statistics for the
null hypothesis of one state against two states in the left hand column,
and two states against three states in the right hand column. Details of
the Gallant test are provided in the appendix. The lower panels report
Wald test statistics for the null hypothesis that κ(si) = κ(sj) for the
state-dependent parameter κ(.) with si and sj equal to the states listed
at the head of each column. �∗� and �∗∗� respectively denote signiÞcance
at the 5 percent and 1 percent levels.

determining the behavior of yields and the risk premia, it is important to exam which version of the model

best characterizes the data. To this end, the upper panel of Table 3 presents the results of the Markov-

switching tests. The left hand column reports tests of the one-state null hypothesis against the alternative

of two states. Based on Gallant�s test, this null is strongly rejected. The right hand column reports tests of

the two-state null against the alternative of three states. This null hypothesis is also strongly rejected by

Gallant�s test. In both cases, the marginal signiÞcance level of the test statistic is less that 1 percent. The

next rows of the table report J-test statistics for six yields individually and jointly for one verse two states

in the left hand column, and two versus three states in the right hand column. These tests consider whether

the difference between the actual yield on, say, a one year real bond and the prediction of the model with

fewer states can be improved upon with the predictions from the model with more states. The results in

the left hand column show that the two-state model improves on the ability of the one-state model with
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respect to all the yields; the marginal signiÞcance level of the test statistics are less than 1 percent in every

case. In the right hand column, the test statistics are signiÞcant for all but the cases of long-term nominal

yields. Taken together, these results indicate that the three-state version of the model best characterizes the

data. In particular, the three-state model appears to capture aspects of the real term structure that were

not adequately represented by the two-state model.

The lower panel of Table 3 reports tests for cross-state differences in the parameters. These tests do not

speak to question of how many states should be in the model. Rather they provide statistical evidence on

how switching between states affects the dynamics of yields and the various risk premia. The table reports

Wald tests for the null hypothesis that κ(si) = κ(sj) for the state-dependent parameter κ(.) with si and sj
equal to the states listed at the head of each column.19 In both the three and two-state models, the only

parameter not to display any signiÞcant cross-state difference is αp(s), the coefficient on the lagged inßation

risk factor in the inßation risk factor process. This coefficient is uniformly estimated at 0.99 across all states

and versions of the model. All the other parameters differ signiÞcantly across at least two states.

3.3 The Three-State Model

In light of the results reported in Table 3, I focus below on the estimates of the three-state model. Figure

1 plots estimates of the state variable, st. As the plot shows, there are numerous changes in the estimated

value of the state variable throughout the sample. The estimated matrix of transition probabilities implies

that the unconditional probability of being in state one, two and three is 0.604, 0.098 and 0.298. Over the

sample, the corresponding empirical frequencies are 0.559, 0.21 and 0.231. Thus, the model estimates imply

that over the sample state one occurred a little less and state two a little more frequently than was consistent

with the expectations embedded in the term structure.

Differences in the behavior of the term structure across states are displayed in Figure ??. The plots
show the average yield curve in each state calculated as yjk = (A

j
k(s) + B

j
k(s)ϕ(s))/k for j = {r, n}. In the

case of real yields (shown on the left), the slope of yield curve is positive in state one, negative (inverted) in

state two, and positive in state three with greater curvature than in state one. All three curves converge to

a yield of approximately 5.3 percent at long maturities. The average nominal curves (shown on the right)

are somewhat different. The state one curve is concave and positively sloped, while the state two and three

curves are �U-shaped�. The state two curve falls to a minimum of approximately 7.9 percent at 12 months

before rising steadily above the state three curve and towards the state one curve. In state three, yields are

initially higher and fall gradually towards a minimum of approximately 9.6 percent at 36 months. There is

much less convergence in the three curves than is exhibited by the real curves at long maturities. Overall,

these plots show quite different cross-sectional relationship between yields across states.

19Because all the parameters of the model are identiÞed under the null if multiple states are present, the restrictions on κ(s)
can be examined with a conventional Wald test, as in Engel and Hamilton (1990).
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Figure 1: Estimates of the state, st.

Figure 2: Average yield curves for s = 1 (solid line), s = 2 (dashed line), and s = 3 (short dashed line). Real
yields are shown in the left hand plot and nominal yields are shown in the right hand plot.
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The model estimates also imply different dynamic behavior of the real and inßation risk factors across

states. To illustrate this Figure 3 plots the autocorrelation function for the real and inßation risk factors

within each state.20 The autocorrelations in the upper two plots show that both risk factors are more

slowly mean reverting in state two than in states one and three. Recall from Table 2 that state two is also

characterized by the highest average for the real risk factor, and the lowest average for the inßation risk

factor. This means that in state two realizations of the real spot rate (i.e., yrt = zm,t) are higher on average

and display less mean-reversion than in other states. The autocorrelation function for the sum of the real

and inßation risk factors is shown in the lower plot. All three autocorrelation functions fall more slowly than

the real risk functions with the state two function again being slowest. These plots imply that realizations

of the nominal spot rate (i.e., ynt = zm,t + zp,t) will display the slowest rate of mean reversion in state two.

Figure 3: Autocorrelation functions for zm,t (top plot), zp,t (middle plot), and zm,t + zp,t (bottom plot)

within state s = 1 (solid line), s = 2 (dashed line) and s = 3 (short dashed line).

A visual comparison of the yields and the predicted values from the three-state model is provided in Figure

4. The overall impression from these plots is that the model quite accurately characterizes the behavior of

both the real and nominal term structures. The largest differences appear in the plot for 12-month real

yields. Actual yields are more volatile than the model predictions; the sample standard deviation of actual

20These autocorrelations are computed as -Φk(s)-0/[-Φ0(s)-0] where the vector - picks out the risk factor(s) from zt, Φk(s) =
α(s)kΦ0(s) and Φ0(s) = α(s)Φ0(s)α(s)0 +Ω(s) for s = {1, 2, 3}.
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yields is 3.0 percent compared to 1.86 percent for the model predictions. The model does a better job of

replicating the volatility of the other yields. Differences between the standard deviations for actual and

predicted yields are all less than 0.03 percent. The plots also reveal periods where the model over or under-

predicts actual yields for several months. For example, the model over-predicts 12-month nominal yields for

much of 1994 to 1996. Over the whole sample, however, the averages of actual and predicted yields are very

similar (see appendix table for details).

Figure 4: Actual yeilds (solid plot) and predicted yeilds (dashed plot) from estimates of the three state

model.

4 Analysis

In this section, I use the estimates of the three-state model to address two questions: What does the model

imply about the ability of the real and nominal term structures to predict the future path of real and

nominal yields? Can movements in real and nominal yields provide a reliable indicator of changing inßation

expectations? The answer to the Þrst question depends on the behavior of the real and nominal term premia.

Since these risk premia are time-varying in the model, changes in the current term structure will be a less
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than completely reliable guide to changing expectations regarding yields. The issue is the degree to which

changes in the current term structure reßect changing yield expectations. The answer to the second question

depends on the behavior of both the term and inßation risk premium. If all these risk premia were constant,

then changes in inßationary expectations would be reßected one-to-one in the spread between nominal and

real yields. Below I examine how variations in the risk premia implied by the model estimates affect term

structure based inferences about inßation expectations at different horizons.

4.1 How Variable are the Term Premia?

We can use some well-known regressions to see how variations in the term premia affect inferences concerning

future yields. For this purpose it is useful to consider the term premia deÞned relative to the h-month rather

than the 1-month yield. This is the expected excess return on holding a k-month bond for h (< k) months

relative to the h-month yield:

Θjk,t ≡
1

h
Et[q

j
k−h,t+h − qjk,t]− yjh,t j = {n, r}.

According to the Markov-switching model, Θjk,t can be expressed as just a function of k and the current

state st;Θ
j
k(st). By focusing on Θ

j
k(st) we can examine the variability of the term premium without having

to work with the data on one-month real and nominal yields.

To derive the regressions, assume that the maturity of the long-term bond is equal to k = τh months.

