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Abstract
We develop expressions for the electrostatic potential and total energy of crystalline solids which

are amenable to direct evaluation in real space. Unlike conventional reciprocal space formulations,
no Fourier transforms or reciprocal lattice summations are required, and the formulation is well
suited for large-scale, parallel computations. The need for reciprocal space expressions is eliminated
by replacing long-range potentials by equivalent localized charge distributions and incorporating
long-range interactions into boundary conditions on the unit cell. In so doing, a simplification of
the conventional reciprocal space formalism is obtained. The equivalence of the real- and recip-
rocal space formalisms is demonstrated by direct comparison in self-consistent density-functional
calculations.

PACS numbers: 71.15.-m, 71.15.Nc, 71.15.Ap

1



The evaluation of the electrostatic potential and total energy of crystalline solids has
been an ongoing problem since the earliest days of solid state physics.1–6 In ab initio density-
functional7,8 calculations, the electrostatic component of the potential is typically written
as a sum of ionic (or nuclear, in the all-electron context) and electronic (Hartree) terms.
In an infinite crystal, however, each of these terms diverges and the sum is only condition-
ally convergent due the long-range 1/r nature of the Coulomb interaction. Similarly, the
electrostatic component of the total energy is a sum of electron-ion, electron-electron, and
ion-ion terms, each of which diverges in an infinite crystal but combine to yield a finite total
electrostatic energy per unit cell.

It has been appreciated for some time that the divergences and conditional convergence
of such extended lattice summations can be eliminated by formulating the summations in
terms of neutral densities that are well localized in real and/or reciprocal (Fourier) space.2 In
the conventional reciprocal space approach for ab initio calculations of crystalline solids,6,9

divergences are eliminated by adding neutralizing densities to otherwise divergent Coulomb
terms in such a way that the effects of the added densities cancel in the final expressions.
Remaining long-range interactions are then rendered short ranged by transforming to re-
ciprocal space, where smooth periodic functions, of infinite extent in real space, are well
localized. The resulting expressions for the electrostatic potential and total energy contain
structure factors and/or Ewald sums, and require at least O(N log N) operations to evalu-
ate, where N is the number of atoms in the unit cell. Furthermore, since the reciprocal space
approach uses a Fourier basis, boundary conditions are necessarily periodic in all directions.
And since the approach relies on Fourier transforms, it is difficult to implement efficiently
on large-scale parallel computational architectures due the need for extensive interprocessor
communications.

The limitations of the reciprocal space approach have inspired much research on real-
space and local-orbital based approaches10–27 which allow for better scaling, a variety of
boundary conditions, and eliminate the need for Fourier transforms. In order to treat long-
range Coulomb interactions in crystals, these approaches also generally formulate otherwise
divergent summations and integrals in terms of neutral densities. Alemany et al.11 employ
a uniform neutralizing density in a real-space formulation of the Hartree term. Ionic terms
are, however, computed as in the conventional reciprocal space formalism, using Fourier
transforms. Other real-space formulations have employed localized neutralizing densities to
eliminate the need for reciprocal space transformations altogether. Kane25 employs neutral-
izing Gaussian densities to construct a rapidly convergent expression for the crystal potential
and finite total Coulomb energy in the context of a real-space Wannier function approach.
The formulation of Bachelet et al.26 employs Gaussian representations of local ionic densities
to construct total densities and potentials and associated neutral terms amenable to evalua-
tion in real space. Tsuchida and Tsukada23 employ a combination of localized and uniform
neutralizing densities to construct neutral terms optimized for evaluation in real space. Or-
dejón et al.27 form neutral terms by expressing potentials and energies in terms of neutral
pseudoatomic densities and differences of the crystal density from these. The formulation of
Fattebert and Nardelli20 employs neutralizing Gaussian densities and associated potentials,
in the spirit of the classical Ewald method, to render long-range interactions short ranged.

