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Real-space grids are a powerful alternative for the simulation of electronic systems. One of the
main advantages of the approach is the flexibility and simplicity of working directly in real space
where the different fields are discretized on a grid, combined with competitive numerical performance
and great potential for parallelization. These properties constitute a great advantage at the time of
implementing and testing new physical models. Based on our experience with the Octopus code, in
this article we discuss how the real-space approach has allowed for the recent development of new
ideas for the simulation of electronic systems. Among these applications are approaches to calculate
response properties, modeling of photoemission, optimal control of quantum systems, simulation
of plasmonic systems, and the exact solution of the Schrödinger equation for low-dimensionality
systems.

I. INTRODUCTION

The development of theoretical methods for the sim-
ulation of electronic systems is an active area of study.
This interest has been fueled by the success of theoreti-
cal tools like density functional theory (DFT) [1, 2] that
can predict many properties with good accuracy at a rel-
atively modest computational cost. On the other hand,
these same tools are not good enough for many applica-
tions [3], and more accurate and more efficient methods
are required.

Current research in the area covers a broad range of
aspects of electronic structure simulations: the develop-
ment of novel theoretical frameworks, new or improved
methods to calculate properties within existing theories,
or even more efficient and scalable algorithms. In most
cases, this theoretical work requires the development of
test implementations to assess the properties and predic-
tive power of the new methods.

The development of methods for the simulations of
electrons requires continual feedback and iteration be-
tween theory and results from implementation, so the
translation to code of new theory needs to be easy to im-

plement and to modify. This is a factor that is usually
not considered when comparing the broad range of meth-
ods and codes used by chemists, physicists and material
scientists.
The most popular representations for electronic struc-

ture rely on basis sets that usually have a certain physical
connection to the system being simulated. In chemistry,
the method of choice is to use atomic orbitals as a basis
to describe the orbitals of a molecule. When these atomic
orbitals are expanded in Gaussian functions, it leads to
an efficient method as many integrals can be calculated
from analytic formulae [4]. In condensed-matter physics,
the traditional basis is a set of plane waves, which corre-
spond to the eigenstates of a homogeneous electron gas.
These physics-inspired basis sets have, however, some
limitations. For example, it is not trivial to simulate
crystalline systems using atomic orbitals [5], and, on the
other hand, in plane-wave approaches finite systems must
be approximated as periodic systems using a super-cell
approach.
Several alternatives to atomic-orbital and plane-wave

basis sets exist [6–10]. One particular approach that does
not depend on a basis set uses a grid to directly repre-
sent fields in real-space. The method was pioneered by
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Becke [11], who used a combination of radial grids cen-
tered around each atom. In 1994 Chelikowsky, Troullier
and Saad [12] presented a practical approach for the so-
lution of the Kohn-Sham (KS) equations using uniform
grids combined with pseudo-potentials. What made the
approach competitive was the use of high-order finite dif-
ferences to control the error of the Laplacian without re-
quiring very dense meshes. From that moment, several
real-space implementations have been presented [13–33].
Discretizing in real-space grids does not benefit from

a direct physical connection to the system being simu-
lated. However, the method has other advantages. In
first place, a real-space discretization is, in most cases,
straight-forward to perform starting from the continuum
description of the electronic problem. Operations like in-
tegration are directly translated into sums over the grid
and differential operators can be discretized using finite
differences. In fact, most electronic structure codes must
rely on an auxiliary real-space discretization used, for ex-
ample, for the calculation of the exchange and correlation
(xc) term of DFT.
Grids are flexible enough to directly simulate different

kinds of systems: finite, and fully or partially periodic. It
is also possible to perform simulations with reduced (or
increased) dimensionality. Additionally, the discretiza-
tion error can be systematically and continuously con-
trolled by adjusting the spacing between mesh points,
and the physical extension of the grid.
The simple discretization and flexibility of the real

space grids makes them an ideal framework to implement,
develop and test new ideas. Modern electronic structure
codes are quite complex, which means that researchers
seldom can write code from scratch, but instead need to
resort to existing codes to implement their developments.
From the many codes available, in our experience the

real-space code Octopus [22, 34] provides an ideal frame-
work for theory-development work. To illustrate this
point, in this article we will explore some recent advances
that have been made in computational electronic struc-
ture and that have been developed using the Octopus
code as a base. We will pay special attention to the
most unusual capabilities of the code, and in particular
to the ones that have not been described in previous ar-
ticles [22, 34, 35].

II. THE OCTOPUS CODE

Octopus was started around 2000 in the group of pro-
fessor Angel Rubio who, at that moment, was as the
University of Valladolid, Spain. The first article using
Octopus was published in 2001 [36]. Today, the code has
grown to 200,000 lines of code. Octopus receives con-
tributions from many developers from several countries
and its results have been used for hundreds of scientific
publications.
The original purpose of Octopus was to perform real-

time time-dependent density functional theory (TDDFT)

calculations, a method that had been recently proposed
at the time for the calculation of excited-state properties
in molecules [37]. Beyond this original feature, over the
time the code has become able to perform many types
of calculations of ground-state and excited-state prop-
erties. These include most of the standard features of
a modern electronic-structure package and some not-so-
common capabilities.
Among the current capabilities of Octopus are an effi-

cient real-time TDDFT implementation for both finite
and periodic systems [38, 39]. Some of the research
presented in this article is based on that feature, such
as the simulation of photoemission, quantum optimal
control, and plasmonic systems. The code can also
perform molecular-dynamics simulations in the Born-
Oppenheimer and Ehrenfest approximations. It also im-
plements a modified Ehrenfest approach for adiabatic
molecular dynamics [40, 41] that has favorable scaling
for large systems. Octopus can perform linear-response
TDDFT calculations in different frameworks; these im-
plementations are discussed in sections III and V. For
visualization, analysis and post-processing, Octopus can
export quantities such as the density, orbitals, the cur-
rent density, or the time-dependent electron localization
function [42] to different formats, including the required
DFT data to perform GW/Bethe-Salpeter calculations
with the BerkeleyGW code [43].
Octopus is publicly and freely available under the GPL

free/open-source license, this includes all the releases as
well as the development version. The code is written us-
ing the principles of object oriented programming. This
means that the code is quite flexible and modular. It
provides a full toolkit for code developers to perform the
operations required for the implementation of new ap-
proaches for electronic-structure calculations.
In order to control the quality of the package, Octopus

uses continuous integration tools. The code includes a set
of tests that checks most of the functionality by verifying
the calculation results. After a new change is commited
to the main repository, a set of servers with different con-
figurations compiles the code and runs a series of short
tests. This setup quickly detects most of the problems
in a commit, from syntax that a compiler will not ac-
cept, to unexpected changes in the results. Every night
a more comprehensive set of tests is executed by these
same servers. The test-suite framework is quite general
and is also successfully in use for the BerkeleyGW [43]
and APE [44] codes.

III. THE STERNHEIMER FORMULATION OF

LINEAR-RESPONSE

In textbooks, perturbation theory is formulated in
terms of sums over states and response functions. These
are useful theoretical constructions that permit a good
description and understanding of the underlying physics.
However, this is not always a good starting point for nu-
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merical applications, since it involves the calculation of
a large number of eigenvectors, infinite sums over these
eigenvectors, and functions that depend on two or more
spatial variables.
An interesting approach that avoids the problems men-

tioned above is the formulation of perturbation theory in
terms of differential equations for the variation of the
wave-functions. In the literature, this is usually called
the Sternheimer equation [45] or density functional per-
turbation theory (DFPT) [46]. Although a perturbative
technique, it avoids the use of empty states, and has a
favorable scaling with the number of atoms.
Octopus implements a generalized version of the Stern-

heimer equation that is able to cope with both static
and dynamic response in and out of resonance [47].
The method is suited for linear and non-linear response;
higher-order Sternheimer equations can be obtained for
higher-order variations. For second-order response, how-
ever, we apply the 2n + 1 theorem (also known as
Wigner’s 2n + 1 rule) [48, 49] to get the coefficients di-
rectly from first-order response variations.
In the Sternheimer formalism, we consider the response

to a monochromatic perturbative field λδv̂(r) cos (ωt).
This perturbation induces a variation in the time-
dependent KS orbitals, which we denote δϕn(r, ω).
These variations allow us to calculate response observ-
ables, for example, the frequency-dependent polarizabil-
ity.
In order to calculate the variations of the orbitals we

need to solve a linear equation that only depends on the
occupied orbitals (atomic units are used throughout)
{

Ĥ − ǫn ± ω + iη
}

δϕn(r,±ω) = −P̂c δĤ(±ω)ϕn(r) ,

(1)
where the variation of the time-dependent density, given
by

δn(r, ω) =
∑

k

fk

{

[ϕn(r)]
∗
δϕn(r, ω)+[δϕn(r,−ω)]∗ ϕn(r)

}

,

(2)
needs to be calculated self-consistently. The first-order
variation of the KS Hamiltonian is

δĤ(ω) = δv̂(r) +

∫

dr′
δn(r′, ω)

|r − r′|

+

∫

dr′fxc(r, r
′, ω) δn(r′, ω) . (3)

P̂c is a projection operator, and η a positive infinitesi-
mal, essential to obtain the correct position of the poles
of the causal response function, and consequently to
obtain the imaginary part of the polarizability and re-
move the divergences of the equation for resonant fre-
quencies. In the usual implementation of DFPT, P̂c =
1 − ∑occ

n |ϕn〉 〈ϕn| which effectively removes the com-
ponents of δϕn(r,±ω) in the subspace of the occupied
ground-state wave-functions. In linear response, these
components do not contribute to the variation of the den-
sity.

We have found that it is not strictly necessary to
project out the occupied subspace, the crucial part is
simply to remove the projection of δϕn on ϕn (and any
other states degenerate with it), which is not physically
meaningful and arises from a phase convention. To fix
the phase, it is sufficient to apply a minimal projector
P̂n = 1−

∑ǫm=ǫn
m |ϕm〉 〈ϕm|. We optionally use this ap-

proach to obtain the entire response wavefunction, not
just the projection in the unoccupied subspace, which
is needed for obtaining effective masses in k · p theory.
While the full projection can become time-consuming for
large systems, it saves time overall since it increases the
condition number of the matrix for the linear solver, and
thus reduces the number of solver iterations required to
attain a given precision.
We also have implemented the Sternheimer formalism

when non-integer occupations are used, as appropriate
for metallic systems. In this case weighted projectors are
added to both sides of eq. (1) [50]. We have generalized
the equations to the dynamic case [51]. The modified
Sternheimer equation is

{

Ĥ − ǫn ± ω + iη +
∑

m

αm |ϕm〉 〈ϕm|
}

δϕn(r,±ω) =

−
[

θ̃F,n −
∑

m

βn,m |ϕm〉 〈ϕm|
]

δĤ(±ω)ϕn(r) , (4)

where

αn = max (ǫF − 3σ − ǫn, 0) , (5)

βn,m = θ̃F,nθ̃n,m + θ̃F,mθ̃m,n + αm
θ̃F,n − θ̃n,m
ǫn − ǫm ∓ ω

θ̃m,n ,

(6)

σ is the broadening energy, and θ̃ij is the smear-
ing scheme’s approximation to the Heaviside function
θ ((ǫi − ǫj) /σ). Apart from semiconducting smearing
(i.e. the original equation above, which corresponds to
the zero temperature limit), the code offers the standard
Fermi-Dirac [52], Methfessel-Paxton [53], spline [54], and
cold [55] smearing schemes. Additionally, we have devel-
oped a scheme for handling arbitrary fractional occupa-
tions, which do not have to be defined by a function of
the energy eigenvalues [51].
In order to solve eq. (1) we use a self-consistent it-

eration scheme similar to the one used for ground-state
DFT. In each iteration we need to solve a sparse lin-
ear problem where the operator to invert is the shifted
KS Hamiltonian. For real wavefunctions and a real shift
(as for the static case), we can use conjugate gradi-
ents. When the shift is complex, a non-Hermitian it-
erative solver is required. We have found that a robust
and efficient solver is the quasi-minimal residual (QMR)
method [56].
We can solve for linear response to various different

perturbations. The most straight-forward case is the re-
sponse of a finite system to an electric field Ei,ω with
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frequency ω in the direction i, where the perturbation
operator is δv̂ = r̂i [47]. In this case the polarizability
can be calculated as

αij (ω) = −
occ∑

n

[

〈ϕn|r̂i|
∂ϕn

∂Ej,ω
〉+ 〈 ∂ϕn

∂Ej,−ω
|r̂i|ϕn〉

]

. (7)

The calculation of the polarizability yields optical re-
sponse properties (that can be extended to nonlinear re-
sponse) [47, 57] and, for imaginary frequencies, van der
Waals coefficients [58].
It is also possible to use the formalism to com-

pute vibrational properties for finite and periodic sys-
tems [46, 59]. Currently Octopus implements the calcu-
lations of vibrations for finite systems. In this case the
perturbation operator is an infinitesimal ionic displace-
ment ∂Ĥ/∂Riα = ∂v̂α/∂Riα, for each direction i and
atom α. The quantity to calculate is the dynamical ma-
trix, or Hessian, given by

Diα,jβ =
∂2E

∂Riα∂Rjβ
= Dion−ion

iα,jβ

−
occ∑

n

[〈

ϕn

∣
∣
∣
∣

∂v̂α
∂Riα

∣
∣
∣
∣

∂ϕn

∂Rjβ

〉

+ c.c.