Substituting the identity qjk,t ≡ −kyjk,t into the deÞnition above and iterating forward gives

∇yjk,t = yjk,t − yjh,t =
τ−1X
i=1

( τ−iτ )Et∆
hyjh,t+hi +

1

τ

τ−2X
i=0

EtΘ
j
k−hi(st+hi), (17)

∇yjk,t = yjk,t − yjh,t = (τ − 1)(Etyjk−h,t+h − yjk,t) +Θjk(st). (18)

The Þrst equation shows the spread between the k and h-month yields equal to the weighted average of

expected changes in the future h-month yield, Et∆hy
j
h,t+hi, plus the average of the current and expected

future term premia, EtΘ
j
k−hi(st+hi). In the second, the spread is equal to the expected change in the long-

term yield plus the term premium. Multiplying both sides of these equations by the spread and taking

expectations of the resulting expressions gives

V ar(∇yjk,t) =
τ−1X
i=1

( τ−iτ )Cov(Et∆
hyjh,t+hi,∇yjk,t) +

1

τ

τ−2X
i=0

Cov(EtΘ
j
k−hi(st+hi),∇yjk,t), (19)

V ar(∇yjk,t) = (τ − 1)Cov(Etyjk−h,t+h − yjk,t,∇yjk,t) +Cov(Θjk(st),∇yjk,t). (20)

These equations provide us with two variance decompositions for the spread. In (19) the variance com-

prises the weighted sum of the covariances between the spread and expected future changes in h-month

yields, and the average of the covariance between the spread and the (expected) term premia. In (20)

the variance comprises the covariance between the spread and the expected change in the long-term yield,
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and the covariance between the spread and the term premium. Under the expectations hypothesis, term

premia are constant, so the second terms in (19) and (20) equal zero. Under these circumstances, changing

expectations regarding future yields account for all the variance in the spread. In the Markov-switching

model both terms in each decomposition contribute to the variance of the spread because the term premia

are time-varying. Thus, the question to be addressed is: How large is the contribution of changing yield

expectations to the variance of the spread given the presence of the time-varying term premia identiÞed by

the model estimates?

We can estimate how much changing yield expectations contribute to the variance of the spread in the

data with two simple regressions:

τ−1X
i=1

( τ−iτ )∆
hyjh,t+hi = a0 + a1∇yjk,t + ut+k,

(21)

yjk−h,t+h − yjk,t = b0 + b1
1

τ−1∇yjk,t + et+h, j = {r, n}.

Regressions similar to these have often been used to test the expectations hypothesis, (see Campbell and

Shiller 1991 for a survey). Here they provide us with estimates of the variance decompositions. In particular,

under the rational expectations, the OLS estimates of a1 and b1 respectively equal the Þrst terms in (19)

and (20) expressed as a faction of V ar(∇yjk,t).21 These estimates can be compared against the predictions
of the model in two ways. First, we can use the model estimates to compute each of the terms in (19) and

(20) (see appendix for details). This provides us with asymptotic variance decompositions conditioned on

the parameter estimates. In other words, these decompositions match those derived from the regressions in

(21) estimated with an inÞnitely large data sample generated by the model. Second, we can use the model

estimates to simulate artiÞcial data series equal in length to the data sample. The regressions in (21) can

then be run with these artiÞcial data to derive a further set of variance decomposition estimates. Repeating

this procedure a large number of times will provide us with a Monte Carlo distribution of Þnite-sample

estimates for the variance decompositions based on the model.

The left hand columns of Table 4 report the estimated regression coefficients a1 and b1 using h = 12

with asymptotic standard errors computed under the null of the expectations hypothesis (i.e., a1 = 1 and

b1 = 1). In the case of nominal yields, the estimates of a1 range between 0.64 and 1.07 while the estimates of

b1 are somewhat lower, ranging between 0.28 and 0.74. Although these estimates suggest that variations in

expected future 12-month yields contribute more to the variance of the spread than do varying expectations

concerning future long-term yields, none of the coefficients are estimated with a great deal of precision. In

fact, using the standard errors in column (ii), we cannot reject the null of a1 = 1 or b1 = 1 in any case at

the 5 percent signiÞcance level. While these Þndings are consistent with the results reported in Barr and

Pesaran (1995) and Barr and Campbell (1997) and Bekaert, Hodrick and Marshall (1997a), they are rather

different from the results reported for the US term structure. In US data the estimates of a1 for nominal

21To see this explicitly, note that Cov(Et∆hy
j
t+hi,∇yjk,t) = Cov(∆hyjt+hi,∇yjk,t) and Cov(Etyjk−h,t+h − yjk,t,∇yjk,t) =

Cov(yjk−h,t+h − yjk,t,∇yjk,t ) under the rational expectations assumption that forecast errors are uncorrelated with variables in
the information set It (e.g., ∇yjt,k). Making these substitutions in (19) and (20) and dividing both sides by the variance of the
spread gives 1 = �a1 + (1− �a1) and 1 = �b1 + (1− �b1) where �a1 and �b1 are the OLS estimates of a1 and b1.
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yields approach unity as the forecasting horizon k rises while the estimates of b1 become increasingly negative

(see, for example, Campbell and Shiller 1991, and Evans and Lewis 1994). The estimates of a1 and b1 in

Table 4 point less strongly to the presence of time-varying term premia than do the US data.

The asymptotic contribution of changing yield expectations to the variance of spread implied by the

model estimates is reported in column (v). In the case of nominal yields, changing expectations of future

12-month yields account for more of the variance of the spread as the maturity of the long-term bond

rises; the implied estimates of a1 rise from 20 percent at 24 months to 70 percent at 84 months. Changing

expectations regarding long-term yields contribute far less to the spread variance; the estimates of b1 range

from 3 to 18 percent.22 It is clear from these results that the model estimates ascribe an important role

to time-varying term premia in the behavior of nominal yields.23 In fact, a comparison of the estimates

in columns (ii) and (v), seems to indicate that the model ascribes too little of the spread�s variance to

changing yield expectations. However, this is not the case. Column (ii) shows Þnite-sample estimates of the

variance contribution, whereas column (v) reports the asymptotic variance contribution based on the model

estimates. To directly compare the implications of the model against the estimates in (ii) we need to account

for the effects of estimating the regression in (21) in a Þnite sample. For this purpose, column (vi) reports

the probability of estimating a slope coefficient less than or equal to the value shown in (ii) based on the

Monte Carlo distribution of regression parameters generated by the model estimates. These probabilities

range between 18 and 27 percent. With this perspective, the important contribution of time-varying term

premium to the variance of the spread implied be the model estimates is not at odds with the behavior of

nominal yields over the sample period.24

The lower panel of Table 4 reports results for real yields. Here the regression estimates of a1 range from

0.61 to 0.66 while the estimates of b1 range from 0.22 to 0.33. These estimates are smaller than their nominal

counterparts and are estimated with greater precision. And, as a result, we can reject the null of a1 = 1

or b1 = 1 in all cases at the 5 percent level.25 The asymptotic contribution of changing yield expectations

to the variance of the spread implied by the model range from 69 to 90 percent in the case of a1 and from

39 to 50 percent in the case of b1. These estimates imply that time-varying term premium contribute less

to the variance of the spread asymptotically than is indicated by the OLS coefficients in column (ii). The

p-values in column (vi) show that based on the model estimates, the probability of observing coefficients as

low as those in (ii) in a Þnite sample is rather small; between 2.6 and 9.9 percent. These probabilities are

much smaller than those reported for nominal yields in the upper panel of the table. They indicate that the

estimated model is less able to replicate the Þnite sample behavior of real yields than nominal yields. This

22To see the implications of the model estimates over long horizons, the table also shows the values of a1 and b1 for the case
where the maturity k of the long bond is 240 months. I did not run regressions for this case because the data sample only
covers 15 years.
23This Þnding is consistent with the results in Steeley (1997, 2000) that provide direct evidence for the presence of time-

varying risk premia in the UK nominal term structure. The presence of time-varying risk premia is also implied by the model
estimates reported by Remolona, Wickens and Gong (1996).
24Accounting for the yield-spread regression results obtained in US data with a term structure model has proved difficult using