Here, we develop expressions for the electrostatic potential and total energy of a crys-
talline solid which are amenable to direct evaluation in real space in O(N) operations. The
expression for the total energy so obtained is variational in the output density and quadrat-
ically convergent. We eliminate the need for reciprocal space transformations and/or neu-
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tralizing analytic functions by replacing long-range potentials by the localized charge dis-
tributions which generate them, and incorporating long-range interactions into boundary
conditions on the unit cell. In so doing, we obtain a simplification of the conventional
reciprocal space formalism.

In the pseudopotential approximation,9 the Kohn-Sham equations of density functional
theory7,8 are given by

−1
2
∇2ψi(x) + Veff ψi(x) = εiψi(x), (1)

Veff = V l
I + V nl

I + VH + Vxc, (2)

V l
I =

∑
a

VI,a(x), (3)

V nl
I ψi =

∑
a

∫
dx′V nl

I,a(x,x′)ψi(x
′), (4)

VH = −
∫

dx′
ρe(x

′)
|x− x′| , (5)

Vxc = Vxc(x; ρe), (6)

ρe = −
∑

i

fiψ
∗
i (x)ψi(x), (7)

where ψi and εi are the Kohn-Sham eigenfunctions and eigenvalues, VI,a and V nl
I,a are the local

and nonlocal parts of the ionic pseudopotential of atom a, ρe is the electronic charge density,
the integrals extend over all space, and the summations extend over all atoms a, and states
i with occupations fi. (Atomic units are used throughout.) For simplicity, we omit spin and
crystal momentum indices and consider the case in which the external potential arises from
the ions. The nonlocal part V nl

I and exchange-correlation potential Vxc are determined by
the choice of pseudopotentials and exchange-correlation functional, respectively. V l

I is the
Coulomb potential arising from the ions and VH is that arising from the electrons (Hartree
potential).

In an infinite crystal, V l
I and VH are divergent and the total Coulomb potential VC =

V l
I + VH within the unit cell depends on ions and electrons far from the unit cell due to the

long-range 1/r nature of the Coulomb interaction. The latter constitutes a particular prob-
lem for real-space formulations. Both difficulties may be overcome, however, by replacing
the long-range ionic potentials by the short ranged charge densities which generate them,
and incorporating long-range interactions into boundary conditions on the unit cell. By
construction, the local ionic pseudopotentials VI,a of each atom a vary as −Za/r (or rapidly
approach this) outside their respective pseudopotential cutoff radii rc,a; where Za is the
effective ionic charge and r is the radial distance. They thus correspond, by Poisson’s equa-
tion, to charge densities ρI,a strictly localized within rc,a (or rapidly approaching this). The
local ionic potentials, both inside and outside rc,a, may thus be replaced by corresponding
charge densities localized within rc,a. Figure 1 shows a typical local ionic pseudopotential
and corresponding ionic charge density. The total ionic charge density is then

ρI =
∑

a

ρI,a(x), (8)

where the summation extends over all atoms in the crystal. Since the ionic densities are
localized in real space, however, the summation in the unit cell is in fact finite and readily

3



 

V I,
a a

nd
 ρ I

,a (
a.u

.) 
VI,a 

ρI,a 

r (a.u.) 

Si 

FIG. 1: Local part VI,a of Si pseudopotential29 and corresponding localized charge density ρI,a.
The potential has a long-range 1/r tail whereas the corresponding density is localized in real space.
The total ionic density in the unit cell is thus readily summed in real space whereas the total ionic
potential is not.

performed in real space, unlike the summation of ionic potentials. Having constructed the
ionic charge density in the unit cell, the total charge density ρ = ρI + ρe may then be
constructed and the total Coulomb potential VC = V l

I + VH may be computed at once by a
single Poisson solution subject to periodic boundary conditions:

∇2VC(x) = 4πρ(x); (9)

whereupon Veff may be evaluated as in (2).
The above formulation exploits the fact that, although long-range in real space, the 1/r

nature of the ionic potentials outside rc makes them physically equivalent to ionic densities
localized within rc; and that, although depending physically on all ions and electrons in the
crystal, the total Coulomb potential in the unit cell is determined completely by the total
charge density within the cell, and the boundary conditions it must satisfy. In this sense, the
contributions from all charges outside the cell are folded into the boundary conditions on the
cell, as in the reciprocal space component of the classical Ewald formulation2 and other more
recent reciprocal3 and real14 space approaches. By computing the total Coulomb potential at
once, individual divergences are eliminated. By formulating it in terms of localized functions
within the unit cell, its evaluation can be accomplished in O(N) operations, since the ionic
charge at each point in the cell is contributed by a fixed number of neighboring atoms and
the Poisson solution can be accomplished in O(N) operations in real space by multilevel
methods.15

In the pseudopotential approximation, the total energy in density-functional theory is
given by

Etot = Ts + El
eI + Enl

eI + Eee + EII + Exc, (10)

Ts =
∑

i

fi

∫
dxψ∗i (x)(−1

2
∇2)ψi(x), (11)

El
eI = −

∫
dx ρe(x)V l

I (x), (12)
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Enl
eI =

∑
i

fi

∫
dxψ∗i (x)V nl

I ψi(x), (13)

Eee = 1
2

∫∫
dxdx′

ρe(x)ρe(x
′)

|x− x′| , (14)

EII = 1
2

∑

a,a′ 6=a

ZaZa′

|τa − τa′| , (15)

Exc = −
∫

dx ρe(x)εxc(x; ρe), (16)

where Za is the ionic charge of atom a at position τa and, as in (1)–(7), the integrals
extend over all space, and the summations extend over all atoms a and a′, and states i with
occupations fi. Ts is the kinetic energy of the non-interacting system; El

eI , Eee, and EII are
the potential energies associated with the Coulomb interaction between electrons and ions,
electrons and electrons, and ions and ions, respectively; Enl

eI is the energy associated with
the nonlocal part of the ionic potential; and Exc is the exchange-correlation energy. Ts is
determined by the Kohn-Sham orbitals and occupations, Enl

eI is determined by the choice of
pseudopotentials, and Exc is determined by the choice of exchange-correlation functional.

In an infinite crystal, the total energy per unit cell may be obtained by restricting the
integrals over x and summation on a in (11)–(16) to the unit cell, while the integrals over x′

and summation on a′ remain over all space. In this case, El
eI is divergent and negative while

Eee and EII are divergent and positive due to the long-range 1/r nature of the Coulomb
interaction. However, in terms of the total charge density ρ and Coulomb potential VC , the
finite total Coulomb energy per unit cell EC = El

eI + Eee + EII may be obtained at once:

EC = −1
2

∫

Ω

dx ρ(x)VC(x)− Es, (17)

where Ω is the unit cell and Es is the ionic self-energy per unit cell. The ionic self-energy is
subtracted so that EC corresponds to the conventional density-functional Coulomb energy,
which excludes ionic self-energy. This self energy may be computed from the ionic potentials
and associated densities:

Es = −1
2

∑
a

∫
dx ρI,a(x)VI,a(x), (18)

where the summation is over atoms in the unit cell and the integrals are over all space.
The integrals are readily evaluated as one dimensional radial integrals over a finite interval
by virtue of the spherical symmetry and short range of the ionic densities. The remaining
ion-ion energy in (17) corresponds to the point-ion energy (15) by virtue of the localization
of the ionic charge densities within their respective pseudopotential cutoff radii: consistent
with the frozen core approximation, there is negligible overlap.33

The above formulation exploits the fact that, although the total Coulomb energy per unit
cell depends physically on the contributions of ions and electrons throughout the crystal,
it is determined completely, per unit cell, by the density and potential within the unit cell.
Thus the need for reciprocal space transforms, structure factor computations, and/or Ewald
sums is eliminated and the evaluation can be accomplished in O(N) operations in real space.