+δαβ

〈

ϕn

∣
∣
∣
∣

∂2v̂α
∂Riα∂Rαj

∣
∣
∣
∣
ϕn

〉]

(8)

The contribution from the ion-ion interaction energy is

Dion−ion
iα,jβ =







Zα

∑

γ 6=αZγ

[
δij

|Rα−Rγ |
3 − 3

(Riα−Riγ)

|Rα−Rγ |
4

]

α = β

−ZαZβ

[
δij

|Rα−Rβ |
3 − 3

(Riα−Riβ)

|Rα−Rβ |
4

]

α 6= β

(9)

where Zα is the ionic charge of atom α. We have found
that an alternative expression for the perturbation oper-
ator yields more accurate results when discretized. This
is discussed in section VI.
Vibrational frequencies ω are obtained by solving the

eigenvalue equation

1
√
mαmβ

Diα,jβxjβ = −ω2xjβ , (10)

where mα is the mass for ion α. For a finite system of
N atoms, there should be 3 zero-frequency translational
modes and 3 zero-frequency rotational modes. However,
they may appear at positive or imaginary frequencies,
due to the finite size of the simulation domain, the dis-
cretization of the grid, and finite precision in solution of
the ground state and Sternheimer equation. Improving
convergence brings them closer to zero.
The Born effective charges can be computed from the

response of the dipole moment to ionic displacement:

Z∗
ijα = − ∂2E

∂Ei∂Rjα
=

∂µi

∂Rjα

= Zαδij −
occ∑

n

〈

ϕn |r̂i|
∂ϕn

∂Rjα

〉

. (11)

The intensities for each mode for absorption of radiation
polarized in direction i, which can be used to predict
infrared spectra, are calculated by multiplying by the
normal-mode eigenvector x

Ii =
∑

jα

Z∗
ijαxjα . (12)

The Born charges must obey the acoustic sum rule,
from translational invariance

∑

α

Z∗
ijα = Qtotδij . (13)

For each ij, we enforce this sum rule by distributing the
discrepancy equally among the atoms, and thus obtaining
corrected Born charges:

Z̃∗
ijα = Z∗

ijα +
1

N

(

Qtotδij −
∑

α

Z∗
ijα

)

. (14)

The discrepancy arises from the same causes as the non-
zero translational and rotational modes.
The Sternheimer equation can be used in conjunction

with k ·p perturbation theory [60] to obtain band veloci-
ties and effective masses, as well as to apply electric fields
via the quantum theory of polarization. In this case the
perturbation is a displacement in the k-point. Using the
effective Hamiltonian for the k-point

Ĥk = e−ik·rĤeik·r , (15)

the perturbation is represented by the operator

∂Ĥk

∂k
= −i∇+ k + [v̂α, r] , (16)

including the effect on the non-local pseudopotentials.
The first-order term gives the band group velocities in a
periodic system,

vnk =
∂ǫnk
∂n

=

〈

ϕnk

∣
∣
∣
∣
∣

∂Ĥk

∂k

∣
∣
∣
∣
∣
ϕnk

〉

. (17)

Inverse effective mass tensors can be calculated by solv-
ing the Sternheimer equation for the k · p perturbation.
The equation is not solved self-consistently, since the
variation of k-point is not a physical perturbation to the
system; a converged k-grid should give the same density
even if displaced slightly. The perturbation ∂Ĥk/∂k is

purely anti-Hermitian. We use instead −i∂Ĥk/∂k to ob-
tain a Hermitian perturbation, which allows the response
to real wavefunctions to remain real. The effective mass
tensors are calculated as follows:

m−1
ijnk =

∂2ǫnk
∂ki∂kj

= δij +

〈

ϕnk

∣
∣
∣
∣
∣

∂Ĥk

∂ki

∣
∣
∣
∣
∣

∂ϕnk

∂kj

〉

+ c.c.

+ 〈ϕnk |[r̂i, [r̂j , v̂α]]|ϕnk〉 . (18)



5

The k · p wavefunctions can be used to compute the
response to electric fields in periodic systems. In finite
systems, a homogeneous electric field can be represented
simply via the position operator r. However, this opera-
tor is not well defined in a periodic system and cannot be
used. According to the quantum theory of polarization,
the solution is to replace rϕ with −i∂ϕ/∂k [61], and then
use this as the perturbation on the right hand side in the
Sternheimer equation [62]. While this is typically done
with a finite difference with respect to k [49, 63], we use
an analytic derivative from a previous k · p Sternheimer
calculation. Using the results in eq. (7) gives a formula
for the polarization of the crystal:

αij (ω) = i

occ∑

n

[〈
∂ϕnk

∂ki

∣
∣
∣
∣

∂ϕnk

∂Ej,ω

〉

+

〈
∂ϕnk

∂Ej,−ω

∣
∣
∣
∣

∂ϕnk

∂kj

〉]

.

(19)

The polarizability is most usefully represented in a peri-
odic system via the dielectric constant

ǫij = δij +
4π

V
αij , (20)

where V is the volume of the unit cell. This scheme can
also be extended to non-linear response.
We can compute the Born charges from the electric-

field response in either finite or periodic systems (as
a complementary approach to using the vibrational re-
sponse):

Z∗
ijα = − ∂2E

∂Ei∂Rjα
=
∂Fjα

∂Ei

= Zαδij −
occ∑

n

[〈

ϕn

∣
∣
∣
∣

∂v̂α
∂Riα

∣
∣
∣
∣

∂ϕn

∂Ej

〉

+ c.c.

]

(21)

This expression can be evaluated with the same approach
as for the dynamical matrix elements, and is easily gen-
eralized to non-zero frequency too. We can also make
the previous expression eq. 11 for Born charges from the
vibrational perturbation usable in a periodic system with
the replacement rϕ→ −i∂ϕ/∂k.

Unfortunately, the k · p perturbation is not usable to
calculate the polarization [61], and a sum over strings of
k-points on a finer grid is required. We have implemented
the special case of a Γ-point calculation for a large super-
cell, where the single-point Berry phase can be used [64].
For cell sizes Li in each direction, the dipole moment is
derived from the determinant of a matrix whose basis is
the occupied KS orbitals:

µi = −Li

2π
Im ln det

〈

ϕn

∣
∣
∣e−2πixi/Li

∣
∣
∣ϕm

〉

. (22)

IV. MAGNETIC RESPONSE AND GAUGE

INVARIANCE IN REAL-SPACE GRIDS

In the presence of a magnetic field B(r, t), generated
by a vector potential A(r, t), additional terms describing

the coupling of the electrons to the magnetic field must
be included in the Hamiltonian

Ĥ =
1

2

(

p̂− 1

c
A

)2

+ v̂ +B · Ŝ . (23)

The first part describes the orbital interaction with the
field, and the second one is the Zeeman term that rep-
resents the coupling of the electronic spin with the mag-
netic field.
As our main interest is the evaluation of the magnetic

susceptibility, in the following, we consider a perturba-
tive uniform static magnetic field B applied to a finite
system with zero total spin. In the Coulomb gauge the
corresponding vector potential, A, is given as

A(r) =
1

2
B × r . (24)

In orders of B the perturbing potentials are

δv̂mag
i =

1

2c
(r × p̂)i =

1

2c
L̂i , (25)

with L̂ the angular momentum operator, and

δ2v̂mag
ij =

1

8c2
(δijr

2 − rirj) . (26)

The induced magnetic moment can be expanded in
terms of the external magnetic field which, to first or-
der, reads

mi = m0
i +

∑

j

χijB
ext
j , (27)

where χ is the magnetic susceptibility tensor. For finite
systems the permanent magnetic moment can be calcu-
lated directly from the ground-state wave-functions as

m0 =
∑

n

〈ϕn|δv̂mag|ϕn〉 . (28)

For the susceptibility, we need to calculate the first-
order response functions in the presence of a magnetic
field. This can be done in practice by using the mag-
netic perturbation, eq. (25), in the Sternheimer formal-
ism described in section III. If the system is time-reversal
symmetric, since the perturbation is anti-symmetric un-
der time-reversal (anti-Hermitian), it does not induce a
change in the density and the Sternheimer equation does
not need to be solved self-consistently. From there we
find

χij =
∑

n

[

〈ϕn|δv̂mag
j |δϕn,i〉+c.c.+〈ϕn|δ2v̂mag

ij |ϕn〉
]

.

(29)

Before applying this formalism in a calculation, however,
we must make sure that our calculation is gauge invari-
ant.
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In numerical implementations, the gauge freedom in
choosing the vector potential might lead to poor con-
vergence with the quality of the discretization, and to a
dependence of the magnetic response on the origin of the
simulation cell. In other words, an arbitrary translation
of the molecule could introduce an nonphysical change in
the calculated observables. This broken gauge-invariance
is well known in molecular calculations with all-electron
methods that make use of localized basis sets. In this
case, the error can be traced to the finite-basis-set repre-
sentation of the wave-functions [65, 66]. A simple mea-
sure of the error is to check for the fulfillment of the
hyper-virial relation [67].

i〈ϕj |p̂|ϕn〉 = (ǫn − ǫj)〈ϕj |r̂|ϕn〉 , (30)

where ǫn is the eigenvalue of the state ϕn.
When working with a real-space mesh, this problem

also appears, though it is milder, because the standard
operator representation in the grid is not gauge-invariant.
In this case the error can be controlled by reducing the
spacing of the mesh. On the other hand, real-space grids
usually require the use of the pseudo-potential approx-
imation, where the electron-ion interaction is described
by a non-local potential v̂nl. This, or any other non-
local potential, introduces a fundamental problem when
describing the interaction with magnetic fields or vector
potentials in general. To preserve gauge invariance, this
term must be adequately coupled to the external electro-
magnetic field, otherwise the results will strongly depend
on the origin of the gauge. For example, an extra term
has to be included in the hyper-virial expression, eq. (30),
resulting in

i〈ϕj |p̂|ϕn〉 = (ǫn − ǫj)〈ϕj |r̂|ϕn〉+ 〈ϕj |[r̂, v̂nl]|ϕn〉 . (31)

In general, the gauge-invariant non-local potential is
given by

〈r|v̂Anl |r′〉 = 〈r|v̂nl|r′〉exp
(

i

c

∫ r
′

r

A(x, t) · dx
)

. (32)

The integration path can be any one that connects the
two points r and r′, so an infinite number of choices is
possible.
In order to calculate the corrections required to the

magnetic perturbation operators, we use two different
integration paths that have been suggested in the lit-
erature. The first was proposed by Ismail-Beigi, Chang,
and Louie (ICL) [68] who give the following correction to
the first-order magnetic perturbation term

δv̂ICL = δv̂mag − i

2c
r̂ × [r̂, vnl] , (33)

and a similar term for the second-order perturbation. Us-
ing a different integration path, Pickard and Mauri [69]
proposed the GIPAW method, that has the form

δv̂GIPAW = δv̂mag − i

2c

∑

α

Rα × [r̂, v̂αnl] , (34)

χ̄

B20 -250.2

B38 -468.3

B44 -614.4

B80 219.3

B92 -831.3

TABLE I. Calculated magnetic susceptibilities (χ in
cgs ppm/mol) per number of boron atoms for the selected
boron clusters shown in Fig. 1. Results from Ref. [73]

where Rα and v̂αnl are, respectively, the position and non-
local potential of atom α. With the inclusion of either
one of these methods, both implemented in Octopus, we
recover gauge invariance in our formalism when pseudo-
potentials are used. This allows us to predict the mag-
netic susceptibility and other properties that depend on
magnetic observables, like optical activity [70].

A class of systems with interesting magnetic suscepti-
bilities are fullerenes. For example, it is known that the
C60 fullerene has a very small magnetic susceptibility due
to the cancellation of the paramagnetic and diamagnetic
responses [71, 72]. Botti et al. [73] used the real-space im-
plementation of Octopus to study the magnetic response
of the boron fullerenes depicted in Fig. 1. As shown in
table I, they found that, while most clusters are diamag-
netic, B80 is paramagnetic, with a strong cancellation of
the paramagnetic and diamagnetic terms.

FIG. 1. Structures of boron cages whose magnetic suscepti-
bilities are given in table I.

V. LINEAR RESPONSE IN THE

ELECTRON-HOLE BASIS

An alternate approach to linear response is not to solve
for the response function but rather for its poles (the
excitation energies ωk) and residues (e.g. electric dipole



7

matrix elements dk) [74]. The polarizability is given by

αij (ω) =
∑

k






(

î · dk

)∗ (

ĵ · dk

)

ωk − ω − iδ
+

(

î · dk

)∗ (

ĵ · dk

)

ωk + ω + iδ






(35)

and the absorption cross-section is

σij (ω) =
4πω

c
α̃ Im αij (ω) , (36)

where α̃ is the fine-structure constant. The simplest ap-
proximation to use is the random-phase approximation
(RPA), in which the excitation energies are given by the
differences of unoccupied and occupied KS eigenvalues,
ωcv = ǫc− ǫv. The corresponding dipole matrix elements
are dcv = 〈ϕc |r|ϕv〉 [75]. (As implemented in the code,
this section will refer only to the case of a system without
partially occupied levels.)
The RPA is not a very satisfactory approximation,

however. The full solution within TDDFT is given by
a non-Hermitian matrix eigenvalue equation, with a ba-
sis consisting of both occupied-unoccupied (v → c) and
unoccupied-occupied (c → v) KS transitions. The equa-
tion reads as

[

A B

−B∗ −A

]

x = ωx , (37)

where the A matrices couple v → c transitions among
themselves and c → v among themselves, while the B
matrices couple the two types of transitions. They have
the form [75]

〈ϕc′ | 〈ϕv′ |A |ϕc〉 |ϕv〉 = (ǫc − ǫv) δcc′δvv′ (38)

+ 〈ϕc′ | 〈ϕv′ | v̂c + f̂xc |ϕc〉 |ϕv〉 ,
〈ϕc′ | 〈ϕv′ |B |ϕc〉 |ϕv〉 = 〈ϕc′ | 〈ϕv′ | v̂c + f̂xc |ϕc〉 |ϕv〉 .