CIR-type models. In particular, Roberds and Whiteman (1999) found that these models could not simultaneously replicate
the regression results and account for other key features of the data. Dai and Singleton (2000) report greater success using
Semi-Affine models that, like the model here, allow for greater ßexibility in modeling of the market price of risk (see above).
25 Similar Þndings are reported in Evans (1998) using an alternative forecasting equation for real yields. Earlier evidence on

the presence of time-varying real term premia includes the CIR-model estimates in Brown and Schaefer (1994) and the VAR
decompositions in Barr and Pesaran (1995).
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Table 4: Yield Spread Decomposition Results

Nominal Yields
Data Sample Three-State Model

Parameter k Estimate Std. R2 Implied Parameter P-value (%)
(i) (ii) (iii) (iv) (v) (vi)

a1 24 0.640 (0.233) 0.11 0.197 18.080
36 0.820 (0.244) 0.17 0.361 20.420
60 0.971 (0.231) 0.34 0.580 24.160
84 1.071 (0.226) 0.24 0.705 27.240
240 0.981

b1 24 0.280 (0.572) 0.01 0.030 18.080
36 0.490 (0.654) 0.01 0.056 21.720
60 0.743 (0.920) 0.02 0.125 24.260
84 0.700 (1.175) 0.01 0.176 25.180
240 0.729

Real Yields
Data Sample Three-State Model

Parameter k Estimate Std. R2 Implied Parameter P-value (%)
a1 24 0.613 (0.084) 0.31 0.694 4.340

36 0.661 (0.038) 0.29 0.761 4.120
60 0.662 (0.050) 0.28 0.851 7.280
84 0.652 (0.084) 0.26 0.900 9.920
240 0.972

b1 24 0.225 (0.191) 0.01 0.388 4.340
36 0.336 (0.154) 0.05 0.402 4.080
60 0.337 (0.147) 0.05 0.454 3.300
84 0.291 (0.158) 0.03 0.502 2.620
240 0.607

Notes: Columns (ii) - (iv) report the estimated slope coefficients from the regressions in
(21) with h = 12. The maturity of the long-term yield is indicated by k in column (i).
Standard errors, reported in parentheses, are adjusted for conditional heteroskedasticity
and serial correlation using the methods of Hansen (1982) and Newey-West (1987); an
MA(k − 1) in the case of a1and an MA(h− 1) in the case of b1. Column (v) reports the
asymptotic/population regression coefficient implied by the ML estimates of the three state
model. The probability of estimating a coefficient smaller than the estimate in column (ii)
under the null hypothesis of the estimated three state model is reported in column (vi).
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is not entirely surprising. Recall that the model was least able to replicate the high volatility of 12-month

real yields. If some of this �excess volatility� is attributable to a lack of precision at the short end of the

real yield curve, then the real yield spreads used in the regression will include a measurement error and the

OLS coefficients in column (ii) will be biased towards zero. Because the model allows for these measurement

errors, the parameter estimates used to compute the asymptotic values of a1 and b1 in (v) or the p-values

in (vi) are free from this bias. Thus, the difficulty in precisely calculating short term real yields from the

available data on index-linked bonds may explain why the p-values are smaller in the lower panel than in

the upper panel of the table.

Overall, these results show that in large samples time-varying term premia make a signiÞcant contribution

to the variance of both nominal and real spreads. In the nominal term structure, changing expectations

regarding future 12-month rates account for 20 to 98 percent of the spread�s variance as the maturity of the

long bond rises from 24 to 240 months. Expectations� regarding future long-term yields only account for

3 to 73 percent of the variance. Time-varying term premia are somewhat less important in the real term

structure. Our model estimates imply that between 70 and 97 percent of the variance in the spread can be

accounted for by changing expectations regarding 12-month yields, and 39 to 61 percent by expectations

regarding long term yields. These Þndings suggest that predicting the future path of real or nominal yields

with any accuracy is extremely difficult over horizons of 5 years or less. The link between the current term

structure and expectations of future yields only approaches the simple relation implied by the expectations

hypothesis at very long horizons.

4.2 How Important is Inßation Risk?

I now turn to the second question: Can movements in real and nominal yields provide a reliable indicator

of changing inßation expectations? To address this question we need to consider the links between nominal

yields, real yields and expected inßation over different horizons. At the one month horizon, the spread

between nominal and real spot rates is

ynt − yrt = Et∆pt+1 + ψt,

and so varies with the expected monthly rate of inßation and the inßation risk premium. Over longer

horizons, the nominal-real spread depends on the rate of expected inßation, the term premia in both the

nominal and real term structures, and the inßation risk premium. This can be seen by combining the

equation above with the nominal and real versions of (17) with h = 1 :

ynk,t − yrk,t = Etπk,t+k +Ψk,t, (22)

Ψk,t =
1

k

k−1X
i=0

Et
¡
θnk−i,t+i − θrk−i,t+i + ψt+i

¢
.

The Þrst term on the right is the expected rate of inßation over the next k months, 1kEt∆
kpt+k, the second

is the multi-period inßation risk premium, Ψk,t. This is the average of the expected difference between the

term premia on nominal and real bonds, θnk,t − θrk,t, plus the (one period) inßation risk premium, ψt. The
Markov-switching model implies that Ψk,t can be expressed as just a function of k and the current state
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st;Ψ
j
k(st). When Ψ

j
k(st) = 0, (22) describes the k-month version of the Fisher Equation.

Equation (22) has two important implications for the relation between yields and expected inßation. First,

the presence of time-varying term premia, θjk,t, and inßation risk premia, ψt, doesn�t necessarily imply that

the spread between nominal and real yields will be an unreliable indication of inßationary expectations. If

forecasts of θnk−i,t+i−θrk−i,t+i+ψt+i are approximately constant for horizons i greater than say i∗, variations
in Ψk,t will become very small as k becomes much larger than i∗ because Ψk,t depends on the average of
the forecasts at all horizons i < k. Notice that this differs from the requirement needed for the expectations

hypothesis to approximately hold at long horizons. For this we need that the variations in 1
k

Pk−1
i=0 Etθ

j
k−i,t+i

die out as k rises (see equation (19) above with h = 1). Forecasts of the term premia may be quite variable at

particular horizon i, while forecasts of the difference between the nominal and real premia may be constant.

Although the real and nominal term structures provide unreliable guidance concerning expected future yields

at all but the longest horizon, it is still possible for these same term structures to provide (more) reliable

inferences about inßationary expectations over short horizons.

The second implication of equation (22) concerns the relation between the size of the multi-period inßation

risk premium Ψk,t and k, which might be termed �the term structure of inßation risk�. An important

determinant of the size of Ψk,t is the difference between the nominal and real term premia. Recall that θjk,t
identiÞes the expected excess log return on holding a k−period bond relative to the spot rate. The difference
between θnk,t and θ

r
k,t therefore indicates the degree to which investors are compensated for inßation risk

inherent in holding long-term nominal bonds. Some intuition into the factors governing the difference can

be gained by considering the case where k equals 2. Using (13) and (14) above, we can write

θn2,t − θr2,t ' 1

2

¡
V art(q

r
t+1)− V art(qnt+1)

¢
+Covt

¡
∆pt+1, q

n
t+1

¢
+Covt

¡
mt+1, q

r
t+1 − qnt+1

¢
. (23)

The variance terms in the Þrst line arise from Jensen�s inequality because the term premium are deÞned in

terms of log returns. The second line shows that inßation risk contributes to the nominal term premium

through two components; the covariance between inßation and the future price of the nominal bond, and the

covariance between the real kernel and the difference between the future prices of real and nominal bonds.

The Þrst term arises because an unexpected rise in prices between t and t+ 1 reduces the real value of the

nominal long-term bond at t+1. This makes holding long term nominal bonds less attractive so the nominal

term premium must rise to compensate. The second term adds to the premium because a positive covariance

implies that the unexpected return on holding long-term real rather than nominal bonds is high when the

future pricing kernel is unexpectedly high. In a representative agent model, this occurs when marginal utility

is high, so once again the nominal term premium must rise to compensate.