In terms of the total Coulomb energy, the total energy per unit cell is then

Etot = Ts + EC + Enl
eI + Exc. (19)
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The orbital dependence in Ts and Enl
eI can be eliminated in the usual way using the Kohn-

Sham equations to obtain the relation

Ts −
∫

Ω

dx ρe(x)V l
eff (x) + Enl

eI =
∑

i

fiεi, (20)

where V l
eff is the local part of the effective potential which produces Kohn-Sham orbitals ψi

and eigenvalues εi according to (1), and ρe is the electronic charge density corresponding to
orbitals ψi according to (7). Combining (16)–(20), we arrive then at an explicit real-space
expression for the total energy per unit cell in terms of the Kohn-Sham eigenvalues:

Etot =
∑

i

fiεi +

∫

Ω

dx
[
ρe(x)V l

eff (x)− 1
2
ρ(x)VC(x)− ρe(x)εxc(x; ρe)

]

+ 1
2

∑
a

∫
dx ρI,a(x)VI,a(x). (21)

In the self-consistent solution process, V l
eff is the local part of the effective potential which

produces Kohn-Sham orbitals ψi and eigenvalues εi. The electronic charge density ρe is
constructed from the orbitals, the total charge density ρ is constructed from ρe, and the
total Coulomb potential VC , from ρ. With such accounting of self-consistent inputs and
outputs, the input-density/potential dependence in the first term of (21) is exactly cancelled
by the second, and the resulting expression is precisely equal to the Kohn-Sham functional
(10) for a given input Veff . It is thus variational in the output density ρe and quadratically
convergent.9,28 Furthermore, it can be evaluated in O(N) operations for a given Kohn-Sham
spectrum and density.

To verify the equivalence of the present real-space formulation to the conventional recipro-
cal space formulation, we have implemented it in a finite-element electronic structure code24

and compared eigenvalues and total energies to those produced by an established planewave
code.30,31 Figure 2 shows the convergence of the total energy and lowest few eigenvalues
produced by the real-space formulation to those produced by the reciprocal space formula-
tion in a self-consistent crystalline GaAs calculation using the same pseudopotentials29 and
exchange-correlation functional.32 In this case, the reciprocal space results were converged
to 10−9 Ha and so were taken as “exact” for the purposes of comparison. The real-space
basis was then successively refined in a series of self-consistent calculations to allow analy-
sis of the convergence of the real-space results to exact values. As the figure shows, both
eigenvalues and total energy converge to the exact reciprocal space values over the full range
explored, and do so at the optimal theoretical rate consistent with the cubic completeness
of the real-space basis.

In summary, we have derived expressions for the electrostatic potential and total energy
of crystalline solids which are amenable to direct evaluation in real space. Unlike conven-
tional reciprocal space formulations, no Fourier transforms or reciprocal lattice sums are
required, and the formulation is well suited for large-scale, parallel computations. The need
for reciprocal space expressions is eliminated by replacing long-range potentials by equiva-
lent localized charge distributions and incorporating long-range interactions into boundary
conditions on the unit cell. In so doing, a simplification of the conventional reciprocal space
formalism is obtained and the resulting expressions can be evaluated directly in real space
in O(N) operations.
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FIG. 2: Convergence of real-space total energy and eigenvalues to exact values in a self-consistent
GaAs calculation. Here, “exact values” were obtained from a highly converged planewave calcu-
lation; and real-space values, from a series of finite-element calculations. The asymptotic slope of
∼ −6 on the log-log scale shows that both total energy and eigenvalues converge to exact values
at the optimal theoretical rate consistent with the cubic completeness of the finite-element basis:
the error is O(h6), where h is the mesh spacing.

While the development here has been in the context of density-functional theory, and has
been demonstrated by finite-element calculations, the ideas and/or expressions so obtained
are applicable within a broad range of interaction models and basis sets.
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J.D. Gale, A. Garćıa, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys.: Condens. Matter
14, 2745 (2002).

28 J.R. Chelikowsky and S.G. Louie, Phys. Rev. B 29, 3470 (1984).
29 C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev. B 58, 3641 (1998).
30 X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M.

Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, and
D.C. Allan, Comput. Mat. Sci. 25, 478 (2002).

31 The ABINIT code is a common project of the Université Catholique de Louvain, Corning
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