(39)

where v̂c is the Coulomb kernel, and f̂xc is the exchange-
correlation kernel (currently only supported for LDA-
type functionals in Octopus).
We do not solve the full equation in Octopus, but pro-

vide a hierarchy of approximations. An example calcula-
tion for the N2 molecule with each theory level is shown
in Table II. The lowest approximation we use is RPA. The
next is the single-pole approximation of Petersilka et al.

[76], in which only the diagonal elements of the matrix
are considered. Like in the RPA case, the eigenvectors
and dipole matrix elements are simply the KS transitions.
The positive eigenvalues are ωcv = ǫc − ǫv +Acvcv. This
can be a reasonable approximation when there is little
mixing between KS transitions, but generally fails when
there are degenerate or nearly degenerate transitions.
A next level of approximation is the Tamm-Dancoff

approximation to TDDFT [77] in which the B blocks are

neglected and thus we need only consider the occupied-
unoccupied transitions. The matrix equation is reduced
to a Hermitian problem of half the size of the full prob-
lem:

Ax = ωx . (40)

Interestingly, the Tamm-Dancoff approximation is often
found to give superior results to the full solution, for ex-
ample for molecular potential-energy surfaces or when
hybrid functionals are used, which can suffer from a
“triplet instability” in which the lowest triplet state is
lower in energy than the ground state [78]. The dipole
matrix elements are now a superposition of the KS ones:

dk =
∑

cv

dcv xcv . (41)

When the wavefunctions are real, the full problem can
be collapsed into a Hermitian one of the same size as
the Tamm-Dancoff matrix, known as Casida’s equation
[79, 80].

(ǫc − ǫv)
2
δcc′δvv′ + 2

√
ǫc′ − ǫv′Bcvc′v′

√
ǫc − ǫv = ω2xcv .

(42)

The dipole matrix elements are

dk =
∑

cv

dcv xcv

√
ǫc − ǫv
ωk

. (43)

An alternate approach for finding excitation energies
is to look for many-body eigenstates of the DFT Hamil-
tonian which are orthogonal to the ground state. In the
“second-order constrained variational” or CV(2) theory
[81], second-order perturbation theory from the ground-
state density yields equations quite similar to the linear-
response approach, despite their different origin:

[

A B

B∗ −A

]

x = ωx . (44)

We implement the case of real wavefunctions and eigen-
vectors, in which case (as for Casida’s equation) a Her-
mitian matrix equation for only the occupied-unoccupied
transitions can be written:

(A+B)x = ωx . (45)

The Tamm-Dancoff approximation to these equations is
identical to the ordinary TDDFT Tamm-Dancoff approx-
imation.
Note that all the levels of theory we have discussed

use the same Coulomb and f̂xc matrix elements, so the
code can calculate the results for multiple levels of theory
with a small extra effort. We can also consider alterna-
tive perturbations in this framework beyond the dipole
approximation for properties such as inelastic X-ray scat-
tering [82].
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RPA Petersilka TDA Casida CV(2) Exp’t

8.234 9.421 9.343 9.254 9.671 9.309

8.234 9.421 9.343 9.254 10.279 9.309

9.671 9.671 9.671 9.671 10.279 9.921

9.671 10.241 10.237 10.221 10.792 10.270

9.671 10.245 10.241 10.224 10.801 10.270

9.671 11.028 10.931 10.921 11.077 12.199

TABLE II. The first 6 excitation energies (in eV) for the
N2 molecule with different approximations to TDDFT in the
electron-hole basis: the random phase approximation (RPA),
Petersilka, Tamm-Dancoff approximation (TDA), Casida and
CV(2). The VWN LDA parametrization [83] was used for the
exchange-correlation functional, the bond length is 1.098 Å,
the real-space grid was a sphere of radius 7.4 Å with spacing
0.16 Å, and 16 unoccupied states were used. The experimen-
tal data is from Ref. [84].

For a non-spin-polarized system, the excitations sep-
arate into a singlet and a triplet subspace, which are
superpositions of singlet and triplet KS transitions:

ϕS =
1√
2
(ϕc↑ϕv↑ + ϕc↓ϕv↓) , (46)

ϕT =
1√
2
(ϕc↑ϕv↑ − ϕc↓ϕv↓) . (47)

The signs are reversed from the situation for a simple pair
of electrons, since we are instead dealing with an electron
and a hole. There are of course two other triplet excita-
tions (m = ±1) which are degenerate with the m = 0 one
above. Rather than performing spin-polarized ground-
state and linear-response calculations, we can use the
symmetry between the spins in a non-spin-polarized sys-
tem to derive a form of the kernel to use in obtaining
singlet and triplet excitations [75]

〈
ϕS
∣
∣ v̂c + f̂xc

∣
∣ϕS
〉
= 〈ϕ| v̂c + f̂↑↑xc + f̂↑↓xc |ϕ〉
= 〈ϕ| v̂c + 2f̂xc |ϕ〉 (48)

〈
ϕT
∣
∣ v̂c + f̂xc

∣
∣ϕT

〉
= 〈ϕ| f̂↑↑xc − f̂↑↓xc |ϕ〉 . (49)

These kernels can be used in any of the levels of the-
ory above: RPA, Petersilka, Tamm-Dancoff, Casida, and
CV(2). The corresponding electric dipole matrix ele-
ments are as in the spin-polarized case for singlet exci-
tations. For triplet excitations, they are identically zero,
and only higher-order electromagnetic processes can ex-
cite them.
There are three main steps in the calculation: calcu-

lation of the matrix, diagonalization of the matrix, and
calculation of the dipole matrix elements. The first step
generally takes almost all the computation time, and is
the most important to optimize. Within that step, the
Coulomb part (since it is non-local) is much more time-

consuming than the f̂xc part. We calculate it by solving
the Poisson equation (as for the Hartree potential) for
each column of the matrix, to obtain a potential P for

the density ϕc (r)
∗
ϕv (r), and then for each row comput-

ing the matrix element as

〈ϕc′ϕv′ | v |ϕcϕv〉 =
∫

dr ϕc′(r)ϕv′(r)P [ϕcϕv] . (50)

Our basic parallelization strategy for computation of
the matrix elements is by domains, as discussed in sec-
tion XV, but we add an additional level of parallelization
here over occupied-unoccupied pairs. We distribute the
columns of the matrix, and do not distribute the rows,
to avoid duplication of Poisson solves. We can reduce
the number of matrix elements to be computed by al-
most half using the Hermitian nature of the matrix, i.e.
Mcv,c′v′ = M∗

c′v′,cv. If there are N occupied-unoccupied
pairs, there are N diagonal matrix elements, and the
N (N − 1) /2 remaining off-diagonal matrix elements are
distributed as evenly as possible among the columns. If
N − 1 is even, there are (N − 1) /2 for each column; if
N − 1 is odd, half of the columns have N/2− 1 and half
have N/2. See Fig. 2 for examples of the distribution.
The columns then are assigned to the available proces-
sors in a round-robin fashion. The diagonalization step is
performed by direct diagonalization with LAPACK [85]
in serial; since it generally accounts for only a small part
of the computation time, parallelization of this step is not
very important. The final step is calculation of the dipole
matrix elements, which amounts to only a small part of
the computation time, and uses only domain paralleliza-
tion. Note that the triplet kernel lacks the Coulomb term,
and so is considerably faster to compute.

Using the result of a calculation of excited states by
one of these methods, and a previous calculation of vi-
brational modes with the Sternheimer equation, we can
compute forces in each excited state, which can be used
for excited-state structural relaxation or molecular dy-
namics [86]. Our formulation allows us to do this without
introducing any extra summations over empty states, un-
like previous force implementations [87–89]. The energy
of a given excited state k is a sum of the ground-state
energy and the excitation energy: Ek = E0 + ωk. The
force is then given by the ground-state force, minus the
derivative of the excitation energy:

F k
iα = − ∂Ek

∂Riα
= Fiα − ∂ωk

∂Riα
. (51)

Using the Hellman-Feynman Theorem we find the last
term without introducing any additional sums over un-
occupied states. In the particular case of the Tamm-
Dancoff approximation we have

∂ωk

∂Riα
=

〈

xk

∣
∣
∣
∣
∣

∂Â

∂Riα

∣
∣
∣
∣
∣
xk

〉

, (52)
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and

〈

ϕcϕv

∣
∣
∣
∣
∣

∂Â

∂Riα

∣
∣
∣
∣
∣
ϕc′ϕv′

〉

=

〈

ϕc

∣
∣
∣
∣
∣

∂Ĥ

∂Riα

∣
∣
∣
∣
∣
ϕc′

〉

δvv′

−
〈

ϕv

∣
∣
∣
∣
∣

∂Ĥ

∂Riα

∣
∣
∣
∣
∣
ϕv′

〉

δcc′ +

〈

ϕcϕv

∣
∣
∣
∣
K̂xc

∂ρ

∂Riα

∣
∣
∣
∣
ϕc′ϕv′

〉

.

(53)

Analogous equations apply for the difference of eigenval-
ues, Petersilka, and CV(2) theory levels. (The slightly
more complicated Casida case has not yet been imple-
mented.) The Coulomb term, with no explicit depen-
dence on the atomic positions, does not appear, leading
to a significant savings in computational time compared
to the calculation of the excited states.

FIG. 2. Distribution of matrix elements to be calculated
among the columns, using Hermiticity of the response ma-
trix. The columns are then distributed among the available
MPI groups for electron-hole parallelization. The number of
matrix elements to be calculated per column is equal for an
odd size, and uneven for an even size.

VI. FORCES AND GEOMETRY

OPTIMIZATION ON REAL-SPACE GRIDS

A function represented on a real-space grid is not in-
variant under translations as one would expect from a
physical system. The potential of an atom sitting on top
of a grid point might be slightly different from the po-
tential of the same atom located between points. This
implies that a rigid displacement of the system produces
an artificial variation of the energy and other properties.
If we plot the energy of the atom as a function of this
rigid displacement, the energy shows an oscillation that
gives this phenomenon the name of the “egg-box effect”.
The egg-box effect is particularly problematic for cal-

culations where the atoms are allowed to move, for ex-
ample to study the dynamics of the atoms (molecular
dynamics) or to find the minimum energy configuration
(geometry optimization).

In Octopus we have studied several schemes to control
the egg-box effect [90]. The first step is to use pseudo-
potential filtering to eliminate Fourier components of the
potential that cannot be represented on the grid [91].
Additionally, we have found a formulation for the

forces that reduces the spurious effect of the grid on the
calculations. One term in the forces is the expectation
value of the derivative of the ionic potential with respect
to the ionic position Rα, which can be evaluated as

Fα = F ion−ion
α −

∑

n

〈

ϕn

∣
∣
∣
∣

∂v̂α
∂Rα

∣
∣
∣
∣
ϕn

〉

. (54)

(For simplicity, we consider only local potentials here,
but the results are valid for non-local potentials as well.)
This term can be rewritten such that it does not include
the derivative of the ionic potential vα, but the gradi-
ent of the orbitals with respect to the electronic coordi-
nates [92]:

Fα = F ion−ion
α +

∑

n

[〈
∂ϕn

∂rr
|v̂α|ϕn

〉

+ c.c.

]

. (55)

The first advantage of this formulation is that it is easier
to implement than eq. (54), as it does not require the
derivatives of the potential, which can be quite complex
and difficult to code, especially when relativistic correc-
tions are included. However, the main benefit of using
eq. (55) is that it is more precise when discretized on a
grid, as the orbitals are smoother than the ionic poten-
tial. We illustrate this point in Fig. 3, where the forces
obtained with the two methods are compared. While
taking the derivative of the atomic potential gives forces
with a considerable oscillation due to the grid, using the
derivative of the orbitals gives a force that is considerably
smoother.

2 2.5 3 3.5

Interatomic distance [a.u.]

0

1

2

In
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to

m
ic
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o
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e 
[a

.u
]

Derivative of the potential

Derivative of the orbitals

FIG. 3. Calculation of the interatomic force for N2. Solid
(red) line: force calculated from the derivative of the ionic po-
tential with respect to the atomic position. Segmented (blue)
line: force calculated from spatial derivatives of the molecular
orbitals. Grid spacing of 0.43 Bohr.
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This alternative formulation of the forces can be ex-
tended to obtain the second-order derivatives of the en-
ergy with respect to the atomic displacements [90], which
are required to calculate vibrational properties as dis-
cussed in section III. In general, the perturbation opera-
tor associated with an ionic displacement can be written
as

∂vα(r −Rα)

∂Riα
= −vα(r−Rα)

∂

∂ri
− ∂

∂ri
vα(r−Rα) . (56)

Using this expression, the terms of the dynamical matrix,
eq. (8), are evaluated as

〈

ϕn

∣
∣
∣
∣

∂v̂α
∂Riα

∣
∣
∣
∣

∂ϕn

∂Rjβ

〉

= −
[〈

ϕn |v̂α|
∂2ϕn

∂Rjβ∂ri

〉

+

〈
∂ϕn

∂ri
|v̂α|

∂ϕn

∂Rjβ

〉]

+ c.c. , (57)

and

〈

ϕn

∣
∣
∣
∣

∂2v̂α
∂Riα∂Rjα

∣
∣
∣
∣
ϕn

〉

=

[〈
∂2ϕn

∂ri∂rj
|v̂α|ϕn

〉

+

〈
∂ϕn

∂ri
|v̂α|

∂ϕn

∂rj

〉]

+ c.c. . (58)

With our approach, the forces tend to converge faster
with the grid spacing than the energy. This means that
to perform geometry optimizations it would be ideal to
have a local minimization method that only relies on the
forces, without needing to evaluate the energy, as both
values will not be entirely consistent. Such a method is
the fast inertial relaxation engine (FIRE) algorithm, put
forward by Bitzek et al. [93]. FIRE has shown a com-
petitive performance compared with both the standard
conjugate-gradient method, and more sophisticated vari-
ations typically used in ab initio calculations. A recent
article shows also the FIRE as one of the most conve-
nient algorithm due to its speed and precision to reach
the nearest local minimum starting from a given initial
configuration [94].
The FIRE algorithm is based on molecular dynamics

with additional velocity modifications and adaptive time
steps which only requires first derivatives of the target
function. In the FIRE algorithm, the system slides down
the potential-energy surface, gathering “momentum” un-
til the direction of the gradient changes, at which point it
stops, resets the adaptive parameters, and resumes slid-
ing. This gain of momentum is done through the modi-
fication of the time step ∆t as adaptive parameter, and
by introducing the following velocity modification

v(t) → V(t) = (1− α)v(t) + α |v(t)| F̂ (t) , (59)

where v is the velocity of the atoms, α is an adaptive
parameter, and F̂ is a unitary vector in the direction of
the force F . By doing this velocity modification, the

acceleration of the atoms is given by

v̇(t) =
F (t)

m
− α

∆t
|v(t)|

[

v̂(t)− F̂ (t)
]

, (60)

where the second term is an introduced acceleration in
a direction “steeper” than the usual direction of mo-
tion. Obviously, if α = 0 then V(t) = v(t), meaning
the velocity modification vanishes, and the acceleration
v̇(t) = F (t)/m, as usual.