The upper panel of Figure 5 shows estimates of Ψk(s) plotted against the horizon k in months for

s = {1, 2, 3}. Here we see that the term structure of inßation risk has a negative slope in all three states.

The inßation risk premium is highest in state one, starting at approximately 1 percent when k = 1 and

falling to minus 1.8 percent at k = 120. The premia in states two and three are quite similar; falling from

approximately 0.6 percent at k = 1 to minus 3.5 percent at k = 120. These estimates imply that the spread

between nominal and real yields overstates the rate of expected inßation by between 1 and 0.6 percent at the

one month horizon. At long horizons, the opposite is true. At the ten year horizon the spread understates the
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rate of expected inßation by between 1 and 3.5 percent. Overall, these plots show that the Fisher equation

is a rather poor approximation to the relation between the level of nominal yields, real yields and expected

inßation in the UK.

Figure 5: The multi-period inßation risk premium Ψk,t (top plot), and average rate of expected inßation

Etπk,t+k (bottom plot), in states; s = 1 (solid line), s = 2 (dashed line) and s = 3 (short dashed line).

The lower panel of Figure 5 shows the average rate of expected inßation in each state plotted against

the horizon k in months. Expected inßation rises with the horizon k in states one and two, and falls in

state three. There are considerable cross-state differences in expectations at both short and long horizons.

At one month, the expected rate of inßation ranges from 0.3 percent in state two to 10.3 percent in state

three while the range at ten years is 7.1 to 8.7 percent. These pronounced differences suggest that the states

identiÞed by the model can be closely associated with three distinct inßation regimes: A regime of slowly

rising inßation in state one, quickly rising inßation in state two, and slowly falling inßation in state three. Of

course nothing hangs on this taxonomy. The point to emphasize from the plot is simply that very different

sets of inßationary expectations are embedded in the dynamics of term structure.

The term structures of inßation risk shown in Figure 5 imply that the spread between nominal and real

yields provide an unreliable estimate of the level of inßation expectations because the size of the inßation

risk premium differs signiÞcantly across states at all horizons. These cross-state differences also affect how

accurately variations in inßation expectations are reßected in the nominal-real spread. To see this formally,
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Table 5: Variance Decompositions

k
Cov

³
ynk,t − yrk,t, Etπk,t+k

´
V ar(ynk,t − yrk,t)

Cov
³
ynk,t, Etπk,t+k

´
V ar(ynk,t)

Cov
³
ynk,t, y

r
k,t

´
V ar(ynk,t)

Cov
³
ynk,t,Ψk,t

´
V ar(ynk,t)

(i) (ii) (iii) (iv)

1 0.966 1.452 -0.561 0.109
12 0.948 1.195 -0.291 0.096
24 0.940 0.989 -0.010 0.022
36 0.975 0.968 0.103 -0.071
60 1.111 1.111 0.128 -0.239
84 1.222 1.228 0.108 -0.336
120 1.319 1.320 0.088 -0.407
Variance decompositions calculated from the estimates of the three-state model (see appendix for
details).

I compute two variance decompositions based on (22):

V ar(ynk,t − yrk,t) = Cov
¡
ynk,t − yrk,t,Etπk,t+k

¢
+Cov

¡
ynk,t − yrk,t,Ψk,t

¢
,

(24)

V ar(ynk,t) = Cov
¡
ynk,t, Etπk,t+k

¢
+Cov

¡
ynk,t, y

r
k,t

¢
+Cov

¡
ynk,t,Ψk,t

¢
.

The Þrst equation writes the variance of the spread as the sum of covariance with expected inßation

and covariance with the multi-period inßation risk premium. Clearly, the closer the second covariance is to

zero, the more accurately will variations in the spread reßect changing inßation expectations. The second

equation provides a variance decomposition for nominal yields in terms of their covariance with expected

inßation, real yields and the inßation risk premium. This equation allows us to examine the degree to which

changes in inßation expectations can be accurately inferred from nominal yields alone.

Column (i) of Table 5 reports the contribution of changing inßation expectations to the variance of the

spread based on the three-state model estimates. For horizons ranging from 1 to 36 months, variations in the

inßation risk premium contribute little to variance of the spread. On average, a one percent increase in the

spread is associated with a 0.94 to 0.97 percent increase in expected inßation, a 3 to 6 percent overstatement

of the change in expected inßation. Variations in the inßation risk premium become more important at

horizons beyond 5 years. As a result, changes in the spread understate the change in expected inßation by

11 to 32 percent. For example, at 84 months, a one percent increase in the spread is associated with a 1.22

percent increase in expected inßation.

Columns (ii) - (iv) of the table show how variations in expected inßation, real rates and the inßation risk

premium contribute to the variance of nominal yields. Column (ii) shows that changes in nominal yields

understate the variations in expected inßation at very short and long horizons. Columns (iii) and (iv) show

the reason for this pattern. At short horizons real yields are very variable and negatively correlated with

expected inßation. Thus, insofar as real shocks contribute to changing inßation expectations, an opposite

movement in real yields offsets their effect on nominal yields. This is illustrated in the table by the large
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negative covariance between short-term real and nominal yields for k equals 1 and 12. Real yields are much

less variable at long horizons. Now variations in nominal yields primarily reßect changes in expected inßation

and the inßation risk premium. Because these changes are negatively correlated (see Figure 5) the effect on

nominal yields of an increase in expected inßation is partially offset by the associated fall in the inßation

risk premium. At the two to three year horizons, the correlation between expected inßation and real yields

is offset by the correlation between expected inßation and the inßation risk premium. At this point, nominal

yields move almost one-to-one with expected inßation, a Þnding consistent with the Fisher hypothesis (Fisher

1930).

The results in Table 5 provide straightforward guidance on how best to draw accurate inferences about

changing inßation expectations. Over horizons of one to twelve months, more accurate inferences can be

derived from the spread between nominal and real yields than from nominal yields alone because short-term

real yields are strongly (negatively) correlated with expected inßation. For longer horizons, inferences based

on the spread and nominal yields are quite similar. They are reasonably accurate over horizons of two to

three years. Beyond this point, changes in the term structure increasingly understate changes in inßation

expectations.

5 Conclusion

This paper has examined how changing expectations regarding future yields and inßation are reßected in

the term structures of nominal and real interest rates. For this purpose, I developed a bond-pricing model

with Markov-switching that allows for changes in the degree of mean-reversion displayed by spot rates, time-

varying correlations between real and nominal risk factors, and ßexibility in the link between the dynamics of

the risk premia and interest rate volatility. A formal comparison of a one, two and three-state version of the

model revealed that the three state model best characterized the UK data. This model does a remarkably

good job at matching the behavior of real and nominal yields over the sample period. It also identiÞes

distinct differences in the behavior of the real and nominal term structures across the three states.

I then used the model estimates to quantify the importance of time-varying term premia in the real and

nominal term structures, and time-varying inßation risk premia linking nominal and real yields with expected

inßation. I found that the presence of time-varying term premia make changes in nominal and real yield

spreads a very unreliable indicator of changing yield expectations over horizons less than 5 years. The link

between the current term structure and expectations of future yields only approaches the relation implied

by the expectations hypothesis at very long horizons. Inferences regarding expected inßation based on the

Fisher Equation are similarly ßawed. Estimates of the inßation risk premium imply that the spread between

nominal and real yields provide unreliable estimates of the level of inßation expectations at all horizons.

Accurate inferences about changing inßation expectations can be obtained using either the change in the

spread between nominal and real yields, or the change in the nominal yield alone, over a 2 to 3 year horizon.

Outside this window, changes in the term structure either understate or overstate the change in expected

inßation by a considerable degree.

Overall, these results clearly indicate that time-varying term premia and inßation risk premia signiÞcantly

contribute to the dynamics of real and nominal yields in the UK. The model links variations in the risk premia

to changes in the dynamics of spot rates and expected inßation via switches in the state variable. However,
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it does not relate switches in the state variable to economic fundamentals, such as the policy regime. In this

sense, Markov-switching is something of a �black-box� that enables us to develop a theoretically consistent

and empirically viable model. Future research will have to look inside this box if we are to deepen our

understanding of the UK term structures.
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Appendix

Data

The analysis in this paper uses data on nominal and real yield curves derived from the secondary market
prices of nominal and index-linked bonds that trade in the UK. The nominal yields come from The Bank of
England and are constructed using the method described in Deacon and Derry (1994). Brießy, a no-arbitrage
condition is used to link the prices of discount bonds to the prices of coupon-paying bonds seen in the market.
Then, at each date, the parameters of a discount function are chosen to match observed prices against their
theoretical values implied by the no-arbitrage condition. The yield curve for each period is then constructed
from the estimated discount function.
The construction of the real yield curve is complicated by two factors. First, index-linked bonds issued

by the UK government only provide incomplete indexation for the principle and coupon payments because
there is an eight month indexation lag built into the payoff structure of the bonds. Second, there is a two
week reporting lag in the price index. As a result, uncertainty about the current and future price index has
some effect on the prices of index-linked bonds. Both these facts make it impossible to derive the real term
structure directly from the observed prices of index-linked bonds. However, in Evans (1998a) I show how
real yields can be constructed using a two-step procedure. First, the index-linked yield curve is calculated
from market prices using a no-arbitrage technique like the one used to Þnd the nominal term structure.
Second, the effects of inßation uncertainty (arising from the indexation and reporting lags) are purged from
the index-linked yields to derive estimates of the real yield curve. In step one, I utilize the nominal discount
function estimated by The Bank of England together with the prices of index-linked debt. As an alternative,
one could simultaneously estimate the discount functions for nominal and index-linked bonds. This would be
a somewhat more complex undertaking but might have the advantage of further reducing estimation errors
in the yield curves.

Bond Price Solution

To show that equations (10) and (11) describe equilibrium bond prices, I proceed in two steps. First I show
that under the proposed solution, expected excess holding returns are a function of the maturity of the
long-term bond and the current state. In the second step I derive the necessary restrictions on (10) for this
property to hold.
Step 1: First write the equilibrium condition in (9) as

1 = E
h
exp(−djxt+1 + qjk−1,t+1 − qjk,t)|It

i
, (A1)

for j = {n, r}, where It is the investor�s period t information set. For the case where k = 1, we can calculate
the expectation directly by noting that the conditional distribution of xt+1 is normal, and q

j
0,t+1 = 0. After

some rearrangement, this gives us

yjt ≡ −qj1,t = djzt + djκ(st)−
1

2
djΛ(st)Ω(st)Λ(st)

0dj0.

With the normalization, djκ(s) = 1
2d
jΛ(s)Ω(s)Λ(s)0dj0, this equation simpliÞes to yjt = djzt and bond prices

satisfy (10) with Aj1(st) = 0, and B
j
1(st) = d

j .
For the case where k > 1, I use the law of iterated expectations to rewrite (A1) as

1 = E
h
E[exp(−djxt+1 + qjk−1,t+1 − qjk,t)|It, st+1]

¯̄̄
It
i
. (A2)

Under the proposed solution, the joint distribution of xt+1 and q
j
k−1,t+1 conditioned on {It, st+1} is normal,
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so the inner conditional expectation can be written as

exp
³
E[(−djxt+1 + qjk−1,t+1 − qjk,t)|It, st+1] + 1

2V ar(−djxt+1 + qjk−1,t+1|It, st+1)
´
,

Substituting for xt+1and q
j
k−1,t+1 using (8), (10) and the fact that y

j
t = d

jzt, and combining the result with
(A2) gives

exp
¡
djκ(st)

¢
= E

h
exp

³
E[δjk,t+1|It, st+1] + Γjk−1(st+1, st)

´¯̄̄
It
i
, (A3)

where δjk,t+1 ≡ qjk−1,t+1 − qjk,t − yjt and

Γjk−1(st+1, st) ≡ 1
2

³
djΛ(st) +B

j
k−1(st+1)

´
Ω(st)

³
djΛ(st) +B

j
k−1(st+1)

´0
.

Notice that E[δjk,t+1|It, st+1] only depends on period t + 1 information via st+1. Thus, given It, there are
S possible values for E[δjk,t+1|It, st+1], corresponding to the S-states of the Markov process. Let Φjk,t be an
S × 1 vector with i�th. element equal to E[δjk,t+1|It, st+1 = i]. (A3) can now be written as

exp
¡
djκ(s)

¢
= E

h
exp

³
8st+1Φ

j
k,t + Γ

j
k−1(st+1, s)

´¯̄̄
It
i
=
PS

�s=1Π�s,s exp
³
8�sΦ

j
k,t + Γ

j
k−1(�s, s)

´
,

where 8s denotes an 1×S vector with a one at element s and zeros elsewhere, and Π�s,s ≡ Pr(st+1 = �s|st = s).
Stacking the S versions of this equation gives

ed
jκ(1)

...

ed
jκ(s)

...

ed
jκ(S)


=



Π1,1e
Γjk−1(1,1) · · · ΠS,1e

Γjk−1(S,1)

...
. . .
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Π1,se
Γjk−1(1,s) Πs,se
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Γjk−1(S,s)
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. . .
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Π1,Se
Γjk−1(1,S) · · · ΠS,Se

Γjk−1(S,S)
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e)sΦ
j
k,t
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k,t


,

or, more compactly,

expv
¡Kj¢ = Pjk−1 expv ³Φjk,t´ ,

where expv (χ) denotes the exponential operator applied to each element in a vector χ. Provided Pjk−1 is
nonsingular, we can rewrite this matrix equation as

Φjk,t = lnv

µ³
Pjk−1

´−1
expv

¡Kj¢¶ , (A4)

where lnv (χ) denotes the log operator applied to each element in a vector χ. Notice that the right hand side
of this expression only depends on κ(.), Γjk−1(., .) and the transition probabilities. Thus, expected excess
returns, E[δjk,t+1|It, st+1], do not depend on zt even though zt ∈ It. The equilibrium term premium can now
be easily found by applying the law of iterated expectations to the deÞnition θjk,t ≡ E[δjk,t+1|It] :

θjk,t = E
h
E[δjk,t+1|It, st+1]

¯̄̄
It
i

= 8stΠΦ
j
k,t (A5)

where Π is the matrix of Markov transition probabilities with Πi,j ≡ Pr(st+1 = i|st = j). Combining (A4)
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with (A5) gives

θjk(s) = 8sΠ
0 lnv

µ³
Pjk−1

´−1
expv

¡Kj¢¶ , (A6)

which is the value of the term premium in state s consistent with the equilibrium condition in (A1), the
dynamics of xt+1, and the bond price solution in (10).
Step 2: To Þnd the restrictions on Ajk(s) and B

j
k(s) consistent with this expression for the term premium,

I use (10) to substitute for qjk−1,t+1, q
j
k,t and y

j
t in the identity θ

j
k,t ≡ E[δjk,t+1|It]. This gives

θjk,t = Ajk(st) +B
j
k(st)zt −E

h
Ajk−1(st+1) +B

j
k−1(st+1)zt+1|It

i
− djzt

= Ajk(st)−Est
h
Ajk−1(�s) +B

j
k−1(�s, ) (µ(�s)− α(st)µ(st))

i
+
³
Bjk(st)−Est

h
Bjk−1(�s)α(st)

i
− dj

´
zt

where the second line follows from (8). Since the k-period term premium is a function of k and st, the term
in parenthesis must equal a vector of zeros. Hence

Ajk(st) = Est

h
Ajk−1(�s) +B

j
k−1(�s, ) (µ(�s)− α(st)µ(st))

i
+ θjk,t,

Bjk(st) = Est

h
Bjk−1(�s)α(st)

i
+ dj .

The recursions for Ajk(st) and B
j
k(st) in (11) follow from these equations with θjk,t = θ

j
k (st) .