We illustrate how the algorithm works with a simple
case: the geometry optimization of a methane molecule.
The input geometry consists of one carbon atom at the
center of a tetrahedron, and four hydrogen atoms at the
vertices, where the initial C-H distance is 1.2 Å. In Fig. 4
we plot the energy difference ∆Etot with respect to the
equilibrium conformation, the maximum component of
the force acting on the ions Fmax, and the C-H bond
length. On the first iterations, the geometry approaches
the equilibrium position, but moves away on the 3rd.
This means a change in the direction of the gradient, so
there is no movement in the 4th iteration, the adaptive
parameters are reset, and sliding resumes in the 5th it-
eration.
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FIG. 4. Geometry optimization of a methane molecule with
FIRE. Top panel (orange squares): energy difference ∆Etot

with respect to the equilibrium geometry. Middle panel (blue
circles): maximum component of the force Fmax acting on
the ions. Bottom panel (green diamonds): C-H bond length.
Grid spacing is 0.33 Bohr.

VII. PHOTOEMISSION

Electron photoemission embraces all the processes
where an atom, a molecule or a surface is ionized under
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the effect of an external electromagnetic field. In experi-
ments, the ejected electrons are measured with detectors
that are capable of characterizing their kinetic proper-
ties. Energy-resolved, P (E), and momentum-resolved,
P (k), photoemission probabilities are quite interesting
observables since they carry important information, for
instance, on the parent ion [95, 96] or on the ionization
process itself [97]. The calculation of these quantities is a
difficult task because the process requires the evaluation
of the total wavefunction in an extremely large portion
of space (in principle a macroscopic one) that would be
impractical to represent in real space.
We have developed a scheme to calculate photoe-

mission based on real-time TDDFT that is currently
implemented in Octopus. We use a mixed real- and
momentum-space approach. Each KS orbital is propa-
gated in real space on a restricted simulation box, and
then matched at the boundary with a momentum-space
representation.
The matching is made with the help of a mask func-

tion M(r), like the one shown in Fig. 5, that separates
each orbital into a bounded φAi (r) and an unbounded
component φBi (r) as follows:

φi(r, t) =M(r)φi(r, t)
︸ ︷︷ ︸

φA
i (r,t)

+ [1−M(r)]φi(r, t)
︸ ︷︷ ︸

φB
i (r,t)

. (61)

Starting from a set of orbitals localized in A at t = 0
it is possible to derive a time-propagation scheme with
time step ∆t by recursively applying the discrete time-
evolution operator Û(∆t) ≡ Û(t+∆t, t) and splitting the
components with eq. (61). The result can be written in
a closed form for φAi (r, t), represented in real space, and
φBi (k, t), in momentum space, with the following struc-
ture:

φAi (r, t+∆t) = ϕA
i (r, t+∆t) + ϕB

i (r, t+∆t) ,

φBi (k, t+∆t) = ϑAi (k, t+∆t) + ϑBi (k, t+∆t) ,
(62)

and the additional set of equations,

ϕA
i (r,t+∆t) =MÛ(∆t)φAi (r, t) , (63)

ϕB
i (r,t+∆t) =

M

(2π)3/2

∫

dkeik·rÛv(∆t)φ
B
i (k, t) ,

(64)

ϑAi (k,t+∆t) =

1

(2π)3/2

∫

dre−ik·r(1−M)Û(∆t)φAi (r, t) , (65)

ϑBi (k,t+∆t) = Ûv(∆t)φ
B
i (k, t)

− 1

(2π)3/2

∫

dre−ik·rϕB
i (r, t+∆t) . (66)

The momentum-resolved photoelectron probability is
then obtained directly from the momentum components
as [98]

P (k) = lim
t→∞

N∑

i

|φBi (k, t)|2 , (67)

A B

A B

1
(a)

(b)

e

FIG. 5. Scheme illustrating the mask method for the calcu-
lation of electron photoemission. A mask function (a) is used
to effectively split each Kohn-Sham orbital into bounded and
unbounded components localized in different spatial regions
A and B according to the diagram in (b). In A the states
are represented on a real-space grid while in B they are de-
scribed in momentum space. A striped region indicates the
volume where the two representations overlap. The propaga-
tion scheme of eqs. (62) and (63) allows seamless transitions
from one representations to the other and is capable to de-
scribe electrons following closed trajectories like the one in
(b).

while the energy-resolved probability follows by direct
integration, P (E) =

∫

E=|k|2/2
dkP (k).

In eq. (63) we introduced the Volkov propagator

Ûv(∆t) for the wavefunctions in B. It is the time-

evolution operator associated with the Hamiltonian Ĥv

describing free electrons in an oscillating field. Given
a time dependent vector field A(t), the Hamiltonian

Ĥv = 1
2

(

−i∇− A(t)
c

)2

expressed in the velocity gauge

is diagonal in momentum and can be naturally applied
to φBi (k, t).

For all systems that can be described by a Hamilto-
nian such that Ĥ(r, t) = Ĥv(r, t) for r ∈ B and all time
t, eqs. (62) and (63) are equivalent to a time propagation
in the entire space A ∪ B. In particular, it exactly de-
scribes situations where the electrons follow trajectories
crossing the boundary separating A and B as illustrated
in Fig. 5(b).

In Octopus we discretize eq. (63) in real and momen-
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tum space and co-propagate the complete set of orbitals
φAi (r, t) and φ

B
i (k, t). The propagation has to take care

of additional details since the discretization can introduce
numerical instability. In fact, substituting the Fourier in-
tegrals in (63) with Fourier sums (usually evaluated with
FFTs) imposes periodic boundary conditions that spu-
riously reintroduces charge that was supposed to disap-
pear. This is illustrated with a one-dimensional example
in Fig. 6(a) where a wavepacket launched towards the
left edge of the simulation box reappears from the other
edge.
An alternative discretization strategy is zero padding.

This is done by embedding the system into a simulation
box enlarged by a factor α > 1, extending the orbitals
with zeros in the outer region as shown in Fig. 6(b). In
this way, the periodic boundaries are pushed away from
the simulation box and the wavepackets have to travel an
additional distance 2(α − 1)L before reappearing from
the other side. In doing so, the computational cost is
increased by adding (α− 1)n points for each orbital.

This cost can be greatly reduced using a special grid
with only two additional points placed at ±αL as shown
in Fig. 6(c). Since the new grid has non uniform spacing
a non-equispaced FFT (NFFT) is used [99, 100]. With
this strategy, a price is paid in momentum space where
the maximum momentum kmax is reduced by a factor α
compared to ordinary FFT. In Octopus we implemented
all three strategies: bare FFT, zero padding with FFT
and zero padding with NFFT.
All these discretization strategies are numerically sta-

ble for a propagation time approximately equivalent to
the time that it takes for a wavepacket with the highest
momentum considered to be reintroduced in the simu-
lation box. For longer times we can employ a modified
set of equations. It can be derived from (68) under the
assumption that the electron flow is only outgoing. In
this case we can drop the equation for ϕB

i responsible for
the ingoing flow and obtain the set

ϕA
i (r, t+∆t) =MÛ(∆t)φAi (r, t) ,

ϕB
i (r, t+∆t) = 0 ,

ϑAi (k, t+∆t) = 1
(2π)3/2

∫
dre−ik·r(1−M)Û(∆t)φAi (r, t) ,

ϑBi (k, t+∆t) = Ûv(∆t)φ
B
i (k, t) .

(68)

This new set of equations together with (62) lifts the pe-
riodic conditions at the boundaries and secures numerical
stability for arbitrary long time propagations. A conse-
quence of this approximation is the fact that the removal
of charge is performed only in the equation for ϕA

i by
means of a multiplication by M(r). This is equivalent
to the use of a mask function boundary absorber that
is known to present reflections in an energy range that
depends on M(r) [101]. Carefully choosing the most ap-
propriate mask function thus becomes of key importance
in order to obtain accurate results.
We conclude briefly summarizing some of the most im-

portant features and applications of our approach. The

method allows us to retrieve P (k), the most resolved
quantity available in experiments nowadays. In addi-
tion, it is very flexible with respect to the definition of
the external field and can operate in a wide range of
situations. In the strong-field regime, it can handle in-
teresting situations, for instance, when the electrons fol-
low trajectories extending beyond the simulation box, or
when the target system is a large molecule. This consti-
tutes a step forward compared to the standard theoreti-
cal tools employed in the field which, in the large major-
ity of cases, invoke the single-active-electron approxima-
tion. In Ref. [98] the code was successfully employed to
study the photoelectron angular distributions of nitrogen
dimers under a strong infrared laser field. The method
can efficiently describe situations where more than one
laser pulse is involved. This includes, for instance, time-
resolved measurements where pump and probe setups are
employed. In Ref. [102] Octopus was used to monitor
the time evolution of the π → π∗ transition in ethylene
molecules with photoelectrons. The study was later ex-
tended to include the effect of moving ions at the classical
level [103]. Finally, we point out that our method is by
no means restricted to the study of light-induced ioniza-
tion but can be applied to characterize ionization induced
by other processes, for example, ionization taking place
after a proton collision.

(a)

(b)

(c)

real space momentum space

NFFT - zero padding

FFT - zero padding

FFT

A

A

A

B

B

FIG. 6. Scheme illustrating different discretization strate-
gies for eq. (63) in one dimension. In all the cases an initial
wavepacket (green) is launched towards the left side of a sim-
ulation box of length L and discretized in n sampling points
spaced by ∆x. A and B indicate the space partitions corre-
sponding to Fig. 5. Owing to the discretization of the Fourier
integrals, periodic conditions are imposed at the boundaries
and the wavepacket wraps around the edges of the simula-
tion box (red). The time evolution is portrayed together with
a momentum-space representation (yellow), with spacing ∆k

and maximum momentum kmax, in three situations differing
in the strategy used to map real and momentum spaces:(a)
Fast Fourier Transform (FFT), (b) FFT extended with zeros
(zero padding) in a box enlarged by a factor α, and (c) zero
padding with NFFT.
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VIII. COMPLEX SCALING AND RESONANCES

In this section we discuss the calculation of reso-
nant electronic states by means of the complex-scaling
method, as implemented in Octopus. By “resonant
states,” we mean metastable electronic states of finite
systems, such as atoms or molecules, with a characteris-
tic energy and lifetime.
Mathematically, resonances can be defined as poles of

the scattering matrix or cross-section at complex ener-
gies [104, 105]. If a pole is close to the real energy axis,
it will produce a large, narrow peak in the cross-section
of scattered continuum states. One way resonances can
arise is from application of an electric field strong enough
to ionize the system through tunnelling. Resonant states
may temporarily capture incoming electrons or electrons
excited from bound states, making them important in-
termediate states in many processes.
The defining characteristic of a resonant state, often

called a Siegert state [104], is that it has an outgoing
component but not an incoming one. They can be deter-
mined by solving the time-independent Schrödinger equa-
tion with the boundary condition that the wavefunction
must asymptotically have the form

ψ(r) ∼ eikr

r
as r → ∞ , (69)

where the momentum k is complex and has a negative
imaginary part. This causes the state to diverge expo-
nentially in space as r → ∞. The state can further be
ascribed a complex energy, likewise with a negative imag-
inary part, causing it to decay over time at every point
in space uniformly.
Resonant states are not eigenstates of any Hermi-

tian operator and in particular do not reside within the
Hilbert space. This precludes their direct calculation
with the standard computational methods from DFT.
However, it turns out that a suitably chosen analytic
continuation of a Siegert state is localized, and this form
can be used to derive information from the state. This
is the idea behind the complex-scaling method [106, 107]
where states and operators are represented by means of
the transformation

R̂θ ψ(r) = eiNθ/2ψ(reiθ) , (70)

where N is the number of spatial dimensions to which the
scaling operation is applied, and θ is a fixed scaling angle

which determines the path in the complex plane along
which the analytic continuation is taken. The transfor-
mation maps the Hamiltonian to a non-Hermitian oper-
ator Ĥθ = R̂θĤR̂−θ.
The Siegert states ψ(r) of the original Hamiltonian

are square-integrable eigenstates ψθ(r) of Ĥθ, and their
eigenvalues ǫ0− iΓ/2 define the energy ǫ0 and width Γ of
the resonance [108–110].
A typical example of a spectrum of the transformed

Hamiltonian Ĥθ is shown in Fig. 7, and the correspond-
ing potential and lowest bound and resonant states in