Comment: The form for the term premium function in (A6) assumes that Pjk−1 is nonsingular. Alternative
derivations for the term premium function exist for cases were Pjk−1 is singular. To illustrate, consider the
case where S = 2, α(1) = α(2), and Π11 + Π22 = 1. Although Pjk−1 is singular for all k under these
circumstances, the term premium function can still be readily found. In particular, it is easy to show that
bond prices satisfy

qjk,t = Ajk(st) +B
j
kzt,

Ajk(s) = 1
2d
jΛ(s)Ω(s)

¡
djΛ(s)

¢0 − 1
2

³
djΛ(s) +Bjk−1

´
Ω(s)

³
djΛ(s) +Bjk−1

´0
− ln

n
Es exp(−Ajk−1(�s)−Bjk−1(µ(�s)− αµ(s)))

o
,

Bjk = Bjk−1α+ d
j ,

with Aj0(s) = 0 and Bj0 = [0, 0]. (To verify this, substitute the proposed solution into (A1) and equate
coefficients.) The term premium function is therefore

θk(s) =
1

2

h
djΛ(s)Ω(s)(djΛ(s))0 − (djΛ(s) +Bjk−1)Ω(s)(djΛ(s) +Bjk−1)0

i
−
n
ln
n
Es exp(−Ajk−1(�s)−Bjk−1(µ(�s)− αµ(s)))

o
−Es

h
Ajk−1(�s) +B

j
k−1 (µ(�s)− αµ(s))

io
.

In principle, the bond price solution can be found in a similar manner for other cases where Pjk−1 is
singular. In practice, singularity in Pjk−1 did not turn out to be a problem for the two and three-state
models estimated in the paper so equilibrium bond prices are identiÞed using (10) and (11) with (A6).
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Risk Premia

If the joint distribution of xt+1and q
j
t+1 conditioned on It is normal, the equilibrium condition in (A1) with

k = 2, becomes
E[(−djxt+1 + qjt+1 − qj2,t)|It] = −1

2V ar(−djxt+1 + qjt+1|It).
Substituting for xt+1 on the right hand side and simplifying, using the fact that d

jκ(s) = 1
2V ar(−djxt+1),

gives
θj2,t +

1
2V ar(q

j
t+1|It) = Cov(djxt+1, qjt+1|It).

This expression only holds exactly in the case where; (i) there is a single state, or (ii) where µ(s) = µ. Under
other circumstances, the conditional distribution for qjt+1 is non-normal because q

j
t+1 depends on st+1 and

ut+1. The expression above is the basis for the approximations shown in the Þrst lines of (13) and (14). The
second lines are derived by substituting for xt+1 and q

j
t+1 = −djzt+1 in the covariance term:

Cov(djxt+1, q
j
t+1|It) = −djΛ(st)E[et+1, µ(st+1)0|It]dj0 − djΛ(st)Ω(st)dj0.

The Þrst in this expression equals zero because et+1 is independent of st+1. The second lines in (13) and
(14) are therefore equal to −djΛ(st)Ω(st)dj0 for j = r and j = n respectively.
The equation for the inßation risk premium in (15) is derived by combining the nominal and real versions

of (A1) with k = 1:
E [exp(−drxt+1 + yrt )|It] = E [exp(−dnxt+1 + ynt )|It] .

Using the conditional normality of xt+1, this expression simpliÞes to

ψt ≡ ynt − yrt −E[∆pt+1|It] = 1
2V ar(d

rxt+1|It)− 1
2V ar(d

nxt+1|It), (A7)

= −Cov(drxt+1, (dn − dr)xt+1|It)− 1
2V ar((d

n − dr)xt+1|It),
= Cov(mt+1,∆pt+1|It)− 1

2V ar(∆pt+1|It),

which is the form of (15). Substituting for the variance terms in the Þrst line gives

ψt =
1
2d
rΛ(st)Ω(st) (d

rΛ(st))
0 − 1

2d
nΛ(st)Ω(st) (d

nΛ(st))
0 = ψ(st) (A8)

so the inßation risk premium can be written as a function of st.
Section V considers the multi-period versions of the term and inßation risk premia. Combining the

deÞnition θjk,t ≡ E[qjk−1,t+1 − qjk,t − yjt |It] with the equilibrium relation θjk,t = θk(st), we have

−qjk,t = E
h
−qjk−1,t+1|It

i
+ yjt + θ

j
k(st).

Iterating this equation forward (with qj0,t = 0) gives

qjk,t = −
k−1X
i=0

E
h
yjt+i + θ

j
k−i(st+i)|It

i
. (A9)

We can use this equation to show that the multi-period term premium Θjk,t ≡ 1
hE[q

j
k−h,t+h − qjk,t|It]− yjh,t

is a just a function of k and st. Substituting (A9) into the deÞnition for Θ
j
k,t and simplifying gives

Θjk,t =
1

h

k−1X
i=0

E
h
θjk−i(st+i)|It

i
− 1

h

k−h−1X
i=0

E
h
θjk−h−i(st+h+i)|It

i
− 1

h

h−1X
i=0

E
h
θjh−i(st+i)|It

i
.

Since st follows a Þrst order Markov process, all the conditional expectations in this expression are functions
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of the current state, so Θjk,t can be written as a function of the current state; Θ
j
k(st).

To derive equations (17) and (18), I write the multi-period premium in terms of yields and combine the
result with Θjk,t = Θ

j
k(st) to give

Θjk(st) ≡ E[τyjk,t − (τ − 1)yjk−h,t+h|It]− yjh,t, (A10)

where τ = k/h. A simple rearrangement of this expression gives (18). To derive (17), I rewrite (A10) as

τ
³
yjk,t − yjh,t

´
= Θjk(st) + (τ − 1)E[yjk−h,t+h − yjh,t+h|It] + (τ − 1)E[∆hyjh,t+1|It]

and iterate forward.
The equation for the multi-period inßation risk premium in (22) comes from taking the difference between

the nominal and real and nominal versions of (A9):

ynk,t − yrk,t =
1

k

k−1X
i=0

E
£
ynt+i − yrt+i + θnk−i(st+i)− θrk−i(st+i)|It

¤
.

Substituting for ynt+i − yrt+i with (A8), gives

ynk,t − yrk,t = E[πk,t+k|It] +Ψk,t,

Ψk,t ≡ 1

k

k−1X
i=0

E[θnk−i(st+i)− θrk−i(st+i) + ϕ(st+i)|It], (A11)

which is the form of (22). As above, all the conditional expectations in the second line can be written as a
function of st so Ψk,t can also be expressed as a function of the current state; Ψ

j
k(st).

Transforming the Model

The analysis in Section V uses long-horizon expectations of future yields and inßation. Computing these
expectations requires forecasts of zt which follows

zt+1 = µ(st+1) + α(st)(zt − µ(st)) +wt+1, (A12)

where wt+1 = Ω
1/2(st)ut+1. Finding long-horizon forecasts from this process is complicated by the presence

of switching in α(.), because it effectively makes the process for zt nonlinear. To alleviate this problem, I
transform the model.
First, I represent the Markov process for st as a Vector Autoregression. Let ζt = 8

0
st so ζt = [1, 0.....]

0 if
st = 1, and ζt = [0, 1, 0.....]0 if st = 2, and so on (as in Hamilton 1994, p 679). We can now represent the S
-state Markov process by

ζt+1 = Πζt + vt+1, (A13)

where vt+1 = ζt+1 −E[ζt+1|ζt, ζt−1,..].
Next, let ηt = ζt ⊗ γt where γt ≡ zt − µ(st). We can now rewrite (A12) as

γt+1 = αηt +wt+1, (A14)

where α = [α(1), ..α(s), ....α(S)] . This equation gives us a linear forecast for γt+1 in terms of ηt. To determine
the multi-step forecasts we need to derive the dynamics for ηt. For this I use (A13) and (A14) to substitute
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for ζt+1 and γt+1 in the deÞnition of ηt+1. After some matrix algebra, this gives us

ηt+1 = (Π⊗ α) (ζt ⊗ ηt) + Ot+1,
Ot+1 = vt+1 ⊗ (αηt) + vt+1 ⊗wt+1 + (Πζt)⊗wt+1.