Fig. 8. The bound-state energies are unchanged while
the continuum rotates by −2θ around the origin. Fi-
nally, resonances appear as isolated eigenvalues in the
fourth quadrant once θ is sufficiently large to “uncover”
them from the continuum. Importantly, matrix elements
(and in particular energies) of states are independent of
θ as long as the states are localized and well represented
numerically — this ensures that all physical bound-state
characteristics of the untransformed Hamiltonian are re-
tained.
Our implementation supports calculations with com-

plex scaling for independent particles or in combination
with DFT and selected xc functionals [111]. The energy
functional in KS-DFT consists of several terms that are
all expressible as integrals of the density or the wavefunc-
tions with the kinetic operator and various potentials.
The functional is complex-scaled as per the prescribed
method by rotating the real-space integration contour of
every term by θ in the complex plane. The DFT energy
functional becomes

Eθ = e−i2θ
∑

n

∫

dr ϕθn(r)

(

−1

2
∇2

)

ϕθn(r)

+ e−iθ 1

2

∫∫

dr dr′
nθ(r)nθ(r

′)

|r − r′|

+ Eθ
xc[nθ] +

∫

dr vext(re
iθ)nθ(r) , (71)

with the now-complex electron density

nθ(r) =
∑

n

fnϕ
2
θn(r) , (72)

with occupation numbers fn, and complex-scaled KS
states ϕθn(r). Note that no complex conjugation is per-
formed on the left component in matrix elements such
as the density or kinetic energy. In order to define the
complex-scaled xc potential, it is necessary to perform an
analytic continuation procedure [111].
In standard DFT, the KS equations are obtained by

taking the functional derivative of the energy functional
with respect to the density. Solving the equations cor-
responds to searching for a stationary point, with the
idea that this minimizes the energy. In our case, since
the energy functional is complex-valued [112], we cannot
minimize the energy functional, but we can still search
for stationary points to find the resonances [113, 114].
The complex-scaled version of the KS equations thereby
becomes similar to the usual ones:

[

−1

2
e−i2θ∇2 + vθ(r)

]

ϕθn(r) = ϕθn(r)ǫθn . (73)

The effective potential vθ(r) is the functional derivative
of the energy functional with respect to the density nθ(r),
and, therefore, consists of the terms

vθ(r) ≡
δE

δnθ(r)
= vθH(r) + vθxc(r) + vext(re

iθ) , (74)
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where vext(re
iθ) may represent atomic potentials as an-

alytically continued pseudopotentials, and where the
Hartree potential

vθH(r) = e−iθ

∫

dr′
nθ(r

′)

|r′ − r| (75)

is determined by solving the Poisson equation defined by
the complex density. Together with the xc potential,

vθxc(r) =
δEθ

xc[nθ]

δnθ(r)
, (76)

this defines a self-consistency cycle very similar to or-
dinary KS DFT, although more care must be taken to
occupy the correct states, as they are no longer simply
ordered by energy.
Fig. 9 shows calculated ionization rates for the

He 1s state in a uniform Stark-type electric field as a
function of field strength. In the limit of weak electric
fields, the simple approximation by Ammosov, Delone
and Krainov (ADK) [115], which depends only on the
ionization potential, approaches the accurate reference
calculation by Scrinzi and co-workers [116]. This demon-
strates that the ionization rate is determined largely by
the ionization potential for weak fields. As the local den-
sity approximation is known to produce inaccurate ion-
ization potentials due to its wrong asymptotic form at
large distances, it necessarily yields inaccurate rates at
low fields. Meanwhile exact exchange, which is known
to produce accurate ionization energies, predicts ioniza-
tion rates much closer to the reference calculation. The
key property of the xc functional that allows accurate
determination of decay rates from complex-scaled DFT
therefore appears to be that it must yield accurate ioniza-
tion potentials, which is linked to its ability to reproduce
the correct asymptotic form of the potential at large dis-
tances from the system [117].
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FIG. 7. Spectrum of one-dimensional complex-scaled single-

particle Hamiltonian with potential v(x) = 3(x2
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and θ = 0.5. The lowest-energy resonance, here located close
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their energies.

FIG. 9. Ionization rates of the He atom in strong electric
fields using the local density approximation (LDA) and exact
exchange (EXX), compared to an accurate numerical refer-
ence [116] as well as the analytic ADK approximation [115].
Results from Ref. [111]

IX. QUANTUM OPTIMAL CONTROL

In recent years, we have added to Octopus some of
the key advancements of quantum optimal-control the-
ory (QOCT) [118, 119]. In this section, we will briefly
summarize what this theory is about, overview the cur-
rent status of its implementation, and describe some of
the results that have been obtained with it until now.

Quantum control can be loosely defined as the manip-
ulation of physical processes at the quantum level. We
are concerned here with the theoretical branch of this
discipline, whose most general formulation is precisely
QOCT. This is, in fact, a particular case of the general
mathematical field of “optimal control”, which studies
the optimization of dynamical processes in general. The
first applications of optimal control in the quantum realm
appeared in the 80s [120–122], and the field has rapidly
evolved since then. Broadly speaking, QOCT attempts
to answer the following question: given a quantum pro-
cess governed by a Hamiltonian that depends on a set of
parameters, what are the values of those parameters that
maximize a given observable that depends on the behav-
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ior of the system? In mathematical terms: let a set of
parameters u1, . . . , uM ≡ u determine the Hamiltonian
of a system Ĥ[u, t], so that the evolution of the system
also depends on the value taken by those parameters:

i
d

dt
|ψ(t)〉 = Ĥ[u, t]|ψ(t)〉 , (77)

|ψ(0)〉 = |ψ0〉 , (78)

i.e. the solution of the Schrödinger equation determines
a map u −→ ψ[u]. Suppose we wish to optimize a func-
tional of the system F = F [ψ]. QOCT is about find-
ing the extrema of G(u) = F [ψ[u]]. Beyond this search,
QOCT also studies topics such as the robustness of the
optimal solutions for those parameters, the number of
solutions, or the construction of suitable algorithms to
compute them.
Perhaps the most relevant result of QOCT is the equa-

tion for the gradient of G, which allows use of the var-
ious maximization algorithms available. For the simple
formulation given above, this gradient is given by

∂G

∂um
(u) = 2 Im

∫ T

0

dt

〈

χ(t)

∣
∣
∣
∣
∣

∂Ĥ

∂um
[u, t]

∣
∣
∣
∣
∣
ψ(t)

〉

, (79)

where χ is the costate, an auxiliary wave function that is
defined through the following equation of motion:

i
d

dt
|χ(t)〉 = Ĥ†[u, t]|χ(t)〉 , (80)

|χ(T )〉 = δF

δψ∗(T )
. (81)

This equation assumes, in order to keep this description
short, that the target functional F depends on the state
of the system only at the final time of the propagation
T , i.e. it is a functional of ψ(T ). Note the presence of a
boundary value equation at the final time of the propaga-
tion, as opposed to the equation of motion for the “real”
system ψ, which naturally depends on an initial value
condition at time zero. With these simple equations, we
may already summarize what is needed from an imple-
mentation point of view in order to perform basic QOCT
calculations:
The first step is the selection of the parameters u, that

constitute the search space. Frequently, these parameters
are simply the values that the control function (typically,
the electric-field amplitude) takes at the time intervals
that are used to discretize the propagation interval, i.e. it
is a “real-time parametrization”. However, more sophis-
ticated parametrizations allow fine-tuning of the search
space, introducing constraints and penalties into the for-
mulation.
Then, one must choose an algorithm for maximizing

multi-dimensional functions such as G. One possibility
is the family of gradient-less algorithms, which only re-
quire a procedure to compute the value of the function,
and do not need the gradient. In this case, the previ-
ous equations are obviously not needed. One only has

to propagate the system forwards in time, which is what
Octopus can do best. The value of the function G can
then be computed from the evolution of ψ obtained with
this propagation, and fed into the optimization proce-
dure. A few gradient-less algorithms are implemented in
Octopus.
The most efficient optimizations can be obtained if

information about the gradient is employed. In that
case, we can use standard schemes, such as the family of
conjugate-gradient algorithms, or the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) quasi-Newton scheme – we use
the implementation of these algorithms included in the
GSL mathematical library [123]. Some ad hoc algo-
rithms, developed explicitly for QOCT, exist. These may
in some circumstances be faster than the general pur-
pose ones. Some of those are implemented in Octopus as
well [124–126].
In order to compute the gradient, one must implement

a backwards-propagation scheme for the costate, which
does not differ from the ones used for the normal forwards
propagation [127]. Note, however, that in some cases
the backwards propagation does not have the exact same
simple linear form than the forwards propagation, and
may include inhomogeneous or non-linear terms. The
final step is the computation of the gradient from the
integral given in eq. (79).
The formulation of QOCT we have just sketched out is

quite generic; in our case the quantum systems are those
that can be modeled with Octopus (periodic systems are
not supported at the moment), and the handle that is
used to control the system is a time-dependent electric
field, such as the ones that can be used to model a laser
pulse. The set of parameters {u}i define the shape of
this electric field; for example, they can be the Fourier
coefficients of the field amplitude.
The usual formulation of QOCT assumes the linearity

of quantum mechanics. However, the time-dependent KS
equations are not linear, making both the theory and
the numerics more complicated. We have extended the
basic theory previously described to handle the TDDFT
equations, and implemented the resulting equations in
Octopus [128].
We conclude this section by briefly describing some

of the applications of the QOCT machinery included in
Octopus, which can give an idea of the range of pos-
sibilities that can be attempted. The study presented
in Ref. [129] demonstrates the control of single-electron
states in a two-dimensional semiconductor quantum-ring
model. The states whose transitions are manipulated are
the current-carrying states, which can be populated or
de-populated with the help of circularly polarized light.
Reference [130] studies double quantum dots, and

shows how the electron state of these systems can be
manipulated with the help of electric fields tailored by
QOCT.
Another interesting application is how to tailor the

shape of femtosecond laser pulses in order to obtain max-
imal ionization of atoms and molecules [131]. The system



16

chosen to demonstrate this possibility is the H+
2 molecule,

irradiated with short (≈ 5 fs) high-intensity laser pulses.
The feasibility of using the electronic current to define

the target functional of the QOCT formalism is consid-
ered in Ref. [132].
Finally, a series of works has studied the use of op-

timal control for photo-chemical control: the tailoring
of laser pulses to create or break selected bonds in
molecules. The underlying physical model should be
based on TDDFT, and on a mixed quantum/classical
scheme (within Octopus, Ehrenfest molecular dynam-
ics). Some first attempts in this area were reported
in Refs [133, 134]. However, these works did not con-
sider a fully consistent optimal control theory encom-
passing TDDFT and Ehrenfest dynamics. This theory
has been recently presented [135], and the first computa-
tions demonstrating its feasibility will be reported soon.

X. PLASMONICS

The scope of real-space real-time approaches is not
confined to the atomistic description of matter. For in-
stance, finite-difference time-domain [136] (FDTD) is a
standard numerical tool of computational electromag-
netism, while lattice Boltzmann methods [137] (LBM)
are widely used in computational fluid dynamics. In-
deed, real-space real-time approaches can be used to
model physical processes on rather different space and
time scales. This observation also bears an important
suggestion: numerical methods based on real-space grids
can be used to bridge between these different space and
time scales.
Numerical nanoplasmonics is a paradigmatic case for

multiscale electronic-structure calculations. A nanoplas-
monic system – e.g., made up of metal nanoparticles
(MNPs) – can be a few tens of nanometers across, while
the region of strong field enhancement – e.g., in the gap
between two MNPs – can be less than 1 nm across [138].
The field enhancement, h (r), is essentially a classical ob-
servable, defined as

h (r) =

√

〈E2
tot (r)〉

〈E2
ext (r)〉

, (82)

where Etot is the total electric field, Eext is the exter-
nal (or driving) electric field, and 〈· · · 〉 indicates a time
average. Large field enhancements are the key to single
molecule surface-enhanced Raman spectroscopy (SERS)
and values as large as h > 100 (the intensity of the SERS
signal scales as h4) are predicted by classical electromag-
netic calculations [139].
In classical calculations, the electronic response is mod-

eled by the macroscopic permittivity of the material. The
classical Drude model gives the following simple and ro-
bust approximation of the metal (complex) permittivity:

ǫr (ω) = ǫ∞ −
ω2
p

ω (ω + iγ)
. (83)

For gold, typical values of the high-frequency permittiv-
ity ǫ∞, the plasma frequency ωp, and the relaxation rate
γ, are: ǫ∞ = 9.5, ~ω = 8.95 eV and ~γ = 69.1 meV [140].
A non-local correction to the Drude model can also be in-
cluded by considering the plasmon dispersion [141, 142].
The metal (complex) permittivity then reads

ǫr (k, ω) = ǫ∞ −
ω2
p

ω (ω + iγ)− β2k2
. (84)

The parameter β can be fitted to model the experimen-
tal data, although the value β =

√

3/5 vF , where vF
is the Fermi velocity, is suggested by the Thomas-Fermi
approximation.[143]

Regardless of the level of sophistication of the permit-
tivity model, all classical calculations assume that elec-
trons are strictly confined inside the metal surfaces. This
is a safe approximation for microscopic plasmonic struc-
tures. However, at the nanoscale the electronic delocal-
ization (or spillout) outside the metal surfaces becomes
comparable to the smallest features of the plasmonic
nanostructure, e.g., to the gap between two MNPs. In
this scale, the very definition of a macroscopic permit-
tivity is inappropriate and the electronic response must
be obtained directly from the quantum dynamics of the
electrons.