It is straightforward to check that ζt⊗ηt can be written as Υηt for a matrix Υ comprising of ones and zeros.1
Combining these results, we can write (A13) - (A15) as a vector system: γt+1

ηt+1
ζt+1

 =
 0 α 0
0 (Π⊗ α)Υ 0
0 0 Π

 γt
ηt
ζt

+
 wt+1
Ot+1
vt+1

 ,
or, more compactly,

Zt+1 = AZt + Et+1. (A15)

Note that under the assumptions of the model, E[Et+1|It] equals a vector of zeros. Hence (A15) implies that
E[Zt+i|It] = AiZt.
The Þnal step is to show that expected inßation and equilibrium yields can be written in terms of the

elements of Zt rather than st and zt. Substituting γt = zt − µ(st) into the bond pricing solution in (10),
gives

yjk,t =
1
kC

j
k(st) +

1
kB

j
k(st)γt,

where Cjk(s) = [Ajk(s) − Bjk(s)µ(s)] is a state-dependent scalar. Now note that Cjk(st) can be written as
[Cjk(1), ...C

j
k(s), ...C

j
k(S)]ζt and B

j
k(st)γt can be written as [B

j
k(1), ...B

j
k(s), ...B

j
k(S)]ηt. Making these substi-

tutions in the equation above gives

yjt,k = 1
k

h
0, 0, Bjk(1), ..., B

j
k(s), ...B

j
k(S), C

j
k(1), ...C

j
k(s), ...C

j
k(S)

i
Zt,

= Hjk,Zt. (A16)

The model identiÞes the expected rate of inßation as E[∆pt+1|It] = κp(st)+µp(st)+ [0, 1]γt. Proceeding as
above, we can write expected inßation in terms of Zt as

E[∆pt+1|It] = [0, 1, 0, ...0, ...0, (κp(1) + µp(1)), .., (κp(s) + µp(s)), ...(κp(S) + µp(S))]Zt,
= GZt. (A17)

Variance Decompositions

Table 4 reports estimates of the variance decompositions in (19) and (20) for the spread between long- and
short-term yields ∇yjk,t = yjk,t − yjh,t. Using (A15) and (A16), we have

V ar(∇yjk,t) =
³
Hjk −Hj

h

´
S
³
Hj
k −Hj

h

´0
,

Cov(Ety
j
k−h,t+h − yjk,t,∇yjk,t) =

³
Hjk−hAh −Hj

k

´
S
³
Hj
k −Hj

h

´0
,

1For example, in the S = 2 case the possible values of ζt are [1,0]� and [0,1]�, corresponding to st = 1, and st = 2. When
st = 1, ηt = [γ0t, 0, 0]

0 and ζt ⊗ ηt = [γ0t, 0, 0, 0, 0, 0, 0]
0. When st = 2, ηt = [0, 0, γ0t]

0 and ζt ⊗ ηt = [0, 0, 0, 0, 0, 0, γ0t]
0. So in this

case

Υ0 =
·
I2 02 02 02
02 02 02 I2

¸
where I2 denotes the 2×2 identity matrix and 02 a 2×2 matrix of zeros.
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τ−1X
i=1

( τ−iτ )Cov(Et∆
hyjh,t+hi,∇yjk,t) =

τ−1X
i=1

( τ−iτ )Hj
h

³
Ahi −Ah(i−1)

´
S
³
Hj
k −Hj

h

´0
where S denotes the covariance of Zt. Column (v) of table 4 reports

a1 =

Pτ−1
i=1 (

τ−i
τ )Cov(Et∆

hyjh,t+hi,∇yjk,t)
V ar(∇yjk,t)

=

Pτ−1
i=1 (

τ−i
τ )Hj

h

¡Ahi −Ah(i−1)¢S ³Hj
k −Hj

h

´0
³
Hj
k −Hj

h

´
S
³
Hj
k −Hj

h

´0
and

b1 =
(τ − 1)Cov(Etyjk−h,t+h − yjk,t,∇yjk,t)

V ar(∇yjk,t)
=
(τ − 1)

³
Hj
k−hAh −Hj

k

´
S
³
Hj
k −Hj

h

´0
³
Hj
k −Hj

h

´
S
³
Hj
k −Hj

h

´0
for h = 12, with τ = k/12. The matrices A and Hj

k are calculated directly from the estimates of the three-
state model. The covariance matrix S is computed by Monte Carlo simulation of the Zt process (based on
the three state estimates) over 120,000 observations (i.e. 10,000 years of monthly data).
The k-period rate of expected inßation can be computed from (A15) and (A17) as

E[πk,t+k|It] ≡ 1

k

kX
i=1

E[∆pt+i|It] = 1

k

kX
i=1

GAiZt = FkZt. (A18)

Combining this equation with (A16), gives the following equation for the multi-period inßation risk premium:

Ψk,t = [Hn
k −Hr

k −Fk]Zt. (A19)

Since Ψk,t is a function of st (see equation (A11) above), only the last S columns of [Hn
k −Hr

k −Fk] are
nonzero and comprise [Ψk(1), ...,Ψk(s), ...,Ψk(S)]. The upper panel of Figure 5 plots Ψk(s) against k for
s = {1, 2, 3}.
To compute the variance decompositions reported in Table 5, I use (A16), (A18) and (A19) to write

Cov
³
ynk,t − yrk,t, Etπk,t+k

´
V ar(ynk,t − yrk,t)

=
(Hn

k −Hr
k)S(Fk)0

(Hn
k −Hr

k)S(Hn
k −Hr

k)
0 ,

Cov
³
ynk,t, Etπk,t+k

´
V ar(ynk,t)

=
Hn
kS(Fk)0

Hn
kS(Hn

k )
0 ,

Cov
³
ynk,t, y

r
k,t

´
V ar(ynk,t)

=
Hn
kS(Hr

k)
0

Hn
kS(Hn

k )
0 ,

Cov
³
ynk,t,Ψk,t

´
V ar(ynk,t)

=
Hn
kS(Hn

k −Hr
k −Fk)0

Hn
kS(Hn

k )
0 ,

The estimates in the table are based on the Hj
k and Fk calculated directly from the estimates of the three

state model, and S is generated by the Monte Carlo simulation.
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Estimation Details

The state space form of the model to be estimated is given by equations (8) and (16)

�yt = A(st) +B(st)zt + ξt, (16)

zt+1 = µ(st+1) + α(st)(zt − µ(st)) +Ω1/2(st)ut+1, (8)

where ξt ∼ i.i.d.N(0,R) and ut+1 ∼ i.i.d.N(0, I). For the case with no regime-switching and pricing errors
in all the yields (i.e., R has full rank), the parameter estimates can be found by maximizing the log sample
likelihood that is formed recursively from the Kalman Filter as in Pennarchi (1991). This is the method I
initially used to estimate the one-state version of the model. When switching is present and R has full rank,
the Kalman Filter needs to be modiÞed to accommodate the unobserved states, st. Kim (1993) describes
how the sample likelihood can be approximated in this case by combining Kalman Filter equations with the
Hamilton (1988) algorithm. This is the method I initially used to estimate the two and three-state versions
of the model.
The exact sample likelihood function can be found when there are no pricing errors in the equations

for three-year real and nominal yields. Let �yt = [�y01,t, �y02,t]0 where �y01,t is the vector of 3-year yields,
with A(s) = [A0

1(s),A
0
2(s)]

0,B(s) = [B01(s),B
0
2(s)]

0 and ξt = [0, ξ02,t]0partitioned conformably. Given the
recursive factor structure of the model, B1(s) has rank 2, so the risk factors can be found directly as
zt = B

−1
1 (st) (�y1,t −A1(st)) . We can now rewrite the model as

�y1,t+1 = C1(st+1, st) +D1(st+1, st)�y1,t + εt+1, (A20)

�y2,t+1 = C2(st+1) +D2(st+1)�y1,t+1 + ξ2,t+1, (A21)

where εt+1 ∼ N(0,B1(st+1)Ω(st)B01(st+1)) with

C1(st+1, st) = B1(st+1) (µ(st+1)− α(st)µ(st)) +A1(st+1)−D1(st+1, st)A1(st),

D1(st+1, st) = B1(st+1)α(st)B
−1
1 (st),

C2(st+1t) = A2(st+1)−D2(st+1)A1(st+1),

D2(st+1) = B2(st+1)B
−1
1 (st+1).