TDDFT is currently the method of choice to model the
plasmonic response of MNPs [144–150], via the simpli-
fied jellium model, in which the nuclei and core electrons
are described as a uniform positive charge density, and
only the valence electrons are described explicitly. Early
calculations – especially nanospheres [145, 151] – have
suggested the existence of new charge-transfer plasmonic
modes, which have been also demonstrated by pioneering
experiments [138]. In the future, as the field of quantum
plasmonics [152] – i.e., the investigation and control of
the quantum properties of plasmons – will further de-
velop, the demand for accurate, yet scalable, numerical
simulations to complement the experimental findings is
expected to grow. This demand represents both a chal-
lenge and an opportunity for computational physics.

Scaling up the TDDFT@jellium method to model
larger and more complex plasmonic nanostructures is a
challenge which can be addressed by high-performance
real-space real-time codes, like Octopus. The code has
been initially applied to investigate the plasmonic re-
sponse of single gold nanospheres (Wigner-Seitz radius,
rs = 3.0 bohr) [146]. A clear plasmonic resonance ap-
pears in the absorption cross section – computed by real-
time propagation – for spheres containing a large enough
number of electrons (Ne > 100). A new plasmonic mode,
deemed the “quantum core plasmon”, has been also sug-
gested from the analysis of the absorption cross-section.
This new mode has been further characterized by probing
the sphere at its resonance frequency. Within a real-time
propagation scheme, this is simply done by including an
external electric field, the “laser pulse”, oscillating at a
given frequency.
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As versatility is a major strength of real-space real-
time approaches, other jellium geometries can be easily
modeled by Octopus, including periodic structures. For
instance, a pair of interacting sodium nanowires (with
periodicity along their longitudinal direction) has been
investigated to assess the accuracy of classical methods
based on the model permittivity in eq. (83) and eq. (84).
Compared to pairs of nanospheres, nanowires display a
stronger inductive interaction due to their extended ge-
ometry [147, 148]. This is manifest in the absorption
cross-section which already shows a large split of the
plasmonic peak for a small gap between the wires (see
Fig. 10(a)). Due to the electronic spillout and the sym-
metry of the system, it also turns out that the largest field
enhancement is reached at the center of the gap, not on
the opposing surfaces of the nanowires as predicted by the
classical methods (see Fig. 10(b)). The maximum field
enhancement estimated by the TDDFT@jellium method
is also smaller than the classical estimates. Once again,
the quantum delocalization ignored by the classical meth-
ods plays a crucial role in “smearing” the singularities of
the induced field, effectively curbing the local field en-
hancement.
Simple jellium geometries have been implemented in

Octopus and they can be used as effective “superatomic
pseudopotentials”. The similarity between the jellium
potential and atomic pseudopotentials can be further ex-
ploited to develop an external “jellium pseudopotential”
generator to be used with Octopus. In this way, a larger
selection of jellium geometries will be made available
along with refined, yet scalable, jellium approaches to in-
clude d electron screening in noble metals [153]. Efforts
in this direction are being currently made.
Finally, a word of caution about the domain of appli-

cability of the TDDFT@jellium method is in order. The
non-uniformity of the atomic lattice is expected to affect
the absorption cross-section of small MNPs. A careful
assessment of the lattice contributions – including the
lattice symmetry – on the main plasmon modes of a pair
of nanosphere is available [150]. This last investigation
further demonstrates the possibility to bridge between
atomistic and coarse-grained electronic calculations by
means of a real-space real-time approach.

XI. DEVELOPMENT OF EXCHANGE AND

CORRELATION FUNCTIONALS

The central quantity of the KS scheme of DFT is the
xc energy Exc[n], which describes all non-trivial many-
body effects. Clearly, the exact form of this quantity is
unknown and it must be approximated in any practical
application of DFT. We emphasize that the accuracy of
any DFT calculation depends solely on the form of this
quantity, as this is the only real approximation in DFT
(neglecting numerical approximations that are normally
controllable).
During the past 50 years, hundreds of different forms
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FIG. 10. Panel (a): Absorption cross section of a pair
of sodium nanowires. The driving electric field is polar-
ized as shown in the inset. Curves are for different val-
ues of gap, d, between the nanowires, From top to bottom:
d = 5, 2, 1, 0.5, 0.2, 0.1, 0 nm. Panel (b): Field enhance-
ment, h, for the case d = 0.5 nm. The black lines indicate the
nanowire surfaces. (Adapted from Ref. [147])

have appeared [154]. They are usually arranged in fam-
ilies, which have names such as generalized-gradient ap-
proximations (GGAs), meta-GGAs, hybrid functionals,
etc. In 2001, John Perdew came up with a beautiful
idea on how to illustrate these families and their relation-
ship [155]. He ordered the families as rungs in a ladder
that leads to the heaven of “chemical accuracy”, which
he christened the “Jacob’s ladder” of density-functional
approximations for the xc energy. Every rung adds a
dependency on another quantity, thereby increasing the
precision of the functional but also increasing the numer-
ical complexity and the computational cost.

The first three rungs of this ladder are : (i) the local-
density approximation (LDA), where the functional has a
local dependence on the density only; (ii) the generalized-
gradient approximation (GGA), which includes also a lo-
cal dependence on the gradient of the density ∇n(r);
and (iii) the meta-GGA, which adds a local dependence
on the Laplacian of the density and on the kinetic-energy
density. In the fourth rung we have functionals that de-
pend on the occupied KS orbitals, such as exact exchange
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or hybrid functionals. Finally, the fifth rung adds a de-
pendence on the virtual KS orbitals.

Support for the first three rungs and for the local part
of the hybrid functionals in Octopus is provided through
the Libxc library [156]. Libxc started as a spin-off project
during the initial development of Octopus. At that point,
it became clear that the task of evaluating the xc func-
tional was completely independent of the main structure
of the code, and could therefore be transformed into a
stand-alone library. Over the years, Libxc became more
and more independent of Octopus, and is now used in a
variety of DFT codes. There are currently more than 150
xc functionals implemented in Libxc that are available in
Octopus, a number that has been increasing steadily over
the years. All of the standard functionals are included
and many of the less common ones. There is also support
for LDAs and GGAs of systems of reduced dimensional-
ity (1D and 2D), which allow for direct comparisons with
the direct solution of the many-body Schrödinger equa-
tion for model systems described in section XIII.

Octopus also includes support for other functionals
of the fourth rung, such as exact exchange or the
self-interaction correction of Perdew and Zunger [157],
through the solution of the optimized effective potential
equation. This can be done exactly [158], or within the
Slater [159] or Krieger-Lee-Iafrate approximations [160].

Besides the functionals that are supported by Octopus,
the code has served as a platform for the testing and de-
velopment of new functionals. For example, the method
described in section XIII can be used in a straightforward
way to obtain reference data against which to benchmark
the performance of a given xc functional, for example a
one-dimensional LDA [161]. In that case, both calcula-
tions, exact and approximate, make use of the same real-
space grid approach, which makes the comparison of the
results obtained with both straightforward. Despite the
obvious advantage of using exact solutions of the many-
body problem as reference data, this is often not possible
and one usually needs to resort to the more commonly
used experimental or highly-accurate quantum-chemistry
data. In this case, the flexibility of the real-space method,
allowing for the calculation of many different properties
of a wide variety of systems, is again an advantage. Oc-
topus has therefore been used to benchmark the perfor-
mance of xc functionals whose potential has a correct
asymptotic behavior [162] when calculating ionization
potentials and static polarizabilities of atoms, molecules,
and hydrogen chains.

In this vein, Andrade and Aspuru-Guzik [163] pro-
posed a method to obtain an asymptotically correct
xc potential starting from any approximation. Their
method is based on considering the xc potential as an
electrostatic potential generated by a fictitious xc charge.
In terms of this charge, the asymptotic condition is given
as a simple formula that is local in real space and can
be enforced by a simple procedure. The method, im-
plemented in Octopus, was used to perform test calcu-
lations in molecules. Additionally, with this correction

procedure it is possible to find accurate predictions for
the derivative discontinuity and, hence, predict the fun-
damental gap [164].

XII. REAL-SPACE REDUCED

DENSITY-MATRIX FUNCTIONAL THEORY

An alternative approach to DFT that can model elec-
trons using a single-particle framework is reduced den-
sity matrix functional theory (RDMFT) [165]. Here, we
present the current results of an ongoing effort to develop
a real-space version of RDMFT and to implement it in
the Octopus code.
Within RDMFT, the total energy of a system is given

as a functional of the one-body reduced density-matrix
(1-RDM)

γ(r, r′) =

N

∫

· · ·
∫

dr2 . . .drN Ψ∗(r′, r2...rN )Ψ(r, r2...rN )

(85)

which can be written in its spectral representation as

γ(r, r′) =
∞∑

i=1

niφ
∗
i (r

′)φi(r), (86)

where the natural orbitals φi(r) and their occupation
numbers ni are the eigenfunctions and eigenvalues of the
1-RDM, respectively.
In RDMFT the total energy is given by

E = −
∞∑

i=1

ni

∫

drφ∗i (r)
∇2

2
φi(r)

+

∞∑

i=1

ni

∫

dr vext(r)|φi(r)|2

+
1

2

∞∑

i,j=1

ninj

∫

drdr′
|φi(r)|2|φj(r)|2

|r − r′| +Exc [{nj}, {φj}] .

(87)

The third term is the Hartree energy, EH, and the fourth
the xc energy, Exc. As in DFT, the exact functional of
RDMFT is unknown. However, the part that needs to
be approximated, Exc[γ], comes, contrary to DFT, only
from the electron-electron interaction, as the interacting
kinetic energy can be explicitly expressed in terms of γ.
Different approximate functionals are employed and min-
imized with respect to the 1-RDM in order to find the
ground state energy [166–168]. A common approxima-
tion for Exc is the Müller functional [169], which has the
form

Exc [{nj}, {φj}] =

− 1

2

∞∑

i,j=1

√
ninj

∫∫

drdr′
φ∗i (r)φi(r

′)φ∗j (r
′)φj(r)

|r − r′| (88)
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and is the only Exc implemented in Octopus for the mo-
ment.
For closed-shell systems, the necessary and sufficient

conditions for the 1-RDM to be N -representable [170],
i.e. to correspond to a N -electron wavefunction, is that
0 ≤ ni ≤ 2 and

∞∑

i=1

ni = N. (89)

Minimization of the energy functional of eq. (87) is per-
formed under the N -representability constraints and the
orthonormality requirements of the natural orbitals,

〈φi|φj〉 = δij . (90)

The bounds on the occupation numbers are automati-
cally satisfied by setting ni = 2 sin2(2πϑi) and varying
ϑi without constraints. The conditions (89) and (90) are
taken into account via Lagrange multipliers µ and λij , re-
spectively. Then, one can define the following functional

Ω [N, {ϑi}, {φi(r)}] = E − µ

(
∞∑

i=1

2 sin2(2πϑi)−N

)

−
∞∑

i,j=1

λji (〈φi|φj〉 − δij) (91)

which has to be stationary with respect to variations in
{ϑi}, {φi(r)} and {φ∗i (r)}. In any practical calculation
the infinite sums have to be truncated including only a fi-
nite number of occupation numbers and natural orbitals.
However, since the occupation numbers nj decay very
quickly for j > N , this is not problematic.

The variation of Ω is done in two steps: for a fixed set of
orbitals, the energy functional is minimized with respect
to occupation numbers and, accordingly, for a fixed set
of occupations the energy functional is minimized with
respect to variations of the orbitals until overall conver-
gence is achieved. As a starting point we use results from
a Hartree-Fock calculation and first optimize the occu-
pation numbers. Since the correct µ is not known, it is
determined via bisection: for every µ the objective func-
tional is minimized with respect to ϑi until the condition
(89) is satisfied.

Due to the dependence on the occupation numbers, the
natural-orbital minimization does not lead to an eigen-
value equation like in DFT or Hartree-Fock. The im-
plementation of the natural orbital minimization follows
the method by Piris and Ugalde [171]. Varying Ω with
respect to the orbitals for fixed occupation numbers one
obtains

λji = ni

〈

φj

∣
∣
∣
∣
−∇2

2
+ vext

∣
∣
∣
∣
φi

〉

+

∫

dr
δEHxc

δφ∗i (r)
φ∗j (r).

(92)
At the extremum, the matrix of the Lagrange multipliers
must be Hermitian, i.e.