(A20) and (A21) constitute a standard Markov switching model that can be estimated by maximum likelihood
using the Hamilton (1988) algorithm. The parameter estimates reported in Table 2 were obtained in this
manner.

IdentiÞcation

Consider the model

xt+1 = φ+ κ(st) + z̄t + Λ(st)Ω
1/2(st)ut+1 +Σ

1/2et+1, (A22)

z̄t+1 = ϕ(st+1) + α(st)(z̄t − ϕ(st)) +Ω1/2(st)ut+1, (A23)

where et+1 is a vector of i.i.d. N(0, 1) shocks, φ
0 = [φm, φp] is a vector of constants and ϕ(s) = µ(s)− φ. If

we choose φm and φp such that d
jφ = 1

2d
jΣdj0 for j = {n, r}, equilibrium bond prices satisfy (10) with z̄t

replacing zt and ϕ(s) replacing µ(s) in the parameter recursions (11).
To substantiate this claim, I Þrst use (A22) to substitute for xt+1 in (A1) for the case where k = 1.

Simplifying the resulting expression gives,

yjt = d
j z̄t +

¡
dj (κ(st) + φ)− 1

2d
jΛ(st)Ω(st)(Λ(st)d

j)0 − 1
2d
jΣdj0

¢
= dj z̄t.

Hence, short rates follow the same process except that the long run mean within each state is given by djϕ(s)
rather than djµ(s).
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Next, consider the prices of long term bonds. Using (10) with (z̄t replacing zt) to substituting for q
j
k−1,t+1,

qjk,t and y
j
t in the identity θ

j
k,t ≡ E[δjk,t+1|It], gives

θjk,t = Ajk(st) +B
j
k(st)z̄t −E

h
Ajk−1(st+1) +B

j
k−1(st+1)z̄t+1|It

i
− dj z̄t,

= Ajk(s)−Es
h
Ajk−1(�s) +B

j
k−1(�s, ) (ϕ(�s)− α(s)ϕ(s))

i
+
³
Bjk(s)−Es

h
Bjk−1(�s)α(s)

i
− dj

´
z̄t,

= θk(st),

where the third line follows from the recursions for Ajk(s) and B
j
k(s) in (11) with ϕ(s) replacing µ(s). Thus,

the term premium continues to be a functions of k and st. All that now remains is to verify that the term
premium function remains the same. To show this, notice from (A22) and (A23) that

E[exp(−djxt+1 + qjk−1,t+1 − qjk,t)|It, st+1] = exp
³
−djκ(st) +E[δjk,t+1|It, st+1]

´
× exp

³
1
2(d

jΛ(st) +B
j
k−1(st+1))Ω(st)(d

jΛ(st) +B
j
k−1(st+1))

0 + 1
2d
jΣdj0 − djφ

´
.

Since the last two terms cancel, the implications of the equilibrium condition in (A2) can still be written as
(A4) and the term premium continues to be determined by (A6).
While the value of Σ (or equivalently φ) has no impact on the term premia, it does affect the level of the

inßation risk premium. From (A7) we have

ψt = 1
2V ar(d

rxt+1|It)− 1
2V ar(d

nxt+1|It),
= 1

2d
rΛ(st)Ω(st) (d

rΛ(st))
0 − 1

2d
nΛ(st)Ω(st) (d

nΛ(st))
0 + 1

2d
rΣdr0 − 1

2d
nΣdn0.

The last two terms add a constant to the expression for the inßation risk premium derived in (A8) above.

Switching Tests

To test the null hypothesis for the null of an S1-state model versus the alternative of a S2-state model
(S2 > S1), we need to deal with the presence of parameters that are only identiÞed under the alternative.
The idea behind the Gallant test is to Þrst calculate estimates of the dependent variables from the S2-
state model using a range of values for the unidentiÞed parameters (under the null). These estimates are
then added to the S1-state model and their signiÞcance judged according to an F-test. This procedure is
implemented in four steps:

1. Let βi represent a given set of values for the parameters of the S2-state model. These values are chosen
independently on a uniform grid for each parameter that ranges from 0.8 to 1.2 times the value of
the maximum likelihood estimate. For i = 1, 2, ...N, use βi to calculate the Þtted values for real and
nominal yields, Y i ≡{yit}Tt=1.

2. Extract d principal components from the matrix Y ≡ [Y 1 . . .Y i . . .YN ] to the matrix W ≡{wt}Tt=1.
In practice, I set N = 1000 and d = 5.

3. Estimate the S1-state model with the addition of these components, i.e.,

�yt = A(st) +B(st)zt +Cwt + ξt,

where C is a diagonal matrix. Call this the augmented S1 model.

4. Let �yS1t, and �y
S∗1
t, denote the Þtted values for the yields based on the S1 model and the augmented
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S1model respectively. Compute the following residual sum of squares

RSSS1 =
TX
t=1

(�yt − �yS1t, )0(�yt − �yS1t, )

RSSS∗1 =
TX
t=1

(�yt − �yS
∗
1
t, )

0(�yt − �yS
∗
1
t, ).

Under the null of no switching, the statistic

(RSSS1 −RSSS∗1 )(T − d− k)
RSSS∗1 d

is distributed F (d, T − d− k) where k is the number of parameters in the S1-state model.

To understand the practical problems with undertaking the Hansen (1992) test for the null of an S1-state
model versus the alternative of a S2-state model (S2 > S1), consider the following partition of the parameter
vector; β = (β0a, β0d)

0, βa = (β0b, β
0
c)
0. We are interested in testing null that βb = 0, where βc is the vector of

nuisance parameters unidentiÞed under the null. βd is the vector of parameters identiÞed under both the
null and the alternative hypothesis. Hansen�s test statistic is

LR∗T = sup
βa
(LRT (βa)/

p
VT (βa)),

where LRT (βa) = LT (βa, �βd(βa))− LT (0, βb, �βd(0, βb)),

VT (βa) =
TX
t=1

qt(βa, �βd(βa))
2,

qt(βa, �βd(βa)) = lt(βa, �βd(βa))− lt(0, βb, �βd(0, βb))− 1

T
LRT (βa),

with �βd(βa) = argmaxβd LT (βa, βd) and LT (βa, βd) =
PT
t=1 lt is the sample likelihood.

Consider the case where S1 = 1, and S2 = 2. For the model studied here, the vector βd includes
the elements in {(κ(1), µ(1), α(1),Λ(1),Ω(1),Σ}, βb = Π11 − 1 and the vector βc includes the elements of
{κ(2), µ(2), α(2),Λ(2),Ω(2),Π22}. In practice, the supremum in LR∗T must be taken over a Þnite grid for βa,
a 13-dimensional vector, and for each point in this grid one would have to calculate �βd(βa) by concentrating
the likelihood over the 18-dimensioned vector βd. This is not a practical proposition given the complexity
of the model. The computational demands of the test in the case where S1 = 2, and S2 = 3 are even larger.
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Model Comparisons

k Data One State Two States Three States
Mean Std Mean Std. Mean Std. Mean Std.

real
12 4.987 3.002 4.470 1.557 4.674 1.693 4.500 1.761
36 4.284 0.989 4.284 0.986 4.284 0.986 4.284 0.986
60 4.173 0.632 4.152 0.683 4.152 0.682 4.154 0.663
84 4.122 0.499 4.069 0.509 4.095 0.507 4.079 0.488

nominal
12 9.429 2.372 9.301 2.009 9.412 2.168 9.423 2.218
36 9.474 1.781 9.474 1.781 9.474 1.781 9.474 1.781
60 9.581 1.572 9.587 1.590 9.586 1.568 9.589 1.562
84 9.605 1.420 9.660 1.427 9.636 1.403 9.634 1.401

Note: The table reports sample statistics for real and nominal yields calculated
from the data, and the three models using the parameter estimates in Table2
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