λji − λ∗ij = 0 . (93)

Then one can define the off-diagonal elements of a Her-
mitian matrix F as:

Fji = θ(i− j)(λji − λ∗ij) + θ(j − i)(λ∗ij − λji), (94)

where θ is the unit-step Heaviside function. We initialize
the whole matrix as Fji = (λji + λ∗ij)/2. In every itera-
tion we diagonalize F, keeping the diagonal elements for
the next iteration, while changing the off-diagonal ones to
(94). At the solution all off-diagonal elements of this ma-
trix vanish, hence, the matrices F and γ can be brought
simultaneously to a diagonal form. Thus, the {φi} which
are the solutions of eq. (93) can be found by diagonal-
ization of F in an iterative manner [171]. The criterion
to exit the natural-orbital optimization is that the dif-
ference in the total energies calculated in two successive
F diagonalizations is smaller than a threshold. Overall
convergence is achieved when the difference in the total
energies in two successive occupation-number optimiza-
tions and the non-diagonal matrix elements of F are close
to zero.
As mentioned above, one needs an initial guess for the

natural orbitals both for the first step of occupation-
number optimization but also for the optimization of
the natural orbitals. A rather obvious choice would be
the occupied and a few unoccupied orbitals resulting
from a DFT or HF calculation. Unfortunately, there are
unbound states among the HF/DFT unoccupied states
which are a bad starting point for the weakly occupied
natural orbitals. When calculated in a finite grid these
orbitals are essentially the eigenstates of a particle in a
box. Using the exact-exchange approximation (EXX) in
an optimized-effective-potential framework results in a
larger number of bound states than HF or the local den-
sity approximation (LDA) due to the EXX functional be-
ing self-interaction-free for both occupied and unoccupied
orbitals. Using HF or LDA orbitals to start a RDMFT
calculation, the natural orbitals do not converge to any
reasonable shape, but even when starting from EXX one
needs to further localize the unoccupied states. Thus, we
have found that in order to improve the starting point for
our calculation we can multiply each unoccupied orbital
by a set of Gaussian functions centered at the positions
of the atoms. As the unbound states are initially more
delocalized than the bound ones, we choose a larger ex-
ponent for them.
In Fig. 11 we show the dissociation curve of H2 ob-

tained with RDMFT in Octopus and compare it with
results obtained by the Gaussian-basis-set RDMFT code
HIPPO [172]. For the Octopus calculation, we kept 13
natural orbitals with the smallest occupation number be-
ing of the order of 10−5 after the RDMFT calculation had
converged. The HIPPO calculation was performed using
30 natural orbitals. The RDMFT curve obtained with
Octopus looks similar to the one from HIPPO and other
Gaussian implementations of RDMFT [166], keeping the
nice feature of not diverging strongly in the dissociation
limit. However, for internuclear distances R bigger than
1 a.u., the real-space energy lies above the HIPPO one.
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We believe that the remaining difference can be removed
by further improving the initial guess for the orbitals that
we use in Octopus, because a trial calculation using HF
orbitals from a Gaussian implementation showed a curve
almost identical to the one from the HIPPO code (not
shown in the figure). In the future, we plan to include
support for open-shell systems and additional xc func-
tionals.
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RHF real-space
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FIG. 11. Dissociation curve of the hydrogen molecule. Re-
stricted Hartree-Fock (black dotted and red dash-dotted lines)
does not dissociate into two neutral atoms while the closed-
shell RDMFT gives almost the correct energy of -1 Ha at the
dissociation limit in a Gaussian implementation. For the grid
implementation in Octopus, a deviation from the constant
energy at large R remains.

XIII. EXACT SOLUTION OF THE

MANY-BODY SCHRÖDINGER EQUATION FOR

FEW ELECTRONS

In one-dimensional systems, the fully interacting
Hamiltonian for N electrons has the form

Ĥ =

N∑

j=1

(

− d2

dx2j
+ vext(xj)

)

+

N∑

j<k

vint(xj , xk), (95)

where the interaction potential vint(xj , xk) is usually
Coulombic, though the following discussion also applies
for other types of interaction, including more than two-
body ones. In 1D one often uses the soft Coulomb inter-
action 1/

√

(xj − xk)2 + 1, where a softening parameter
(usually set to one) is introduced in order to avoid the
divergence at xj = xk, which is non-integrable in 1D.
Mathematically, the Hamiltonian (eq. (95)) is equiv-

alent to that of a single (and hence truly independent)
electron in N dimensions, with the external potential

vNd
ext (x1...xN ) =

N∑

j=1

vext(xj) +

N∑

j<k

vint(xj , xk). (96)

For small N it is numerically feasible to solve the N -
dimensional Schrödinger equation

ĤΨj(x1...xN ) = EjΨj(x1...xN ) (97)

which provides a spatial wave function for a single par-
ticle in N dimensions. This equivalence is not restricted
to one-dimensional problems. One can generally map a
problem of N electrons in d dimensions onto the problem
of a single particle in Nd dimensions, or indeed a prob-
lem with multiple types of particles (e.g. electrons and
protons) in d dimensions, in the same way.

What we exploit in Octopus is the basic machinery for
solving the Schödinger equation in an arbitrary dimen-
sion, the spatial/grid bookkeeping, the ability to repre-
sent an arbitrary external potential, and the intrinsic par-
allelization. In order to keep our notation relatively sim-
ple, we will continue to discuss the case of an originally
one-dimensional problem with N electrons. Grid-based
solutions of the full Schrödinger equation are not new,
and have been performed for many problems with either
few electrons (in particular H2, D2 and H+

2 ) [173, 174])
or model interactions [175], including time-dependent
cases [176].

The time-dependent propagation of the Schrödinger
equation can be carried out in the same spirit, since the
Hamiltonian is given explicitly and each “single-particle
orbital” represents a full state of the system. A laser or
electric-field perturbation can also be applied, depending
on the charge of each particle (given in the input), and
taking care to apply the same effective field to each par-
ticle along the polarization direction of the field (in 1D,
the diagonal of the hyper-cube).

Solving eq. (97) leaves the problem of constructing a
wave function which satisfies the anti-symmetry prop-
erties of N electrons in one dimension. For fermions
one needs to ensure that those spatial wave functions
Ψj which are not the spatial part of a properly anti-
symmetric wave function are removed as allowed solu-
tions for the N -electron problem. A graphical represen-
tation of which wave functions are allowed is given by
the Young diagrams (or tableaux) for permutation sym-
metries, where each electron is assigned a box, and the
boxes are then stacked in columns and rows (for details
see, for example, Ref. [177]). Each box is labeled with
a number from 1 to N such that the numbers increase
from top to bottom and left to right.

All possible decorated Young diagrams for three and
four electrons are shown in Fig. 12. Since there are two
different spin states for electrons, our Young diagrams
for the allowed spatial wave functions contain at most
two columns. The diagram d) is not allowed for the wave
function of three particles with spin 1/2, and diagrams
k) to n) are not allowed for four particles. To connect a
given wave function Ψj with a diagram one has to sym-
metrize the wave function according to the diagram. For
example, for diagram b) one would perform the following
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operations on a function Ψ(x1, x2, x3)

[Ψ(x1, x2, x3) + Ψ(x2, x1, x3)]

− [Ψ(x3, x2, x1) + Ψ(x3, x1, x2)] . (98)

Hence, one symmetrizes with respect to an interchange
of the first two variables, because they appear in the
same row of the Young diagram, and anti-symmetrizes
with respect to the first and third variable, as they ap-
pear on the same column. We note that we are referring
to the position of the variable in the list, not the in-
dex, and that symmetrization always comes before anti-
symmetrization. At the end of these operations one cal-
culates the norm of the resulting wave function. If it
passes a certain threshold, by default set to 10−5, one
keeps the obtained function as a proper fermionic spatial
part. If the norm is below the threshold, one contin-
ues with the next allowed diagram until either a norm
larger than the threshold is found or all diagrams are
used up. If a solution Ψj does not yield a norm above
the threshold for any diagram it is removed since it cor-
responds to a wave function with only bosonic or other
non-fermionic character. Generally, as the number of for-
bidden diagrams increases with N , the number of wave
functions that need to be removed also increases quickly
with N , in particular in the lowest part of the spectrum.
The case of two electrons is specific, as all solutions of
eq. (97) correspond to allowed fermionic wave functions:
the symmetric ones to the singlet states and the anti-
symmetric ones to the triplet states.
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FIG. 12. Young diagrams for three [a)-d)] and four [e)-n)]
electrons. For three electrons, only diagrams a)-c) are allowed
for spin-1/2 particles, while only diagrams e)-j) are allowed
for four electrons.

For example, for a one-dimensional Li atom with an
external potential

vext(x) = − 3√
x2 + 1

(99)

State Energy Young diagram Norm

1 -4.721 bosonic < 10−13

2 -4.211 b) 0.2

3 -4.211 c) 0.6

4 -4.086 bosonic < 10−11

5 -4.052 b) 0.4

6 -4.052 c) 0.7

TABLE III. Eigenstates for a one-dimensional lithium atom.
The first and the fourth eigenstates show norms that are
smaller than 10−13 and 10−11, respectively, for all diagrams.
Hence, these states are bosonic and removed from any further
calculations. The second and third states are energetically de-
generate and correspond to diagrams b) and c) in Fig. 12. The
same is true for the fifth and sixth states.

and the soft Coulomb interaction, we obtain the states
and energy eigenvalues given in table III.

If certain state energies are degenerate, the Young dia-
gram “projection” contains an additional loop, ensuring
that the same diagram is not used to symmetrize suc-
cessive states: this would yield the same spatial part for
each wave function in the degenerate sub-space. A given
diagram is only used once in the sub-space, on the first
state whose projection has significant weight.

The implementation also allows for the treatment of
bosons, in which case the total wave function has to be
symmetric under exchange of two particles. Here one
will use a spin part symmetrized with the same Young
diagram (instead of the mirror one for fermions), such
that the total wave function becomes symmetric.

In order for the (anti-)symmetrization to work properly
one needs to declare each particle in the calculation to
be a fermion, a boson, or an anyon. In the latter case,
the corresponding spatial variables are not considered at
all in the (anti-)symmetrization procedure. One can also
have more than one type of fermion or boson, in which
case the symmetric requirements are only enforced for
particles belonging to the same type.

There are also numerical constraints on the wave-
functions: space must be represented in a homoge-
neous hyper-cube, eventually allowing for different parti-
cle masses by modifying the kinetic-energy operator for
the corresponding directions. All of the grid-partitioning
algorithms intrinsic to octopus carry over to arbitrary di-
mensions, which allows for immediate parallelization of
the calculations of the ground and excited states. The
code can run with an arbitrary number of dimensions,
however, the complexity and memory size grow expo-
nentially with the number of particles simulated, as ex-
pected. Production runs have been executed up to 6 or
7 dimensions.

Most of the additional treatment for many-body quan-
tities is actually post-processing of the wave-functions.
For each state, the determination of the fermionic or
bosonic nature by Young-tableau symmetrization is fol-
lowed by the calculation and output of the density for
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each given particle type, if several are present. Other
properties of the many-body wave-function can also be
calculated. For example, Octopus can also output the
one-body density matrix, provided in terms of its occu-
pation numbers and natural orbitals.
This type of studies, even when they are limited to

model systems of a few electrons, allows us to produce
results that can be compared to lower levels of the-
ory like approximate DFT or RDMFT, and to develop
better approximations for the exchange and correlation
term. Exact results obtained from such calculations
have been used to assess the quality of a 1D LDA func-
tional [161] and adiabatic 1D LDA and exact exchange in
a TDDFT calculation calculation of photoemission spec-
tra [161, 178].

XIV. COMPRESSED SENSING AND

ATOMISTIC SIMULATIONS

In order to obtain frequency-resolved quantities from
real-time methods like molecular dynamics or electron
dynamics, it is necessary to perform a spectral represen-
tation of the time-resolved signal. This is a standard op-
eration that is usually performed using a discrete Fourier
transform. Since the resolution of the spectrum is given
by the length of the time signal, it is interesting to look
for more methods that can provide us a spectrum of sim-
ilar quality with shorter time series, as this is directly re-
flected in shorter computation times. Several such meth-
ods exist, but a particular one that has been explored in
Octopus, due to its general applicability and efficiency,
is compressed sensing.
Compressed sensing [179] is a general theory aimed at

optimizing the amount of sampling required to recon-
struct a signal. It is based on the idea of sparsity, a mea-
sure of how many zero coefficients a signal has when rep-
resented in a certain basis. Compressed sensing has been
applied to many problems in experimental sciences [180–
182] and technology [183, 184] in order to perform more
accurate measurements. Its ideas, however, can also be
applied to computational work.
In order to calculate a spectrum in compressed sensing,

we need to solve the so-called basis-pursuit optimization
problem

min
σ

|σ|1 subject to Fσ = τ , (100)

where |σ|1 =
∑

k |σk| is the standard 1-norm, τ is the
discretized time series, σ is the frequency-resolved func-
tion (the spectrum that we want to calculate) and F is
the Fourier-transform matrix.
Since τ is a short signal, its dimension is smaller than

the one of σ. This implies that the linear equation Fσ =
τ is under-determined and has many solutions, in this
particular case, all the spectra that are compatible with
our short time propagation. From all of these possible
solutions, eq. (100) takes the one that has the smallest 1-
norm, that corresponds to the solution that has the most

zero coefficients. For spectra, this means we are choosing
the one with the fewest frequencies, which will tend to
be the physical one, as for many cases we know that the
spectra is composed of a discrete number of frequencies.
To solve eq. (100) numerically, we have implemented in

Octopus the SPGL1 algorithm [185]. The solution typ-
ically takes a few minutes, which is two orders of mag-
nitude more expensive than the standard Fourier trans-
form, but this is negligible in comparison with the cost
of the time propagation.
By applying compressed sensing to the determination

of absorptional or vibrational spectra, it was found that
a time signal a fifth of the length can be used in com-
parison with the standard Fourier transform [35]. This
is translated into an impressive factor-of-five reduction
in the computational time. This is illustrated in Fig. 13
where we show a spectrum calculated with compressed
sensing from a 10 fs propagation, which has a resolution
similar to a Fourier transform spectrum obtained with 50
fs of propagation time.
Moreover, the general conclusion that can be obtained

from this work is that in the application of compressed
sensing to simulations the reduction in the number of
samples that compressed sensing produces in an experi-
mental setup is translated into a reduction of the com-
putational time. This concept inspired studies on how
to carry the ideas of compressed sensing into the core
of electronic-structure simulations. The first result of
this effort is a method to use compressed sensing to re-
construct sparse matrices, that has direct application in
the calculation of the Hessian matrix and vibrational fre-
quencies from linear response (as discussed in section III).
For this case, our method results in the reduction of the
computational time by a factor of three [186].
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FIG. 13. Optical absorption spectrum from a methane
molecule from real-time TDDFT. Comparison of the calcu-
lation using a Fourier transform and a propagation time of
50 fs (top, black curve) with compressed sensing and a prop-
agation time of 10 fs (bottom, blue curve). Compressed sens-
ing produces a similar resolution, with a propagation 5 times
shorter.
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XV. PARALLELIZATION, OPTIMIZATIONS

AND GRAPHICS PROCESSING UNITS

Computational cost has been and still is a fundamental
factor in the development of electronic structure meth-
ods, as the small spatial dimensions and the fast move-
ment of electrons severely limit the size of systems that
can be simulated. In order to study systems of inter-
est as realistically and accurately as possible, electronic-
structure codes must execute efficiently in modern com-
putational platforms. This implies support for massively
parallel platforms and modern parallel processors, includ-
ing graphics processing units (GPUs).
Octopus has been shown to perform efficiently on par-

allel supercomputers, scaling to hundreds of thousands
of cores [35, 187]. The code also has an implementation
of GPU acceleration [35, 188] that has shown to be com-
petitive in performance with Gaussian DFT running on
GPUs [189].
Performance is not only important for established

methods, but also for the implementation of new ideas.
The simplicity of real-space grids allows us to provide Oc-
topus developers with building blocks that they can use
to produce highly efficient code without needing to know
the details of the implementation, isolating them as much
as possible from the optimization and parallelization re-
quirements. In most cases, these building blocks allow
developers to write code that is automatically parallel,
efficient, and that can transparently run on GPUs. The
type of operations available run from simple ones, like
integration, linear algebra, and differential operators, to
more sophisticated ones, like the application of a Hamil-
tonian or solvers for differential equations.
However, it is critical to expose an interface with the

adequate level that hides the performance details, while
still giving enough flexibility to the developers. For ex-
ample, we have found that the traditional picture of a
state as the basic object is not adequate for optimal
performance, as it does not expose enough data paral-
lelism [188]. In Octopus we use a higher-level interface
where the basic object is a group of several states.
In the case of functions represented on the grid, the

developers work with a linear array that contains the
values of the field for each grid point. Additional data
structures provide information about the grid structure.
This level of abstraction makes it simple for developers
to write code that works for different problem dimension-
ality, and different kinds and shapes of grids.
In terms of performance, by hiding the structure of

the grid, we can use sophisticated methods to control
how the grid points are stored in memory with the ob-
jective of using processor caches more efficiently in finite-
difference operators. We have found that by using space-
filling curves [190], as shown in Fig. 14, and in particular
the Hilbert curve [191, 192], we can produce a significant
improvement in the performance of semi-local operations.
For example, in Fig.15 shows that a performance gain
of around 50% can be obtained for the finite-difference

Laplacian operator running on a GPU by using a Hilbert
curve to map the grid into memory.

a) b) c)

FIG. 14. Examples of different mappings from a 2D grid
to a linear array: (a) standard map, (b) grid mapped by
small parallelepipedic subgrids, and (c) mapping given by a
Hilbert space-filling curve. These last two mappings provide
a much better memory locality for semi-local operations than
the standard approach.
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FIG. 15. Numerical performance of the Octopus finite-
difference Laplacian implementation using different grid map-
pings. Spherical grid with 500,000 points. Computations with
a AMD Radeon 7970 GPU. A speed up of around 50% is ob-
served for the subgrid and Hilbert curve mappings.

Parallelization in Octopus is performed on different
levels. The most basic one is domain decomposition, were
the grid is divided in different regions that are assigned to
each processor. For most operations, only the boundaries
of the regions need to be communicated among proces-
sors. Since the grid can have a complicated shape dic-
tated by the shape of the molecule, it is far from trivial to
distribute the grid-points among processors. For this task
we use a third-party library called ParMETIS [193].
This library provides routines to partition the grid en-
suring a balance of points and minimizing the size of the
boundary regions, and hence the communication costs.
An example of grid partitioning is shown in Fig. 16.
Additional parallelization is provided by other data

decomposition approaches that are combined with do-
main decomposition. This includes parallelization over
KS states, and over k-points and spin. The latter paral-
lelization strategy is quite efficient, since for each k-point
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or spin component the operations are independent. How-
ever, it is limited by the size of the system, and often is
not available (as in the case of closed-shell molecules, for
example).
The efficiency of the parallelization over KS states de-

pends on the type of calculation being performed. For
ground state calculations, the orthogonalization and sub-
space diagonalization routines [194] require the commu-
nication of states. In Octopus this is handled by parallel
dense linear-algebra operations provided by the ScaLA-
PACK library [195]. For real-time propagation, on the
other hand, the orthogonalization is preserved by the
propagation [34] and there is no need to communicate
KS states between processors. This makes real-time
TDDFT extremely efficient in massively parallel comput-
ers [35, 196].
An operation that needs special care in parallel is the

solution of the Poisson equation. Otherwise, it consti-
tutes a bottleneck in parallelization, as a single Poisson
solution is required independently of the number of states
in the system. A considerable effort has been devoted to
the problem of finding efficient parallel Poisson solvers
that can keep up with the rest of the code [197]. We have
found that the most efficient methods are based on FFTs,
which require a different domain decomposition to per-
form efficiently. This introduces the additional problem
of transferring the data between the two different data
partitions. In Octopus this was overcome by creating a
mapping at the initialization stage and using it during
execution to efficiently communicate only the data that
is strictly necessary between processors [187].

FIG. 16. Example of adaptive mesh partitioning for a
molecule of chlorophyll a. Simplified mesh with a spacing of
0.5 Å and a radius of 2.5 Å. Each color represents a domain,
which will be distributed to a set of processors for parallel
computation.

XVI. CONCLUSIONS

In this article, we have shown several recent develop-
ments in the realm of electronic-structure theory that
have been based on the Octopus real-space code and

made possible in part by the flexibility and simplicity
of working with real-space grids. Most of them go be-
yond a mere implementation of existing theory and rep-
resent new ideas in their respective areas. We expect
that many of these approaches will become part of the
standard tools of physicists, chemists and material sci-
entists, and in the future will be integrated into other
electronic-structure codes.
These advances also illustrate the variety of applica-

tions of real-space electronic structure, many of which
going beyond the traditional calculation schemes used in
electronic structure, and might provide a way forward to
tackle current and future challenges in the field.
What we have presented also shows some of the cur-

rent challenges in real-space electronic structure. One
example is the use of pseudo-potentials or other forms of
projectors to represent the electron-ion interaction. Non-
local potentials introduce additional complications on
both the formulation, as shown by the case of magnetic
response, and the implementation. Pseudo-potentials
also include an additional, and in some cases, not well-
controlled approximation. It would be interesting to
study the possibility of developing an efficient method
to perform full-potential calculations without additional
computational cost, for example by using adaptive or ra-
dial grids.
Another challenge for real-space approaches is the cost

of the calculation of two-body Coulomb integrals that ap-
pear in electron-hole linear response, RDMFT or hybrid
xc functionals. In real-space these integrals are calcu-
lated in linear or quasi-linear time by considering them
as a Poisson problem. However, the actual numerical cost
can be quite large when compared with other operations.
A fast approach to compute these integrals, perhaps by
using an auxiliary basis, would certainly make the real-
space approach more competitive for some applications.
The scalability of real-space grid methods makes them

a good candidate for electronic-structure simulations in
the future exaflop supercomputing systems expected for
the end of the decade. In this aspect, the challenge is to
develop high-performance implementations that can run
efficiently on these machines.
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J. Chem. Phys. 133, 174111 (2010).

[83] S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58,
1200 (1980).

[84] S. B. Ben-Shlomo and U. Kaldor, J. Chem. Phys. 92,
3680 (1990).

[85] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Dem-
mel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, and D. Sorensen, LAPACK
Users’ Guide, 3rd ed. (Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA, 1999).

[86] D. A. Strubbe and J. C. Grossman, “Photoisomerization
dynamics of solar thermal fuels with TDDFT excited-
state forces,” (2015), in preparation.

[87] A. Sitt, L. Kronik, S. Ismail-Beigi, and J. R. Che-
likowsky, Phys. Rev. A 76, 054501 (2007).

[88] T. Tsukagoshi and O. Sugino, Phys. Rev. A 86, 064501
(2012).

[89] J. Hutter, J. Chem. Phys. 118, 3928 (2003).
[90] X. Andrade, Linear and non-linear response phenom-

ena of molecular systems within time-dependent density
functional theory, Ph.D. thesis, University of the Basque
Country – UPV/EHU (2010).

[91] M. Tafipolsky and R. Schmid, J. Chem. Phys. 124,
174102 (2006).

[92] K. Hirose, First-principles Calculations in Real-space
Formalism: Electronic Configurations and Transport
Properties of Nanostructures (World Scientific Publish-
ing Company Pte Limited, 2005).

[93] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, and
P. Gumbsch, Phys. Rev. Lett. 97, 170201 (2006).

http://dx.doi.org/10.1103/physreva.71.010501
http://dx.doi.org/10.1016/j.cpc.2011.12.006
http://dx.doi.org/10.1016/j.cpc.2011.12.006
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2007.11.003
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2007.11.003
http://dx.doi.org/10.1103/physrev.84.244
http://dx.doi.org/10.1103/revmodphys.73.515
http://dx.doi.org/10.1103/revmodphys.73.515
http://dx.doi.org/10.1063/1.2733666
http://dx.doi.org/10.1103/physrevb.39.13120
http://dx.doi.org/10.1103/physrevb.39.13120
http://dx.doi.org/10.1103/physrevb.53.15638
http://dx.doi.org/10.1103/physrevb.53.15638
http://dx.doi.org/10.1103/PhysRevB.51.6773
http://dx.doi.org/10.1103/physrev.137.a1441
http://dx.doi.org/10.1103/physrevb.40.3616
http://dx.doi.org/10.1103/physrevb.40.3616
http://dx.doi.org/ 10.1103/physrevb.52.967
http://dx.doi.org/10.1103/physrevlett.82.3296
http://dx.doi.org/10.1007/bf01385726
http://dx.doi.org/10.1007/bf01385726
http://dx.doi.org/10.1063/1.3457362
http://dx.doi.org/10.1063/1.3457362
http://dx.doi.org/ 10.1103/physrevb.78.035333
http://dx.doi.org/10.1103/physrevb.71.045104
http://dx.doi.org/10.1103/physrevb.71.045104
http://dx.doi.org/10.1103/physrev.142.530
http://dx.doi.org/10.1007/978-3-540-34591-6_2
http://dx.doi.org/10.1007/978-3-540-34591-6_2
http://dx.doi.org/10.1103/PhysRevB.55.10355
http://www.quantum-espresso.org
http://www.quantum-espresso.org
http://dx.doi.org/ 10.1103/PhysRevB.58.1222
http://dx.doi.org/ 10.1103/PhysRevB.58.1222
http://dx.doi.org/10.1021/ja00179a005
http://dx.doi.org/10.1021/ja00179a005
http://dx.doi.org/10.1063/1.443165
http://dx.doi.org/10.1063/1.443165
http://dx.doi.org/10.1063/1.434432
http://dx.doi.org/10.1063/1.434432
http://dx.doi.org/10.1103/physrevlett.87.087402
http://dx.doi.org/10.1103/physrevlett.87.087402
http://dx.doi.org/10.1103/physrevlett.91.196401
http://dx.doi.org/10.1103/physrevlett.91.196401
http://dx.doi.org/10.1039/b903200b
http://dx.doi.org/10.1039/b903200b
http://dx.doi.org/ 10.1038/350046a0
http://dx.doi.org/10.1038/378249a0
http://dx.doi.org/10.1039/b902278c
http://dx.doi.org/10.1039/b902278c
http://dx.doi.org/10.1007/978-3-642-23518-4_7
http://dx.doi.org/10.1007/978-3-642-23518-4_7
http://dx.doi.org/10.1103/RevModPhys.74.601
http://dx.doi.org/10.1103/RevModPhys.74.601
http://dx.doi.org/10.1103/PhysRevLett.76.1212
http://dx.doi.org/DOI: 10.1016/S0009-2614(99)01149-5
http://dx.doi.org/DOI: 10.1016/S0009-2614(99)01149-5
http://dx.doi.org/DOI: 10.1016/j.theochem.2009.08.018
http://dx.doi.org/10.1063/1.471140
http://dx.doi.org/10.1063/1.471140
http://dx.doi.org/ DOI:10.1063/1.3114988
http://dx.doi.org/10.1063/1.3503594
http://dx.doi.org/10.1139/p80-159
http://dx.doi.org/10.1139/p80-159
http://dx.doi.org/http://dx.doi.org/10.1063/1.457824
http://dx.doi.org/http://dx.doi.org/10.1063/1.457824
http://dx.doi.org/10.1103/PhysRevA.76.054501
http://dx.doi.org/10.1103/PhysRevA.86.064501
http://dx.doi.org/10.1103/PhysRevA.86.064501
http://dx.doi.org/http://dx.doi.org/10.1063/1.1540109
http://dx.doi.org/10.1063/1.2193514
http://dx.doi.org/10.1063/1.2193514
http://books.google.com/books?id=TkvogLqVrqwC
http://books.google.com/books?id=TkvogLqVrqwC
http://books.google.com/books?id=TkvogLqVrqwC
http://dx.doi.org/ 10.1103/PhysRevLett.97.170201


27

[94] D. Asenjo, J. D. Stevenson, D. J. Wales, and D. Frenkel,
J. Phys. Chem. B 117, 12717 (2013), pMID: 23659176,
http://dx.doi.org/10.1021/jp312457a.

[95] P. Puschnig, S. Berkebile, A. J. Fleming, G. Koller,
K. Emtsev, T. Seyller, J. D. Riley, C. Ambrosch-Draxl,
F. P. Netzer, and M. G. Ramsey, Science 326, 702
(2009).

[96] M. Wießner, D. Hauschild, C. Sauer, V. Feyer, A. Schöll,
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P. Garćıa-González, J. Phys. Chem. C 117, 8941 (2013).

[148] T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G.
Borisov, Phys. Rev. Lett. 110, 263901 (2013).

[149] H. Xiang, X. Zhang, D. Neuhauser, and G. Lu, J. Phys.
Chem. Lett. 5, 1163 (2014).

[150] P. Zhang, J. Feist, A. Rubio, P. Garćıa-González, and
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